{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Linear Regression\n", "\n", "Linear regression is a fundamental and widely used statistical technique in data analysis and machine learning. It is a powerful tool for **modeling and understanding the relationships between variables**. At its core, linear regression aims to establish a linear relationship between a **dependent variable** (the one you want to predict) and **one or more independent variables** (the ones used for prediction). This technique allows us to make predictions, infer associations, and gain insights into how changes in independent variables influence the target variable. Linear regression is both intuitive and versatile, making it a valuable tool for tasks ranging from simple trend analysis to more complex predictive modeling and hypothesis testing. \n", "\n", "In this context, we will explore the concepts and applications of linear regression, its different types, and how to implement it using Python." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## The Auto MPG Dataset\n", "\n", "We will consider the [Auto MPG](https://archive.ics.uci.edu/dataset/9/auto+mpg) dataset, which contains $398$ measurements of $8$ different properties of different cars:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
displacementcylindershorsepowerweightaccelerationmodel_yearoriginmpg
0307.08130.0350412.070118.0
1350.08165.0369311.570115.0
2318.08150.0343611.070118.0
3304.08150.0343312.070116.0
4302.08140.0344910.570117.0
...........................
393140.0486.0279015.682127.0
39497.0452.0213024.682244.0
395135.0484.0229511.682132.0
396120.0479.0262518.682128.0
397119.0482.0272019.482131.0
\n", "

398 rows × 8 columns

\n", "
" ], "text/plain": [ " displacement cylinders horsepower weight acceleration model_year \\\n", "0 307.0 8 130.0 3504 12.0 70 \n", "1 350.0 8 165.0 3693 11.5 70 \n", "2 318.0 8 150.0 3436 11.0 70 \n", "3 304.0 8 150.0 3433 12.0 70 \n", "4 302.0 8 140.0 3449 10.5 70 \n", ".. ... ... ... ... ... ... \n", "393 140.0 4 86.0 2790 15.6 82 \n", "394 97.0 4 52.0 2130 24.6 82 \n", "395 135.0 4 84.0 2295 11.6 82 \n", "396 120.0 4 79.0 2625 18.6 82 \n", "397 119.0 4 82.0 2720 19.4 82 \n", "\n", " origin mpg \n", "0 1 18.0 \n", "1 1 15.0 \n", "2 1 18.0 \n", "3 1 16.0 \n", "4 1 17.0 \n", ".. ... ... \n", "393 1 27.0 \n", "394 2 44.0 \n", "395 1 32.0 \n", "396 1 28.0 \n", "397 1 31.0 \n", "\n", "[398 rows x 8 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from ucimlrepo import fetch_ucirepo \n", " \n", "# fetch dataset \n", "auto_mpg = fetch_ucirepo(id=9) \n", " \n", "# data (as pandas dataframes) \n", "X = auto_mpg.data.features \n", "y = auto_mpg.data.targets \n", " \n", "data = X.join(y)\n", "data\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here is a description of the different variables:\n", "\n", "* **Displacement**: The engine's displacement (in cubic inches), which indicates the engine's size and power.\n", "* **Cylinders**: The number of cylinders in the engine of the car. This is a categorical variable.\n", "* **Horsepower**: The engine's horsepower, a measure of the engine's performance.\n", "* **Weight**: The weight of the car in pounds.\n", "* **Acceleration**: The car's acceleration (in seconds) from 0 to 60 miles per hour.\n", "* **Model Year**: The year the car was manufactured. This is often converted into a categorical variable representing the car's age.\n", "* **Origin**: The car's country of origin or manufacturing.\n", "Car Name: The name or identifier of the car model.\n", "* **MPG (Miles per Gallon)**: The fuel efficiency of the car in miles per gallon. It is the variable to be predicted in regression analysis.\n", "\n", "We will start by exploring the relationship between the variables `horsepower` and `MPG`. Let's visualize the related scatterplot:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABCxUlEQVR4nO29e3zcdZX//zwzSaZpUtqSQugNqIaL5VZtVmALbFPUValllYuXL8Ku67L7+4K6XKvfXZDLz10LIt/dlf36QNevoCwVi1opuKK0tbbLLcXeQYgW2hRIaUhLk6aTzMz5/jEz6WdmPnPN55OZyZzn45Fm5nM9n89MT96fc877dURVMQzDMGqHQLkNMAzDMMYWc/yGYRg1hjl+wzCMGsMcv2EYRo1hjt8wDKPGqCu3AYUwbdo0PfHEEz0/7sDAAE1NTZ4f10vMRu+oBjurwUaoDjvNRti4ceM+VT0mY4WqVvzP/Pnz1Q/WrFnjy3G9xGz0jmqwsxpsVK0OO81GVaBTXXyqhXoMwzBqDHP8hmEYNYY5fsMwjBrDHL9hGEaNYY7fMAyjxjDH7yO9/WE2795Pb3+43KYYhmGMUBV1/NXIyk17WProFuoDAYZjMe665EyWzJtZbrMMwzBsxO8Hvf1hlj66hcPDMQ6GIxwejnHzo1ts5G8YRkVgjt8HuvsGqQ+k3tr6QIDuvsEyWWQYhnEEc/w+MGtqI8OxWMqy4ViMWVMby2SRYRjGEczx+0BLc4i7LjmTCfUBJoXqmFAf4K5LzqSlOVRu0wzDMCy56xdL5s1kQds0uvsGmTW10Zy+YRgVgzl+H2lpDpnDNwyj4vA91CMiQRH5nYisSry/TUT2iMimxM9H/bbBMAzDOMJYjPi/BLwIHOVYdq+qfmMMzm0YhmGk4euIX0RmARcB3/XzPIZhGEbh+B3q+d/AzUAsbfm1IrJFRL4nIlN9tqEiMPkGwzAqBYk3afHhwCKLgY+q6v8UkYXAjaq6WERagX2AAncC01X1cy77Xw1cDdDa2jp/+fLlo7InGlOGojEaggGCAQGgv7+f5ubmUR23EA4MDtPdN4gQv+hZUxuZ3Fhf0L5jZeNoqAYboTrsrAYboTrsNBuho6Njo6q2py/30/H/M/BZIAJMIB7j/4mqXuHY5kRglaqenutY7e3t2tnZWbIt2XRz1q5dy8KFC0s+biH09odZsGw1h4ePPPRMqA+wYemigip+xsLG0VINNkJ12FkNNkJ12Gk2goi4On7fQj2q+hVVnaWqJwKfAlar6hUiMt2x2ceBbX7ZAIXp5vgZhjH5BsMwKo1y1PHfJSLziEc9XgX+1s+TJR3vYUeawel4/VbRNPkGwzAqjTGRbFDVtaq6OPH6s6p6hqqeqapLVPUNP8+dy/FGY+q7iqbJNxiGUWmM+5m7Scd704rNBCVAVGMjjncoGsv6NOClYzb5BsMwKolx7/ghHlMCIV5WIyPLG4KBMQvDmHyDYRiVwrhX50wmd8ORGIeGooQjR8I5wYBYGMYwjJpj3I/4s1XPJJdbGMYwjFpj3Dv+poZgSg09wOHhGE0NQfoS7y0MYxhGLTHuQz0DQ1FCQUlZFgoKA0PRMllkGIZRXsa94581tREJpDp+CYjV0RuGUbOMe8dvdfSGYRipjPsYP1gC1zAMw0lNOH6wBK5hGEaScR/qGQ+Ylr9hGF5SMyP+auXA4DALlq32TUTOMIzaw0b8FUxvf5juvkFfReQMw6g9zPFXMMmuXU5My98wjNFijt9HRhubnzW1kfT+aKblbxjGaLEYv0940eClpTnErKmNTKiPpBzHqpMMwxgN5vh9wNnuMan1f/OjW1jQNq1opz25sZ4NSy+wOQiGYXiGOX4fyNXusRTHbXMQDMPwEt9j/CISFJHficiqxPujReRXIvJK4vdUv20Ya6zPrmEYlcxYJHe/BLzoeP9l4ClVPQl4KvF+XGH6QIZhVDK+hnpEZBZwEfA14PrE4ouBhYnXDwBrgaV+2lEOTB/IMIxKRVTTCwY9PLjICuCfgUnAjaq6WET2q+oUxzZ9qpoR7hGRq4GrAVpbW+cvX77cc/v6+/tpbm72/LiFEo0pQ9EYDcEAwUB6xX6ccttYCNVgI1SHndVgI1SHnWYjdHR0bFTV9owVqurLD7AY+PfE64XAqsTr/Wnb9eU71vz589UP1qxZ48txC+Fnv+vWU/7xCT391v/SU/7xCV35u27X7cppY6FUg42q1WFnNdioWh12mo2qQKe6+FQ/Y/wLgCUi8iqwHFgkIj8EekRkOkDi914fbfCUQidk5dvOWe5pUgyGYYw1vsX4VfUrwFcARGQh8VDPFSJyN3AV8PXE75V+2eAlhU7IKmQ7r8s9DcMwiqEckg1fBz4oIq8AH0y8r2gKHaEXup2VexqGUU7GxPGr6lpVXZx43auqF6rqSYnfb4+FDaMhOUJ34iaWVuh2Vu5pGEY5sZm7BVDoCL2YkbyVexqGUS5MnbMA3EbotyyeS3ffYEYY55qFbYTqJGMk39VzkBWdu+nqOZhy3LNmT/HV6Vv3LsMw0rERf4E4R+jb9hzgzlU7UhK4CiNJXRCuvuBdfObs42lpDnHrz7by4DO7Ro515bnHc8fFZ/husxcKoYZhjD9sxF8ESZnkOx/fkZLAvWnFZm5ecSSpG47EuG9tFwBdPQdTnD7Ag0/vShn5+4GVjBqGkQ1z/EXilsCNxZRwJDW2n0zqbtq93/U42ZZ7RaGJZsMwag8L9RSJewI3c7uhaDyp29QQdD3OhPogvf1h3+L7VjJqGEY2bMRfJOmJ3oagMKE+8zZe29EGwMBQlMvbZ6WsE+ArP9nKgmWr+fmmPWNip5WMGoaRxEb8JeBM9DY1BFn8rfUp60N1wtFNDfzp158iKAGiGuN/feRUGuqErz3+IsMxOBiOAKV35irWzkJKRnv7w1Zeahg1gDn+EnF2xbrrkjO52VE9c8viuXx15TbiYf9ofJtfvsTfnP+ujLCQ31INhXbvsgogw6gdzPF7QPrIevvr75CW6yUSg++u35mx71A0Wva4u5c9gg3DqHzM8XtE6sjavcdBQCRj3bUdJ5XduZponGHUFpbcLZFcM2JPmzGZ+mBmY5X0ks9QXYDPnH28bzYWilUAGUZtYY6/CJLO/qFnXmPBstVc8d1nXStzWppD3HPZWa7OP0moLsCtWWQfkufp6jnI4HC0pElXuf4wpa+zCiDDqC0s1FMgyeRnUISBoXjCNlc8fEHbNLJ0U2RifZCr/vQE7nx8R0YyNXkejSnhqHLTmVGuW7a6qGRrrkRttnUmGmcYtYON+AvAmfxMOn0n2SSaG4Luk7eiGuN7G17NkFPo6jk4cp5wNJ4LiKnm1P9PH9XnkmrIJ+MwFqJxhmGUH3P8BeAmf+CkUIlmiId4ru04iYZgppzCpt37s54n/Y/Lyk17XMNNuaQaTMbBMAwwx18Q2Zx4UyiYNR6eHjcP1Qk3fPBk/vvLi/jM2ce7JlPnzZ7iep7k+uQfl1wj91yJWkviGoYBPjp+EZkgIs+JyGYR2S4ityeW3yYie0RkU+Lno37Z4BVuyc//9ZFTuf1jp7Hq2vOyxt6XzJvJhqWL+OHnz+a/v3whX7jwSOlmXLc/NZna1jpp5DyhRGI4IJLxxyXXyD1Xoja5LlQXYGJDkFCdJXENoxbxM7kbBhapar+I1APrReQXiXX3quo3fDy352To8bskZt1InznrTK6Cpuj2p5+nqSHIK1ueY8OS81KOkW/knitRq8l/NXNOgWEYtYFvI36N0594W5/4qWpPk02P35k8zdXtKj1EE47oiG5/+nnOmj2FttZJNNYH84aR3MJNbona5PnDEeXQcJRwRE2j3zBqEFH1zxeLSBDYCLQB96nqUhG5DfhL4B2gE7hBVftc9r0auBqgtbV1/vLlyz23r7+/n+bm5qL2GRyOsvOtAaKO+xYUYdqkEG8dDJMcR8+a2khzqI6haIyGYIBgQFz3DYhwQstEmkPuD1+5bIzGNOX4pdo+55gmGuvdK5AKoZT7WA6qwc5qsBGqw06zETo6Ojaqanv6cl8d/8hJRKYAPwW+ALwF7CPuH+8Epqvq53Lt397erp2dnZ7btXbtWhYuXFjUPr39YRYsW81hh9paqE4ASZmZWxeAYCBAQ/BIOGhB27SMfeP7B7j7UvdwUbqNo1HQdLN9Qn2ADUsXjSrOX8p9LAfVYGc12AjVYafZCCLi6vjHpKpHVfcDa4EPq2qPqkZVNQZ8B3j/WNjgFW5hFrfyzEgsLtHgDAcB3HLRXNIH1+FIjBt+vDlvyCVbCWextofqhIn1QUJ1Ysldw6hBfEvuisgxwLCq7heRRuADwDIRma6qbyQ2+ziwzS8b/CI9eQq4xurTeejZXfz72i6CgQDD0bTkbFTZ/voBLjj5WNd9vVLQjD/fSbwbjOYPDxmGMf7wc8Q/HVgjIluA54Ffqeoq4C4R2ZpY3gFc56MNvuFMnrp15Urn8HCMf3vq5bjjduvVCLwzGEl539sfHtHq8WLy1ZHkboxDQ1HCEWvAbhi1iG8jflXdArzXZfln/TpnOXE+BRwYHOZvHnh+RHYhSRZ/P8JRjUc+jmTZ5xffM8x1y1Zzy+K5BU2+ypUDcJNfDgaENS/tpePUYy3kYxg1gs3c9ZDkU8BpM45CCqiycRIMCKfNmAykhnWiCa2eO1ft4JaL5uYs4cyXA3Cr/x8IR/nqz7f72v/XMIzKwhy/DzhDPxMLLJMUxxSHbGGd02dOHpkJvGHpopQqoHwCbOl2NYWO2DUwFM0qBGcYxvjDHL+Drp6DrOjcTVfPwVEfKynX8O3PzidUl3qb64LCxPrUZY31dSPx+qaGIOH05G8irJNNQbPQHEDSrts/dhpNDcG82+fDmYcwDKM6MMdP3Hn9zx928oF713Hjii184N513Lpy66iP29Ic4oKTj+HuS1PLP29fchrp4f6kY1+5aQ+Lv7UeScyvcNPqcaMYAbaW5hAdpx6bMpEr1/bZSIaWdr41MK5CRflmYBtGtVPzjVhWbtrDzSu2ZLRFfPDpXVx5zom0tU4a9TnctHMmheq4Oa0hCjASrkmiwKprz8trRzKMk37MbH8sit0+Hbc8xHho0J6riY1hjBdq2vFHYzpS3ujGpt37PXH8brjNBVjz0l7q0pLCArx+4HBBdhTbRWs0XbfGY4N2r+ZKGEalU9OOfygay3BeTubNnuLJefKNIv9r25vc+fiOlLaOSWKq/M2DnVklHdJJVwP1evsk41Hbfzz+MTMMN2ra8Sd1dNy48tzjCxpl56qb7+0Ps/31d0ZCSc5R5MHDEe5YtYOAwGCeAv+kpEMxI8/RaPoUcjxnqChYYB6i0hmPf8wMw42advzBgKTEuYeiMS5530w+t2BOQU4/X1Pzm1dsBpWMCp1YTLn159uIZvH3oTohHElLvOaRdCjUrlLI16D9uafXZ/QMqEZGm/cwjGqhph0/lB7nzhUPBrjhkU3EUweZ6qdD0dyKqNFYtvX5J4V5HafOd7yW5pBrz4BqZTR5D8OoFmre8UNpce5c8eADg8NkyRcDUBcQIlmdO0Bmd6y6AJw246hR2VWKE6vFuHepeQ/DqBasjr9EcseDc4/oczv9zPX1Afjm5fMKckZex6kt7m0Y4w9z/JQ2YSdX+8PTZkym3kWhs2QKPFQyAevU9AnVBbhmYVvJpy6kzaNhGNVFzYd6RpMIzRYPbmkO8en3z+bBp3fl3L8u3m+dSJ4maMPR/HH69Ou4ZfFcevuHuG/NK9y/7o/ct7ar5CSvxb0NY3xR044/OYFrNIlQt3hwb3+YRzq78+4biRHX7ncke+sCcZmG9ARwLKZsf/0dLjj5mIzjuCVg73hsB6CEI0o4Einp2pxY3Nswxg81HepJTuByUopQWZJkyGj76+9kHNeNCfUBvrDopJQwyjcvn8d/fv5sF1vjE7keeva1jLCUm0BbMCAExbtrMwxj/FDTI363CVylJi6doZahaIxololh6Xzm7OP5zNnHp4RRNu/eTygoGY1cwpEY//DTbTQ1BImqjoRu3BKw8ZLQ0YmwGYYxPvFtxC8iE0TkORHZLCLbReT2xPKjReRXIvJK4vdUv2zIR3IC12gTl+la+OFIDBEhVCdMCtVl5Gbrg6kzXdOllmdNbczZyCVdP98tAXv3pWdy96VnWVLWMIwM/Bzxh4FFqtovIvXAehH5BfAJ4ClV/bqIfBn4MrDURzty4kXi0q3WfUJdkH/+xOkcHo4xb/YUXusd4MkdPZwx4ygmNNQxb/YUpjY1sHn3/ozzJh35TSs25zyvs22im+hbd98gq649j4GhqCVlDcMYwc+euwr0J97WJ34UuBhYmFj+ALCWMjp+GH3ictbURoaiqeJqg8MRbvjxFhqCAQ4NR0dm4/6IeAJXRFBVGuvrXKuJko788SefItu8gGTbxH9cuW1k/5bmkGul0llZBOe81vQxDKPy8TW5KyJBEdkE7AV+parPAq2q+gZA4nd+8ZkKZ33XPpxzroISd+zhSDz0ky7BEInFtXciMUbaJN74482unb8OHo5kLJvYkL1tYiEtGJPk69FrGMb4RFTzFJF7cRKRKcBPgS8A61V1imNdn6pmxPlF5GrgaoDW1tb5y5cv99yu/v5+mpubR3WMaEx56c2DxBz3UUQIQEaHq3yICLOnNjK5sR6AweEo/Qf7edNRiBMQYVpziH394ZRzBkWYc0wTADvfGkg5d3Jdo6P/r5vdARFOPW4SwSIbxXtxH8eCarCzGmyE6rDTbISOjo6NqtqevnxMqnpUdb+IrAU+DPSIyHRVfUNEphN/GnDb537gfoD29nZduHCh53atXbuW0R538+79fPs3z3IwfGRk3tQQZDimDOUS7MnChPoIG5ZeQEtziN7+MMt//kvu2Rp0rA+w6to/ZfG31qd06ppQH2DDkvMAuG7Zatd1zlCOm92TQnX88Pz3Zg0LZcOL+zgWVIOd1WAjVIedZmN2/KzqOSYx0kdEGoEPAC8BPweuSmx2FbDSLxvccJNnGE2PVddSSlW++rEjsgnFjKDTa+2PmRQaqQ6aUB/glovmMjAUTZFlSK/YuWZhGw1BYWJ9kFCduFbzmAaPYdQuBY34ReQTLosPAFtV1XXEDkwHHhCRIPE/MI+o6ioReRp4RET+GtgFXFaC3SWRnvRc9qd1o9auz6bhvmTeTD582nEjidOdb/Xzqe8+SySPJLOz6frSR7fwxfcMA/VcfcG7OLqpgTsf35Eiy3D6jMkjidnkPhrTxMxfRcT9j041ac9bAtowvKXQUM9fA+cCaxLvFwLPACeLyB2q+oP0HVR1C/Bel+W9wIUlWTsK3GQNuvsG+dcNmd2xipU1yKXZ43z9zcvO4uZHtxAQ4VBai0WAUF0go+l6VJVwJMa31rwCSIqtd67awYali0bCQumN2oeiua+pGjR4rPm5YXhPoaGeGPAeVb1EVS8B5hKv0z+bMpdiFoqbrAGQEYYpVdYgfRKWG0vmzWTD0kV8/rw5ruu/8pFTWTJvprsEgwRy2prt+tK3qyaKqVAyDKNwCnX8J6pqj+P9XuBkVX0bGPbeLO9xi2lDZrcrv+PcLc0hlpw1w3XdeYnuXe55g1hOW7NdX/p2Tiq9nNPtj1m1/hEzjEqiUMf/WxFZJSJXichVxBO060SkCdjvm3Ue4iZrMGtqI3dfOvZa822tk7jy3ONTljmbuydtbQgKAREagsLdl56VYmuoTvjUn8zmsc2v09VzMOX6QoleABPqA/GE8OK5dPcNjoyUe/vDrHt5Lzev2Jwymr5pxRbWvfxWxYyoLQFtGP5QaIz/GuJSC+cRbwvyAPBoYnZuh0+2eU56THtr59MsLFOc+46Lz+DKc05k0+79zJs9JaO5e+erbzMUVWIaT9R2vvY2d1x8BgvapvHQs7v4l1+/wvf/+7WR7a889/iR9d19gzQ1BBkYirJtzwHuXHUkIXz5/Fk8srGbgGQ2dA9HYvzdDzYSQz2NpZeanK2mBLRhVBMFOX5VVRHZAESIx/uf17GY+eUDbvIM5dKab2udlOHwAbp6DvLgM6lNXB58ehdXnnMiU5sauG9NV8bksOT6ttZJI9fS2x/mk/c/nZLQTj9uOoeG40nn0Wj3OxltcrYaEtCGUW0UFOoRkc8DzwEfBy4FnhGRz/lpWC2zaff+rMu7+wazdmJM3y9XwjcfyVj6aOY4eJWcLSRxbhhG4RQa6rkJeG+iFBMRaQH+G/ieX4bVEumhkHlZZs4mFT2zPWo59+vtD3NgcChDPK5QhmMxtu05wCfvfzpltF7M6NtNtTT5B8WcuGGUj0IdfzfgVBA7COz23pzqwatJRdlCIVeee3xKz15n8vfWj83lH366LeU4AYGpTQ309od56Nld3Lemi4ZggJjGReNCdUGiGuOTfzKbh5/djRIXiXMiQHMorhZ6y0VzufPxHSlhousf2UQwEBhpYJMvbGPJWcOoTAp1/HuAZ0UkKa+wBHhORK4HUNVv+mFcpeLVpCK3SWXJ2Hoy+bt14zP8+rpzUnIBp8+YPJK8TdLUUJdw+K+MJG3DDs8eXyI8uf1NhmPuzwyXtc/if5x9ArOmNrqO1iMxiMRiI8dN2poNr5KzNnPXMLylUMf/h8RP0mOsTLzOzEyOc3I562KdUr5QSFvrJLon1mckgGdNbcxI7g5FYylOP53BRNL2zXeGstrzSGc3V5//rpHryDYvIN3WXCyZN5O504/KWr2UD5u5axjeU2jm7wlgHvHk7mXEE7yXqurtqnq7T7ZVJF5OKnILhQxF84dC3OYkXNvRRkMwmHO/QkgmiNPPEaoT6oOpaeVCwjYrN+1h8bfWc/tjO1j8rfVFTRKzmbuG4Q+Fjvh/CNwIbANyDwPHOV7GrZPO9YYfb2Y4Id4WjcXY0LUv76jWrdXifWu7irYhHWeCOP0cG7r2FRW2Ge3TkSWHDcMfCnX8b6nqY75aUiV4PaloQds0nBI8kVjhzjF9/sFdl5zJjT/enFDmTGViQ5BoTFPi/uk4E8hu5yi2pn60jtuSw4bhD4U6/q+KyHeBp4iLswGgqj/xxSqP6Oo5WHJsORelTCpyJiiBkdm1m3bvpz4YIBw5kqhNOse+gSH6Dg3T1XNwxP7kcZoagrx+YBAQTptxVFwDKBFP/+i/rU9pAhOqE759xfsA4ZqHXkhpvtJYLyw5ayaXzZ/FnGOa2bx7/0ji2O3aipnsNhrHnbzOWxbPTZl5bDN3DWP0FOr4/wo4lXjD9OT/ZAUq1vHf+rOtKbNUk5IGXlGMA3QmKA9HoqgqdcEAh4djNARgKG0QPhyL8dCzr/FIZzc3nBHhunvXceW5xzP/hKNH9PbDjlF9XQC+efk8lsybSVvrJL5xaeYTyQUnH0tvfzjDEQ8OK6u2vMGjL3QjIgjCUDRGKChIQEaVTC316Sg9oXvLRXM5feZkq+oxDI8o1PGfpareeU2fySV54OXIvxDc4twQL4uEVKffFIqHY67/4Mn80xMvpRznwad3sfy5XbjI+BOJwU0rNo+Eh3L1B0g6YmdPgCNloUqycCscVYhqSslmKSWVxT4dud2vOx8/0nfAMIzRU6jjf0ZE5qrqDl+t8Yhckgdj7fjd4txuNDUEuf1jp9Fx6rGsecm9qZmqQJZ5u0FJjZ1neyJZMm8mBw9H+Opj2wuyvz4Q4KFnd/Hva7tG1aWsUKedKy+QXG8jf8MYHYU6/vOAq0RkJ/EYvxDXbjvTN8tGQS7Jg7Eml06+k6gqHacem1OyIdvEq/j+hcfO71i1PW8LyCRD0Sj3rekadZeyQsmWF3CTj7B6fsMojULr+D8MnAR8CPgYsDjxOysiMltE1ojIiyKyXUS+lFh+m4jsEZFNiZ+PjuYC3Mindz+WpNfD1weFukBcKx8gFBRCdcI1C9tG9nGzPxdBgWs7Tsq7XW9/mHue/H3WSV7phOqET//J8RmicF43Q3EKwbnNUbj+Aydz+6odVs9vGB5RqCzza/m3yiAC3KCqL4jIJGCjiPwqse5eVf1GCccsmHx692OJW819sjLniW1vct+aLu5f90fuW9s1MpKdf8LRLH9uF+KixTmxIcjl82fx0HOvoTGIaLyG37l/Ois37eHmFZtdnX59UPjo6cexcvMbI8suOv04mkJBvv905kfvZUlltpm5yfu1bc8Bbn9se0aJqtXzG0bpFBrqKRpVfQN4I/H6oIi8CIzps3k2vXsvKFY/Jj3OnWyQ/u9r42EUp/7N3OlHsfTRLQxFQV1i+tGY8vDzuxh2JHqTTdbdwjDJhGm2kf7nz5/D/93wasqyX7+017XmP9kQ3guHW8gEr0/e/7TrvASr5zeM0pGx6KciIicC64DTgeuBvwTeATqJPxX0uexzNXA1QGtr6/zly5d7bld/fz/Nzc1F73dgcHhEF1+Jx6UnN9YXfZzB4Sg73xpI0d0JijB9SiNv7B8kqkprI/QkoioBiY/+j5kUYt/BcIZeT3L/Occ00Vh/RL7B7TxJBJg+pZE3Dxwm5lgfEEl5n2TGlEZamhpSlpV6H7Ndf9L+bHaLCLNLuOel2jmWVIONUB12mo3Q0dGxUVXb05f77vhFpBn4DfA1Vf2JiLQC+4j7zDuB6aqas6lLe3u7dnZ2em7b2rVrWbhwYVH79PaHWbBs9cgIG+Lx+lLKDbMda9W157H4W+s5PBzjhjMi3LM1rpXznSvbOW3GZICM/XLZ4nYeJ+lKnxAf2buN+H993QUZT1Gl3Mdsdjntd1vfEBSe+OL5GTYU8gRWqp1jSTXYCNVhp9kIIuLq+Etrz1T4SeuBR4GHkrN8VbVHVaOqGgO+A7zfTxu8xkuRNrdE5l2XnElb6yTXZusXnHzsSMgovbF6QyJJ7BaGcTZvd8Pp9CfUBQjVCXdfemZGgvmjZ7Sy/9AQKzp309VzMP0wJV9/qC7AxIZgRhjJ7f5847KzMpz+yk17WLBsNVd891kWLFtdlBCcYdQivsX4RUSA/wBedOr1i8j0RPwf4mqf29z2r1S81o/JNsHJrdm6M2mb3C/ZdCUYEKIu5Z7JkfCCtmk88cXzM+Qc3En8gUg73C+29vDE1p6R917Mhtbkv1nmKOSbAOalTLZh1Ap+jvgXAJ8FFqWVbt4lIltFZAvQAVznow2ek22UPhonk95TNtvMY7dRdjI5fGgoSjiSWuaYPhLe8cY7fOPSuO0TG9w/+sOJRPNNK7Zk2JDulh98ehedO3sZHI6OqidvOKIcGo4SjqhrmWaunrtePoEZRq3gZ1XPenDtC/6EX+ccK0oRaSuGQmce55vl6jYS3rB0ERuWLuKxza9z22Ojn4j9qe88y/WnR7hu2eqiJ1V5IbtsCp6GUTy+xvjHM7lGoaOl0JnHuZxerpFwS3OIdx3T5ImtkZgSVc05qco5QSvd/sHhSMqyweFIUU7bjycwwxjv+Dbir1Yqob9rcuauW7P1dPvS1S9vWTx3ZHJYtu5ecQcc76g1nFYjnxSKu+uSM+l87e0UG/LhNlrP1zoxngrStPfFUcgTWG9/eCQkZX8UjFrHHL+DSurv6tZsvZBZrk7t+svbZ/Hwc7tTunv9y69f5pGN3dQHAqgq9UGhPhggGlNuXZwqf9z56tspNh1/9AR2vX145H16Qjk9xJIv8drdN8iEuiDD0SOj/gl1wZJm5OYSgkvety++Z7ikkJRhjDfM8SeoxOoQZ7P1Qme5Otf/6PluxDGajsQYSdgmtwnVwbeveB+nzZiccp1uCWan0wcQlFBdgKCIa4glXwx/LOLzzvvmDElZ1Y9Ry1iMP0GlV4fks89tfTAg1AVyN2CvCwTY+05mXD5bgtlJY30d37mynTnHNLFh6aKMUXQ+x36kjl+YWB/MOg9hNFT652oY5cAcf4JKrw7JZ5/b+mhMiWrumv2BoSi3PbY9Y+JTIRLWw7EYp804isb6oKuzLiTxGn8ekUT9V/Hx/XxU+udqGOXAHH+CSq8OyWef2/q7Lz2Tuy89K2XZeW0tGcfuD0czqnLcpKHPb2sp+v4smTeTDUsX8cPPn53xVHCkjt99HoIXOO9LtpCUYdQaFuN34Hd9fi5yVRM5Z99uWLoo63bZ7J87/Sg27d7PiS0TueJ7z2W1Ib0q50sXnsx7jjuKP+4b4M/nttI+p4WunoOs79rHtOYGzn33tFFVy7jlAIIirHlp70hTGi9I3pfnnl7PhiXnmdM3ah5z/GkU0ybQK3JVEx0YHGbBstUFVxql2+88djgSJRDIHk5xhkBWbtrDjT/ePFIR9H837OQz7z+eh58/UiUkQF1QuO607BO4cl2bWxgmGXr6x5XbPK2+aWkOZQ1JGUatYaGeMuOsOknvLpUc6ZfaeSr92ENRdVXobGoIpoRAevvD3LxiS0qNf7IiyLlMgeFo9glcua4NUkXanAJy6aGnrp6DngnDGYZhI/6yk092IVvbw0JGrm7HDgUFFSEUPDLh6/QZk1NCQ919gwRzPBlkI922QiQZOl9921X+ObntLT/byhPbvBWGM4xaxxx/mclXdZIujFZMRYrbsSUgPH7teQwMRbPmMWZNbXRV+sxHum35rs1troCToWgsxelDXBjuynNOLGsrTcOodizUU2Zy1bInJzmVWmnU0hzilsVzaQgGaKwPEKoLcM3CNqY2NYzoDLnp6LQ0h7j70jNJH/Sf39ZCvSMkI8T79WarlnGrNEpKSvT2h7POFQjVBZhQH+CS97nH9wuZY2AYRnZsxF8BpNSya6q3ndxYz4alF5RUabRy0x5u/dk2ogokeq04m7IrZE28LmibRn0wtQvX86/18Ysvns/rBwYB4bQZRwHkrJbJJSlx/QdOdrX7nsvO4tx3t9A3MMR/Prc7Y30hcwwMw8iOOf4y46xlT5IuKVBKpVFvf5jrf7SJ9D7lyeTuTSu2AEo4oll1dBrSHH99IMDAUJQLTj425Tz56BsY4ne73uafnniRoegRuYh7fvV70tuvCHDuu1tGrjmbWJ1hGKVjjr/MeKFJ78b219/JcPpOggFJPF0cabuYrqNzOJLah/dwJJoSwy9E/OzWn23NGscPSoC6YCylUqghKCnXnhSr27R7P/NmTzGnbxgeYI6/zPgnKZA7OTscjaUIuLmdVzV1vfN9LvEziP9BG45EcyZvI7Eow6l/WwhHlaaGVH2httZJFe3wK0HK2zCKwc+eu7OBB4HjgBhwv6r+i4gcDfwIOBF4FbhcVfv8sqPScdPU90JS4LQZk1378AYFogqCEI2B8w/EhaccCeF09w3SWF/HwfARyeTG+rqR0Xi2J5Xv/vaP/MeGV2kIStYyzVAwgATgmoVt3Le2K2VuwYT6QErz91IYS0dcSVLehlEofo74I8ANqvqCiEwCNorIr4C/BJ5S1a+LyJeBLwNLfbSj4vFLKiJ9RB8AEAFVhqKZTvnxbW/y65d6uPvSs1jQNi1nqGfW1EYOpQ3X+8MR/s9v/gjAUGpjrRTuuTyevAX419WvpKyLxnRUTztj6YgrUcrbMArBt3JOVX1DVV9IvD4IvAjMBC4GHkhs9gDwF37ZUE143cqxu2+QYFo3q0CAvPX5yYbnfQNDOUM9fQNDGcdyO3JdWk3olecez+KzZoxcZyQtEZH+vhjyzRT2GpN8NqoVSf/P7ctJRE4E1gGnA7tUdYpjXZ+qTnXZ52rgaoDW1tb5y5cv99yu/v5+mpubPT+ul5RqYzgS4+USJQ6CIkyf0sgb+weJOr4fQRHmHNNEY32QvkPDdPcdAqC1EXqy+DoR4V3TmghHYkxsCBKqO+Io+8MRdu4byNhnzrQmmkPFP4wODkfZ+dZAVpu9/ryjMeWlNw8Sc5xPRDjp2OaU6yyGavhOQnXYaTZCR0fHRlVtT1/ue3JXRJqBR4G/V9V3Cu2pqqr3A/cDtLe368KFCz23be3atfhxXC8p1cbNu/fzpd88nRI/D9UFiERjOat9IB5nX3XtOXzlW+sz4u/Jev2unoNcd+86AG44I8I9W92/Sl/7+OmcfdpxrmGsdS/v5Z41z2fs8+DnzkwpGS2U3v4w1y1b7WozxOcbnNF+rqdhmIFNe7j50S1AvFQ2FBTkxbBriKmQ3EM1fCehOuw0G7Pj68xdEakn7vQfUtWfJBb3iMj0xPrpwF4/bahV3OLkInDHxadTH4BsA9LkzOG21kmuM4oh/kdlalNDVr3+poYgDUHha39xOs2hOhYsW80V3302pdmLs+G7k/h7KSk8k61nwfqufSxYtpqdbw1kNJwZLUvmzWTVtecRS4S9wlF3wbqVm/a43gfDKAd+VvUI8B/Ai6r6TceqnwNXAV9P/F7plw21TEtziMvbZ6VMfrq8fRa/f/MdXAQ6gXjFz3eubB8ZbafPKO587e2U6qOpjalfn70HD6f0CwBYkBiBO5OfBw9HuPPxHRkN34ejMVSVax56oeTEbHqi3GmDXz13B4aihOqCDDmaxjvnRFgS2Kg0/BzxLwA+CywSkU2Jn48Sd/gfFJFXgA8m3hse09sf5pHO7pRly5/bnbOuPqowsT44sn96d6wHn96Vkjh9452hlP1/3zPApl19I0nqbH2Ab39s+8hxIrF49dE1C9+NoERijDox60yUj0UCNt9cDEsCG5WGn1U961VVVPVMVZ2X+HlCVXtV9UJVPSnx+22/bKhl3JxNIfmVV3sPZd2/EJ7ccURN09UhRpX6YOpxh6LwL0+9Qnr5vhfOcSx67uZri1moDc5uZobhJ6bOOU5xczaFVHAlBdDc9i+ED81tHXnt5hC/+rG5KVU3SYZcMs5eOOix6rmbq7dwIf2ckzkAP/IQhpGOSTaMU7LNCO587e2UuL8TpwCa2/5LzprOI53ZHdIprU1cOPe4lGVuk9MmhepSKmHSmVAXAKEoB52rYsaLnruF9ESeNbWRs7Ioh+aapJdL/sJyAIYfmOOvMoqRI3BzNkvmzeTPTjqGJ3f08KG5rUxurGfdK/u44KRptM9pydg/2ah93uwpDAxFWbX5zZQZu6G6uM7/V/78ZP624yRXO3a+1T9yjqQNC9qm8djm17ntsR0Z219xzgl86k9mF6zPU8hs3Xw9d3Pd11zHL2amcDaVVb+E+gwjG+b4q4hS5AjSnY1TLfNHnd0EA/Fyzft/+8eM46Wf76xZkzNkGsKRGOFIjHt++TLr/9DLDz5/Tsr6K777DOu7egH419VdnN/Wwg8+fw4tzSE+dtYM7li1g/TJxA8/t4sfPvtaQdfnRcVMrvua6/iAJ9U6hSiheoUJyhlgMf6qoVQ5AmeHLbdWh9GYuh7P7XzP7sytpffbrl46d/aOvO/c2Tvi9LNt49bad2AoWvD1jbZipqvnIDf9eHPW+5rr+G7rVOHpP+xzPZdbt7Mj+2WXx/AKm0tgJLERf5VQSjggfST7iffmHj07j9fdN4iW0Hd33Sv7RkJG615xd4DJbZJ6QpEsEtKFhDtGU7WzctMeblqxJSOxnN6XINfx09eFIzGufXgTz736dkpT+FxPFfmUUL3A5hIYTmzEXyUU6+DcRuyPvpB7hOc8XlNDkHAJgmkXnDTN9bXbNvnOUYgDL6Rixo3k/RlykY52njfX8ZPrGoKZjy0PPr2LroRWUr6ntbEoObW5BIYTG/FXCcXq9rs9ITQEA1z4nmN4YuuRWvtkjD/9eANDUSbUB1KqbpJa/kmmH9WQMonr/LaWlARx+5wWzm9r4beOcI9zG7dzQHwSWQwtuKqnEFlrZ418tn4CAPXBzGqiXMdfMm8mbw8MuSapN+3eT1vrpLxPa8nP9qYVmwmIjMhj5KoeKnaUPhZ/XIzqwRx/FVGMbn+2/+h3XnwG13/glJFKnalNDa7Hc3MI9XUBfvS59/Nq7yHmzZ7C9jfe4cZHNiEI9QG4rH12xj4/+Pw5dO7sda0cmjW1MaXtIsTVNL/92fmcNuOoopxbrr7Ebi0iF7RNc52nILhPcst1/PPa3J9scs2JyOh2ljg7Kb8zr6HUPgN+NfwxqhML9VQZher25wpRtLVO4tL2eLlktuNl2799TguXts9malMDSx/dwnAMFGU4RtZkbPucFq7/0CkZ5aJumv5RVWZMnlBSc3m3xGm2GnkgIUKXPotYC5aKSJ4TMl21AFObGoD84SinPEZMlXAkf6K9FDmLXJPMvCRXEtuoDGzEP44ZbWevXPt7UXu+KeE03ZYX02M3X+I0m51L5s1kysQG/u4HG1PKVAu5Duc5w9FYvNWk4+mlOZSanB3NvfSyzj/Xk4sXWCvK6sAc/zhntP/Rs+3vRcx4XpZZrtmWu5GvWiWfnafNOIpYlqbz2WLqbudMx+1elHovqyU+b5VD1YOFeoySOFLRAgERGlySokm6eg6yonP3SJVLkrbWSRma/k7ZiELIV62ST6snn4a/W8272zkn1AeoD5LSu6BQZ9fSHOKWi+YSTChg1wcoyEY/nOlowjRWOeQ9foXNbMRvlEznq28zFIWYKkNR6Hzt7YzHeudMYYg7dmd9+/wTjmb5c7sQAigx2k84uigbChkN59PqyaXhX+hTRDSm8cRwondBMazctIdbVm4jpvEk73AMfty5O+VejjZsV6gdownTzJrayOBwJGXZ4HCk4p5MqgU/w2Y24jdKwm0WsLN2vZBtRmrpoxCOxhiKZk8QZ6PQ0XA+rZ5iNPzTzxmqizeUGYrqSO+CYhLEN/14S4ZsRfoM53QbvcarBHK69HehrVaNVLz6PLJhI36jJApJzObbxqukZbqYXDGhIjeKeYro7hvkwOAw1zz0QsrM26AIa17aS8epx6ZU76SP2ON/TNwnsTlnQfuNF59Fd98gE+qCDDs6kU2oCxb9eZqekP/Cfeb4jZIoJDGbbxuvkpZePxIXWvOeTNb29oczrmNgKMptj23nH1du465LzkTB1cb4tQpuzj/bzGc/8CJM48XnaVVBcfxO6PsW6hGR74nIXhHZ5lh2m4jsSWvFaJA9AVqpFJKYzbdN0sGmN3QvdnToxSNxehKtmJp3Z+inqSE4srw/HBebu2nFFm5e4S4E19Ic4huXnZkhVpc+C9orciULRxumGW0SerSf5XiaP+B3Qt/PEf/3gW8BD6Ytv1dVv+HjeauOfAnQSiWemN2dqOoR18TsHRefwZXnnJg1DJPe0L1YvHgkzjbKLKYUNhn6WfPSXm57bDv94SPzAoIBIRzJTAYnbVwybyb//6rt7O0fHlnftdf7AUC++Q7BgKTMpA4GpKSwW6lJ6GzVP4XY4HZtRxV85srEz4S+nz131wHWTzcPhSRJK5EjiVlNVPVkn/HqnCnsdgxnQ/diR+ujfST2MonW0hyi49RjiaRlaiNRJZpW7j8cVYYTGvw/e2F3itMHeOOdIX72wu6ibchGvutsaghmaCYdHo6lPMEUSqlJ6FJtyHZt6bPCqxG/Evrih+73yMFFTgRWqerpife3AX8JvAN0AjeoqqvIu4hcDVwN0NraOn/58uWe29ff309zc7Pnxy2GvkPDdPcdylg+a+pEpk6srwgb3RgcjrLzrQGiqrQ2Qs9gPKE555gmGusLcxbOYyQp9hgABwaH6e4bHImUz5rayOTG+ozt3O6lVzbksmfKxHreHhjK2C75Gb/We4h3Dscdf/JeAkwK1dE6eQINwQBBt8YFRZDvOgeHo/zxrQFijvUBEd6V5T748b0s1gbnfm7XNmuScNSk0SX6/cbv/98dHR0bVbU9fflYO/5WYB/x/w93AtNV9XP5jtPe3q6dnZ2e27d27VoWLlzo+XGLoavnIB+4d13G8l9fdwFtrZMqwkY3evvDI7XuN5wR4Z6t8TjkhqWLiorpJo+RpNhjOI+V75HY7V56aUM2e/oGhnJ+xj97YTd//0hcPyh5LwHqgxKvkvEgyZnvOou9D358L0v9LLLtd1/HBC5c1OGpjV7j9/9vEXF1/GNax6+qPaoaVdUY8B3g/WN5/krEi9mr5SDfjNhijzHaBFapj8R+JdGc9uT7jP/ifbOZflRDxjGGo+7d0Uq1J9d1juXs4FJtLHa/0T4ljWfGtJxTRKar6huJtx8HtuXavlbIlwCtVPLNiC3mGOWs2y7FBrcnjFxPHdk+4+Q+q754Af/8+HaCsW4WndzC868dSJkXEJDCEq25bMg336HQ+9DVc5C+Q8N09Rz0/Lta6vfBbb+1a1/x1LZ08j1l5lvv533Mh2+OX0QeBhYC00SkG/gqsFBE5hEP9bwK/K1f56822lonVY3Dd5JvRmyhxyj3RJ1ibHCrIMlWp+8k/TN2Hifp5G84Q1n9cuqMXYBDQ1EeevZVzpo9ryi7nDYUUiOf7z4kK9BuOCPCdfeu86UCrdTvw1h+j0Z7r8fiPubCz6qeT6vqdFWtV9VZqvofqvpZVT1DVc9U1SWO0b9hVAVuFSQ3rdjMzSuKqwxKP04hPNK5J2u1V76qHS+ql6q1As1rRnuvK+E+mlaPYRSBm45PUDKrbvKpUrodpxCyyWDk0xfyQjkzlwRHLTHae10J99EkGwyjCFyVOTWWMfks31wCt+MUQjYZjLHQ9Peif8J4YLT3uhLuo434jZomOc2/c2dvQZIZbhUkd196FndfGm/jOLEhSKjOvRrFKcuRfpx0Jk8IZlQCXd4+k4GhaEp4xtn+sZCqnXzyGLmkQ8aqAq3SpRfy3ct81UmVUMlnI36jZkkm4CLRGE5FhXyJNrcKkpWb9gCaGPlnzo3JJsuRPM71P/odf9h3ZCLfcZMnpFQC9Q4Mce+vX+YXW3tyJpQ3LF2UtZIknzxGIdIhf3xrIOX9zrT3o6VaRNry3ct81UnJz3brxmf49XXnjHlhh434jZrEmYBLk9EpKNHmrNM/Ij2hHBqOEo5owcm8luYQ+w4eTnH6AL/vGeCpHW/S1jqJjlOP5d5fv1xQQhlwnc+QTx6jkIRj585e1nelVhy59Q0oFb816L2iUKmRfHNL2lonMXVifVmq+czxGzVJvuRqMYm20SbzntzR47o+udyLhLIXCcd1r+xz3Sbb8mKpltaN1WJnLszxGzVJvuRqMYm20SbzPjS31XV9cnm2hHK6CFmuZK0XCcds/QG86htQLU3lq8XOXJjjN2oSZwKuLu1/QbGJttEm8y6cexyntDalrD+ltYkL5x6X9fjJhHL6OQHXxKjbMW65aC7dfYP09ocLSji2z2nh/LbUHgFufQNK7S3hhZ7/WCSFvZK36O0PMzgcLUsoy1eRNq8YzyJt+TAbvSObSFt33yDDkSiv9h4alWRGIVP0c8lyPLXjTd78/e847pT3jjj9fMd3LlvftS9vYjS5/bY9B7jz8R0Z2+azEeKx/j9s7eTdZ7RnOH0vekuU0nrRVY9//yu+fi9H0yIyae8X3zPMv75Y71sSO5tIm1X1GDWNc5r/aDte5ZMMyCfLceHc41i7t5GFLk4/2/Gd7R+TidFkU5qbH93CgrZpKfskX3/y/qddty1EOqR9Tgv9r4VcR/puCeIrzzmx6CeoUruwOa/nvo4JBR+jFEqViHDaG1UdSWKnf1Z+YqEewxgHFJNw9Cs5Wa4ZqdmuZyi9+02FUAnJYXP8hjEOKCbh6FdyslwzUrNdT0OwMt1bJSSHK/POGEYNMppkXzEJR7+098s1I9UrPX5nctjPRLEXvSxGi8X4DaMCcCb7rlu2uqRkXzFa9n71QZh/wtH86PnukbaT7Scc7clx8zFaPX5ncvhwJIqq0lhf59vsYS96WYwGc/yGUWa8TPYVk3D0Wr/eOaM1yVgmLb1ItiaTw8CIXLZf1+BFL4tSsVCPYZSZSkj2eUG1Xke+WdzVcA3FYo7fMMpMJST7vKBaryPfLO5quIZi8c3xi8j3RGSviGxzLDtaRH4lIq8kfk/16/yGUS1UQrLPCyqhYXsppNtdHxTqAlTVNRSLnzH+7wPfAh50LPsy8JSqfl1Evpx4v9RHGwyjKih3ss8r/EoaF4uzQqoQG9LtBvJew2hm7pYb3xy/qq4TkRPTFl9MvAE7wAPAWszxGwZQ3mSfl4xl03M3Sq2QSrc71zVUS9+AbIx1jL812WA98fvYMT6/YRjjmGwVUl7W41dL34Bc+CrSlhjxr1LV0xPv96vqFMf6PlV1jfOLyNXA1QCtra3zly9f7rl9/f39NDc3e35cLzEbvaMa7KwGG6Fy7RwcjrLzrQGiqrQ2Qs8gBEWYc0wTjfVBz8+RpNRz+H0fOzo6KkKkrUdEpqvqGyIyHdibbUNVvR+4H+LqnH6o7FWDqqTZ6B3VYGc12AiVa2dvf5jrlq3m8HCMG86IcM/WeILWy7yJ8xxJSj1Hue7jWId6fg5clXh9FbByjM9vGEYVUqiEwlhUSFVr9ZIT30b8IvIw8UTuNBHpBr4KfB14RET+GtgFXObX+Q3DGB8Um0gdiwqpSqleKhU/q3o+nWXVhX6d0zCM8UWhfQbSGYsKqXJXL40Gm7lrGEbFUq0yEJWOOX7DMCqWapWBqHTM8RuGUbGMh0RqJWKyzIZhVDTVnkitRMzxG4ZR8VRzIrUSsVCPYRhGjWGO3zAMo8Ywx28YhlFjmOM3DMOoMczxG4Zh1Bi+yjJ7hYi8Bbzmw6GnAft8OK6XmI3eUQ12VoONUB12mo1wgqoek76wKhy/X4hIp5tWdSVhNnpHNdhZDTZCddhpNmbHQj2GYRg1hjl+wzCMGqPWHf/95TagAMxG76gGO6vBRqgOO83GLNR0jN8wDKMWqfURv2EYRs1hjt8wDKPGqBnHLyKvishWEdkkIp2JZUeLyK9E5JXE76lltvGUhH3Jn3dE5O9F5DYR2eNY/tExtut7IrJXRLY5lmW9dyLyFRHpEpHfi8ifl9HGu0XkJRHZIiI/FZEpieUnisig435+eyxszGFn1s+3gu7ljxz2vSoimxLLy3IvRWS2iKwRkRdFZLuIfCmxvGK+lzlsLP/3UlVr4gd4FZiWtuwu4MuJ118GlpXbTodtQeBN4ATgNuDGMtpyAfA+YFu+ewfMBTYDIWAO8AcgWCYbPwTUJV4vc9h4onO7CriXrp9vJd3LtPX3ALeW814C04H3JV5PAl5O3K+K+V7msLHs38uaGfFn4WLggcTrB4C/KJ8pGVwI/EFV/ZixXBSqug54O21xtnt3MbBcVcOquhPoAt5fDhtV9UlVjSTePgPM8tuOfGS5l9momHuZREQEuBx42G87cqGqb6jqC4nXB4EXgZlU0Pcym42V8L2sJcevwJMislFErk4sa1XVNyD+IQHHls26TD5F6n+uaxOPht8rd0gqQbZ7NxPY7diuO7Gs3HwO+IXj/RwR+Z2I/EZEzi+XUQ7cPt9KvJfnAz2q+opjWVnvpYicCLwXeJYK/V6m2eikLN/LWnL8C1T1fcBHgGtE5IJyG5QNEWkAlgA/Tiz6P8C7gXnAG8QftSsVcVlW1pphEfkHIAI8lFj0BnC8qr4XuB74TxE5qlz2kf3zrbh7CXya1AFJWe+liDQDjwJ/r6rv5NrUZdmY3MtsNpbze1kzjl9VX0/83gv8lPhjXo+ITAdI/N5bPgtT+Ajwgqr2AKhqj6pGVTUGfIcxeNwvgGz3rhuY7dhuFvD6GNs2gohcBSwG/ocmAqmJx/3exOuNxOO9J5fLxhyfb6XdyzrgE8CPksvKeS9FpJ64Q31IVX+SWFxR38ssNpb9e1kTjl9EmkRkUvI18eTKNuDnwFWJza4CVpbHwgxSRlXJL3KCjxO3vdxku3c/Bz4lIiERmQOcBDxXBvsQkQ8DS4ElqnrIsfwYEQkmXr8rYeMfy2FjwoZsn2/F3MsEHwBeUtXu5IJy3ctEruE/gBdV9ZuOVRXzvcxmY0V8L8cig1zuH+BdxDP6m4HtwD8klrcATwGvJH4fXQG2TgR6gcmOZT8AtgJbiH+Bp4+xTQ8TfwwdJj5y+utc9w74B+Kjld8DHymjjV3E47qbEj/fTmx7SeJ7sBl4AfhYme9l1s+3Uu5lYvn3gb9L27Ys9xI4j3ioZovj8/1oJX0vc9hY9u+lSTYYhmHUGDUR6jEMwzCOYI7fMAyjxjDHbxiGUWOY4zcMw6gxzPEbhmHUGOb4jXFFQuGwEuY5GEbFYo7fMBIkZqZWPNVip1G5mOM3xiNBEflOQgP9SRFpFJF5IvKMQwN9KoCIrBWRfxKR3wBfEpHLRGSbiGwWkXWJbYIJDfXnE/v/bWL5QhFZlzjeDhH5togEEus+LfH+D9tEZFli2eUi8s3E6y+JyB8Tr98tIusTr+cnBLo2isgvHfIDKXaO7e00xhs2cjDGIycBn1bVvxGRR4jPiLwZ+IKq/kZE7gC+Cvx9YvspqvpnACKyFfhzVd0jiQYZxGfXHlDVPxGRELBBRJ5MrHs/cY3114D/Aj4hIv9NXGd9PtBHXBX2L4B1wE2J/c4HekVkJvEZnr9N6Lr8G3Cxqr4lIp8EvkZcwTHFTsMYDeb4jfHITlXdlHi9kbjy5RRV/U1i2QMcUT4Fh+gYsAH4fuIPRlJU60PAmSJyaeL9ZOJ/XIaA51Q1OXJ/mLgTHwbWqupbieUPAReo6s9EpDmhGzUb+E/iTU/OT5zrFOB04FdxmReCxKUT3Ow0jJIxx2+MR8KO11FgSp7tB5IvVPXvRORs4CJgk4jMIy7p+wVV/aVzJxFZSKa0r+IuAZzkaeCviOvF/Jb4aP5c4AbgeGC7qp6bz07DGA0W4zdqgQNAn6OxxWeB37htKCLvVtVnVfVWYB/xkfkvgf8vEYpBRE5OqLwCvF9E5iRi+58E1hNvtvFnIjItobb4acf51gE3Jn7/DugAwqp6gPgfg2NE5NzEeepF5DTvboNhxLERv1ErXAV8W0QmEpe6/ass290tIicRH7U/RVwpcQvxfqgvJKR23+JIS7+nga8DZxB35j9V1ZiIfAVYkzjOE6qalAf+LfE/JutUNSoiu4GXAFR1KBFO+lcRmUz8/+f/Jq7YaBieYeqchlEiiVDPjaq6uMymGEZRWKjHMAyjxrARv2EYRo1hI37DMIwawxy/YRhGjWGO3zAMo8Ywx28YhlFjmOM3DMOoMf4fO1tQgQe28fcAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from matplotlib import pyplot as plt\n", "data.plot.scatter(x='horsepower', y='mpg')\n", "plt.grid()\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Regression Models\n", "Regression models, in general, aim to **study the relationship between two variables**, $X$ and $Y$, by defining a mathematical model $f$ such that:\n", "\n", "$$Y=f(X) + \\epsilon$$\n", "\n", "Here:\n", "* $f$ is a deterministic function which can be used to **predict the values of $Y$ from the values of $X$**;\n", "* $\\epsilon$ is an **error term**, i.e., a variable capturing everything that is not captured by the deterministic function $f$. It can be due to different reasons, the main of which are:\n", " * $f$ is not an accurate deterministic function of the process. Since we don't know the \"true\" function $f$ and we are only estimating it, we may obtain a suboptimal $f$ for which $Y \\neq f(X)$. The error term captures the differences between our predictions and the true values.\n", " * $Y$ cannot only be predicted from $X$, but some other variable is needed to correctly predict $Y$ from $X$. For instance, $X$ could be \"years of education\" and $Y$ can be \"income\". While may expect that \"income\" is not completely predicted from \"years of education\". This can happen also because we don't always have observations for all relevant variables.\n", " * the problem has inherent stochasticity which cannot be entirely modeled within the deterministic function $f$. For instance, consider the problem of predicting the rate of wins in poker based on the expertise of the player. The expertise surely allows to predict the rate of wins, but wins partially depend also on random factors, such as how the deck was shuffled.\n", "\n", "Note that, often, we model $f$ in a way that we have its **analytical form**. This is very powerful. If we have the analytical form of the function $f$ which **explains** how $Y$ is influenced from $X$ (**can be predicted from $X$**), then we can really understand deeply the connection between the two variables!\n", "\n", "The function $f$ can take different forms. The most common one is the **linear form** that we will see in the next section. While the linear form is very simple (and hence we can anticipate it will be a limited model in many cases), it has the great advantage to be **easy to interpret**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Simple Linear Regression\n", "Simple linear regression aims to model the **linear relationship** between two variables $X$ and $Y$. In our example dataset, we will consider $X=\\text{horsepower}$ and $Y=\\text{mpg}$.\n", "\n", "Since we are trying to model a linear relationship, we can imagine **a line passing through the data**. The simple linear regression model is defined as:\n", "\n", "$$Y \\approx \\beta_0 + \\beta_1X$$\n", "\n", "In our example:\n", "\n", "$$\\text{mpg} \\approx \\beta_0 + \\beta_1 \\text{horsepower}$$\n", "\n", "It is often common to introduce a **\"noise\" variable** which captures the randomness due to which the expression above is approximated and write:\n", "\n", "$$Y = \\beta_0 + \\beta_1X + \\epsilon$$\n", "\n", "As we will see later, we expect $\\epsilon$ to be **small and randomly distributed**.\n", "\n", "Given the model above, we will call:\n", "\n", "* $X$, the **dependent variable** or **regressor**;\n", "* $Y$, the **independent variable** or **regressed variable**.\n", "\n", "The values $\\beta_0$ and $\\beta_1$ are called **coefficients** or **parameters** of the model.\n", "\n", "The mathematical model above has a geometrical interpretation. Indeed, specific values of $\\beta_0$ and $\\beta_1$ identify a given line in the 2D plane, as shown in the plot below:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAGoCAYAAABbkkSYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1zV1f/A8dfnctl7KIJsARcg4kDNmblTywaoiYpmad+vpQ0rXNgwv5ZaqV9zm9ss61vuXVqKqOQWBFSG7L3v+Pz+oPhl4uYjSOf5ePRIPvdzP+d9GPfe9+ec8z6SLMsIgiAIgiAIgiAID09V2wEIgiAIgiAIgiDUFyLBEgRBEARBEARBqCEiwRIEQRAEQRAEQaghIsESBEEQBEEQBEGoISLBEgRBEARBEARBqCHq2g6gJjg4OMgeHh4PdY3i4mLMzc1rJqA6SvTx8Vff+wf1v4/1vX9QM308efJklizLDWoopDpBvFfdm/rex/reP6j/fazv/QPRx3t1u/eqepFgeXh4EB0d/VDXOHToEN27d6+ZgOoo0cfHX33vH9T/Ptb3/kHN9FGSpGs1E03dId6r7k1972N97x/U/z7W9/6B6OO9ut17lZgiKAiCIAiCIAiCUENEgiUIgiAIgiAIglBDRIIlCIIgCIIgCIJQQ+rFGixBEARBeBxpNBqSk5MpKyu7p/Otra25ePGiwlHVrvreRwsLCzQaDYaGhrUdiiAIChEJliAIgiDUkuTkZCwtLfHw8ECSpLueX1hYiKWl5SOIrPbU5z7KskxycjLJycl4enrWdjiCIChETBEUBEEQhFpSVlaGvb39PSVXwuNPkiSsra3vecRSEITHk0iwBEEQBKEWieTqn0X8vAWh/hMJliAIgiAIgiAIQg0RCZYgCIIg/EPJskznzp3ZuXNn1bEtW7bQt2/fGmtj1KhReHp6EhgYSGBgIDExMdWet2bNGnx8fAgMDGTNmjVVxxMTEwkODsbHx4eQkBAqKioeOqbhw4fTtGlT/Pz8CA8PR6PR3DEmHx+fe4pp3rx5jBkzpuq89evXM2DAgIeOVxCEx4tIsARBEAThH0qSJJYsWcLkyZMpKyujuLiYiIgIFi1aVKPtzJ07l5iYGGJiYggMDLzl8ZycHCIjIzl+/DgHDx4kMjKS3NxcAKZMmcKkSZOIi4vD1taWFStW3LGtmTNnsnr16jueM3z4cC5dusTZs2cpLS1l+fLld4wpKirqnmKaOHEiJ0+e5OjRo+Tl5TF16lS+/PLLe/gOCYJQn4gESxAEQRD+wfz8/Bg4cCBz5swhMjKSsLAwmjRp8khj2L17N7169cLOzg5bW1t69erFrl27kGWZAwcO8PzzzwMwcuRIvv/++4dur3///kiShCRJtG/fnuTk5BqJSa1Ws3jxYl577TXeeecdwsPD8fLyeuh4BUF4vIgy7YIgCIJQB0T+eJ4LqQV3PEen02FgYHDP12zhbMWMgS3vet6MGTMICgrCyMiI6OjoWx4PCQnh8uXLtxyfPHkyYWFhd71+REQEs2bNomfPnnzyyScYGxvf9HhKSgqurq5VX7u4uJCSkkJ2djY2Njao1eqbjtcUjUbD2rVr+fzzz2957EFj6tSpE82bN2ffvn31ej8vQRBur1YTLEmSVgJPAxmyLPv9cWwm8DKQ+cdp78uyvKN2IhQEQRCE+s/c3JyQkBAsLCxuSX4ANm/e/MDXnj17No0aNaKiooJx48YxZ84cpk+fftM5sizf8jxJkm57/O/Onj3LiBEjAEhLS8PIyIgFCxYAsH//fuzt7auNbcKECXTt2pUuXbrc8tiDxlRUVER0dDQajYbMzExcXFyqbVsQhPqrtkewVgMLga//dny+LMufPvpwBEEQBKF23MtIk5Kb8KpUKlSq6lcO3M8IVp8+fUhPT6dt27YsX74cJycnAIyNjRk9ejSffnrr27uLiwuHDh2q+jo5OZnu3bvj4OBAXl4eWq0WtVpNcnIyzs7Otzzf39+/qnjGzJkz8fDwYNSoUXfsb2RkJJmZmXz11VfVPv6gMc2YMYOXXnoJR0dHJk2axDfffHPHOARBqH9qNcGSZflnSZI8ajMGAL1eJqVQX9thCIIgCHXMbWZa2AGbAQ/gKvCiLMu5tRXjo3A/I1i7d+++6esbN27g5OSELMt8//33+Pn53fKcPn368P7775Obm0thYSF79uxh9uzZSJJEjx492Lp1K6GhoaxZs4bBgwc/dH+WL1/O7t272b9//22Tyr/GBNxTTGfPnmX79u3ExMRgZGTEypUr2bt3L7169XromAVBqDmxxWXobx2MrjF1tcjFvyRJOiNJ0kpJkmyVbmzxoSvM/K2UX69kKd2UIAiC8HhZDfy9Zvm7wH5Zln2A/X98LdzG8OHD8ff3x9/fn6ysLKZOnQpAdHQ0Y8eOBcDOzo5p06bRrl07unfvzvTp07GzswNgzpw5zJs3D29vb7Kzs28qg/6gXn31VdLT0+nYsSOBgYHMmjXrjjG1a9furjHJssz48eOZP38+JiYmqFQqFi9ezOuvv14jpeUFQXh4ORot78Um0z3qEgcxUqwdqbq5xI/SHyNYP/3lzqAjkAXIwAeAkyzL4dU8bxwwDsDR0bHNpk2bHjiGggqZ2ceKyS6TmNzWhGZ2976A+HFSVFSEhYVFbYehqPrex/reP6j/fazv/YOa6WOPHj1OyrLctoZCeijVvE9dBrrLsnxDkiQn4JAsy03vdp22bdvKfy8gcfHiRZo3b37PsSg5RbCuqO99LCwsJDk5+b5+7o+bQ4cO0b1799oOQzH1vX9Q//qo0cusSc3i08Q0CnU6Rjo70DElnoE9uj3UdSVJqva9qs4lWPf62F9V96Z1v/63+yBfnleRklfK6tHtae9p91DXq4vq2x9Ldep7H+t7/6D+97G+9w9qpo+3e9OqDdUkWHmyLNv85fFcWZarnW1xt5uB1tbWeHt733Ms91tF8HFU3/uo0+lITEwkPz+/tkNRTH2/kVTf+wf1q49nZDVfY0oyBvihYSSluEp6RW8G1naRi1tIkuQky/KNP758Fjj3KNq1MpZY/3IwQ5ceY/SqKL4e05427vUvyRIEQRAeHVmWlwJLofJm4N8Tz4sXL97XaE19H92B+t/HwsJCTExMaN26dW2Hopj6fiOpvvcP6kcfE0vKmRmfwu6sAtxNjFjl7UxfB+uqqp9K9rFW12BJkrQR+A1oKklSsiRJY4D/SJJ0VpKkM0APYNKjiqehpQkbX+6Ao5UJI1ee4PT1er1mWRAEQXgw6X9MDeSP/2fUcjyCIAjCHwq1Oj6IT6Vr1CWO5BYR4eXEz8HN6NfAptptHpRQ21UEh1ZzeMUjD+QvGlqZsOHlDoQs/Y2wFVGsGxtMK1eb2gxJEARBqFv+B4wEPvnj/z/UbjiCIAiCXpbZlJbD7IQbZFZoCWlkx/teTjgaGz7yWOpqFcFa1ci6ciTLxtyQESuOcy6l/s6TFgRBEG7vNjMtPgF6SZIUB/T642tBEAShlkTlFdH3ZCyTLyXhZmLEzja+fN7crVaSK6iDa7DqCmcbUza+3IGQr44xfPlxNrwcTEtn69oOSxAEQXiEbjPTAqDnIw1EEARBuEVKWQUfxqeyLSMPJ2NDFjZ34zlH20c2FfB2xAjWHbjYmrFpXAfMjQx4aflxLt4oqO2QBEEQBKHGyLJM586d2blzZ9WxLVu20Lfv37f+enBjxoyhVatWBAQE8Pzzz1NUVFTteVOmTMHPz4/g4OCbNjY+cOAAQUFB+Pn5MXLkSLRa7UPHNHz4cJo2bYqfnx/h4eFoNJpqz1uzZg0+Pj74+PiwZs2aquOJiYkEBwfj4+NDSEhI1T5X8+bNu2mfrvXr1zNgwICHjlcQhJuV6PR8lphG5+MX2ZmVzyR3R44EN+P5Rna1nlyBSLDuytXOjI3jOmCsNmD48uNcTius7ZAEQRAEoUZIksSSJUuYPHkyZWVlFBcXExERwaJFi2qsjfnz5/P7779z5swZ3NzcWLhw4S3nbN++nVOnThETE8OBAweYO3cuBQUF6PV6Ro4cyaZNmzh37hzu7u43JTrVmTlzJqtXr77jOcOHD+fSpUucPXuW0tJSli9ffss5OTk5REZGcvz4caKiooiMjCQ3t7L41ZQpU5g0aRJxcXHY2tqyYkXl8vGJEydy8uRJjh49Sl5eHlOnTuXLL7+8x++UIAh3I8syP2Tk0uX4ReZeTeMpe2t+bt+MKV5OmNeh7R1EgnUP3O3N2TiuA2qVxPDlx7iSIZIsQRAEoX7w8/Nj4MCBzJkzh8jISMLCwmjSpEmNXd/Kygqo/GBUWlpa7d3lCxcu0K1bN9RqNebm5rRq1Ypdu3aRnZ2NsbExvr6+APTq1Ytvv/32oWPq378/kiQhSRLt27cnOTn5lnN2795Nr169sLOzw9bWll69erFr1y5kWebAgQM8//zzAIwcOZLvv/8eALVazeLFi3nttdd45513CA8Px8vL66HjFQQBzhaW8OzpK7xy/hq2hmq2tfZmmZ8HbqbGtR3aLcQarHvk6VCZZIV8dYyhy46zaVwHmjSoHxuwCYIgCHXAznch7ewdTzHVacHgPt66G/lDv7vX4JgxYwZBQUEYGRkRHR19y+MhISFcvnz5luOTJ08mLCzsrtcfPXo0O3bsoEWLFnz22We3PN6qVSsiIyOZPHky2dnZHDx4kBYtWuDg4IBGoyE6Opq2bduydetWkpKS7trevdJoNKxdu5bPP//8lsdSUlJwdXWt+trFxYWUlBSys7OxsbFBrVbfdPxPnTp1onnz5uzbt4+LFy/WWKyC8E+VWaFhTkIa629kY2towNymLgxzssegDkwFvB2RYN2HJg0s2DQumNClxxi69BibX+mIp4N5bYclCIIgCA/F3NyckJAQLCwsMDa+9W7wX9dEPYhVq1ah0+n497//zebNmxk9evRNj/fu3ZsTJ07QqVMn7Ozs6NixI2q1GkmS2LRpE5MmTaK8vJzevXtXJTZ/dfbsWUaMGAFAWloaRkZGLFiwAID9+/djb29fbVwTJkyga9eudOnS5ZbHZFm+5ZgkSbc9/qeioiKio6PRaDRkZmbi4uJy+2+MIAi3VaHXsyI5i3lX0yjV6xnn2oDJ7o5YG9b99KXuR1jHeDe0ZP3YDgxd9meS1QF3e5FkCYIgCA/pHkaaSgsLsbS0VKR5lUqFSlX9yoH7GcHq06cP6enptG3b9qa1TQYGBoSEhDB37txbEiyAiIgIIiIiKCws5JVXXsHHxweAjh078ssvvwCwZ88eYmNjb3muv78/MTExQOUaLA8PD0aNGnXH/kZGRpKZmclXX31V7eMuLi4cOnSo6uvk5GS6d++Og4MDeXl5aLVa1Go1ycnJODs7V503Y8YMXnrpJRwdHZk0aRLffPPNHeMQBOFmsiyzL7uAGVdSSSgtp6edFZE+znibmdR2aPdMJFgPoGkjS9aPDf5LktURVzuz2g5LEARBEBRxPyNYu3fvrvq3LMvEx8fj7e2NLMv8+OOPNGvW7Jbn6HQ68vLysLe359y5c5w5c4bevXsDkJGRQcOGDSkvL2fOnDlEREQ8dH+WL1/O7t272b9//22Tyj59+vD+++9XFbbYs2cPs2fPRpIkevTowdatWwkNDWXNmjUMHjwYqBxJ2759OzExMRgZGbFy5Ur27t1Lr169HjpmQfgniC0uY8aVFA7mFOJtZsz6AC962lvVdlj3TRS5eEDNnaxYNyaY4godoUuPkZxbUtshCYIgCEKdIssyI0eOxN/fH39/f27cuMH06dMBiI6OZuzYsUDlWqguXbrQokULJk6cyLp166qmAs6dO5fmzZsTEBDAwIEDefLJJx86rldffZX09HQ6duxIYGAgs2bNuiUmOzs7pk2bRrt27WjXrh3Tp0/Hzs4OgDlz5jBv3jy8vb3Jzs5mzJgxyLLM+PHjmT9/PiYmJqhUKhYvXszrr79eVcZdEITq5Wm0TItLpseJS5wsKGZmE2cOtGv6WCZXIEawHopfY2vWjQlm+PJjDF12jM3jOuJsY1rbYQmCIAjCfZs5c2aNX1OlUnH06NFqH/vrFEITExMuXLgAQOHfpkHOnTuXuXPn3nOb99KP2+2l9fdpjeHh4YSHh99ynpeXF1FRUbccP3LkyC3X+7NfgiDcSifLrEvNZk7iDXI1OkY42/OOpxMORsqlKGXlaSTEf4Yst1esDTGC9ZD8XaxZOyaYvBINQ5cdIy2/rLZDEgRBEARBEIQ67WhuIb1OXGZKbDJNzU3Y29aX/zR1VSy50unKSExcyG+/PUV6xk/IJCjSDogEq0a0crXh6/D2ZBdVMHTZMTIKRJIlCIIgCIIgCH93rbScMecSeS4mngKdjmUtPfgu0Bs/S2XqGciyTHrGTo4d70NC4nzs7bvRIXgPKilYkfZAJFg1prWbLWvC25NRUFaZZBWKJEsQBEEQBEEQAIq1Oj5JuEHXqEscyC7kHc9G/NK+OQMb2lS7AXlNKCy8yKnTwzl37l+oDcxp3XodAf6LMDV1vfuTH4JIsGpQG3dbVoe350Z+GcOXHSerqLy2QxIEQRAEQRCEWqOXZbam5fDE8UssuJbO0w1sOBrcjMkejTA1UCYVqajI5tKlqUSdGERxcSxNm35Au3b/w862oyLt/Z0oclHD2nnYsXJUO0atimL4suNsHNcBO3Oj2g5LEARBEARBEB6pUwXFTItL4WRBCYGWZiz386CttXL7x+r1FSQnryPx6hfodKW4uo7E0+PfGBpaK9ZmdcQIlgI6eNmzcmQ7rmYXM2zZMXKLRXlWQRAEQRAE4Z8hvVzDxIvX6H8yjqSyCj5v5saONj6KJldZ2Yc4HjWAuCsfYWUVSHD77fj6TH3kyRWIBEsxnbwdWD6yLQlZxQxffpy8EpFkCYIgCHWLLMt07tyZnTt3Vh3bsmULffv2rbE2hg8fTtOmTfHz8yM8PByNRlPteVOmTMHPz4/g4OCbNjbev38/QUFBBAYG0rlzZ65cufLIYlqzZg0+Pj74+PiwZs2aquOJiYkEBwfj4+NDSEhI1T5X8+bNY8yYMVXnrV+/ngEDBjx0vILwuCjT6fnyWjqdjl/k+/Q8/u3WkF+DmxPiZIdKoXVWxcUJxPw+ht9/H4Ms62kVsJzAVqswN/dWpL17IRIsBXXxacDSEW24klHEiBVR5JdW/wIuCIIgCLVBkiSWLFnC5MmTKSsro7i4mIiICBYtWlRjbQwfPpxLly5x9uxZSktLb9pn6k/bt2/n1KlTxMTEcODAAebOnUtBQQEA48ePZ/369cTExDBs2DA+/PDDO7Y3c+ZMVq9e/dAx5eTkEBkZyfHjx4mKiiIyMpLc3FygMhmcNGkScXFx2NrasmLFCgAmTpzIyZMnOXr0KHl5eUydOpUvv/zyXr5NgvBYk2WZHZl5dI26xEcJN+hqa8nPwc2IaOKMhdpAkTY1mgJi4z7ieFQ/8vKi8fZ+jw7BO3Fw6KFY0Yx7JRIshXVv2pAlI4K4lFZA2MooCspEkiUIgiDUHX5+fgwcOJA5c+YQGRlJWFgYTZo0qbHr9+/fH0mSkCSJ9u3bk5ycfMs5Fy5coFu3bqjVaszNzWnVqhW7du0CKpPAP5Ot/Px8nJ2dH0lMu3fvplevXtjZ2WFra0uvXr3YtWsXsixz4MABnn/+eQBGjhzJ999/D4BarWbx4sW89tprvPPOO4SHh+Pl5fXQ8QpCXXaxqJQXYuIJP3cVUwMVW1o1YZW/Jx6mxoq0J8s6UlI28tuxniQlrcKp0RA6dtyPu9tYVKq6UfdAFLl4BJ5s5sji4W0Yv+4kI1dG8XV4eyxNDGs7LEEQBKEOmRM1h0s5l+54jk6nw8Dg3u8GN7NrxpT2U+563owZMwgKCsLIyIjo6OhbHg8JCeHy5cu3HJ88eTJhYWH3FItGo2Ht2rV8/vnntzzWqlUrIiMjmTx5MtnZ2Rw8eJAWLVoAsHz5cvr374+pqSlWVlYcO3bsntp72JhSUlJwdf3/Us4uLi6kpKSQnZ2NjY0NarX6puN/6tSpE82bN2ffvn1cvHixxmIVhLomu0LLfxJvsDY1G2u1AbN9XRjhZI9apdzoUW5uFLFxH1BUdAEb63b4+k7D0rKlYu09KJFgPSK9WjiycFgQr204xahVJ1gT3h4LY/HtFwRBEGqfubk5ISEhWFhYYGx8613nv66JelATJkyga9eudOnS5ZbHevfuzYkTJ+jUqRN2dnZ07NixKoGZP38+O3bsIDg4mLlz5zJ58uRbpvSdPXuWESNGAJCWloaRkRELFiwAKtdw2dvb33dMsizfckySpNse/1NRURHR0dFoNBoyMzNxcXG5zXdEEB5PGr3MmtQs5iamUaTTMbqxA295NsLWULnPtaWlKVyJ/4SMjB0YGzvh1/JzGjYcUOtTAW9HfMJ/hPr6NeKL0NZM3HSa8FUnWB3eDjMj8SMQBEEQuKeRpsLCQiwtLRVpX6VSoVJVv3Lgfkaw+vTpQ3p6Om3btq1KhCIjI8nMzOSrr766bfsRERFERERQWFjIK6+8go+PD5mZmfz+++8EBwdXxVFdAQ5/f39iYmKAyjVYHh4ejBo16o79vVtMLi4uHDp0qOrr5ORkunfvjoODA3l5eWi1WtRqNcnJyTdNW5wxYwYvvfQSjo6OTJo0iW+++eaOcQjC4+RQTgHT4lKIKymnm60lkT7ONDM3Vaw9na6Ea9eWcu36UkDC0/MN3N3GYmCgXJs1QXy6f8QGBDihl2Ve33SaMaujWTmqHaZGyiz+EwRBEISacD8jWLt3777p6+XLl7N79272799/2wROp9ORl5eHvb09586d48yZM/Tu3RuoXHcVGxuLr68ve/fupXnz5g/ekfuIqU+fPrz//vtVhS327NnD7NmzkSSJHj16sHXrVkJDQ1mzZg2DBw8GKkfStm/fTkxMDEZGRqxcuZK9e/fSq1evh45ZEGpTQkk5M6+ksCe7AA9TI1b7edLHwUqxESRZlklP/5Er8XMoL0/DseHTeHtPwcTk4ddgPgoiwaoFA1s5o5dlJm2O4eWvo1k+si0mhiLJEgShfqhmBpXwD/bqq6/i7u5Ox44dARgyZAjTp08nOjqaJUuWsHz5cjQaTdU0PXNzc9atW1c1RXDZsmU899xzqFQqbG1tWbly5SOJyc7OjmnTptGuXTsApk+fjp2dHQBz5swhNDSUqVOn0rp1a8aMGYMsy4wfP5758+djYmICwOLFiwkLC6tKuAThcVOo1TH/ajrLkjMxVklMa+LMWBcHjG9zY6ImFBScITbuA/LzT2Fp6Ydfy8+xsWmrWHtKEAlWLRkc2BitTuatrb/z8tfRLAsTSZYgCI83nSwzKz6Vq5jSo7aDEe7bzJkzFbmuVqut9vhfpxCamJhw4cIF4NZpkM8++yzPPvvsPbd3L/24l5gAwsPDCQ8Pv+U8Ly8voqKibjl+5MiRW673Z78E4XGil2FDajYfJ9wgW6MlpJEd73s50dBYuSJt5eUZxMd/yo20bzEycqB5szk4OQ1Bkh6/ouciwapFz7VxQSfLvLP1DK+uO8lXI9pgrNBeAYIgCEoq0Op49fxVDuQU0hfQy7Jim0oKgiAIyjmeV0QEFiReTqKdlTnrArwItDJTrD29vpzrSau5enURen0F7m7j8PCYgFqtzHpTqNznrrqCNTVFJFi17MW2ruj0Mu99d5YJ606x+KUgkWQJgvBYuVpazogzCSSWlvMfXxfc4s6J5EoQBOExk1JWwYfxqWzLyMMOFYtbuPNsQxtF11llZe0j7srHlJZex8GhJz7e72Fm5qlIewBlZWX8/PPPHDt2DB8fH8XaEQkWQHkRdtnRQPdaaX5oezd0epmp35/jtfWnWTw8CCP14zccKgjCP8/R3EJePn8VvQybWjWhs60lh+JqOypBEAThXpXo9Cy+nsGi6+nIwJsejvhfvUxfR1vF2iwqukxc3Efk5B7F3NyHwFarsbe/dbuEmqLX64mJiWH//v0UFxfTunXrqrWSShAJFsCvXxBwdg7YlECPqaDgwr3beamDO3pZZvoP55m48TRfDmuNoYFIsgRBqLvWpWbzbmwSnqbGfO3vhafZrfsnCYIgCHWTLMv8kJHHB/GppJRrGNzQhqlNnHE1MeLQtVu3ZagJGk0eCYkLSEnZgIGBBb4+02nceBgqlXJru65du8auXbu4ceMGrq6uDBs2jMaNG9+0DUNNEwkWQJc3SY09hfMvn0H6eRiyFEysH3kYYR090OpkZv10gTc2xfB5aCBqkWQJglDHaPUyM+NTWJ6cRQ87S75q6YGVmNosCILw2DhTWMK0uBSO5xfjZ2HKohbudLCxUKw9vV5LSupGEhIWoNUW4NJ4OF5er2NoqNwoWV5eHnv37uX8+fNYWVnx3HPP4efn90g2JxYJFoDamFjf13Bu3Qd2vQvLesLQjeCg3NzM2wnv7Ilelvlw+0VUKon5L7YSSZYgCHVGvkbLK+evcSi3kFdcGzC9iTMGYr2VIAjCYyGzQsMnCTfYcCMHO0M1nzZ1ZaiTnaKv4zk5R4mN+4Di4jhsbTvi6zMNC4umirVXUVHB0aNHOXr0KADdunXjiSeeeKRbJYhP7n+SJGj/MoT9AKU5sOxJiN1TK6GM7eLFu/2a8ePvqby99Qw6vdhURhCE2pdQUs6AU3EczStiXlNXIr0bi+TqMSfLMp07d2bnzp1Vx7Zs2ULfvn1rrI2FCxfi7e2NJElkZWXd9rwpU6bg5+dHcHDwTRsbd+nShcDAQAIDA3F2duaZZ5556JiGDx9O06ZN8fPzIzw8HI1GU+15a9aswcfHBx8fH9asWVN1PDExkeDgYHx8fAgJCaGiogKAefPmMWbMmKrz1q9fz4ABAx46XkF4WBX6ynVWHY9dZHNaDq+4NuC3Ds15ydlesdfxkpJr/H7mFU7HhKHXlRPg/19aB65VLLmSZZmzZ8+ycOFCDh8+TNOmTfnXv/5Fjx49Hvk+dCLB+juPzjDuENi6w4YX4Zd5tbJr5qvdmvB2n6ZsO53CO1vPoBdJliAItehIbiH9T8aSo9GyJbAJw5ztazskoQZIksSSJUuYPHkyZWVlFBcXExERwaJFi2qsjSeeeIJ9+/bh7u5+23O2b9/OqVOniImJ4cCBA8ydO5eCggIAfvnlF2JiYoiJiaFjx44MGTLkju3NnDmT1atX3/Gc4cOHc+nSJc6ePUtpaelNe1/9KScnh8jISI4fP05UVBSRkZHk5uYClcngpEmTiIuLw9bWlhUrVgAwceJETp48ydGjR8nLy2Pq1Kl8+eWXd4xFEJQkyzJ7svLpHnWZWfGpdLCx4HD7Zsz0bqzY1G6ttogrV/7DseN9yc39lSZebxEcvIsGDXorNj0vNTWVlStX8u2332JmZsbo0aN54YUXsLGxUaS9uxFTBKtj4wbhe+CH12B/JKSdhcELwcj8kYbxWg9vtDqZ+ftiUaskZg/xR6USd4sFQXi0VqVkMTUuGW8zE77298TdVBSzqE/8/PwYOHAgc+bMobi4mLCwMJo0aVJj12/duvVdz7lw4QLdunVDrVZjbm5Oq1at2LVrFy+++GLVOYWFhRw4cIBVq1Y9dEz9+/ev+nf79u1JTk6+5Zzdu3fTq1cv7OzsAOjVqxe7du0iNDSUAwcOsGHDBgBGjhzJzJkzGT9+PGq1msWLFzNhwgTat29PeHg4Xl5eDx2vIDyIy8VlzIhL4VBuId5mxqwP8KKnvZVi7cmynhtp3xEf/ykVFZk4NRpCkyZvYWzsqFibRUVF7N+/n9OnT2NmZsbAgQNp3bo1qlooWPdXIsG6HSMzeH4lNPKH/bMgOw5CN1QmX4/Q60/5oNPr+eLAFVQqiY+e8RNJliAIj4RGLzPtSgqrU7LoZW/F4hbuWIpiFopJ+/hjyi9euuM5Wp2OHIN7/xkYN29Go/ffv+t5M2bMICgoCCMjI6Kjo295PCQkhMuXb60qNnnyZMLCwu45nttp1aoVkZGRTJ48mezsbA4ePEiLFi1uOmfbtm307NkTK6ua+4Co0WhYu3Ytn3/++S2PpaSk4OrqWvW1i4sLKSkpZGdnY2Njg1qtvun4nzp16kTz5s3Zt28fFy9erLFYBeFe5Wm0fHo1jVUpWZgbqJjl7czoxg0wVPDzY37+KS7HzqKw8CxWVq0JCPgKa6tWirWn1Wo5fvw4hw8fRqvV0rFjR7p166Zo6fX7IRKsO5Ek6DIZHP3g27GwtDu8+HXlNMJHaFIvX7R6mcWH4lGrJGYNbvlIKqAIgvDPlavRMu78VX7JLWK8awOmimIW9Zq5uTkhISFYWFhgbHzrCOVf10QpoXfv3pw4cYJOnTphZ2dHx44dqxKYP23cuJGxY8dW+/yzZ88yYsQIANLS0jAyMmLBggUA7N+/H3v76qe0Tpgwga5du9Kly63778jVLA+QJOm2x/9UVFREdHQ0Go2GzMxMXFxcqu+0INQwrV5m3Y1s/pN4gzyNjpec7XnH0wkHI+U+7peV3SA+fi5p6T9gbORIyxbzcHQciCQpM4IkyzKxsbHs3r2bnJwcfHx86NOnDw4ODoq096BEgnUvfHvDy/th0zD4ejD0/QTaja1MwB4BSZJ4u09TdHqZr35OwEAlMWNgC5FkCYKgiLjiMsLOJpBSpuHzZm6EONnVdkj/CPcy0lRYWIilpaUi7atUqttOq7mfEaw+ffqQnp5O27Ztq13bdDsRERFERERQWFjIK6+8go/P/1fyzc7OJioqim3btlX7XH9/f2JiYoDKNVgeHh6MGjXqju1FRkaSmZnJV199Ve3jLi4uN+2Tk5ycTPfu3XFwcCAvLw+tVotarSY5ORlnZ+eq82bMmMFLL72Eo6MjkyZN4ptvvrm3b4AgPIQjuYVMi0vhYnEZnWws+MCnMS0tTBVrT6cr4/r1ZVy99hWgw8N9Au7ur6JWK7ecJiMjg927dxMfH4+DgwPDhw+/6XWiLhEJ1r1y8IGx++C7cbDjLUg7A/0/BfWjWYsgSRLv9muGTi+z/EgiKkli2tPNRZIlCEKNOpRTwLjzVzGUVHzb2pt21o927alQN93PCNbu3bvv+/o6nY68vDzs7e05d+4cZ86coXfv3lWPf/PNNzz99NM1Nv1n+fLl7N69m/379982qezTpw/vv/9+VWGLPXv2MHv2bCRJokePHmzdupXQ0FDWrFnD4MGDgcqRtO3btxMTE4ORkRErV65k79699OrVq0biFoS/u1Zazqz4VLZn5uNqYsTylh4MaGCt2OdDWZbJyNzJlbjZlJWn0rBBP7y938XUVLmR2tLSUg4dOkRUVBTGxsb07duXdu3aYXAf06UfNVFF8H6YWEPoRujyFpz6GtYMhML0R9a8JElEDGjOqE4erDyayOydl6qdqiAIgnC/ZFlmeXImw35PwMXYiF1tfUVyJdSIL774AhcXF5KTkwkICKia5hcdHV31b41GQ5cuXWjRogUTJ05k3bp1N00R3LRpE0OHDq2xmF599VXS09Pp2LEjgYGBzJo165aY7OzsmDZtGu3ataNdu3ZMnz69quDFnDlzmDdvHt7e3mRnZzNmzBhkWWb8+PHMnz8fExMTVCoVixcv5vXXX68q4y4INaVIq+Pj+FS6Rl3iQHYh73k68Uv7Zjzd0Eax5Kqw8AKnTg/j3Ll/oza0Iqj1evz9FyqWXOl0Ok6cOMEXX3xBVFQUbdq04d///jcdOnSo08kViBGs+6dSQc9p0MgPvp9QuS4rdB00bvNImpekyumBellm6R/TBd/p01SMZAmC8MAq9Hoi4lJYm5pNPwdrFjZ3w1wUs/jHmTlzpiLXnThxIhMnTrzl+F+nEJqYmHDhwgWg+mmQf52qdzf30g+tVlvt8b9PawwPDyc8PPyW87y8vIiKirrl+JEjR2653p/9EoSaoJdltqbn8lF8KukVWp5ztGVqEyecjJXb56miIpv4hHmkpm7G0NCWZk0/xNn5RSRJufeJhIQEdu3aRUZGBh4eHvTt25dGjRop1l5NEwnWg2r5LNh7w8ZhsLIfDPwcAmvu7tqdSJLEzIEt0epl/nsoHkOVxOTeyu2ILQhC/ZWj0TLmXCK/5RUz0a0h73o5oRI3bARBEOqcU/nFTL2SwqmCElpbmrHSz5M2Cs400OsrSE5eS+LVL9HpSnF1HYWnx0QMDZUr9Z6Tk8OePXu4dOkSNjY2vPjiizRv/vgtiREJ1sNo5F+5KfE3I+H7VyvXZfX6AAyU/7aqVBIfDvZDr5erSri/8ZSv4u0KglB/xBaXMeJMAmkVGhY1d+O5RqKYhSAIQl2TVq7hw/hUtqbn4mik5ovmbjzvaKvozTBZPsPxqA8pKUnE3r4bPt4RmJvX3P54f1deXs4vv/zCb7/9hkql4sknn6Rjx44YGhoq1qaSRIL1sMztYcQ22B0BxxZD+nl4YTWYKf9BRaWS+PhZf3R6mQX74lCrJP71ZN2spiIIQt2yP7uAV89fxcRAxXeB3oreBRUEQRDuX5lOz1dJmXx+PR2tXmaiW0MmujtioeAU7uLieOLiPkQv/wx40ipgOQ4OPRRrT6/Xc+bMGfbt20dRUREBAQE89dRTNbrf3d/piioo2HsNtYJbZokEqyYYGEL//4BTAPw0CZb1qCyG4dji7s99SCqVxCfPBaDTy3y6JxYDlYrx3ZW7wyAIwuNNlmW+SspkVnwqLSxMWePvSWMT5ebuC4IgCPdHlmV2ZOUz80oqSWUV9HOwZqa3M+6mylWu1mgKSLz6BcnJa1GpTJCkEILbz0SlUu79ISkpiV27dpGSkkLjxo0JCQm5aXPvmiZr9RT9lkrBvuvIGj0mfsqNAIoEqya1fgkcmsLml2D5U/DsEmgxSPFmDVQSc19ohU6WmbPrEgYqGNdVJFmCINysQq9nSmwyG2/kMKCBNV80d8O8jldiEgRB+Ce5UFTKtLgUjuYV0czchG9aNaGLnTJ73wHIso6U1M0kJMxHo8nF2flFmnhN5tdfzymWXBUUFLBv3z7OnDmDhYUFzzzzDAEBAbfdMqEmlF7KIf+nBLRZpZg0tcV6gBdXLtxaqKamiASrprm2q1yXtfkl2DICuk2Bbu9WVh9UkIFK4rMXWqHVy3y84xIGKhVjOnsq2qYgCI+PrAotY88lciy/mEnujrzt2UgUsxAEQagjsiu0zEm8wbrUbKzVBnzi68JLTvaoVcq9TufmHic27gOKii5iY9MeX5+pWFq2VKw9jUbDb7/9xi+//IJer6dz58506dIFY2MFR+YySsj7KYHy2FzUDqbYj2qJabM/lvEoWOBT7IOlBCsnGLUdAofD4TmVyVZ5oeLNqg1ULAgJpJ9fIz746QJrfr2qeJuCINR9F4tK6XcylpjCEpa0cGeKqBQo/EGWZTp37szOnTurjm3ZsoW+ffvWWBuJiYkEBwfj4+NDSEjIbfeEmjJlCn5+fgQHB9+0sbEsy0RERODr60vz5s354osvHjqm4cOH07RpU/z8/AgPD0ej0VR73po1a/Dx8cHHx4c1a9bctU/z5s1jzJgxVeetX7+eAQMGPHS8Qv2l0cssS8qk0/GLrL+RTbiLA792aM6oxg6KJVelpcmcPfsvTp0ehlaTj1/LLwhqvUGx5EqWZS5cuMCiRYs4cOAA3t7evPbaazz11FOKJVf6Eg15P8aTvuAUFdcKsB7gheMbQf+fXClMJFhKMTSBwYug7xyI3VU5ZTA7XvlmDVR8MbQ1vVs4MuN/51l77JribQqCUHftycrn6VNxVOj1bGvtwzOOtrUdklCHSJLEkiVLmDx5MmVlZRQXFxMREcGiRYtqrI0pU6YwadIk4uLisLW1ZcWKFbecs337dk6dOkVMTAwHDhxg7ty5FBQUALB69WqSkpK4dOkSFy9eJDQ09I7tzZw5k9WrV9/xnOHDh3Pp0iXOnj1LaWnpTXtf/SknJ4fIyEiOHz9OVFQUkZGR5Obm3rFPEydO5OTJkxw9epS8vDymTp3Kl19+eS/fJuEf6GB2AU+euMS0KykEWppxoF0zPvRxwdZQmQlmOl0J8QnzOHa8F1nZB/HyfIMOHfbi6DhAsTLoaWlprFmzhi1btmBkZERYWBghISFVm3bXNFkvU3T8BmmfRVP0ayrmbR1p9HZbLLs0RlI/urSnVhMsSZJWSpKUIUnSub8cs5Mkaa8kSXF//P/x/TQgSdDh1coqg0UZlcUvruxTvFlDAxULhwXxVPOGTPv+HBujrivepiAIdYssyyy8ls7Is4k0MTNmV1tfWluZ1XZYQh3k5+fHwIEDmTNnDpGRkYSFhdGkSc2s45VlmQMHDvD8888DMHLkSL7//vtbzrtw4QLdunVDrVZjbm5Oq1at2LVrFwD//e9/mT59etX6jIYNGz50XP3790eSJCRJon379iQnJ99yzu7du+nVqxd2dnbY2trSq1cvdu3adcc+qdVqFi9ezGuvvcY777xDeHg4Xl5eDx2vUL/El1RukTH0TAJaWeZrf082tfKiqbkyZe1kWSYt7Qd+O9aLq1cX0aBBXzp22Iun578xMFCmzeLiYn766Se++uor0tPTGTBgAK+88oqifw/lCXlkfHmavG1XUDc0o+G/WmM7xAcDi0dfyKm212CtBhYCX//l2LvAflmWP5Ek6d0/vp5SC7HVHK9uMO4gbBoO61+ApyKh078rEzCFGKlVLBoexKtrT/Led2cxkCQe/i1JEITHQblez1uXk/gmLZdBDW1Y0MwNMwMxYaGu+2VLLFlJRXc8R6fTYXAfhUkcXC3o8uLd90icMWMGQUFBGBkZER0dfcvjISEhXL58+ZbjkydPJiws7LbXzc7OxsbGBrW68uOGi4sLKSkpt5zXqlUrIiMjmTx5MtnZ2Rw8eJAWLSor8cbHx7N582a2bdtGgwYN+OKLL/DxqZktSTQaDWvXruXzzz+/5bGUlJSbKpr9Gfvd+tSpUyeaN2/Ovn37uHjxYo3EKdQPBVod86+msTw5C2OVxPQmzoxxccBYwXX6BQVniI2dRX7BaSwt/fHz+wIb6zaKtafT6Thx4gSHDh2ivLyc9u3b061bN8zMlLvBp80pI39nIqVnszCwMcZueDNM/RxqdXPiWk2wZFn+WZIkj78dHgx0/+Pfa4BDPO4JFoCtB4zZA9+Ph73TIO0sDPoCDE0Va9JYbcB/X2rDy19HM+W7M4z1M6r6xgqCUD9lVmgYfTaR6IIS3vZoxGQPx1p9kxEeD+bm5oSEhGBhYVHtmoi/rom6H7Is33Ksut/H3r17c+LECTp16oSdnR0dO3asSmDKy8sxMTEhOjqa7777jvDwcH755Zebnn/27FlGjBgBVE5JMjIyYsGCBQDs378fe3v7auObMGECXbt2pUuXLvcc+936VFRURHR0NBqNhszMTFxcXKptW/jn0Mkym2/k8HHCDbI1WoY62fGelxMNjJTbRLe8PIP4+LncSPsOIyMHmjebg5PTECRJuWQuLi6O3bt3k5WVRZMmTejTp0+NjDjfjr5cR+HhJAp/TkaSJKx6uWPZtTGSYe1Xx63tEazqOMqyfANAluUbkiRV+5ORJGkcMA7A0dGRQ4cOPVSjRUVFD32Ne9JgNG6eFnie3UBR4knO+b1HuUkDRZsc4SGTk6Ni+dlypA376ORcF3/sNeOR/RxrSX3vH9T/PirZv2uyirlYUIDEG5TQ5tolDl+7pEhbd1Lff4ZKuZeRpsLCQiwtlSnZrFKpblsm+X5GsPr06UN6ejpt27Zl2bJl5OXlodVqUavVJCcn4+zsXG0bERERREREUFhYyCuvvFI1SuXi4sJzzz0HwLPPPsvo0aNvea6/vz8xMTFA5RosDw8PRo0adcf+RkZGkpmZyVdffVXt4y4uLjf9HicnJ9O9e3ccHBzu2KcZM2bw0ksv4ejoyKRJk/jmm2/uGIdQvx3PK2JaXApnikppZ2XO+lZetLJUbjRHpysnKWkVV68tRq/X4O72Ch4e41GrlSv1npWVxe7du4mLi8POzo6hQ4fi6+ur2M09WS9T8nsm+TsT0RdUYNqqAdb9PVFbK1eN8H49tp+0ZVleCiwFaNu2rdy9e/eHut6hQ4d42Gvcux5weSCW375Mx7PvwYtfg3snRVvs0kXHkAV7WH62HP+WLRjYqvo3uMfdo/05Pnr1vX9Q//uoVP92ZuYRefE61moDfvL3JEDBN/C7qe8/w3+i+xnB2r17901f9+jRg61btxIaGsqaNWsYPHjwLc/R6XTk5eVhb2/PuXPnOHPmDL179wbgmWee4cCBA4SHh3P48GF8fe+eiN7N8uXL2b17N/v3779tUtmnTx/ef//9qsIWe/bsYfbs2UiSdNs+nT17lu3btxMTE4ORkRErV65k79699OrV66FjFh4vyWUVfBifyvcZeTgbG7KkhTuDG9ool3TIMllZe4mLm01p2XUcHJ7Cx/s9zMw8FGkPoKysjMOHD3P8+HHUajW9evUiODi4avRZCRVJheT9GE/F9UIMXSywH94cY3crxdp7UHUxwUqXJMnpj9ErJyCjtgNSRNN+8PJ+2DgU1gyC/v+BtuGKNWdqZMAbQSasiDfhjc0xqCSJAQFOirUnCMKjIcsyX1zLYHbiDVpbmrHa3xNHY+WmnQjC/ZozZw6hoaFMnTqV1q1bV5Uxj46OZsmSJSxfvhyNRlM1Tc/c3Jx169ZVfUh79913GT58OPPnz8fCwqLain/369VXX8Xd3Z2OHTsCMGTIEKZPn35TTHZ2dkybNo127doBMH369KrKZ9X1SZZlxo8fz/z58zExqSwcsHjxYsLCwqoSLqH+K9HpWXQ9ncXXM5CByR6O/MvNUdF1sEVFl4mN+5Dc3F8xN/chMHAN9nadFWtPr9dz+vRp9u/fT0lJCa1bt6Znz55YWFgo1qauoIL8XYmUnMpAZWGI7fO+mAU1RFJwn7CHURcTrP8BI4FP/vj/D7UbjoIaNIWXD8C3Y+CnSZXrsvrOAbUyL8LGaolVo9oxcmUUEzedxkAFff1EkiUIj6tSnZ43LyfxXXouQxxt+aypK6aimIXwgGbOnKnIdb28vIiKirrleNu2bauSJRMTEy5cqNz18+/TIG1sbNi+ffs9t3cv/dBqtdUe/2tMAOHh4YSH33rz83Z9OnLkyC3X+7NfQv0myzI/ZOQxKz6V1HINgxvaMK2JMy4myiXWGk0u8QkLSEnZgFptia/vDBo7D0OlUu7j/dWrV9m1axdpaWm4ubnRt2/f2077rQmyRk/h0RQKDyQh6/RYdnPB8klXVMZ1MYX5f7UanSRJG6ksaOEgSVIyMIPKxGqLJEljgOvAC7UX4SNgagPDtsD+WXB0AWRcrJwyaKHMokBzYzWrw9sTtuI4/9pwmsXDJXq3bKRIW4IgKCe9XMPoc4mcKijhPU8nJro3FMUsBEEQasHvhSVMi0shKr8YfwtTFrdwp4ONcqM5er2GlJQNJCR+jk5XhIvLcLw8X8fQULmdjfLy8ti7dy/nz5/HysqK5557Dj8/P0WnPJadzyZvRyK6nDJMmtthM8ALtYNyxeFqUm1XERx6m4d6PtJAapvKAHpFQiN/+OFfsLQ7hK4H59aKNGfxR5I1YkUUr204xZKX2tCzuaMibQmCUPPOFJYw6mwiuRodK/086N/AprZDEgRB+MfJKNcwO/EGm27kYG+o5rOmroQ62WGg4M2u7JwjxMV9SHFxHLa2nfD1mYqFRVPF2quoqODo0aMcPXoUgO7du9OpUydFp7xq0orJ+zGe8vh81I5mOIzxw8Tn8doWt26Pr/3T+D8PDj6V+2Wt7AuDFkKAMgN4ViaGfB3enpeWH2f8ulN8FdaGHk3FTlmCUNf9lJHHvy9ew85QzY9B3vjVYjELQRCEfyKNDIuuZzD/ahrleplXXBsw2aMRVmrlyoOXlFwl7spssrL2YWriRoD/EhwcnlJ0BOns2bPs3buXgoIC/Pz8eOqpp7CxsVGkPQBdsYaCvdcoPn4DyUSNzeAmmLd3QjJ4/GZniASrrnFqBS8fhC1h8N1YSPu9cmNiVc3/0VqbGrJ2THuGLz/OK2tPsjysLV19lS0ZLwjCg5FlmXlX05l7NY22Vmas8vdUdA+VByXLMrJcXtthCIIg1DhZltmbXcA7WJIWn0pveytmejfGy0y58uBabSFXry7metIqVCojmni9jZvbaFQq5dpMSUnh9OnTFBQU4OTkxHPPPYe7u7ti7ck6PcXHbpC/7zpyuRaLjs5YPeWGyky597jCnKxq97SrKSLBqossGkDYD7DrXfj1S0i/AM+vANOaHx61MTNi3Zhghi0/zstfR7NyVDue8Hao8XYEQXhwJTo9b1y6zv8y8nihkS2fNnXF+DalpWtTSck1Ll+ejl4uAvrUdjiCIAg15nJxGTPiUjiUW0hjYGOAFz3slSsPLst6btz4jviEuVRUZOHU6DmaNHkLY2PlZhsVFhayf/9+YmJiMDQ0ZNCgQQQGBt52K4OaUBabS95PCWgzSjD2tsFmoBeGjuaKtacpKyPqf98S/b9vcen6FPTooUg7IsGqq9RG8PQ8cAqA7W/BsichdCM0bFbjTdmaG7F+bDDDlh1jzJoTrBrVno5Nqt/1XhCER+tGeQWjziZyprCUqV5OvOZW94pZ6PUVXL++gsSrXyJJhkjSYGRZrnNxCoIg3K9cjZZPE9NYnZqFhYEBH/o0xiPuvKLJVV7+SWJjZ1FYeA5rq9YEBCzF2qqVYu1ptVqOHTvGzz//jFarpVOnTqhUKoKCghRrU5NVSv72BMou5mBgb4J9WAtMmtspOuXx0q8/8/P6VRRlZ9G0U1eMnFwUaQug7t0CFW7WZhSM+gnKi2B5T7h076Vq74eduRHrxgbjamtG+OoTRCXmKNKOIAj37nRBCX2jY7lSUs5qf0/+5e5Y55KWvLxook4MIj7hUxzsn6Rjhz2opCfrXJxC9WRZpnPnzuzcubPq2JYtW+jbt+9DXXPixIl4e3sTEBDAqVOnqj0vMTGR4OBgfHx8CAkJoaKiAoBffvkFa2trAgMDCQwMZNasWQ8cy5/Wr19PQEAAAQEBdOrUid9///2+Yrpdn5KSkvD09CQnp/I9Mzc3F09PT65du/bQMQu1S6uXWZWSRadjF1mVksVwJ3t+DW7OWJcGqBV6eSsrS+Xc+Tc4efJFKiqyaNliPm3afKNYciXLMpcvX2bx4sXs27cPDw8PXnvtNXr37q3YZsH6Mi15OxJJn3+S8vh8rPp60GhSG0xb2Cv2vpEWH8emGVPY8cVczKysCYmcw9Ovv4ORpXJJskiwgBtFNzhYcBCtvvp9MWqdWwcYd+iPAhjD4NAc0OtrvBkHC2M2vNwBZxsTRq2KIvqqSLIEobZ8n57Ls6fjMFRJ/BTkQx8H69oO6SYaTT4XL0Vw8lQIOm0xrQKW4e+/EGNjUZH0cSJJEkuWLGHy5MmUlZVRXFxMREQEixYteuBr7ty5k7i4OOLi4li6dCnjx4+v9rwpU6YwadIk4uLisLW1ZcWKFVWPdenShZiYGGJiYpg+ffod27t69Srdu3e/4zmenp4cPnyYM2fOMG3aNMaNG3dfMd2uT66urowfP553330XqNwUedy4cYquVxGU90tOIb2iL/NebDItLEzZ164p/2nqir2RMkmHTldKQuKX/HasF5mZe/DweI2OHfbSqNEgxZKOjIwM1q5dy8aNG1GpVLz00ksMGzYMe3tlZjDJepniE2mkfRpN0c/JmAU2pNFbbbHq7oqkViYdKc7LZdd/F7A+YjJ5aan0fmUiL308H5dmLRVp76/EFEFge+J2vsv9jrM/nWVq8FSCHJUbEn1g1o1h9E748Q049DGkn4VnloBxze6z0MDSmI0vdyB06TFGrozi6zHBtHF/vEpjCsLjTC/LzE1MY/61dDpYm7PczxMHhd7UH4Qsy6Sn/0hs3IdotXm4uY7B0/N11Grl5swLyvLz82PgwIHMmTOH4uJiwsLCaNKkyQNf74cffiAsLAxJkujQoQN5eXncuHEDJ6f/39helmUOHDjAhg0bABg5ciQzZ868bTL2sDp16lT17w4dOpCcnHzLOXeK6U59mjRpEm3atGHBggUcOXKEL7/8UpE+CMq7VlpO5JVUdmTl42ZixAo/D/o7WCs6bS0jYztXrsyhrDyVhg37493kXUxNGyvSHkBJSQmHDh3ixIkTGBsb07dvX9q1a4eBgXIVEMuv5pP3YwKalCKM3CyxGdkSI1fLuz/xAWk1Gk7t+IFj321Gp9HQ9uln6TAkFGOzR1d1t+68a9eiMX5jKE4q5qeSnxi5aySDmgxicpvJ2JvWsXVIhqbw7JLKdVl7psKKXhC6Aew8a7SZhlYmbHi5AyFLf2PUyijWjg0m0NWmRtsQBOFWxTodr1+8zk+Z+Qx1smOOrwtGdaiYRWnpdS5dnk5Ozi9YWvrTvNkqLC2VvxP4T3Fw9VIyriXc8RydVofBfZSCbujuRY9R1Y/W/NWMGTMICgrCyMiI6OjoWx4PCQnh8uXLtxyfPHkyYWFhNx1LSUnB1dW16msXFxdSUlJuSrCys7OxsbGpmob05zl/+u2332jVqhXOzs58+umntGxZc79nK1asoF+/frccv1NMd+qToaEhc+fOpW/fvuzZs0fR/YEEZRRpdXxxLZ0lSZmoVRLvezkxzqUBJgbKvf4WFJ4jNvYD8vOjsbBoQVCLT7G1DVasPZ1Ox8mTJzl48CBlZWW0adOGHj16YG6u3M0xbV45+TsTKf09EwMrI+xCm2LaqoGiCWt89HEOr11BXvoNvNq0p/uIMdg6KZew3o5IsKicItHKrBUv93qZpWeWsubCGg4mHWRi64m84PsCBgqUSH9gkgQdX4OGzeGb0bCsB7ywGry612gzjaxN2PhHkjVixXE2jO2Av0vdmqIkCPVJSlllMYvzRaXMbOLMK67KvQndL71e80cRiy+QJEN8fWfg0ng4klSHXhuFh2Jubk5ISAgWFhYYG99a/nnz5s33fK3qSh///Xf5Tue0atWKa9euYWFhwY4dO3jmmWeIi4u75fxnn32WxMREKioquH79OoGBgQC8/vrrjB49utrYDh48yIoVKzhy5Mh9xX23Pu3cuRMnJyfOnTtHr169qm1bqHv0sszW9Fw+ik8lvULL8462RDRxwslYuSS5oiKL+PjPSL3xDYaGtjRr+hHOzi8o+nqakJDArl27yMjIwMPDg759+9KoUSPF2tNX6Cj6OZnCw8nIMlg+6Ypld1dURsr1MSvpGgfXLOP62RjsGrvy3Puz8GhVezPSRIL1F2aGZrzR5g0GeQ/i42Mf89Hxj/gu7jumdphKQIOA2g7vZk2ehHEHYeMwWDsEen8IHcZXJmA1xNnGtGq64EsrjrN+bDB+jUWSJQg17VR+MSPPJVKq0/N1gBdPKVid6n7l5Z/k0qWpFBfH0qBBH3x9p2NirNwb8z/ZvYw0FRYWYmmpzNQalUp123LM9zOC5eLiQlJSUtXXycnJODs733SOg4MDeXl5aLVa1Gr1TedYWVlhYVE5/b1///5MmDCBrKwsHBxu3kJk27ZtQOUarFGjRnHo0KE79u/MmTOMHTuWnTt3VrvO5E4x3alPMTEx7N27l2PHjtG5c2dCQ0NvGq0T6qaT+cVMjUvhdGEJrS3NWOXnSZC1cqM5en0FSclfk5j4JXp9Ga6uo/H0+DeGhsq93ufk5LBnzx4uXbqEjY0NISEhNGvWTNERpNIzWeTvTESXV45pgAPW/TxR25oo0h5AaVEhv25Zz+97d2BkakqPUeNo1as/BgoV6bhXIsGqhpe1F8t6L2P31d3MPTGXl3a8xHO+z/F669exMbGp7fD+n50XjN0L216F3e9B2ll4ej4Y1twvsout2U1J1oaxHWjhXHc+/AnC4+7btBwmX06ikZEhWwO9aWqu3BvR/dBo8omPn0tK6kaMjZ0ICFhKA4eetR2WUEvuZwRr0KBBLFy4kNDQUI4fP461tfUtCYckSfTo0YOtW7cSGhrKmjVrGDx4MADp6elYWFggSRJRUVHo9fqHXnh//fp1hgwZwtq1a/H19a32nDvFdLs+ybLM+PHjWbBgAW5ubrz99tu89dZbrF+//qHiFZRzo7yCj+JvsDU9F0cjNV80d+N5R1tUCiYd2dmHiLvyESUlidjb98DH+33Mzb0UaQ+gvLycX375hd9++w2VSkXPnj3p0KEDhobKbdxbkVJE3o/xVFwtwNDJHLsXm2LspdxNeb1Ox+/7dvLrlvWUFxcT0KsfnV4YhplV3RgIEAnWbUiSRF/PvnRx6cLimMWsv7iefdf28UbQGzzr8ywqqY6sizC2hBfXws9zK4tfZF2GkHVg5Xz3594jVzszNrwcXJVkbXy5A00bKbc4URD+CfSyzCcJN/jiegYdbcxZ3tJTsQpV90OWZdIzfiIu7kMqKnJEEQvhvvXv358dO3bg7e2NmZkZq1atuumx5cuX4+zszJw5cwgNDWXq1Km0bt2aMWPGAPD999+zatUq1Go1pqambNq06aHvuM+aNYvs7GwmTJgAgFqtrlprdi8x3a5Py5Ytw83NrWpa4IQJE1i9ejWHDx+mW7duDxWzULNKdXq+Ssrg82sZ6JF53d2RiW4NMb+PNY33q7g4nri4D8nO+RkzMy9atVqBg313xdrT6/WcOXOGffv2UVRURKtWrejZsydWVsrdGNcVVlCw5xrF0WmozAyxGeKNedtGSCrlprhfOxPDwTVLyU6+jptfAN1HjqOBm4di7T0Iqbp5xY+btm3bytUtyr0fhw4dumOZ19jcWD469hGnMk4R0CCAqcFTaW7f/KHarHEXf4Jtr4CReWWS5dr+pofv1se7uZpVTMjS39DqZDaN64CPY91Lsh62j3Vdfe8f1P8+Hjp0iHadu/DaxWvsyirgJSd7PvZtXCeKWZSWJnH58nSyc37G0tKPZs0+wsrS776vUxM/Q0mSTsqy3PahLlLHVPdedfHiRZo3v/f3EiWnCNYV9b2PhYWFJCcn39fP/XFTl17HZVlme2Y+kfGpJJVV0N/Bmhnezrib3rrW8F7drX8aTT6JV78kOXktBgameHpMxMVlBCqVciNISUlJ7Ny5k9TUVBo3bky/fv1wcXnwjXTv1kdZq6fo11QK9l9H1uix6OSMVU83VKbK3SjMS7vBobUriI8+hnVDR7qFjcW7bYcHvgGj5HtV7d8ufUz42vqyuu9qfkz4kc+iPyN0eyghTUP4V+t/YWVUR6bMNX8a7PfBxqGwegAM+AyCwu7+vHvk4WD+R+GLYwxddpxN4zrg3bBmy8QLQn2XKUsMPBXHpeIyPvRpzJjGDrVezEKv13A9aSWJiV8gSQb4+kzDxWWEKGIhCMJj7XxRKdPiUvg1r4jm5iZsDWxCZ1vlkndZ1pGSupmEhPloNLk4O4fQxGsSRkYOd3/yA8rPz2ffvn2cPXsWCwsLnn32Wfz9/W+7nvJhybJM2aUc8rcnos0qxaSZHdYDPDFsoFwJ9IrSEo5t28Kp7d+jMlDTOTSMNgOeQV2HK3aKBOs+SJLEoCaD6O7anS9Pfcnmy5vZfXU3b7Z9k4FeA2v9QxJQWV3w5QOwNRz+9+/KdVl9PgaDmrlr4tXAompN1rBlx9g0rgNeDUSSJQj3IiqviAgsobyC9QFe9KgDxSzy809x6dJUioov06BBb3x9pmNiIhboC4Lw+Mqq0PKfxBusS83GxtCAT3xdeMnJHrWC09Zyc48RG/cBRUWXsLEJxtdnKpaWLRRrT6PR8Ouvv3LkyBH0ej1dunShc+fO1VYBrbE2M0rI+ymB8thc1A1MsR/dEtOmdoq1J+v1nP/5AEc2rqE4L5eW3XrSOTQMC7s6to1SNUSC9QCsjKyI6BDBsz7P8tGxj4g4EsG3sd8ytcNUfGx9ajs8MLOD4Vth3wz4bSGkX4AX19TY5b0bWrDh5WCGLj3G0GXH2DyuIx4OYn2GINzJ5hs5vH05CTtkvgnyxaeWi1loNAXEJ3xKSsoGjI0dCfBfQoMGory0IAiPL41eZlVKJp9eTaNYp2eMiwNvejTCxlC5j7ulpUnEXfmEzMxdmJg0xs/vSxo26Kdopb4LFy6wZ88e8vPzad68Ob1798bW1laR9gD0JRoK9l+n6LdUJCMDrJ/2wqKjE5KC+4Slxl7kwKqlpCfE4eTTlMFvTcXJp6li7dU0kWA9hBb2LVjbfy3b4rYx/9R8XvjxBYY3H86EwAmYG9ZywmGghj4fQaOAypGspd2x8J4MdK+Ry/s6WrL+jyRr2LJjbH6lI652j26HbEF4XOhkmY/ib7A4KYMuthaMzE2p1eRKlmUyMnYQG/cBFRXZuLqOwsvzDdRqMRItCMLj60B2ATOupBBXUk53W0sifRorWpVVqy3m2rUlXE9aDhjg5TkJN7exGBgo12ZaWho7d+7k2rVrODo68swzz+Dp6alYe7JepjgqjYI9V9GXajFv1wir3u4YWCg3Na8wO4uf16/i0tHDWNja0e9fb9L8iW5IdWCd8v0QCdZDUkkqnvN9jp5uPVlwagFrL6xlV+Iu3m7/Nn3c+9T+tMFWIeDgA5tfovXpKeBpDX7P1cilmzWyYv3YDgxbfozQpcfY/EoHXGxFkiUIfyrS6hh/4Rp7swsY1diBD7wbc/Tn5FqLp7Q0icuxM8jOPoylZUtaBSzDysq/1uJ53EmSdBUoBHSAtr4V5RCEx0F8SRkzrqSyL7sAT1Mjvvb3pJe9lYIjSHr08m8cO/Y+5RXpNHIcTJMmbys6tbq4uJgDBw5w6tQpTExMGDBgAEFBQRgYKLdO1jQbMr44jSatGCNPa2wGemHkrNyNOE1FOSd/3MbxH75B1usJfjaE9s88j5GJqWJtKkkkWDXExsSGmZ1mMsRnCB8e+5C3D7/Nt07f8n7w+3haK3d34Z40DoJxhyhaOgjrreGV67KenAaqh//DbOFsxboxwQxb9v/TBZ1tHs8/BkGoSddKyxl5NpG4kjJm+7owurFyi5zvRq/XkJS0koQ/ilj4+EzFpfEIVCrxFlADesiynFXbQQjCP02+Rsu8a+msSM7EVKViehNnxro4KFqRNb/gd2JjP0CWT2NsHIC//0KsrYMUa0+n0xEVFcWhQ4fQaDQEBwfTrVs3TE2V+5ylzSkjf3sCjc8boLfRYjesGab+yhVjkmWZ2GNH+Xn9SgoyM/ANfoKuL43GuqFyG9qXFWuI3nkVjZlyldQfr/G2x0BAgwA2DthIRHAE57POM+R/Q/j81OeUaEpqNzCLhsQEfgBtRsGR+bAxFMrya+TSfo2tWTc2mLwSDUOXHeNGfmmNXFcQHle/5RXR72QsN8o1bAxoUqvJVX7+aU5EP8OV+P9gb9eFDsG7cHMdLZIrAaj8cNO5c2d27txZdWzLli307dv3ga956dIlOnbsiLGxMZ9++ultz0tMTCQ4OBgfHx9CQkKoqKioeuzQoUMEBgbSsmXLGtlPav369QQEBBAQEECnTp34/fff7ysmWZaZOHEi3t7eBAQEcOrUKaCyNLanpyc5OTkA5Obm4unpybVr1x46ZqF6OllmXWo2nY5fYmlSJiGN7Pi1Q3MmuDVULLkqL0/n/IW3iI4eQllZMpI0mrZtv1U0uYqLi2Px4sXs3r0bFxcXxo8fT9++fRVLrvTlOvJ3XyVtXjRlsblk++hp9GYbzAIaKJZcZVxNYEvke/y04BOMTc14cfrHDJz8nmLJlV6n59zhZNZPP8aZ/UkUpyvSDCBGsBRhoDIgtFkoT7k/xfyT81l+djnbE7Yzpf0UnnR9stamDcoqQxj4eeW6rJ3vwLInIXQjNKh+V/v7EeBiw9fh7QlbEcWwP0q4O1rV7iJ+QagNG1KzmRKbjLupEWv8PWliVjt/B1ptIVfiPyUlZf0fRSz+S4MGvWsllnpMBvZIkiQDX8myvPTvJ0iSNA4YB+Do6MihQ4duetza2prCwsJ7blCn093X+ffis88+IywsjLZt26LT6Xjvvff47rvvHrgdIyMjZs+ezfbt2ykvL7/tdd58801effVVnn/+ed544w0WLVrE2LFjycnJ4dVXX+W7777D1dWVzMzMO8Zy7do1xo8fz44dO257jqOjIz/99BO2trbs2bOHMWPGcPDgwXuOaffu3Vy8eJFTp05x4sQJxo0bx8GDB7GxsSE8PJw333yTL774gjfffJORI0diZ2d325h1Oh1lZWW3/C7UJ0VFRYr076JswBpMuYqapmh5i1I80/I4n5ZQ420ByLIGmT3I8nZAh0R/tJr+lBTrOHz4Z0XaLCkp4cqVK+Tk5GBqaoq/vz92dnacP39ekfaQwTJVwj5WQl0uUeCsJ9tXJl9bRO7RXxRpUlNaQmrUEbIunMHAxBS3rr1waO5PfGYO8Qr9XRSny9w4JVOeD2YNwauzhNawWLm/Q1mWH/v/2rRpIz+sgwcPPvQ1bic6LVp+5vtnZL/VfvL4vePl6/nXFWvrTm7qY+IRWZ7jJcsfu8jy5V011kb01Ry5xbSdco9PD8rpBaU1dt17peTPsS6o7/2T5ce3j1q9Xp4emyw7Hjgth5y+IudVaKo9T+n+6fV6OS19u/zzL8Hyvv3e8uXLs2SNplDRNv+uJvoIRMt14P3lTv8Bzn/8vyHwO9D1TudX91514cKF+/q+FBQU3Nf59+rtt9+WZ86cKb/99tvyrFmzauSaM2bMkOfOnVvtY3q9Xra3t5c1msq/k19//VXu3bu3LMuy/Nlnn8kRERH33E5iYqLcrVu3ez4/JydHdnZ2vq+Yxo0bJ2/YsKHqXF9fXzk1NVWWZVmuqKiQ/f395fnz58stWrSQy8vL79h+QUHBff/cHzc1/Tp3vbRcfvlcoux44LQcdPScvC0tR9br9TXaxl/p9Xo5PWOXfORoN3nffi/5999fkYuLr1Y9rsTreElJibxr1y45MjJS/vjjj+WjR49W/S4qpexavpy+8LScNOVnOe3LU3LZ1fyqx5Too1ajkaN/2iZ/OepFed7QQfKBVV/JpYXKvj/lZZTIO5ackRe+sl9e895R+crJ9KrfHSXfq8QI1iPQxrENWwZuYcPFDSyOWcwzPzzDWP+xhPuHY2yg3H4Fd+TxBIw7BJuHw4YQeHIqdHkTHnJ0rY27LavD2zNy5f+PZDlY1FIfBeERKdDqeOX8VQ7mFDLWxYGZTRorut/K7ZSWJv9RxOIQlhYtaRWwFCurgEcexz+FLMupf/w/Q5KkbUB74IFva+f9GE9FavEdz9HptJQa3Ptbt5GzOTYDm9z1vBkzZhAUFISRkRHR0dG3PB4SEsLly5dvOT558mTCwu5/Q/vs7GxsbGxQqyv74uLiQkpKCgBXrlxBkiS6d+9OYWEhr7/++gO1cTsrVqygX79+9xVTSkoKrq6uVef++ZiTkxOGhobMnTuXvn37smfPHozq8Oanj5tinY5F1zNYfD0DCXjTw5HX3BwxU7A8eFHRZWLjPiA39zfMzX1pHfg1dnZPKNaeXq/n9OnT7N+/n5KSEoKCgnjyySexsFCuoISuoJz8XVcpOZWBytIQ2+d9MQtqiKTg+1bi6WgOfr2c3NRkPALb0D1sLPaNXe/+xAdUUabl1K5rxOxLQlJB8CAvAp9yRW2kXGGQvxIJ1iNiqDJkZMuR9PPsx6cnPmXx74v5X/z/eC/4Pbq6dK2doGxcYfSuyjLuBz6A9HMweBEYPVyJ+XYedqwa1Y5Rq04wbNkxNr7cAXuRZAn11NXSckacSSCxtJy5TV0Y4fzo11vp9RqSkleTkPA5kiSJIhaPgCRJ5oBKluXCP/7dG5hVy2E9MHNzc0JCQrCwsKh2o9LNmzfXaHuVN35v9uf0ea1Wy5kzZ9i/fz+lpaV07NiRDh064Ot783T2Z599lsTERCoqKrh+/TqBgYEAvP7664wePbradg8ePMiKFSs4cuTIfcV0p8cAdu7ciZOTE+fOnaNXL7Gf3MOSZZnvM/L4ID6V1HINzza0YWoTZxqbKJe8ajS5xCfMJyVlI2q1Fb6+M2nsPFTR19GrV6+ya9cu0tLScHNzo1+/fjg5KVeNUNboKTySTOHBJGSdjGV3Vyx7uKAyVq6POanJHPp6OYmno7F1cubZKTPwCmqnWHuyXuZyVBq/bYunJL8C3/aOdHzWGwvbR/s5VLz7PmINzRryn27/YYjvED4+/jGv7X+NJ12fZEr7KThbOD/6gIzM4Lnl4BQAe2dA1hUIXQ+27g912WAve1aMakv46hMMX36cjS93wNZc3NUT6pejuYWMPXcVgM2tmvCEreUjjyE/P4ZLl6dSVHQRB4enaOo7AxOTWngt+edxBLb98SFbDWyQZXnXw1zwXkaaCgsLsbRU5vdMpVKhuk2RgJoewXJwcCAvLw+tVotarSY5ORln58rf28aNG+Ps7Iy5uTnm5uZ07dqV33///ZYEa9u2bUDlh9RRo0bddS3FmTNnGDt2LDt37sTe3v6+YnJxcSEpKanq3L8+FhMTw969ezl27BidO3cmNDRU0Q/J9V1MQQnT4lI4UVBMgIUp/23hTrCNcqM5er2GlJT1JCR+jk5XjIvLS3h5vo6hoY1ibebl5bFnzx4uXLiAlZUVzz//PC1btlS0Ul/Z+Wzytiegyy3HpKU9Nv09UdsrV42wrLiIY99u5PSun1AbGdPtpXBa9xuIgdpQsTbTEvP5ZXMcGVcLaOhhRb9X/GnkZa1Ye3ciEqxa0sGpA98O/JY1F9aw9MxSBn8/mFdavcLIFiMxNFDul69akgRPvA4NW8LWcFjaHV78Gjy7PNRlOzVxYHlYO8asqUyyNrwcjI2ZSLKE+mFtahbvxSbjaWrM2gAvPEwf7d0xrbaQ+PjPSE5ZJ4pY1AJZlhOAVrUdx6NS0yNYkiTRo0cPtm7dSmhoKGvWrGHw4MEADBgwgClTpqDVaqmoqOD48eNMmjTpodq7fv06Q4YMYe3atbckavcS06BBg1i4cCGhoaEcP34ca2trnJyckGWZ8ePHs2DBAtzc3Hj77bd56623WL9+/UPF+0+UUa7h44QbbErLwcFQzbxmroQ2skOlYGGw7OxfiI37kJKSK9jZPoGPTwQWFk0Va6+iooIjR47w66+/AtC9e3c6deqk6LTSihvF5P8YT3lCPmpHMxzG+mHibatYe3q9jnMH9nJk09eUFhXi36MXT4SMwNxGuTaL88r5bVs8l4+nYWZlRM9RzWnavpGiUx7vRiRYtcjQwJCx/mMZ4DmAOSfm8Pmpz/nhyg9EdIigg1OHRx+Qz1Mw7iBsHApfD4a+s6H9uIdal9XZx4GlYW15eU00I1ZEsW5sMNamjziBFIQapNXLzLiSwoqULJ60s2RJSw+s1I9mTjdU3onMyNxFbOwsKioycXEJo4nXJNTqRz96JgjVSUtLo23bthQUFKBSqViwYEHVnfr+/fuzfPlynJ2dmTNnDqGhoUydOpXWrVszZswYAJo2bUrfvn0JCAhApVIxduxY/Pz8HiqmWbNmkZ2dzYQJEwBQq9VVa83uJab+/fuzY8cOvL29MTMzY9WqVQAsW7YMNze3qmmBEyZMYPXq1Rw+fLhGysv/E5Tr9SxLymT+tXQq9DLjXRsw2aMRlgq+rpaUJBJ3ZTZZWfsxNXUjwP8rHBx6KjqCdPbsWfbu3UthYSF+fn706tULa2vlRld0xRoK9l6j+PgNVKZqbAY3wby9E5KBcklH0oWzHFy9lMxriTRu1pIeo8bh6Hn3kfkHpdXoiNmXxMld19Dr9AT1dadNX3eMTGo/van9CAScLJxY0GMBvyT/wuyo2by852X6evTlrbZv4Wju+GiDsW8CY/fBtlcqS7mnnYEB80D94Hfnu/k24KsRbXhl7UnCVhxn7dhgrExEkiU8fvI0Wl45f43DuYW86tqAaU2cMXiE2y6Ulqb8UcTi4B9FLL4SRSyEGjNz5swauU6jRo1ITk6u9rG/llL38vIiKiqq2vPefvtt3n777Xtqz8PD467TA5cvX87y5csfOCZJkli0aNEtx8eNG8e4ceOqvjYwMODkyZP3FPc/nSzL7M4qYGZ8CldLK+htb8VM78Z4mSk3G0CrLSTx6iKSklajUhnh3eQdXF1HoVIp12ZKSgq7du0iKSkJJycnXnjhBdzc3BRrT9bpKTp2g4K915ErtFh0dMbqKTdUZsp97irIzODwupXEHjuCpUMDnn5jCr4dOiuasCaczuTot1cozC7Ds5UDTzzvg3UD5aY83i+RYNUhXVy60N6pPSvPrWT5meX8nPwzEwInMKz5MAxVjzAhMbGCkPVwaDb8/B/IvAwh68DywTd+69GsIYuHBzF+/UlGrozi6/D2WIokS3iMxJeUEXYmketlFcxr5sowp1vXcChFr9f+UcRiQWURC+8IXFzCRBELQRAeS5eKS5kel8LPuUX4mBmzqZUX3e2sFGtPlnXcuPEtV+I/RaPJwcnpeZp4vYmxcQPF2iwsLGT//v3ExMRgbm7OoEGDCAwMvO06x5pQFptL3k/xaDNKMfaxweZpLwwdH65w2Z1oysqI+uEbon/cBpJEpxeH03bgEAyNlEtYs5KLOPJNLCmX87BzNmfwG4G4NLNTrL0HJd6d6xhjA2PGtxrP015P80nUJ3wa/SnfX/meiOAI2jZq++gCUangyQho5AfbxleuywpZBy4PHsNTLRz5cmgQ/9pwilGrTrAmvD0WClauEYSa8nNOIS+fv4qBBN8ENqGDgguu/+7mIhY9aeo7UxSxEAThsZSr0TI3MY01qVlYGBjwoU9jRjo7YKjgWpm8vGhi42ZRWHgea+sgfH2WKzryr9VqOXbsGD///DNarZZOnTrRtWtXTEyU23Rek1lC/vZEyi7loLY3wT6sBSbN7RQdQbp05BA/b1hNUU42zZ7oRpdho7ByUC5hLS2q4Pj/ErnwSwpGZmq6hvrSsoszKgVL9j8M8em2jnK1dGXhkws5mHSQT6I+YfTu0Qz0GsjktpNxMH2EZaBbDAZ778p1Wav6wdMLoPXwB75cX79GfDG0Nf/eeJrRq6JYPbo95iLJEuqwlcmZTLuSgo+ZCWv8PXF/RMUstNpC4hM+Izl5HcZGDfH3W0yDBr0Ve8MUBEFQilYv83VqFnMT08jX6hjhbM87nk7YGyn3/l9WlsqVK3NIz/gJY+NGtGwxH0fHgYomHZcvX2b37t3k5ubStGlTevfuXW3FypqiL9NScOA6RUdTkdQqrPt5YPFEYyS1cklH2pVYDqxZyo3YSzh6efP061No3KyFYu3pdHrOHU7hxE+JVJTp8O/uQrunPTExr9uzoMQn2zpMkiSedHuSDk4dWHZ2GavPr+ZQ0iH+HfRvXvR9EQPVI1pY79iyclPib0bCDxMq12X1/hAesNphf38n9LLMxI2nCV99glWj22Gm4IusIDwIjV5malwya1Kz6WVvxeIW7oouuv6TLMtkZu4mNnYW5RUZuLi8RBOvN0URC0EQHku/5BQy7UoKl4rL6GxjwQc+jWluodxaGZ2ulGvXl3Ht2leAjKfHv3F3H4eBgZlibWZkZLBr1y4SEhJwcHDgpZdewtvbW7H2ZL1Mycl08ndfRV+swayNI9Z9PDCwVK4aYVFuDkc2fs35w/sws7ah96sT8ev2FJKCUx6vn8/myDdx5KaV4Nrcls4v+GLnrNyUx5okPtU+BswMzXg96HUGNRnEx8c/5uPjH7MtbhtTO0wloMEjWuBuZgcvbYO90+DYYsi4AC+sqTz+AJ4OcEanl5m0OYaxa6JZMbIdpo9od21BuJtcjZaXz13lSF4RE1wbEtHE6ZEUsygrS+Vy7EyysvZjYdEC/4D/Ym31j6kELghCPXK1tJzIK6nszMrHzcSIlX4e9HOwVnQEKSNjO3FXPqG8/AYNGw7Au8kUTE0bK9IeQElJCYcOHeLEiRMYGxvTr18/2rZti4GBcp9nyq/mk/djApqUIozcrbAZ1RIjF+VuwGk1Gk7t+IFj321Gr9XQbvDzBD/zIsZmyiWseeklHN0ax9Wz2Vg3MKX/hAA8/O0fqxkcIsF6jHhae7K011J2X9vN3Ki5DN8xnOd8nuONoDewMbFRPgADdWXpdkc/+OmNynVZoRsq12k9gMGBjdHpZd785nfGrY1mWVhbTAxFkiXUrrjiMsLOJpBSpmFBM1dCH0ExC71eS3LyGhISFyDLMt7e7+HqMkoUsRAE4bFTpNWxQTZh1/FLqFUSEV5OvOzSABMF18oUFJ4jNvYD8vOjsbRoScsW87C1ba9Ye3q9nuPHj3Pw4EHKy8tp06YNPXr0wNxcudEVbV4Z+TuvUvp7JgbWRtiFNsW0VQNFE9a4E79xeO0K8tPTaNK2A91GhGPbSLk1wOWlWqK3J3LmYDIGhio6DmlCqx6uGBjWzXVWd/L4RfwPJ0kSfT368r9n/8fIFiP5/sr3PP3902yN3Ype1j+aIFoPh9E7QVsOK3rB+e8f+FJDglz4z3MBHLmSxStrT1Km0dVcnIJwnw5mFzDgVCyFWj1bA5s8kuSqoOAMJ6KfJe7Kx9jadKBD8G7c3caK5Ep4JGRZpnPnzuzcubPq2JYtW+jbt+8DX3P9+vUEBAQQEBBAp06d+P3336s9LzExkeDgYHx8fAgJCaGiogKAzz//nMDAQAIDA/Hz88PAwICcnJwHjqcmYpJlmYkTJ+Lt7U1AQACnTp0CICkpCU9Pz6r4cnNz8fT05Nq1aw8V7+NIL8tsupFNp+MX+R8mDHa04dfg5vzb3VGx5Kq8IouLF9/jxIlnKClJoFmzj2nXbpuiyVV8fDzR0dHs3LkTJycnXn31VZ5++mnFkit9hY6CfddI/+wkpeezsezphuObbTELbKhYcpV1/SpxP37D/z79CLWhEc9FfMAzb09VLLnS62UuHEll/fTfiNmfRNPgRgyP7EBQb3fFkittTg7IsiLXBpFgPbbMDc15q91bfDPwG7xtvIn8LZIRO0ZwIfvCownApW3luizHlpVrsw58CPoHS/BeaOvK7Gf9ORybyYT1pyjXiiRLeLRkWWZ5cibDzyTgYmzEzra+tFe4UqBWW8jl2EhORA+hoiILf79FBAQsVXQ6iyD8nSRJLFmyhMmTJ1NWVkZxcTERERHV7vl0rzw9PTl8+DBnzpxh2rRpN+0T9VdTpkxh0qRJxMXFYWtry4oVKwB4/fXXiYmJISYmhtmzZ9OtWzfs7G4/Hf3q1at0795d0Zh27txJXFwccXFxLF26lPHjxwPg6urK+PHjeffddwF49913GTduHO7u7neMp76Jzi+m/8k43riUhIuJER9SyJfN3WlkrEwhAr2+gmvXl/Hbbz25kfYdbq7hdOywn8bOIUiSMjNhcnJy2LhxI2vXrkWv1xMSEkJYWBiOjsrsVyrLMiW/Z5D+2UkK9l3HpLkdjd5sg3Uvd1QKLakoLSxg/8r/8vU7EynJyqDHqFcYMecLPAJaK9IeQGpcHt/MPsHBdZewaWjGC++25cmw5phbK1NQSl9RQdayZcQ/1QvjP26UKEHcIn3M+dj6sKrPKn5K+IlPoz9l6PahvOD7AhODJmJlpNyeEgBYOcGo7bB9Mvw8F9LOwZCllfto3afQ9m7oZJmIbed4bf1pFg8PwkjBKjiC8KcKvZ73Y1NYdyObfg7WLGzuhrmCxSxkWSbjzyIW5en1roiFVqulrKystsMQ7oOfnx8DBw5kzpw5FBcXExYWRpMmTR74ep06dar6d4cOHarddFiWZQ4cOMCGDRsAGDlyJDNnzqxKXP60ceNGhg4d+sCx1FRMP/zwA2FhYUiSRIcOHcjLy+PGjRs4OTkxadIk2rRpw4IFCzhy5AhffvnlQ8f7uEgtq+CjhBt8m55LIyNDvmzuxnOOtvx8OFWR9mRZJjv7ILFxH1FaehV7+x74eL+PubmXIu0BlJeX8/PPP3Ps2DFUKhU9e/akoqKC5s2bK9ZmRXIheT8mUHGtAENnc+xCmmLsZa1Ye3qdjt/37uDXLespLy2hVe9+yM4eBPXtp1ibhTll/PrdFa5EZ2Bha0zvMS3xbqvcqJwsyxTt30/6nP+gSUrComdPMlxdFWkLRIJVL0iSxMAmA+nm2o1Fpxex6fIm9l7by5tt32Sgl3IlSQFQG8OghdCoFex6F5b3hNCN4HD/1XOGB7uj08tM/+E8/954ioXDgjCso/sbCPVDdoWWsecT+S2vmNfdHZni2QiVgn8vZWWp6OWFnD0bg4VFM/z9FmFtHahYe49SQUEBJ0+e5OTJkxgYGDzUFLN/qp07d5KWlnbHc3Q63X0toG/UqBH9+t39Q9KMGTMICgrCyMiI6OjoWx4PCQnh8uXLtxyfPHkyYWFht73uihUrqm0/OzsbGxsb1OrKjyEuLi6kpKTcdE5JSQm7du1i4cKFd43/fjxITCkpKbj+5cPYn485OTlhaGjI3Llz6du3L3v27MHISLlKbnVFqU7PkqQMvriWgR6ZN9wd+bdbQ0VvThUXXyE27kNycn7BzKwJga1WYm/fTbH29Ho9v//+O/v376eoqIhWrVrRs2dPrKysOHTokCJt6goryN99lZKT6ajMDLEd4oNZW0ckBfcJu3YmhoNrlpKdfB03v1b0GPkyDm4eivVRU67j1J5rnN5zHYC2AzwI6uOOoYKFzspiY0mfPZuS345h5N0E1xXLsXjiCeIV6iOIBKtesTKy4r3g93jG+xk+PP4hEUci+Db2W94Pfp+mdk2Va1iSIHgcNGxeOV1w2ZPw/Erweeq+LxXW0QOdXibyxwu8vuk0X4S2Ri2SLEEBl4vLCDuTQFqFhkXN3XiukXI7wev1WpJT1pKQMA/Q4u397h9FLOr2Ph53I8sy169fJyoqiosXL6LX6/H29sbUVLkSzIIyzM3NCQkJwcLCAmPjW6fmbN68+b6vefDgQVasWMGRI0dueUyuZu3D328G/vjjjzzxxBO3nR747LPPkpiYSEVFBdevXycwMBConGI4evToGo3pbvH+uR7n3Llz9OrVq9q26wNZlvkpM5/I+BSSyzQMaGDN9CbOiu4PqNHkk5j4BckpazEwMMPHZyoujV9S9PXz+vXr7Nq1i9TUVFxcXBg6dCiNGys3fVvW6in6NZWC/deRtXosOjfGqqcbKhPlPqbnpqVyeO1K4qOPYe3YiEFvReDdtoOyRTOi0/ntu3iKcsvxaduQjkO8sbRTbgNmbW4uWV8uJHfTJlSWljhGRGA7NBRJrXz6IxKseqi5fXPW9lvL91e+Z/7J+YT8FMKw5sPw1/sr27BnF3j5IGwaDuufh6dmwhOvVyZg92H0E57o9DIfbr+Igep35r/YSiRZQo3am5XP+AvXMDVQsS3QmyBr5So/FRSc4dLlqRQWnsfevju5Of1wd3tesfYehYqKCs6cOcOJEydIT0/HxMSE4OBg2rVrh52dnWJ3Puu7exlpKiwsxNJSmemkKpUK1W32tLnfEawzZ84wduxYdu7cWe1Gqw4ODuTl5aHValGr1SQnJ+PsfPMC+k2bNt1xeuC2bduAyjVYo0aNuuvv3cPE5OLiQlJSUtW5f30sJiaGvXv3cuzYMTp37kxoaChOTk53jOVxdK6whGlXUvgtr5gW5iZ8G+jGE7bKTW2WZR0pqZtJSJiHRpNPY+cQvLwmYWSkXPGh/Px89u3bx9mzZ7G0tGTIkCH4+/srmnSUXcohf3si2qxSTJrZYT3AE8MGypVArygt4di2LZza/j0qtSGdh46kTf/BqBUcec24VsCRLXHciM/HwdWCXuEtcfaxUaw9WaMhd9NmMhcuRF9UhO3QoTj86zXUtraKtfl3IsECSmNisNy8mTJnZ0x8fWs7nBqhklQM8RnCk65P8vnpz1l3YR2WBpaQCH09+io3bdDWHcbshh9eg30zIO0sDPoSjO7vxWJsFy+0eplPdl7CQILPXgzEQMEhcuGfQZZlliRlMis+FT8LU1b7e9LYRJk3Fa22iPiEeSQnr8XIyAE/v4U0bNCXw4cPK9Leo5Cdnc2JEyc4ffo05eXlODo6MmjQIPz8/P4R06L+ye5nBOv69esMGTKEtWvX4nub91RJkujRowdbt24lNDSUNWvWMHjw4KrH8/PzOXz4MOvWrXvo2GsipkGDBrFw4UJCQ0M5fvw41tbWODk5Icsy48ePZ8GCBbi5ufH222/z1ltvsX79+hqJuy7IqtAyJ/EG61OzsTE0YI6vCy852yu6N2BO7m/ExX1IUdElbGyC8fWZhqWlcmueNBoNv/76K0eOHEGv19O1a1eeeOKJakdza6zN9GLyfkqgPC4PdQNTHEa3xKSpcjMpZL2e84f388vGNZTk59Gy21N0HhqGha1ybZYUVHDsh3gu/noDUwtDeoxoRrOOTqgU/DxXdPQo6bNnU3ElHrOOHXB8771a+WwvEiyg7OJFTH85QuLBQ5i2bo3Niy9i1a8vKhPlhi0fFRsTG2Z0nMEQ7yFM2TeFd35+p2raoJeNQotCjczh+VXQyB/2fwBZsZX7Zdnc32LCV7s1QaeXmbv7MiqVxNznW4kkS3hg5Xo9Uy4nsykthwENrPmiuRvmCm0GmZm5h8uxkZSXp9O48XC8m7z12Bax0Ov1xMXFceLECa5cuYJKpaJFixa0a9cONze3x2rjR+HRmDVrFtnZ2UyYMAEAtVpdta6rf//+LF++HGdnZ+bMmUNoaChTp06ldevWjBkzpuoa27Zto3fv3jVW+vphY+rfvz87duzA29sbMzMzVq1aBcCyZctwc3OrmhY4YcIEVq9ezeHDh+nWTbn1QY9ChV7PqpQsPruaRolOz1iXBkz2cMTGULmPjqWlScRdmU1m5m5MTFzw91tEgwZ9FB1BunDhAnv27CE/P5/mzZvTu3dvbBUc6dCXaCjYd52iY6lIRmqsB3ph0cEJScGZOimXL3Jw9VLSE+Jw8m3Gs+9Mp5G3ckmHTqPn94NJRO+4ik6jJ7CnK20HeGJsqtzvTsW1a6TP+Q9FBw5g6OqKy6KFWDz5ZK29R0nVzSt+3LRt21aublHu/Tj800/4ZWaRt2ULFYmJqKyssB40CJsXX6g3o1oHDh4g0ymTz09/Tqm2lJEtRjIuYBxmhsoNRRO7G74dCwZGELIW3Dvd/Tl/8/m+OObvi+XFti58MiTgjnc+Dh06dNdyvY+z+t4/UKaPmRUaxp67yvH8Yia5O/K2QsUsyspSuRwbSVbWPiwsmtGs6YdYW99c3vZx+RmWlJRw+vRpTpw4QV5eHhYWFrRt25Y2bdrcdYpaTfRRkqSTsiy3faiL1DHVvVddvHjxvqqRKTlFsK6o730sLCwkOTlZ0Sp0D2tfdgEz4lKILy2nh50lkd6N8TW/95vO9/saoNUWc+3af7metAIwwMNjPG6uYzAwUO5G940bN9i1axfXrl3D0dGRfv364eHhcU/PfZDXOFknUxx1g4K919CXajFv3wir3h4YmCu3lqwwO4uf16/i0tHDWNjZ03X4aJo90e2eko4H6qMsc/VsNke/iSM/sxQPf3ueeN4HG0flPmfqiorIXrKE7DVfozI0xH78q9iNHInqHmZVKPleJUaw/iBbWGD/9NPYjRpJyYkT5G35hrzNm8ldtw7TwEBsQkIe+1EtlaQipFkIT7k/xfyT81lxbgU7Encwpd0UnnRTKMv37QNj98OmobBmIPSbA23H3Ne6rNef8kEny3yxPw4DlcRHz/grOrws1C8Xi0oZcTaBrAotS1q484xjzd+Z/P8iFvORZR3eTabg6jr6sSxikZqayokTJzh79ixarRZ3d3d69epFs2bN7qt6nSAIj5+44jJmXEnhQE4hTUyNWRfgxVP2ym35Ist60tJ+4Er8f6ioyKCR4zM08X4bE+NGirVZXFzMgQMHOHnyJGZmZjz99NMEBQXddv1hTSi7kkf+T/Fo0kow9rLGemATjJyUW/urqSgn+sfviPphK7JeT4fnQmk/6HkMFfwMm5NazJGtcSRdyMG2kRlP/7sV7i2VWy8n6/Xkb9tGxvwF6LKysB4yhAZvvI5hw4aKtXk/RIL1N5IkYd6+Pebt26ONeJ/8bd+Tt2ULN957j/TZs+vFqJa9qT0fdv6QIT5D+Oj4R7xx6A06N+7Me+3fw83KreYbbOALLx+oHMna/ibcOAP9PwX1va/ZmPSUD3q9zMKDVzBQSXww2E9MTRLuandWPhMuXMPSwIDvW/sQaFXzd9EKCs5y6XLEH0UsutHUNxJTU+X21lCCVqvlwoULREVFkZycjKGhIa1ataJ9+/aKbaIpCELdka/RMu9qOitSMjFVqZjRxJkxLg4YKZh05OfHEBv3AQUFMVhZBhDgv/iWEf+apNVqiYqK4vDhw2g0Gjp06EC3bt0UrXqqzS4lf0cipeezMbA1xm54c0z97BWd8hh77CiH162gMCsT3w6d6Tp8NNYNlXsdLyvWcOKnRM4eTsHIxIDOL/rg160xBgpOeSw5dYr0jz6m7Px5TAMDcfzvYkz9FS7kdp9EgnUHaltb7MNHYzd61K2jWn+u1erbB9VjWpI4yDGIzU9vZuOljSyKWcSzPzxLuH84Y/zGYKKu4bscJtYwdBMc+BCOzIPMS/DiWrC8tz96SZJ4s7cvWr3MksPxqFUqZgxsIZIsoVqyLLPwegYfJ9wgwLKymIWTcc0WYdBqi0hIXEBS0hqMjOzx8/uShg36PVa/k/n5+VV7VxUXF2NnZ0efPn0IDAwUpdYF4R9AJ8tsuJHN7IQb5Gp0DHeyZ4pXIxoYKTf6Xl6ezpX4/5CW9j1GRg1o0XwujRo9gyQp94E8NjaW3bt3k52djbe3N3369KFBgwaKtacv11J4MJnCI8lIKgmrPu5YdnZBMlSuj+mJ8Rxas4zki+do4O5Jv9cm49pCuaRDr9Nz/pdUjv+YQEWJlhZdGhM8yBNTC+UKHmlu3CDj088o2L4dtaMjznPnYvX0gDr5visSrHtwy6jW9z/Um1EttUrNiBYj6OPRh8+iP2PJ70v4Mf5H3g9+n64uXWu2MZUBPDWjsvjFD6/B0u4Quh4aB93T0yVJYkrfpuj0epb9kohKkpj2dPM6+Ycl1J4ynZ63Y5P4Ji2XZxraML+ZG6Y1fCctM3Mvl2Nn/lHEYihNvN7G0FC5aTQ1SZZlrl69SlRUFJcuXUKWZXx9fWnfvj1eXl6KTpMRBKHu+DW3iGlXkjlfVEYHa3M+8GmMv6WCa2V05SQlreDqtf+i12txdx+Ph/urqNUWirWZmZnJ7t27uXLlCvb29gwbNuy2VSRrgqyXKTmdQf6uq+gLKzBr3RDrvh4YWCtXjbAkP48jm9dy9sAeTC0s6fXyv/B7shcqlXJTupMu5XBkSxw5qcU0bmpD5xd8cXBR7ueoLy0le+VKspctB1nGfvyrOLz8MiozBWsIPCSRYN0nta0t9qNH3Xmt1mM4qtXQrCFzus7hOZ/n+Oj4R7y2/zV6uPZgSvspNLao4c31/IaAvXflflmr+sHAL6BVyD09VZIk3u/fHK1eZuXRRAxU8H5/kWQJlTIrNIw+m0h0QQnveDZikrtjjf5ulJXdIDY2ksysvViYN8Xf70usre/tBkFtKy8v58yZM0RFRZGZmYmpqSkdO3akXbt2ilbMEgShbrleWs4H8Tf4MTOPxsaGfNXSnUENbBSdtpaZuZu4K7MpK0umQYPe+Hi/h6mpAksS/lBaWsrhw4eJiorC0NCQ3r170759e9QKbjBbfr2AvB8T0CQVYuhqif2I5hi7KXfjTafVcHrXT/y2dSPainLa9B9Eh+eGYmKuXKKTn1nKr99eISEmE0t7E/q+4odXYANFf3cKd+0ife5ctKk3sOzbl4ZvvYWRi3KbPteUOptgSZJ0FSgEdIC2rlWTqnZUa/Pmx35Uq71Te7YO3Mrai2tZ8vsSnvn+GV4OeJlRLUdhZFCDw75OATDuIHwzCraNg7Qz8FQkGNz9V1KSJKY/3QK9XmbZL4kYqFRM6dtUJFn/cOcKSxh5NpEcjY7lLT14uqFNjV1blnUkJ68lPmEesqyjSZN3cHMNfyyKWGRlZXHixAliYmIoLy/HycmJwYMH4+fnh6Fh3Y9fEISaUazTsfBaBv9NykAC3vZoxHi3hpgpuFamsOgScbEfkJt3DHNzX1oHfo2d3ROKtafX6zl16hQHDhygpKSEoKAgnnzySSwslEs6dAXl5O+8SsnpDFSWRti+4ItZ64ZIChbjSjh9gkNrlpN7IwWPwDZ0DxuLfWPl1v5WlGk5uesaMfuuozJQ0eEZL1r1dEVtqNwoWdmFC6R9/DGl0ScxbtYM508+wbx9e8Xaq2l1NsH6Qw9ZlrNqO4i7ueOo1mO4VsvQwJBwv3D6e/bnPyf+w5env+TH+B95L/g9Ojnff5n12zJ3gBHbYPf78NtCSD8Pz68Es7tveidJEjMHtfzLmqzKNVrCP9OOzDxeu3AdW0MD/hfkXaPTXAoKz3Hp0lQKC89ib9eVpk1n1fkiFnq9ntjYWKKiokhISEClUtGyZUvat2+Pi4uLuBkhVJFlmS5duhAREUG/fv0A2LJlCytXrmTXrl0PdM0ffviBadOmoVKpUKvVLFiwgM6dO99yXmJiIqGhoeTk5BAUFMTatWsxMjIiPz+fYcOGcf36dbRaLW+99RajR49+qH6uX7+eOXPmAGBhYcF///tfWrVqdc8xybLM66+/zo4dOzAzM2P16tUEBQWRlJRE165dOXnyJHZ2duTm5hIUFMShQ4dwd3d/qJhriizLfJeey4cJN7hRrmGIoy0RXk6KbbJe2WYhly5PJyVlI2q1FU19Z+HsHIJKpdzHzqtXr7Jz507S09Nxd3enb9++ODk5KdaerNFTeCSZwoNJyHoZyx6uWHZ3RWWsXNKRnZLE4a+XkxhzEltnF559dwZerdsp1p6sl7l8PI3fvo+nJL+CpsGN6PhsE8xtlJvyqM3OJnPBAvK2fouBrS2NZkVi89xzSI9ZFdu6nmA9VurbqFYj80bM6z6PIylHmH18Nq/sfYXe7r15u93bNDKvoRKqBobQfy40CoDtk2HZk5WbEju2uOtTJamymqDuj+qCagOJQPEb/Y8iyzKfX0vnk8Q0gqzMWOXniaNxzYzKaLXFfxSxWI2RkR1+LT+nYcO6uZj2T8XFxVV7V+Xn52NlZcWTTz5JUFCQondwhceXJEksWbKEF154gR49eqDT6YiIiHjg5AqgZ8+eDBo0CEmSOHPmDC+++CKXLl265bwpU6YwadIkQkNDefXVV1mxYgXjx49n2bJltGjRgh9//JHMzEyaNm3K8OHDMbrNvjZXr15l1KhRHDp06LYxeXp6cvjwYWxtbdm5cyfjxo3j+PHj9xzTzp07iYuLIy4ujuPHjzN+/HiOHz+Oq6sr48eP591332Xp0qW8++67jBs3rs4kV6cLSpgWl0x0QQkBlqZ81cKd9jYKrpXRa0hJWY9e/ozU1HJcXEbg5TkRQ0MbxdrMzc1l7969XLhwAWtra55//nlatmyp6LQ18zRImxeNLrcc05b2WPf3RG2v3E30suIijn27kdO7fsLQ2ITuYWMJ7DMAA7VysxBKsmS2/uckGVcLaOhhRb9X/Wnkaa1Ye3JFBTnr1pO1eDH6sjLswsJweG0CBlaPx/rmv6vLH0dlYI8kSTLwlSzLS2s7oPtxy6jW5i2P7Vqtzo07893g71h1bhXLzy7nl5RfmNBqAsNbDMewpqZIBY2ABk1h80uw/CkY8hU0H3jXp6lUEh8/649OL7NgXxxDfAx5DPZwFWpAqU7P5EvX2ZaRxxBHW+Y1dcWkhqa6ZGbt5/LlGZSX36Bx42F1vohFSkpK1d5VOp0ODw8P+vTpQ9OmTcXeVcJd+fn5MXDgQObMmUNxcTFhYWE0adLkga/312S+uLi42g+6sixz4MABNmzYAMDIkSOZ+X/snXd4VNXWh9+pSSaT3ntP6ARI6FV6FVCKqAiKWL/r1asiil6vCoIVu9IEERRQUVF6CVVI6DWQ3nudSZl2zvfHhABSpORQdN7n4QmZU9Y+M5Nz9tprrd96/XWeeOIJZDIZOp0OURTR6/W4u7vfcO1M167nsi86d+5Mbm7uNY3pl19+YeLEichkMjp37kxlZSUFBQX4+fnx7LPP0qFDB+bOncuuXbv45JNPbmisTUGRwcSs9AJWFJbjpVbyYbMgxvm6S9Jg/SxlZTs4kzKT2tpUoAUdO36A1jFKMntGo5Fdu3axe/duZDIZffr0oWvXrpKmPhvz9VT9lo5fugK5rwK3Ka2xj3SVzJ4gWDi2ZSO7VyylTq+jzV0D6TbuATQu0tnUVxj44+dUMvaJaFzq6TupOTEdfSVLeRRFEf327RS/PRtjVhaOvXriM+0l7MLDJLEHUGOqYeGxhYRaQiWzcTs7WN1EUcyXyWTewCaZTJYsiuKOsxtlMtlUYCqAj4/PFVeurga9Xn/D57giw4ch69Mbh717Me/cRd306eS9+Qb1nTpR2707lgDpC/Zu9Bqb0YyXfF7ix4ofef/A+yw/upwx7mOIsm+6G6i69du0Ov42ziseIDNkPJmh4+AqpFsHe4rk+yv5KcWEfNFGhoVLl/pwK5H8e3obcDXXWCHKeA9H0lAynjruLqpkb3HGDdsWxXIE8TvgIBCAXDadwoJICgsO3vC5z9JUn6EgCBQXF5OXl4dOp0Mul+Pr60tAQACOjo4UFxdTXFx84wO+Dv4J31MpOHPmTXT6U1fcx2Ixo7iKWtWzOGmbEx396l/u99///pf27dujVqvZv3//RdvHjRvH6dOnL3r9ueeeY+LEiRe9vnr1aqZPn05xcTG///77RdvLyspwdXVtdJwCAwPJy8sDYOrUqdx///34+/uj0+lYsWJFk6pbLly4sDEd8mrHlJeXR1DQudTgs9v8/PxQqVS8++67DBo0iI0bN1420nYzMAgC83JKmJtVhFEQeTLIm2dDfXBSSrfQUlubQUrKLErLtuLgEEKbNvM4fkwumXMliiLHjh1j06ZN6HQ6WrduTb9+/XBxkS66YqkxUb0xk5rEQuQOSopbCLS7vz0yhXQOa86Jo2xbMp+SrAwCm7eiz6SpeIeGS2bPbLRweHMOBzZkIVpEPFvAqKmdUdtLKAySnk7R27Op2bkTdVgYQV99ibZXL8nsCaLAmrQ1zD04l9K6UiZ4TGAEIySxdds6WKIo5jf8LJbJZKuBjsCO87bPA+YBxMXFib1vMGyRkJDAjZ7jqhg2DFEUG2u1dBs2oNmWcFNqtZrqGu/lXrZlb2N24mw+LvqYYeHD+E/cf/B08LzxQQLcNRR+e5bQI8sJddDDqC/BzukvD+vVS+T+TzbwwxkT0ZERTO15/Suwtys37Xt6C/mrazyqq+XZYxlUmS183TyYwV6uN2zTKmLxLWnpHyAXzYSFSSdicaOfYWVlJfv37+fgwYPU1tbi4eHB4MGDadu2Lfb2Tdy/7jr5J3xP/244Ojoybtw4tFotdnYX11esWLHims43atQoRo0axY4dO3j11VfZvHnzBdtFUbzomLORri1bthAbG8vWrVtJS0ujf//+9OjRA+c/pQqNGjWKjIwMjEYj2dnZxMbGAvDMM89ctmZr27ZtLFy4kF27dl207UpjutI2gHXr1uHn58fx48fp37//JW1LiSiKbCit5vW0PDLrjAz0dOa/EQGEaySslTHryMj8lJycJcjldkRGvEhQ0CTkcjtksgRJbObl5bFu3Tpyc3Px9/dnzJgxBAdLp0YoWgT0fxRQvTkb0WhG28Uf537BnEncLZlzVVVcxI5vF3Fm326cPL0Y9u9pRHfuLmnKY9rBEvb8lIqurJ7wdl50HR3JoRP7JHOuLFVVlH7+OeXLliN3cMD7pWm4T5iATMLFiSMlR5i9bzbHy47TxrMNH/X5iPIT5ZLZuy0dLJlM5gjIRVHUNfx/APDGLR5Wk/F3qNXqE9yHzv6dWXBsAV8f/5qEnASebvc042LGobzRIlaVPYz83Nova+MMWNAf7lsO7ldeuVHIZTza2g5PLxdmrU1GLpMxpYd0qz02bj6/FlfyzKks3FVKfm0XSasmELPQ6U5wKvkVdLpjuLv3oFnMG5LKB18PoiiSkZFBYmJiYxTh/N5Vt3NdmI2r52oiTTqdDienv15wuh7kcvllI0XXGsE6S8+ePUlLS6O0tBRPz3OLcJ6enlRWVmI2m1EqlY0TZoBvv/2WGTNmIJPJiIyMJCwsjOTkZDr+SUFs9erVwNXVYAEcPXqUKVOmsG7dOjw8PC7afqUxBQYGkpOT07jv+dsOHz7Mpk2b2Lt3L927d2f8+PGSiiv8mVP6Ov6bmseOCj3RGntWtI2gl7s03xGwLkjlF/xAWtp7mEwV+PndS0T4f7Czk65xr06nY8uWLRw+fBhHR0fuvvtu2rZtK2nfvvrT5VT+lo65pA67KFdch4Wj8nGUzJ6xvo7En39g/28/IZPL6Tb2AToMH4VKLZ2TXJqrY+eKFPJTKvEIcOTuZ9sRGCNd2w7RYqFy1Q+UfPQRlspKXMeMweuZf6G8xN9jU1FUU8Tcg3P5Lf03vB28mdV9FkPDhyKXyUkgQTK7t6WDBfgAqxsmDUpguSiK119xextzJ9dqOSgd+L92/8fw8OG8nfg2sxNn83Pqz7zS6RVivWNv7OQyGXR50ip2sWoSzOsDY76GiLuueJhCLmPuuFgEUeSt30+hlMuY1E26PF4bNwdRFHk/s4j3MguJc9bwdeswvNQ3Fl0ym2vIyPiI7JyvUavdadlyLj7ew24rZ8VgMHDkyBESExMpLS1Fo9HQrVs34uLicHV1vdXDs/EP4loiWKmpqURERCCTyTh48CBGo/Eih+ZszcwPP/zA+PHjWbJkCXfffTcAQUFBbNmyhR49elBUVMTp06cJD7+xxbLs7GxGjx7N0qVLL9to9kpjGjFiBJ9++injx49n3759uLi44OfnhyiKPPHEE8ydO5fg4GBeeOEFnn/+eZYtW3ZD470ayk1m3s0oZEleKc5KBTOjAnjI3xOlhPLgFZVJpJx5E53+BC4uHYiOWoSzc2vJ7JlMJvbu3cvOnTuxWCx069aNHj16SBqtN5XUUvV7BvXJ5Sg97PF4qAX2zdyliyAJAqd2b2fnsq/RV5TTvHtvekyYhJNHE2UFXYI6nZF9v6Zzclc+dhoVvSbE0KKbH3IJJftr9iVSNGsWhtOn0cTF4fPKy9g3by6ZvXpzPUtOLGHh8YVYBAuPtn6UKa2noFHdnObEt6WDJYpiOnCxfurfmAuiWhUV1qjWypV3RFQr1CWUL/t9yaasTcxJmsOD6x5kVOQonu3wLG72N7gSEt4bHt0G30+Ab++B/m9Cl6esDthlUCrkfDS+HRbhIK+vOYlCLuPBLqE3Ng4bt4xai8C/k7P5tbiSMb5uvBcThN0NrlpeIGLhfx8RES/eViIWJSUlJCYmcuTIEYxGI/7+/owcOZKWLVvaelfZuO358ccf+eabb1CpVDg4OLBixYrGyemQIUNYsGAB/v7+zJkzh/HjxzNjxgzatWvHI488AsCLL77I008/TevWrRFFkTlz5lwQ/boe3njjDcrKynjyyScBUCqVjbVmVzOmIUOGsHbtWiIjI9FoNHz99dcAzJ8/n+Dg4Ma0wCeffJLFixezfft2eklUS2IWRJbkl/JuRiHVZgsTAzx5McwXd5V0U7r6+nxSUmdTXPw7dna+ki9IiaJIcnIyGzdupKKigpiYGAYMGHDJyGNTIdSbqd6SjX5PPjKlHJfBYWi7+SNTSud0FKSeZtvieRSknMYnPIphz04nIEY6p8NiETiekEfibxmYDBZa9wkkfmgY9o4SCoPk5lH87rvoNmxA5e9PwNwPcRo4UNLvzqasTby//33ya/LpH9Kf5zo8R6BToCT2LofsUnnFdxpxcXHipYpyr4XbsWbgz7Vaosl0Q7VaN+Maa021fHnkS5aeXIpGpeGZ9s9wT9Q9KOQ3WGBr0MPPT8CpX6HNOBj+Eaguvv7zr9FoFnhy2UE2nypi1qjWTOh0e6V9XQ+34/e0qTn/GgsMRh46lsExXR0zIvx5MujGOsbXGwo5c+YNSko24OgYRbOYt3B1vbk9zC/3GVoslsbeVRkZGSgUigt6V91JNMX3VCaTHbjdGszfKJd6Vp06dYrm17CKK2WK4O3C3/0adTodubm51/S5n2VHuY5XU/M4XVNPDzctb0QG0FwrXYaLxVJHVtY8srK/AiAk+DFCQqaiUFzZ5o3cA4qKili/fj0ZGRl4eXkxaNCgG1K1/CtEQaR2fxFVGzIRak1oOvjgMjAUhdPl64Fu9B6nLy9j1/ffcGL7Fhxd3eh+30O07HkXMglTHrNOlLF7VQoVhbUEtXCn+71RuPtfPuXxRq9RqKmhdP58yhd9DQoFnlMfxX3yZOQSRh+Ty5OZkziH/UX7iXaLZlr8NDr6Xb45sZTPqtsygmXDyiVrtW7zqJZGpeG5uOcYETGCmftm8ubeN1mdspoZnWfQ0rPl9Z/YTgtjlsDO92DbTCg9A+OWgcvl1RfVSjmf3d+OJ749yMurj6GUyxgbf3s3iLVxjkPVtUw6lo7eIrCkdRgDPK9fIUoULeTmLSMt7X1E0URE+AsEBz+MXH7r1Sb1ej0HDx5k//79VFdX4+LiQt++fWnfvj2OjtLl+9uwYePOIbPOwOupeawvrSbEXs3XrUIZ5OkiaRSgqGgNqWlzMBgK8fYeSlTkS9jb+0tiD6C2tpZt27axf/9+7OzsGDx4MHFxcZK2mjBkVFG5Jg1Tfg3qEGdch7dEHSidc282Gjnw+8/sW70SwWKm49330mnUWNQO0qWtVRbVsuuHFLKOleHi5cDQJ9sQ0tpD0pTH6t9+o/i99zEXF+M8fDje/3kOlW8T9U+9BOX15Xxy6BN+SvkJZ7Uzr3Z+ldFRo29cE+AGsDlYdwh/Was1dizOgwfdNrVakW6RLBq4iN8zfue9pPe47/f7GBszlv9r93+42F3nRFkuh14vgk8r+GkqzOsN45ZCcOfLHmKnVPD5/e15bOkBpv10FLlcxr0d7qxowD+R1UUVPJucjZdaxW9tI25ohVanO0ly8itU647i7t6DmOj/odHc+iagubm5JCYmcuLECSwWC+Hh4QwePJjo6Ghb7yobNmwAoDNbmJtVxPycEpRyGa+E+zE1yOuG06SvRHX1Mc6kvElV1QGctC1p2XIubq7xktmzWCzs37+fbdu2YTAYiIuLo0+fPmg00jkd5sp6qtZmUHe0FIWLGvf7YnBoc2MZEldCFEVSk/5g+9KFVBUXERnfmV4PPIKrr3RiKIZaE0lrMzm2NRelWk7X0ZG0uSsQhYQpj3VHjlA4axb1R45i36oVAXPnomnfTjJ7JsHE98nf88XhL6gz1zGh2QQeb/v49c8zmxCbg3WHcdlarZdfPhfVGjf2tohqyWQyhoUPo1dgLz47/BnfJX/HxsyNPNvhWe6OvBv5VfS3uiTNhsCUzfD9fbB4GAx9DzpMuuzu9ioFXz3YgUe/2c8LPxxBIYdR7WxO1u2IIIqsEO1ZfTKLzi6OLGgVhqf6+m5TFkst6elzycldjFLpSssWH+LjM/yWiliYTCYKCgqYN28e+fn5qNVqOnToQHx8PF5e0ilw2bBh485CEEVWFJYzK72AEqOZsb5uvBzuj6+ddLUyBkMJaenvU1DwAyqVG82azcLf715kMukWfNLS0li/fj0lJSWEhYUxaNAgfHx8JLMnGC3otuei256LTAZOfYNx6hWIXC3dNZZkZ5KwZB7Zx4/iERjMva+8RUibWMnsCYLIqd357Ps1nTq9iRZd/eh0dwQaZ+kyNkxFxZR88AFVv/yCwssTv5kzcRk1UtKUx525O3kn6R0yqzPp6t+VafHTCHe9fZSjbQ7WHcxFUa2Vq6hcuZKKZctuSl+tq8VJ7cRLHV9iZORI3tr7Fq/teY3Vqat5pdMrxLjHXN9JvZvBo1vhh0dgzTNQcBQGzb7s7vYqBfMejOORJUn8Z+UR5DIZd8dK39zZxtVTY7Hwr1PZ/I49E/zcmR0diPo6b86lpds4ffo16g35+PuNJTJyGiqVa9MO+BqoqKho7F1VV1eHp6cnQ4YMoW3btpfsOWTDho1/LklVNbySkstRXR0dnDUsaR1Ge2fp0oUFwUBOzhIyMj9DEAwEBz9CWOjTKJXSpcqVlZWxceNGTp8+jZubG+PGjaNZs2aSRpDqjpRQtS4DS5URh7ZeuAwORekqXT1Qna6aPauWcWTjOuwcHblr8mO07T8EuYQZCvkpFexcmUJpjh6/SBeG/180XsHSfY6CwUD54iWUfvUVmEx4PPooHo89hkIr3fc1oyqDd5PeZWfeTkKcQ/is72f0COhxWykAg83B+ltwxVqtWbMao1q3mmbuzfhm8Df8kvoLHx74kHG/jeO+ZvfxZOyTOKmv4wbg4Ab3r4LNr8Oej6H4FKrAxy6/u1rBgofimPx1Es+uOIxcJmN4W+nyyW1cPXn1VjGLk/o6HqSOd2KCrutmaTAUcebMmxSXrMPRMYoOLVfcdBGLs4iiSHp6emPvKplMRrNmzVCr1YwcOfK2exjYsGHj1pJfb+St9AJ+KqrAV63is+bBjPJxQy6h01FatpWUlJnU1WXh4dGH6KhX0Gika21SX1/Pzp07+eOPP1AqlfTr14/OnTujVEo3HTXm6qhck44xqxpVgBb38c2wC5MuhcxiNnNk0zr+WLUMQ10tbQcMpuvYB3DQSufoVJfV8cdPaaQeKEbrZseAKS2J7OAtqcOq27yZ4jnvYMrNRduvLz4vvohawqbP1cZqvjryFctPLcdeac/zcc8zodkEVIrbU1nX5mD9zbhkrVZDVMstPJzK8opbWqsll8kZFTWKu4Lv4uODH7Ps1DLWZ67nP3H/YWjY0Gu/GcgVMOBN8G0Dvz5Nh6L/QKtQ8I+95O4atZJFk+KZ9HUi/15xGKVcxuDWN68hpI2LOVBVw6TjGdRbBJa2CUdx7OA1fw9E0UJe3nekpr2LKJoID3+OkOBHb4mIRX19PYcPHyYpKYmysjI0Gg09evQgLi4OFxcXEhISbM6VDRs2Gqm1CHyRXcyn2cUIiDwb4sPTwd44KqWLdOhrUkhJmUl5+U40mghi2y7Cw0MaWXkAQRA4fPgwW7ZsoaamhtjYWPr27SupWqRFZ6RqfSa1B4uQO6pwuycKTQcfZBL2Ccs8eoiEJfMpy80muFVb+jz0KJ7BoZLZMxksHNyYxaGN2ciA+GFhtBsQjErClMf602coevttavfuxS4qiuCvF+HYpYtk9iyChdWpq/nk0CdU1FcwOmo0/9fu//BwkE6yvymwOVh/Uy5Vq5W/ePFtU6vlYufCq11eZVTUKN7a+xbTd07np5SfeKXTK0S4Xocca5sx4BkJS+6FRYPg7k+h9b2X3NXRTsnXkzsyceE+/u+7Q3wmlzGwpXTqNjYuz4+F5Tx3OgdftYofYiOJcbS/5r7qOt0pkk/PoLr6MO5u3YmJ+R8aTagEo70yRUVFJCUlceTIEUwmEwEBAYwaNYqWLVtKujprw8aNIIoiPXr04JVXXmHw4MEArFy5kkWLFrF+/fobOndSUhKdO3dmxYoV3HvvxffjjIwMxo8fT3l5Oe3bt2fp0qWo1WoqKiqYOHEiaWlp2Nvbs2jRIlq1anVDY1m2bBlz5swBQKvV8sUXX9C27cXtNi83JlEUeeaZZ1i7di0ajYbFixfTvn17cnJy6NmzJwcOHMDd3Z2Kigrat29PQkICISFXFtMRRZFfSyp5IzWfPIOJYV4uvBbhT7CDdGnDJlMl6RkfkZe3DIXCkaioGQQGPIBcLl0UIDs7m3Xr1lFQUEBgYCATJkwgIEC6FH3RLKDfnUf11hxEs4C2RyDOdwUht5fuPlxRmM/2pQtJ278PFx9f7n5+BhFxnSSNIKUkFfHH6jT0FQai4n3oMioCJ3fpUh7NFRWUfPwxlStWonBywufVGbiNG4dMwufb/sL9zEmaQ3J5Mu292/NFvy9o4dFCMntNie2p/w/gbFTrWGgI8Y6Ot1WtVivPViwbsowfU37ko4Mfce+v9/Jgiwd5vO3j195t278dBzq8T7fcr+DHR6DwKPT9rzXK9Se0dkqWPNyRBxcm8vTyg3xxfwf6tZCusNbGhQiiyNvpBXySXUwXV0cWtgq75iaZFkst6Rkfk5OzCKXShZYtPsDHZ8RNjQ5ZLBaSk5NJTEwkKysLhUJB69atiY+Pl3QCYcNGUyGTyfjyyy8ZM2YMffr0wWKx8Morr9ywc2WxWJg2bRoDBw687D7Tpk3j2WefZfz48Tz++OMsXLiQJ554gvfff5/Y2FhWr15NcnIyTz31FFu2bLnseTIzM5k0aRIJCQmX3ScsLIzt27fj5ubGunXrmDp1Kvv27bvqMa1bt46UlBRSUlLYt28fTzzxBPv27SMoKIgnnniCl156iXnz5vHSSy8xderUv3SujILAqEOp7K2qoaXWnk+ah9DVTXvFY24EQTCTn7+C9IwPMZmqCAi4j/Cwf6NWu0tms6qqik2bNnH8+HGcnJwYPXo0rVu3ltTpqD9VTuXv6VjK6rFv7o7L0HBUntLNbQy1texbvYIDv/+CQqWix4RJtB9yN0oJG8IXZ1Wzc0UKhelVeAU70f+RlvhHukpmTzSZqPjue0o+/RShpga3CRPwevopFK7S2czX5/P+/vfZmLURX0df3u35LgNDpWtOLAU2B+ufxFXWat3sqJZCrmBszFj6hfTjwwMf8vWJr1mbsZZpHafRL7jfNf1BmdSuMPEXWD8Ndn8ERSfgnoXg4HrRvk72qgYnax9PLjvIVw92oE8z76a7MBuXpMZs4alTWawvreZBfw9mRgVcs5hFaek2Tp/5L/X1ebdExEKn0zX2rtLpdLi6utKvXz/atWtn611l446jVatWDB8+nDlz5lBTU8PEiRNvuLHrJ598wj333ENSUtIlt4uiyNatW1m+fDkADz30EK+//jpPPPEEycnJvPrqqwA0a9aMzMxMioqKbkhdrmvXro3/79y5M7m5udc0pl9++YWJEycik8no3LkzlZWVFBQU4Ofnx7PPPkuHDh2YO3cuu3bt4pNPPrnsOEyCQIkoo9ho5kytwDvRgdzv74FCwoljefkeUlLeQl9zGlfXTkRHv4aTtplk9oxGI5mZmezatQuAnj170r17d9RqKVXsaqj8LR1DSiVKbwc8H26FfbSbZPZEUeTYto3s+u4baqsqadmrH93vm4jWTTqHtabKwN5f0kn+owAHrYo+DzajWRc/5BKmPOp37abo7bcxpqXh2LULPtOnYxcVJZm9WlMti44vYvGJxciQ8WTsk0xqOQkH5e3RguhasDlY/1BuRwVCd3t33uz2JqOjRvPW3rd4LuE5uvl3Y3qn6YQ4X0PfIqUahn1orcta+wLMvwvu+w68LlYsdHFQsfThTkxYsJfHvj3A/Ilx9Iq2yWVLRU69kYeOppNcU89bUQE8EuB5TQ60wVDMmZQ3KS5ei0YTSfv230van+V8RFEkJyeHpKQkTpw4gSAIREREMHToUKKjo5FLKEdr45/Bqym5HNfXXXEfi9mC4hpqc1ppHXgz6q/bUvz3v/+lffv2qNVq9u/ff9H2cePGcfr06Ytef+6555g4ceIFr+Xl5bF69Wq2bt16WQerrKwMV1fXxvTZwMBA8vLyAGjdujU//fQT3bt3b4wO5+bmNpl898KFCxvTIa92THl5eQQFnWtUf3abn58fKpWKd999l0GDBrFx48ZLOhKCKFJqNFNkNCEgR6uQ80en5rhcY+T+WqiryyYl9W1KSjZibx9I61af4+U1QNII0okTJ9i0aRNVVVW0aNGC/v374+YmnaMj1Jqo3pyNfm8+MrUSl+HhaDv7IVNIdz/OSz5J8o/fUltShF90M0a9+Bq+kdItTFtMAke25rB/XSYWk0C7fsHEDQlF7SChMEhmJq6ff07O0WOogoMJ/PwztH36SPrd+T3jdz488CHFtcUMDh3Mc3HP4esoYflGXSWIomSntzlY/3CuqEB4tlZr7JibGtVq592OFcNWsOL0Cj499CmjfhnFw60eZkrrKdgrryG/OG4yeDWDlQ/C/L5wz3yIufih6qJR8e0jnZiwYB9Tv9nPwofi6R7l2YRXZAMgsVLP5OOZmESB5W3D6e3ufNXHiqLQIGLxDqJovKkiFkajkePHj5OYmEhhYSF2dnbEx8cTHx+Pp6fte2Lj74GjoyPjxo1Dq9VesnXAihUrrvpc//73v5kzZ84VG2aLl5jYnJ28Pfvss8yYMYPY2Fhat25Nu3btLlnHOGrUKDIyMjAajWRnZxMbGwvAM888w+TJky9pd9u2bSxcuLAxunK1Y7rSNoB169bh5+fH8ePH6d+//wX7VZst5NcbMQgiTko5LmYTxSqlZM6V2awnM+tLsrMXIpMpiAj/D0FBj6BQSFfbVVBQwLp168jOzsbHx4ewsDBGjhwpmT3RIlKTWED1piyEOjOOnfxw7h+CwlG61Lzq0hJ2Ll9M8u7tqBy1DPm/52nWrZekTkfm0VJ2/ZBKdUkdoW086XZPJK4+0jVgtuj1lH7+BeVLl6JSKPB+/j+4TZyIXMLo4/HS48xOnM2RkiO08GjBuz3fpb1Pe8nsYTFB0kJImIVnxJNAH0nM2BwsG41cMqq1YgUV336LQ2wsruPG3bSollKu5P7m9zMgZADvH3ifr45+xW/pv/FSx5foHdT76k8U0gWmJsD398N390GfV6Dn8/CnG6Kbo5plUzoxYf5epnyTxKJJ8XSNsE2em4oVBeW8cDqHQHs137SJJFJz9Y6yTp9McvIrVFcfxs2tK81i3rwpIhbl5eWNvavq6+vx9vZm6NChtGnTxta7yoYkXE2kSafTSaa8JpfLLxuJvZYI1v79+xk/fjwApaWlrF27FqVSecGE29PTk8rKSsxmM0qlktzcXPz9rW0znJ2d+frrrwHrJDMsLIywsIulw1evXg1cXQ0WwNGjR5kyZQrr1q3Dw+NiBbIrjSkwMJCcnJzGfc/fdvjwYTZt2sTevXvp3r0748ePx8/Pj3qLQL7BiM4sYCeXEaaxw1mpQKczXXGc14soChQWriY17V2MxhJ8fUcSEfEC9nbSRQH0ej1bt27l4MGDaDQahg0bRvv27dmxY4dkNutTK6hck465qBa7cBdcR0Sg8pUuNdtkqGf/mtUk/vIDiCKd7xlPvZs3zbv3lsxmWb6e3atSyDlVgZuvhuH/15bgltKp5omCQNVPP1H84Vws5eW4jB5FaseOtLz7bslsltaVMvfAXH5J+wUPew/e6PoGd0fejVwmYTZI6hZYPx1KT0N4H2o10rXqsTlYNi7ioqjWL79QueLW1Gp5abyY3WM290Tdw8y9M/m/rf9H78DeTOs4jUCnv56MAOASCA+vtzYk3vaWVfxi5Bdgd2FBsXuDk3Xf/L08sng/iyfH0yn89pYBvd2xiCIz0wr4PKeYHm5a5rUMxe0qV20tljoyMj4mO2chSqULLVq8j6/P3ZIWuQqCQFpaGomJiaSkpCCTyWjevDkdO3YkJCTkjiqwtWGjKbmWCFZGRkbj/ydNmsSwYcMuimbIZDL69OnDDz/8wPjx41myZAl3N0zmKisrsbOzQ61Ws2DBAnr27Imz89VHvC9FdnY2o0ePZunSpURf5tl1pTGNGDGCTz/9lPHjx7Nv3z5cXFzw8/NDFEWeeOIJ5s6dS3BwMC+88ALP/ed53lv0NaUmM3LAz06Fp1opWT8rgKqqQ5w58wbVuqM4O7elTesvcXGJlcye2WwmMTGR7du3YzKZ6Ny5M7169cJBwgVYc1kdlWszqD9RhsLNDo8HmmPf0kPSCNLpP3ay49uv0ZWVEN2lB73un4yzl/dfOvPXS32NicQ1GRzfkYfaXkGPcVG07BmAQsKUx9qDBymaOYv6EydwaNcOny+/xKF1K85IdI1Gi5FvT33LV0e+wigYmdxyMlPbTEWrlk7khbI02PAKnFkH7uEw/juIGUzt9u2SmbQ5WDauiNLNDY9Jk3B/6BK1WjcxqhXvG8+q4av49tS3fHHkC0b+MpJHWz/K5FaTUSuuInStcoBRX4Fva9j0GixMg/uWg1voBbt5aO1YNqUz4+f9weTFSSx5uCPxodIVrf6d0ZktPHEyi81l1UwK8OTNyABUV1mMW1qWwOnT/6W+PrdBxOJFVCrp8vjr6uoae1eVl5fj6OhIz549iYuLu+GJ3T8JURSxlNVjV3WrR2LjdmXIkCEsWLAAf39/5syZw/jx45kxYwbt2rXjkUceAeD06dPcddddKBQKWrRowcKFC2/Y7htvvEFZWRlPPvkkAEqlsrHW7GrGNGTIENauXUtkZCQajaYxwjZ//nyCg4Pp378/oigydsqjfLFoEeu3bmPAXX3wVStRSVifWW8oJC31XQqLfkat9qZF8/fw9b0bmURRAFEUSUlJYf369ZSXlxMVFcXAgQMlTZcWDGZ023LQ7cxDppDhPDAUp+4ByFTSva9F6alsWzKfvOQTeIWGM/jp5whq0Voye4JF4MTOfPatScdYa6ZljwA6jgjDQSuhMEh+PsXvvU/12rUofX3xf+89nIcOkdRh3Zazjff2v0eOLofeQb15Pu75a6uxv1bqq2DHu7D3S1DaQ7//QecnQCl9ForsUnnFdxpxcXHipYpyr4WEhAR69+7dNAO6TWmqazzbV6ty5UqMGRnInZ1vaq1WYU0h7yS9w6asTYQ4hzC943S6BXQDrvIaU7fAD5NBJocxiyH84v2Lq+sZP28vRdX1fPNIJzqESDe5vxbulO9pVp2BiccySK2t562oQCYHXN3D12AoZvfufyGShEYTQbOYt3Bz6yjZOAsLC0lMTOTYsWOYTCaCgoLo2LEjzZs3l6x31Z3yGV4NQq0JY47ugn9CrZl6F5HI6T1v6NwymeyAKIpxTTTU24JLPatOnTpF8+bNr/ocUqYI3i7cideoN1vIMxipt4g4KuQE2KtwuEwNmk6nIzc395o+9z9jsdSTnb2AzKwvAQtBQY8QGvIESqV0qXIlJSVs2LCB1NRUPDw8GDhw4GWjgU1xnxMFkdpDxVStz0DQmdC088ZlcCgKZ+kmxzWVFexesZRj2zbh4ORM9/EP0qpPf+R/avfSlPfxnORydq1MoTy/hoAYN3qMjcIjQELJ/ro6yhYuomzBAhBFPB55BI8pjyDXXFjb1ZTXmFqRyjtJ7/BHwR9EuETwYvyLdA3o+tcHXi+CBQ4vgy1vQE0ptLsf7noNnC4UymmKa7zcs8oWwbJxzdzqWi1fR18+6P0Be/L2MCtxFo9vfpz+If15Mf7FqztBZF94dBt8PwGWjoaBM6HT4xfUZXk727P8UWska9KiRJZO6URskKsk1/N3Y0+FniknMhBE+L5NBD3c/3qiJIoCefnfk5b2DiJ1hIc9S0jIo8jlTf8gNZvNjb2rsrOzUSqVtG7dmo4dO+Ln59fk9v4uiGYBU2GN1ZHKtjpT5tIGxTsZKL012LfwQB3kxNHi00Te2uHasHFTMAgCBQYTVSYLKrmMEAc1LkqFpFGA4pL1pKbOpr4+Fy+vQURFvoSDQ9BfH3yd1NXVsX37dhITE1GpVAwcOJCOHTteUcTkRjFkVVO5Jg1Trh5VkBMeD7bALli6bAKL2cShdWv448fvMRsNdBg6ki73jMdOI53DWlVSy+4fUsk4Uoqzpz2DH29NWNtrU9a9FkRRRLduHUXvvoe5oACnwYPwef55VBL2bKwyVPHZ4c9YeXoljipHpnecztiYsSjlErofWX9YW/UUHIGgTjBhJQRIKJpxGWwOlo3r5qpqtcaOxT5GmqhW14Cu/DTiJxafWMy8o/PYlbeLAdoBdLN0Q6X4CyUhjwiYshlWPw7rX4KCo1Zpd9U58QVfF3u+m9qZcV/t5cGF+1g+pTOtA10kuZa/C8vyy5h2JodQBzu+aR1OuOavHSS9/jSnkl+huvoQbm5dqKocRljY+CYfW3V1NQcOHODAgQPo9Xrc3Nzo378/7dq1Q6ORTpXpTkQURSwVhgujU3l6MAsAyJ1UqIOc0XTwQR3khDpQi9z+3OPEmHCxGIING38nLKJIsdFEidEMgI+dCm+J66x0ulOcSXmTysp9aB1jaNfuW9zdukhmTxAEDh48yNatW6mtraVDhw7cddddkvb6s1QZqFqfSe2hYuROatzGRqOJ9UYmUa8nURTJOLSfhG/mU1GQT1i7OHpPnIK7/1XWeF8HxnozB9ZlcXhLNnKFnM4jw2nbNwilSjqHte7ECYpmvU3dgQPYtWhOwDtz0MRL1+LELJhZdWYVnx3+DJ1Rx9josTwV+xSu9q6S2aQyBzb/F47/CM4B1h6ore65SNTsZmFzsID0QyVkbhP4oyIVzyAnvIKdcPF0kOwP+u/IrarVUivUTG0zlaHhQ5mdOJtfcn7h2JpjzOg8g3jfv7h52DnB2KWwfQ5sn21VlRm3DJzPRTH8XBwanKw/eGDhPpZN6USrAJuT9WfMgsgbafnMyy2ht5sTX7UM+UsJYquIxScNIhbODbUDI9nehEWnoiiSnZ1NYmIip06dQhAEIiMj6dixI5GRkbbeVQ0I9eaLU/30DUpnSjnqAC3azn6og51QBzmhcLWzCX40IaIo2t7POwRRFKkwWygwmDALIq4qBX52qmtqln6tpRlGYxnp6R+Sl78ClcqFmJg38fcbi1zCKEBGRgbr16+nqKiIkJAQBg0aJGmEXzRZ0O3IQ5eQgyiKOPUJwql3EHI76ZyOstwcEpYuIPPwAdz8Axn90uuEtZMuK1kURJL3FrL35zRqq4006+xL55EROLpKl/JoLi2leO5cqn78CYWbG75vvoHr6NHIJIw+/pH/B+8kvUNqZSqdfDvxYscXiXaTsHzEWAu7P7L+Q4Re06DbM6CWbiHgarA5WIDFImAxwuHNOQgW641Pba9odLa8gp3wCnLC1VcjacfsvwO3qq9WgDaAT+76hE/Xfspvdb/x8IaHGRo+lP90+A9emis0DpbLoc908G0FPz0G83rBuG8h6FzdT4CrA9892pnx8/byQEMkq4W/TfjgLNVmC4+dyGRbuY4pgZ68HhGA8i/+TsrKtpN8+jXq63Px87uXqMiXmlTEwmg0cvToUZKSkigqKsLe3p5OnToRFxd3SXnmfxKiRTyX6pejw5hTjbmkDhrmfEovB+yj3RqcKWdUvhpJm3b+07G3t6esrAwPD+nU0Gw0DTUWC/n1JmotAg4KOaEaNY7X0PQZrM5VVVUV9vZ/3apCEEzk5n1LRsZHWCy1BAY+SHjYM6hU0i3yVVRUsHHjRk6dOoWLiwtjxoyhRYsWkqat1R0vper3DCyVBhxaeeAyJByl+zX0vLxG6vV6/vhhOYc2/Iba3oHeE6cQO3AYConqbgEK06vYueIMxVk6fMKcGfJEG3zCpJtHiEYj5Uu/pfTzzxEMBtwnTcLzySdQSFjbmF2dzXv732NbzjYCtYHM7TOXu4Luku6+JorWaNWm/0J1LrQcDf3/B67B0ti7RmwOFhAV50Oe/hQ9uvekPL+GkmwdJTk6SrJ1nNiRh9lkTYtRquR4BGovcLrc/R1RKG2Tj0txfq1W3f79VKxYKXmtVitNK6YMmMLC4wtZeGwh23O281TsU4xvNv7KOb/Nh8OUCPj+Plg8FIZ+AO0fbNwc5K5pcLL+4P4Fe/luamea+dqcrIxaAxOPpZNRZ+C9mCAe8L+y82IwlHAm5U2Ki39HowmnfbvluLl1arLxlJWVkZSUxKFDhzAYDPj4+DB8+HBat26NWsJGibcz5ipDY82UMbsaU54eseGeJtcoUQc5oWnrbU31C3JC7mB7LNxMAgMDyc3NpaSk5Kr2r6+vv6rJ+Z3M7XaNFlGkymyhxiKgkIGLUoFKoSD7Os9XU1ND27Ztr7hPWdl2zqTMpLY2DXf3HkRHzcDRUbrKRoPBwK5du9izZw9yuZw+ffrQtWtXVCrpGvca8/VUrknHmFGFytcRt0ejsY9wlcyeIFg4tmUDu1Z8i0Gvp3XfAXQb9yAaZ+kcVn1FPX+sTuNMYhGOLmr6TW5BdLyPpCmP+oQEimfPwZiVhbZXL7ynTcMu/OI+ck1FjamGeUfnsfTkUpRyJc+0f4YHWzyInYSNrck/BOtegpy94NsG7pkPIRKKZlwHtifpeSiU8kbn6SyCIFJRWENpjt7qeGXrOL2vkOPb8wCQK2S4+zs2OlxewU54BGpRqaULv95pyGQyNPHxaOLjL45qSVCrZa+056nYpxgWPoy3973NnKQ5rE5dzYzOM2jn3e7yB/q0sIpf/DAZfn3a2i9r4CxoqOcK9tA0CF/s5f75+/huameife4spaumZFeFjkePZyKTwcq2kXR1u7zq0fkiFhaLgbCwZwgNeaxJRCwEQSA1NZXExERSU1ORy+WNvauCg4P/UVEBwWDBmPunVL9qo3WjQobaX4tjvO+5VD93+3/U+3M7olKpLtlE93IkJCTQrt0V7mN/A26Xa6y3CMzPLWFuVhEmQWRqkBfPhPjgdI1Rqz+TkJBwWceltjaDMykzKSvbhoNDCG3bzMfDo49kf6eCIHDs2DE2b96MTqejdevW9O/fX9L2FBa9kepNWdQkFiJ3UOI6MgLHeD9kCunuRdnHj5KwZB4l2ZkEtmhFn4em4h0aLpk9s9HC4c3ZHFifhShAh8EhtB8Ygtpeumm3IS2NordnU7NrF+qwMILmfYW2542puV4JQRT4Ne1XPjr4EaV1pYyIGMEz7Z/BW+MtmU10RbD1DTi0DBw9YfjH0O4BkN9+c26bg/UXyOUyPPy1ePhrielk7YYuCiJVpXWUZOsobYh0ZRwu5dTuAsBaT+fm54hXkBOeQdaIl2eQE3a2leFLKxCeX6s1dizOgwc1SVQrxDmEL/p9wZbsLcxOnM3EdRMZGTmSZzs8i7v9ZXpbadzh/h+tvbL2fgbFp2DMEnC0RmZCPR1Z/mgnxs/by4T5+/h+amcivSVsjnebsiSvlFdScglzsOPbNuGEOFzeUdLrT5N8egZVVQdxc+1MTMybODre+IOttra2sXdVRUUFWq2W3r1706FDhztO4vl6EAURc3HtOWcquxpTUe25VD8Pe+zDXayRqWBnVH6OyGzRdhs2/hJRFFlfWsXrqflk1RsZ5OnMfyMCCLsK0Z7rxWzWkZHxCTm5S5DL7YmMnE5Q4ETkcuki77m5uaxfv57c3Fz8/f0ZM2YMwcHSpVeJZgH9HwVUb8lCNApou/rj3DcYuUa6KFlVcSHbv11Eyr49OHt5M/y56UR17CppymPawRL2/JiKrryeiHZedL0nEmdP6XqFWqqqKPnsMyqWLUeu0eAz/SXcJkxAJmH08XDxYWYnzuZE2QnaeLXh4z4f09pLuj5hmI2w70vY/g6Y66Hr09DzBbC/fWvibTP+60Aml+HqrcHVW0NUnFVTXxRF9BWGC9ILc5PLOb2vsPE4Fy+HC9ILPYO1kjaRu525bK3Wyy9TNHt2k9VqyWQy+oX0o6t/V746+hXfnPiGLdlbeKbdM9wbfS+KS616KJQwaJa1KfGaZ2Bebxi/DPzaABDupW2MZE2Yv5fvp3Ym3Ouf4WSZBZHXUvNYlFfKXe5OfNkyFOfLrOZaLHVkZH5GdvZ8lEonWjR/B1/f0Tf8YCsoKGjsXWU2mwkODqZv3740a9ZMst5VtwOWaiPGnOpzMum5ekSjBQCZgzXVz6mlpzU6FeiEwlG6h6sNG39XTunreC01j50VemIc7VnZNoKeV9Fq4noRRQv5+atIS38fk6kCf78xhEf8Bzu1dI17q6ur2bJlC0eOHEGr1TJy5EjatGkjqehP/elyKn9Lx1xSh120G67DwlF5S6feaqyvI/HnVez/bTUyuZxuYx+gw/BRqNTSOcklOTp2rUwhP6USjwAtI59tR0CMdD00RbOZylWrKPnoYyzV1biOHYPXv/6F0v0yC8hNQGFNIR8e+JC1GWvxdvDm7R5vMzRsqLR1VmfWw4ZXoDwNogfBgJngefs3Avn7zkZuMjKZDCd3e5zc7QmPPSeqUFNlaEwvLM3RUZxVTeqB4sbtWne7xtTCsz81Lup/VNrOJWu1Vq48V6vVBFEtjUrDsx2e5e6Iu5m5byZv7XurMW2wlWerSx8Uex94RcP3D8CigTDyc2g5CoBIby3fNUSy7pu/lxVTuxDqeWsVa6Sm0mRm6olMdlToeSzIi9ci/FFc5ntaVraT06dfo64+Gz/fe4iMfAm1+vpv+mazmZMnT5KUlEROTg4qlYq2bdsSHx+Pr6/vdZ/3dkUwWjDl68/VTuXosFQarBvlMlR+jmjaN9RNBTuh9HT4R90zbNhoaspNZt7JKOSbvFKclQpmRQUw0d/zLwV7boSKyiRSzryJTn8CF5c4oqNfxdnpMs+jJsBkMrF371527NiBIAh069aNnj17YmcnndNhKqml6rd06k9XoPSwx+OhFtg3c5cugiQInNqVwI7li6mpKKd5jz70mPAQTu7SOax1OiP7fk3n5K587DQqek2IoUV3f0lF0Wr27qVo1tsYzpxBEx+Pz8vTsb+BxtV/Rb25nsUnFrPo+CIsgoWpbabySKtH0KgkbHFSnAwbpkPaVvCMtmYXRfWTzl4TY3OwJMbRxQ5HFztCWp0r/q+vMTWkFuobo10ZR0sbU3scnNUNzpa20fFy8vj710pcUKtV8aeoVqMC4Y3VaoW7hrNgwALWZazjvf3vMeH3CdwbfS/PtH8GF7tLhJoDOsDUBFj5IKyaBIXHoM8MkMuJ8nFi+aOduW/+OScr2OPv2U8prbaeiUczyK438kGzICb4XVrMwmAsJSXlLYqK1qDRhNG+3TLc3Dpft93q6mr279/PgQMHqKmpwd3dnYEDBxIbG4uDRI2sbzaiIGIurbsw1a+wBqw6FChc7axRqW4B1p/+jsgk7Jdiw8Y/CZMgsiS/lPcyCtFZLEwK8OT5MF/c/6LNxI0giqUcO/5/FBevxc7Ol5Yt5+LjPUzStLXk5GQ2bNhAZWUlzZo1Y8CAAbhLGOmQm6Dyt3T0e/KRqeS4DAlD29Vf0jTlgpTTbFs8j4LU0/hGRDHiuen4R0vndFjMAscSckn6PROzwUKbPkHEDQ3FXsLsAWNuLsVz3kG3aRMqf38C5s7FaeAASb87G7M28sH+D8ivyad/SH+e6/AcgU7S9QmjrgISZkPifLDTwqA5EP9IYz38nYLNwboF2DuqCGzmTmCzczc3Y72Z0lz9eXVdenJOlSMKVq/LTqNsrOXyCtZaZeO9NX/bXl1S1mrJZDKGhA+hZ2BPPjv8Gd8lf8fmrM3WCFfk3chlf3oAOPnAQ2tg7fOw830oOgGj54G9CzG+Tnz7SCcmLLA6Wd9P7UyQ+9/LydpRruPRE5koZLAqNoLOrhenQ4qiQH7+SlLT5mCx1N+QiIUoimRmZjb2rhJFkejoaOLj44mIiLjje1fJjVB3quwCIQqxviHVz05hTfXrFdSo6qdw+memEduwITUJ5dW8lpLPmdp6erhpeSMygOZaCWtlLLVkZc1DEL+ktFRBWNgzhAQ/ikIhnc2ioiLWr19PRkYGXl5ePPjgg0REREhmTxREapIKCdkhR2/OwzHOF+cBIZLex/TlZez8bgknd2zF0dWNQU8+S4sefZBJ+KzQ5Yt8/2YilUW1BLdwp9uYKNz9pMtiEWpqKJ03n/KvvwaFAq9/P4P7pEnIJVTbzDXmMnnDZA4UHSDaLZpF3Rf9dX/RG8FihoOLYetMqK+EDpOgzytWMYs7EJuDdZugtlfiH+mKf6Rr42tmo4Wy82Xjs3Qc3ZaDYLY6XSo7hVVE47x+XW6+GuR/o541V6zVOhvVGjf2umq1tGot0zpOY2TkSGbum8lre17jx5QfmdF5Bs3cm124s9LOqlbj2wbWvwTz+8J934FnFC38na1O1tlI1mNdCHD9e0RXFuWW8GpqHlEae5a0DrukmMX5Ihaurp1oFvPWdYlYGAyGxt5V27dvx97ens6dOxMfHy/pSquUiCYBY8GFqX7h5QrKOAlyUPk4omnr1ehMKb3+vosmNmzcLqTXGng9NY+NZdWEOqhZ3CqMgZ7OkkYBiorWkJo2B4OhEBkd6dL5fezt/SWxB1Yp+ISEBPbv34+9vT1DhgyhQ4cOKCRsMGtIr6JyTRqmghqMbhDyQDvUAdLVJ5uNRg78/jP7Vq9EsJjpePe9dBo1FrWDdIucFYU17P4hlezjIi7eIkOfakNIK+l62ImCQPWaNRS/9z7mkhJc7h6B13PPofLxkcQeQFldGZ8e/pQfC37E1c6VVzu/yj1R91y6Zr2pSN8O66dD8QkI7QGDZlv7k0pEvcnCwl0ZBJmuren3tWBzsG5jlGoFPqHO+ISek0u1WAQqCmopya6mJEdPabaOk3sKMG/LBaxS8x4BjufENIKtvbqUf4OUokvWaq1adUFUC+21ryDFuMeweNBi1qSt4YMDHzDut3GMjxnP0+2exkl9XnGzTAYdHwXv5rByIsy/C+5ZCNEDaBXgwrdTOnH/gn3cN88ayfK/g50skyAyIyWXJfll9Pdw5osWIWj/JGZhsdSTmfkpWQ0iFs2bz8HP955rftCUlpaSlJTE4cOHMRgMaLVaRowYQatWre6o3lWiKGIpq8eYo8OQbRWjMBXUQEPzcoWzGnWwEzletTTvHYsqQIvc1s7Bho2bhs5s4cPMIubnlqCWy5gR7sejQV7YSRjpqK4+ypmUN6mqOoiTU0tatfyIw4f1kjlXFouFpKQkEhISMBgMxMfH07t3bzQa6ZwOc0U9VWszqDtWisLFDvcJzUgsO0GURM6VKIqkJv7B9m8XUlVcRGR8F3o9+AiuPtLV4xpqTSStzeTY1lyUajk+sTJGTekkaR/UuiNHKJw5i/qjR7Fv04bATz7GITZWMnsmi4nlycv56shX1Jnr6O3Um7eGvYWzWsKen+UZsHEGJP9mbRA89htoPsI635IAURT5/VgBb69NJq+yjkkt1YyQxJLNwbrjUCjkeAZq8QzUcjazWBBEKotqGyXjS7J1pOwv5sTOfMAqNe/m54hFLXBUzMEryNqrS8p+DFJypVotLwcHCvclXnOtllwm5+7Iu+kd1JtPDn3Cd8nfsSFzA/+J+w/Dwv+UGx/a3VqX9f0EWD4W+r4G3Z+lTaArSx/pxIML9jWoC3bB1+X2aZZ5tVSYzDx6PJNdlXqeCvbm5XC/i8Qsysp3cTr51esWsRAEgTNnzpCYmEh6ejpyuZyWLVvSsWNHUlNTad++fVNfVpMj1JouSPMz5ugQas0AyNRyVAFOaLsHYHc21c/FGv07lpCAXdjtKy1rw8bfDUEU+b6wnFlpBZSazIzzdeeVcD+87aSr6TAYSkhLf4+Cgh9Rqdxp3mw2fn73IJPJgQRJbKamprJ+/XpKS0sJDw9n0KBBeHtL15NIMFrQJeSg25GHTAbO/YLR9gy0LhwlSGOzJCuDbUvmk3PiKB6Bwdw74y1CWsdKYwzr/OrU7nz2/pJOfY2JFt386TQinMSDeyRzrkxFRZR88AFVv/yK0ssLv9nWbB0pUx535O7g3aR3yazOpFtAN16Mf5HsQ9nSOVcGHez8AP74FOQq6zyq81Ogkm7OdDyvijfWnCQxs5zmfs68P7Yt9dnHJLN3Z86wbVyAXC7D3c8Rdz9Hojs29OoSRXRl9ZRk6yhuqOvKS4WdK1KsB8nAzUdjrelqqOvyDHKStDhTCv5cq3X6k09vqFbLxc6FGZ1nMCpqFDP3zuTlXS/zU8pPvNLpFSLdzpMFdQ2GhzdaGxJv+Z9V/OLuz4gNcmXxwx2ZuHBfo4S7t/Od42SdqannoWPp5NWb+Lh5MGN9L3SarCIWMykq+hWNJox27b7F3a3LVZ+/traWgwcPkpSURFVVFU5OTvTp04cOHTqg1VpXO9PS0pr0mpoC0SxgKqw5J5Geo8NcWmfdKAOltwb7Fh4NDXydUXlrJG2aacOGjasjsVLPjNQ8jurqiHPWsLRNOO2cpYvmCIKBnJzFZGR+jiAYCA6eQljoUyiV0km9l5WVsWHDBs6cOYObmxvjx48nJiZG0pTHuiMlVK3LwFJlxKGtFy6Dw1C6SqdGWFtdxZ5Vyzm6aR12jo70ffgJ2vQbhFzClMe8MxXsXJlCWa4ev0gXeoyNxitYus9RMBgo/3oxpfPmgcmEx9SpeEydiuI6MnOulvSqdN5NepddebsIdQ7ls76f0TPQ2pw4m+ymNygIcHQFbH4d9IXQZjz0ex2c/ZreVgOlegPvbzzN90k5uGnUzBrVmnHxQSjkMhIkuMSz2BysvykymQxnTwecPR2IaG9dwdq2bRvxsV2tka4cHcVZOgpSK0lJKmo8ztnTvqFH1znpeI3z7Z+mdbZWq/qRh2nTtu0N12q19GjJt0O+5ceUH/no4EeMWTOGB1o8wBNtnzgnS6rWWFMEfdtYbxZlKTB+OR1Cgln8cEceWpTYIHzRBS8n6R48TcXWsmoeO5GJnVzOj+0iiXc5d1MXRYH8glWkps7BYqkjLPRfhIQ8jkJxddeVn5/f2LvKYrEQEhLCwIEDiYmJkbQm4HoQRRFLhcHac+ps7VS+HhpqH+VOKtRBzmg6+FhrpwK1yO/QaLANG39X8uqNvJWWz+riSvzsVHzeIoRR3q6SOh2lpVtISZ1JXV02np59iYqcjkYTJok9gPr6enbs2MHevXtRKpX069ePzp07S9oP0Jiro3JNOsasalQBWtzva4ZdqHQReYvZzJFNa9mzahnGujraDhhC17H346CVztGpLq1jz09ppB0sRutux4ApLYns4C3pd0e3aRPFc97BlJeHU//+eL/4AuqgIEnsAVQbq/nyyJd8d+o77JX2PB/3PBOaTUAlpVJfThKsnwZ5B6wKzeOXQWCcZOaMZoFv/sjko80p1JksPNwtjH/1jcLF4eYEEmyzgn8QMpkMrZsdWjc7QtucU2Wp0xkb5eLPSsenHSpp3O7oatfgbGkbVAyd0LrZ3bay8RfVal2nAqFcJmdM9Bj6Bfdj7sG5LD6xmLUZa3kx/kUGhDTIospk0P3f4NMSfnjE2pR4zBLiw3rw9aR4Jn2dxIT5e/luamc8tbenkyWKIgtyS/lvah7NtfYsbh1OkP05p1pfk0Jy8gyqqvY3iFi8iaPjX6tQmc1mTpw4QWJiInl5eahUKtq1a0d8fDw+EhboXitCvfniVD+9ybpRKUcdoEXb2d8anQq2pvrdrt99Gzb+6dRaBL7ILubT7CJE4NkQH54O8cZRwoUcvf4MKSkzKa/YhaNjFLFtF+Ph0UMye4IgcPjwYbZs2UJNTQ2xsbH07dsXJyfpnA6LzkjV+kxqDxYhd1Thdm8UmvY+koryZB4+wLZvFlCel0NIm3b0njgFz6AQyeyZDBYObsji0KZsZEDH4WG06x+MUsJa2frTpyma9Ta1+/ZhFxVF8OKvcex8/a1N/gqLYOGn1J/45OAnVBoquSf6Hp6OfRoPh0u3XmkSqvNh8//g6Peg9YVRX0HrsSBhyuO25GLe/O0k6aU19Inx4pWhLYj0lk5w5VLYHCwbODipCW7hQXCLc39ghlqTtUFyzjkFw6xjpYgNgiv2WtUFzZG9grU432bNTi+o1Xp5+nX31XKzd+N/Xf/H6KjRzNw7k+e3P08Xvy683OllQl1CrTtF9YdHt8L398E3d8Og2XTq+CgLJ8Xx8OIkHliwj+WPdsbd8faKBhoFgelncllWUM5gTxc+bR6MY4OYhVXE4jOysuejUDhetYhFVVVVY++q2tpaPDw8GDRoELGxsdhLKCl7NYgWEVPRn1L9Smobe9ApvRywj3Y7l+rnq0H2N1LltGHj74ooivxSXMmbafnkGUyM8Hbl1Qj/CxaLmhqTqZL0jLnk5S1HoXAkOupVAgLuRy6XboU8KyuL9evXU1BQQFBQEBMmTCAgIEAye6JZQL87j+qtOYhmAW3PQJz7BEkatS/Pz2P70gWkH0zC1dePu194lYgOHSWNIKUkFbHnpzRqKg1ExfvQZVQETu7SPa/MFRWUfPQRlStXoXBywve/r+E6ZgwyCaOPSYVJzEmcw+mK03Tw6cC0+Gk095CuTximemuN1c4PQDBBj/9A9+esva0kIrVYz1u/nyThdAnhXo58PSmePs2kq0O8EjYHy8YlsdOoCIhxIyDGrfE1k8FCWZ6e4ixdY5rh4c3ZCA0qaWp7RWOE66zz5eqrkbSb+dVyxb5abdviOm7cX0a12nq15buh37Hi9Ao+PfQpo38dzaSWk3i0zaM4KB3AMxKmbIafpsK6F6DwKF2Hvs/Ch+J5eHES9y/Yx3ePdsJVc3s4WWVGM48cz2BvVQ3PhPgwLcwXecMDrKx8F6dPv0pdXTa+viOJinwZtfryK1yiKJKRkUFSUhLJyckAREdH07FjR8LCwm5J7ypRFLFUGa2pfg0OlSlPj2iydvCVOyqtqX5nZdIDtcg1d1YNog0bNuCorpZXU/LYV1VDK60Dn7YIocsl+vU1FYJgJi//O9LT52I2VxMQMIHwsGeuSejnWqmsrGTz5s0cP34cZ2dn7rnnHlq1aiWp01F/spzKtelYyuqxb+6Oy9BwVJ7SqeMaamvY+9MKDq79FaVaRc/7J9Nu8AiUKunuy8VZ1exckUJhehVewU4MnNISv/Pa5TQ1oslExXffUfLpZwg1Nbjdfz9eTz2JwlU6m3n6PD7Y/wEbszbi5+jHe73eO5eFIwWiCKfWwMZXoDIbmg2DAW+Bu3TpslV1Jj7eksKSPZk4qBTMGNqciV1CUUuo8vhX2BwsG1eNyk6Bb7gLvuHn8q0tJoGyfL012tXQr+v4jjwsDZNYpUre2KvrbF2Xu5+jpNKmV+JG+2op5AomNJ/AgNABfLD/A+Yfm8/v6b8zreM07gq+C+xdYPx3sG0m7HwPSk7TbdxS5k+MY8o3+3lg4T6WPdIZl1s8kU+uqWPi0QyKjCY+ax7MPQ1iFkZjKSkpsygs+gUHh1DaxS7F3b3rZc9jMBg4cuQIiYmJlJaW4uDgQNeuXYmLi8PNze2yx0mBYLBgzNVdEJ0SdEbrRoUMdYAWx46+5xr4utvfVhFXGzZsXBslRhOz0wtYXlCOm0rBuzGBTPDzuEj1tCkpL9/NmZQ3qalJwc2tC9FRr6LVxkhmz2g0smfPHnbt2gVAr1696Natm6QtLExFNVSuSceQWonS2wHPh1thHy3d/VwQLJxI2MKu77+htrqKlr360uO+h3B0lc5mTZWBvT+nkfxHIQ7Oau6a2Ixmnf0kTXnU79xF0dtvY0xPx7FbN3ymv4RdZORfH3id1JpqWXh8IYuPL0Yuk/NU7FNMajkJe6WEmSSFx6z9rDJ3gndLmPgrhPeSzJxFEPk+KZv3N56hotbI+Pgg/jMg5rYoybA5WDZuCIVKjneIM94h56Q8BYtARVEtJdk6ShtqupL3FWLangeAXCnDw1+LV5AWr2Cr4+UZoJU0z/lSXLKv1lXWank6eDKrxyxr2uC+mTyz7Rl6BfZiWsdpBDkFQd9XrU3yfn4S5vWm57hlfPVgBx775gAPLtrH0kc63bRCyz+zsbSKJ05m4aiQszo2kvYujoiiQEHBD6SkzsZiqSU09ClCQ566rIhFSUlJY+8qo9GIv78/d999N61atUIl4WrjWURBxFxce65uKluHqaimMdVP4WGPXYRLozOl9tciu4UrWTZs2Gg6jILAwtxSPsgspE4QmBrkxXMhPriopJvS1NZmkZr6NiWlm7C3D6JN6y/w9OwvaQTpxIkTbNy4kerqalq0aMGAAQNwlTDSIdSaqNqURc2+AmR2SlyHh+PY2U/SNOnc5BNsWzyP4ow0/KObM2raf/GNiJLMnsUkcGRrDvvXZmIxC7QbEEzc4FDUDtJ9dwwZGRTPeQd9QgKqkGACP/8cbZ/ekn53fs/4nQ8PfEhxbTFDwobwbIdn8XWUrk8YNaXWheUDi8HeFYa8Bx0mg0K69/WPtDLe+O0kpwqq6RjmzmvDWtAq4PZpgWJzsGw0OXKFHA9/LR7+Wmio1RQFkaqSuvPENHSkHS7h5O4CAGRyGW6+mgtqujwDnSS96Z3lglqtV16m6pdfqFxxdVGtON84Vg5fyfJTy/n88OeM+mUUj7R+hIdbPYxdy1HgEWntl/X1YPoM/4jP77+LJ5Yd4KFFiSx9pCNO9jfPyRJFkS9ySngzLZ9WWgcWtw4jwF5NTU0qyadfpbIyEVeXeJo1ewtHx4tX1SwWS2PvqoyMDBQKRWPvqsDAQEnHbqm+MNXPmKtHNFoAkDkoUQc54dTS41x06g5rN2DDho2/RhRFNpVV83pqPul1Bvq6O/O/KH8iNRLWypj1ZGZ+TnbO18jlSiLCnyco6OGrVlC9HvLz81m/fj3Z2dn4+voyevRoQkNDJbMnWkRqEguo3pSFUGfGsbMfzv1CJL2PVpcWs+Pbrzn9x060Hp4M+dcLNOvaU1KnI+NIKbt/SKG6tJ7QNp50uycSVx/pJPstOh2lX3xJ+dKlyNVqvF94HrcHH0QuYfTxWMkxZifN5mjJUVp6tOT9Xu8T6x0rmT0sJkicDwmzwaiHjo9B72ngIF30Mae8lllrT7HueCEBrg58fn97Brfyve0yUmwOlo2bgkwuw9VHg6uPhqg4q4KcKIroyusvSC/MSS7n9L7CxuNcvB3OiWk0OF/2Wulu+ko3NzwmTcL9oUvUasXGWmu1Bg28IKqlkqt4qOVDDAodxLv73+Xzw5+zJm0NL3d6me4B3eHRBFj1EPz8OP06P8ln45/iye+O8tCiRL55pBNaO+n/DA2CwLTTuXxfWM4wLxc+ah6MPSbS0j8gK2ueVcTigkaY56ipqWnsXVVdXY2zszN9+/alXbt2jb2rmhKZBQyZVeck0rN1WKoM1o1yGSp/RzQdvBudKeVtJq5iw4aNpudMTT3/Tc1jW7mOSI0dy9qE09dDoiaoWFtTFBT+RFraexiNJfj5jiYi4nns7KRTQNXr9WzdupWDBw+i0WgYPnw47dq1k7SGtT6lgsrf0jEX1WIX4YLr8AhUvtL1XTIZ6kn69UeSfv0JRJEu995H/PB7UEkogFSWp2fXqhRykytw83Nk+L/aXiDq1dSIFgtVq1dT/OFcLOXluIwahfez/0bp5SWZzZLaEuYenMuvab/iYe/Bm93eZETECOQyCTM3UjbDhulQegYi7oKBb4N3M8nM1RrNfL4tjXk705HL4Ln+0UztGY696vZq9XIWm4Nl45Yhk8lw9nDA2cOB8NhzN56aKoM1vbBBxbAovZrU/cWN27XudngFOeEd4tQoquHo0rSriRfVap2Nak2fTtGsWZdUIPRx9OG9Xu8xOmo0b+97myc2P0G/4H68GP8ifg+uho0zYO/nDAg7wZejZ/PYT5lM/jqRxZM74iihk1ViNPHI8UwSq2p4LtSH50N9qazYw5HTr1JXl3VZEYvc3FwSExM5ceIEFouFsLAwBg8eTHR0dJP1rhIFEXNpXYMzZY1QhRfIKdl0FACFqx3qECfUQQFWZT9/LTKVLdXPho1/CpUmMx9kFrEorwSNQs4bkf5MDvBCJWGtTFXVQU6feQOd7hjOzrG0af0lLi6xktkzm83s27ePHTt2YDKZ6NKlC7169ZJUddVcVkfl7xnUnyxD4W6Px4PNsW/hIWkE6fSeHexYthhdWQnRXXrQ6/7JOHtJp/BWrzeRuCad4zvyUDso6TEumlY9/ZFLmPJYe+AARTNnUX/yJA7t2+Pz1Vc4tGopmT2DxcDSk0uZf3Q+JsHE5FaTmdp6Klq1hJLkpamw4WVI2QDu4XDfCogeaG1bIwGiKPLL4Xxmr0umsLqekbH+TBvcDD8X6QRXmgKbg2XjtsPRxQ7H1naEtj7Xq6u+xtQoF29VMNSTcaS0cbvGWY1XsBM1gkC6SwmeQVqcPJpGxOD8qFZjX61Vqy5bq9XVvys/jviRb05+w1dHvmJ3/m6mtpnKQwPeQuXbBn77N/0qxrNo8MdMXlvB5MVJLJ4cj0bd9H+OJ/V1TDyWTqnRzJctQhjiJnDq5PMUFv2Mg0MI7WK/wd29W+P+JpOpsXdVfn4+arWa9u3bEx8fj7f3jT8ILXrjRT2nxPqGVD87BeogJyrCRKK6t7Sm+jndHoqLNmzYuLmYBZFlBWXMySig0mThfn8PpoX54SnBffIs9fUFpKW9S2HRL9ipfWjR4n18fUZcFNVvKkRR5MyZM2zYsIHy8nKioqIYOHAgnp6ef33wdSIYzOi25qDblYdMIcN5UChO3QIkXbgqSk9l25J55CWfxDs0giH/9x8Cm7eSzJ5gETi+I5/ENekY68y06hlAx+Hhkma/mPLzKX7vParXrkPp64v/++/hPGSIpA7r1pytvJf0Hrn6XPoE9eH5uOcJdg6WxB4A9VWw/R3Y9yUoHaD/m9DpcVBK95w+nFPJ/9ac4FB2JW0CXfjs/nZ0CJFOrbMpsTlYNu4I7B1VBDVzJ6jZuT8sY52Z0txz6YUl2TrKC2DdyWMA2GmUf+rV5YSLl8N1qwRd1FfrUrVaDVEttULNlNZTGBI2hDmJc/jo4Ef8mvYrr3R6hU6T1sKKB+i1YwLfd5/J+F3wyOL9LJoUj0MTCn1saBCzcFYoWB0biU/NWv7YOxuLpaZBxOJJFArrCmllZSVJSUkcPHiQuro6PD09GTJkCG3btsXO7vqig6JJwFigP5fql6PDUl5v3SgHlY/jOYn0ICeUXhpkchknEhJwkDB9w4aNpkImkw0CPgIUwAJRFGff4iH9LTghKvnf/tOcqqmni6sjb0UF0lIr3Wq1xVJPdvZ8MrO+AiyEhjxJSMjjKJXSpcqVlJSwfv160tLS8PDw4P777ycqSjpxB1EQqT1YTNWGDASdCU17b1wGhaJwlq6WrKaygl3fL+V4wiYcnJzpP/VpWvXpj1wuXUpXzslydv2QQnl+DYHN3Og+JgqPAAkl++vqKFuwkLIFCwDwfOopPKY8csWWLzdKSkUKc5LmsK9gHxEuEXzV/yu6+l9e7feGESxw6FvY8gbUlkG7B6Dva6CVLvpYXF3PnPWn+fFgLl5Odrw3pi2j2wXcFm1/rhabg2XjjkXtoMQ/yhX/KNfG17Zu3kbLiA6UZFdT0lDbdWRbDoLZKi+nslM0ysafdbrcfDXXnDJwUVTrzwqEDbVa/lp/PrrrI3bk7uDtfW8zZeMUBocO5vkHf8T712fomPRv1rZ+nCHHuvPoN/tZ8FDcDecTi6LIp9nFzEovoI2TA19EyKhIm8KpP4lYiKJIWloaiYmJnDlzBoCYmJjG3lXXsvImiiLmsvqGmilrqp+poAYaeqQpXNRWR6qTH+ogJ1SBWuQ3WTXSho2mRCaTKYDPgP5ALpAkk8l+FUXx5K0d2Z1LVp2BN9Ly+R0tgRYLC1qGMtTLRdIoQHHJOlJTZ1Nfn4eX1yCiIl/CwSFIEnsAdXV1pKSksH37dtRqNQMHDqRjx45NlnZ9KQxZ1VSuScOUq0cd5ITrRGuGgFSYTSYKDyWyaPFnmI0m4oaNovPocdhppHNYK4tr2f1DKplHS3H2tGfw460Ja+spaa+nqt9/p/jd9zAXFuI0eBA+L7yAyt9fGntAZX0lnx3+jJVnVqJVaZnecTpjY8ailEs4lc/cDeunWeXXg7vAoB/Av51k5upNFhbtzuCzramYLCJP9I7gqT6RN6VWvam580Zsw8YVkCtl+IQ54xN2rvjZYhYoL6ixphZm6ynJrubk7nzM26y9uhQqOZ6BWms9V4N0vIe/FsVVpExcUoFw5aqLarV6xvSko29HFh1fxMJjC9mRt4MnO09lQmo0zY58ya7g0wxMu5/Hlsr46sEO1+1k1VsEnj+dww9FFdzt5cwz9mvIPPwFCoWG5s3exs/vXgwGI/v27SMxMZGysjI0Gg3dunUjLi7uqiWAhVoTxhwdhobolClXh1Brtr4najnqQCecugdYnapgJ0lXSW3YuEV0BFJFUUwHkMlk3wN3AzYH6xqpMVv4OLuYL3OKkSNjLHXM6dgGBwlrZXS6k5xJeYvKyn1otc1o1+5b3N26SGbPYrFw8OBBtm7dSl1dHXFxcfTp0wdHR+mcDnOVgep1GdQeLkHurMZ9XAwObb0k6/UkiiLpBxNJ+GYBlYUFhLePp9eDU3D3D5DEHlgzWfavy+TIlhwUSjldRkXQ9q6gq3p+Xy91x0/g9t775KelYdeiOQHvvYsmLk4ye2bBzMrTK/ns8GfUmGoYGz2Wp2KfwtXeVTKbVGbT4sQ7kLAbnAPh3kXQcrSkdVYbThQxa+0psstr6d/ChxlDmxPiId3fh9TYHCwbf3sUSnmjCmHzhii6IIhUFtVSmqOjONta15WSVMSJHQ29uuQy3AMcrQ2SG6JdnoFaVHaXd3yuplbr8cGTGRY+jLcT3+bdgx/ys2sUM3o+Q/udn7LLI4u7U57iiW/hywc7YKe8Nier2GDi4eMZ7K+u5V++RnpVPEpBcSa+PiOJippOZaXA77+v5ciRI5hMJgICAhg1ahQtW7ZEqbz8rUA0C5gKay5o4GsurbNulIHSW4N9iwaJ9GBnVD4aSZs12rBxmxAA5Jz3ey7Q6RaN5Y5EEEV+LKrgrbR8ioxm7vVx45UIP07/sUcy58poLCM9/UPy8legUrkQE/Mm/n5jkUsYBcjIyGD9+vUUFRURGhqKp6cnw4YNk8yeaLKg25GHLiEHURRxuisIp15ByK/w/LpRynJzSPhmPplHDuLuH0jk0Hu4e+JkyeyJgkjy3gL++Dmdumojzbr40nlkRJMLXp2PuaSE4rlzqfppNQqtFr+33sRl1ChkEkYf9+Tv4Z3Ed0irSqOTXyemxU8jyk26VFKMtbB7Luz+CA9BgF4vQbdnQC2dnH1yYTVvrDnJnrQyon20fPtIJ7pHSVeHeLOQiaJ4q8dww8TFxYn79++/oXMkJCTQu3fvphnQbYrtGq+MKIpUl9ZZo1zn9euq15sA68KNq4/G6mydTTEM0mKnuXzhrLmiorFWy5iRgdzJCZcRI3AZO4Y99rnMTppNYU0hI7w78dzxrTgZjEypfRJ1TH8+v78D6j81x73c9R3X1fLQsQzKTWZedEoguvJjHByCiYr8HyUlniQmJpKZmYlCoaB169bEx8cTEHDxqqIoilgqDFZFv7O1U/l6aEixlDupUAc5n2vgG6hFbt+0E5O/+/f073590DTXKJPJDoiiKN2y8A0ik8nGAANFUZzS8PuDQEdRFP/vT/tNBaYC+Pj4dPj+++9vyK5er5ekPcLNJkVUsAQHUlESgZmHqCNaZhW8keIaRdGMyFZE8VfAiIw+yGQjkMmkWyGvq6sjLS2N0tJS7O3tiYiIwNPTk5qaGmk+QxEci8AzWY6qXobeR6Q0RsAs3dwYs6GegqQ9FB8/hEKlxi+uK96tYqmpq5Pse1pbKlJwQKS+Ahw8wK+9DAcPCRf1TCY027bhuHYdMpOJ2rv6UNyzJxopZddNJayuWM2xumN4Kj0Z5TaK1g6tJU159C7eSXj6YuwNZRR59+CYz70oPUKlsQfojSI/pRrZlm1Go4JRkWr6BClR3MQF2qa41/Tp0+eSzypbBMuGjQZkMhkuXhpcvDREdrAWb4qiSE2lodHZKsnRk59SyZnEosbjnD3tG+u5ztZ2OTSo312pVisiNpZl907h+6hsvk5bzrYAb/5VY2Fh3ru8eyabp5fBZw90QPUXK7m/l1Ty9MlsnOUG/sssgqtO4uf/KEWFHVi6dD/V1dW4uLjQr18/2rVrd0FKilBvviAyZczRIdQ0OJQqOaoALdou/udS/VzsbD2nbNiwkgucX6wTCOT/eSdRFOcB88C6GHijjued7qAXGky8lZbPD0UVeKuVfBzhz70+bsjPu6809TWWliWQkjKH2tp03N17EB0145LN1JsKg8HArl272L9/P3K5nLvuuosuXbqgUlkX46T4DI35eirXpGHMqEbl54jr8HACw12b1Mb5CBYLR7dsYPeqbzHo9bTtN4iuYx9A4+wCSHON+op69vyURkZSEY6udvSbHEF0Rx9Ja/T027ZR9O57mLKz0fbujfe0F7ELC5Ps71Bv1DPv2DyWnlyKWq7m3+3/zQMtHsBOwsbW5B+CdS9Bzl7wawuDluET0oVTEl2jySLw7d4s5m5PQW+w8GCXEJ7tF42b481XDZbyfmpzsGzYuAIymQytmz1aN3vC2p5braqtNjbIxZ+r60o7WNK4Xetmdy7K1eB4OcbFXVSrVTbjdQY6OTFwUD++jshlpvo4q8OjmZH7I2mpWfxn2au8f3/nSzpZoijyUVYRszMKiVHk8y/Tq/jaB1Jc9C927SxDEHYTHh7OkCFDiI6ORibKMBXWoD9W0OBMVWMuqYOGILbSywH7GDdrv6kgZ1S+GmQS1kDYsHGHkwREyWSyMCAPGA9MuLVDun2ptwh8lVPCR9lFmAWRfwV7868QH7TXmAp9LdTUpJOSOpOysgQcHEJp22Y+Hh59JJuQC4LA0aNH2bx5M3q9njZt2tCvXz+cnaVriGzRG6nemEVNUiFyjRLXUZE4xvtKmqadffwI25bMpzQ7k8AWrejz0FS8Q8Mls2c2Wji0KZuDG7IQBYgbEkr7gSFXTNm/UQwpKRS9PZuaPXtQR0QQNH8+2h7dJbMniAK/pP7CRwc/oqy+jLsj7uaZ9s/gpZEuSoauCLa+AYeWgaMnjPgEYu8HCVUed5wp4Y3fTpJarKd7pCevDW9BtI90giu3EpuDZcPGdaBxVhPc0oPglufkxA21Jkpz9I01XSXZOjKPlTY6MA5OKmtNV7ATXq2H4DlkLKrM41Su+gHdLxt4yGhkXPNQVjWrYHKED8PqkhmX/gT/+3YOrz8wAOV5zk6dReDZU5n8XFJNN3byqGUxFUWd2HTaCzu7auLi4ujQLBanGhXGdB2lCccw5ekRTVZhD7mjEnWQM5q23udS/a6Q6mjDho0LEUXRLJPJngY2YJVpXySK4olbPKzbDlEUWVtaxeup+eTUGxns6cLrkf6EOEi3Im8yVZOZ+Sk5uUuQy+2JinyZwMAHkculWyHPzc1l3bp15OXl4e/vz7hx4wgKkk6NUDQL6P/Ip3pLNqJRQNvVH+d+IcgdpJvWVRYVsuPbRaQk7sHZy4fhz00nqmNXSSNIaQdL2P1jCvpyAxHtveg6OhJnTwkl+ysrKfn0Myq++w65oyM+L7+M233jkamkez4eKj7EnMQ5nCg7QVuvtnza91NaeUrXJwyzwdrLavu7YK6HLk9BrxfB3kUykxmlNcz8/SSbTxUT4qFh/sQ4+jX3/ltnxNy2Dpatv4iNOw07jYqAGDcCYtwaXzPWmynL1Vsl4xsaJeduzEYQrF6X2kGJV9B4PF58EE3hKZQ71vDA6izGa1Rsba7h4zYmBpc8xadLXuX/Jj0EWFNsHjx8jOO1ME5cTteyoxw40w8XTSB9o2KIMPnAoXpMO9IoB1DIUAdocezo21g7pXBvmibMNm4doiiCKCIIAqIgIIrWn4IgIIqi9TXh3Gvn9rVcsP3c8eJ5x5899ux+1mPOndvSeIxwnp2zx1dm58AdnMZ2tYiiuBZYe6vHcbtySl/Hqyl57KrU08zRnlVtI+jhLt1qtShayM9fSVr6B5hMFfj7jSEi4j+o1dIVzFdXV7N582aOHj2KVqtl5MiRtGnTBrlcQhW75HKqfkvHXFqHXbQbrsPCUXlLV2hlrK8j8edV7P9tNXK5gm7jHiRu2CiUaukc1pIcHbtWppCfUolHoJZ+k1oQEO321wdeJ6LZTMXKlZR+/AmW6mpcx43F61//Qukmnc3CmkI+OPAB6zLW4a3x5u0ebzM0bKikdVacXgcbXoaKDIgeBANmgqd06bK6ehOfbktl0a4M1Ao5Lw1uxuRuodcs4nUnclkHSyaTrQWeFEUx8+YNp9G2rb+Ijb8FanslfpGu+EW6Nr5mNlkoz6+5oK7rxN4yLGZP8J+MMngyzkIFoXnHab0uk3KHHAoj5/BF7UHsWwzmqT370IsKnjR+hfNpOwz6e+hf44efzhVZkQy5hxF1hMs5VT8/R2TKpn3YX3oybp2QC4LlkhN/67aLnQHrvpbGybwuP4ecE0cvmviL4nnOgHCJSf5F4/iT/cYxN9gSL3QKLnBKzndWBPHi1/7kZFzOWbl4zAI6XTVZv626KmflSu+zKApN+pk2JY6+AcCUm2LrVj6rbFyaMqOZdzIKWJpfhotSwdvRgTzo54FSwrS1iop9nEl5C73+JK4u8URHv4qTU0vJ7JlMJv744w927tyJIAh0796dHj16XHdj9quyWVxL1e/p1J+uQOnpgMekljg0c5fMnigInNy5jZ3fLaGmopwWPfrQfcJDOLlL57DWVhvZ92s6J3fnY++oovf9MTTv5i9pg9mavXspmjkLQ0oKmk6d8Hl5OvYxMZLZqzPXsfjEYhYdW4SIyGNtHuPhVg+jUUmoRlJ8CtZPh/Rt4BkDD/wIkf0kMycIIj8cyOWdDacp1Ru4t0MgLw6KwdvJXjKbtxtXimAtBjbKZLIlwDuiKJpuzpAAW38RG5dBFEUuWl0/bxJrqqulprLiggn72Unshav4F05i/7yyLwgCCAKCeP4q/p8mzJedWF95wmwdh/UYOQLegSIevhbq9QZqdQbqqg3odEZK3AwIzt7YyQMJqXfimEbgW9xxEqt5quAnYk53I9IUiKgwoFeWkyxPRy+vwFhrQDwlIp648pjPvf4XUQrh4km+1Jz5ZYXkNgBkMjkyudy62iyXIZdbf5fJFchkDb/LZNbf5XJkZ/eRnd3v7Hb5xa/LZcjlShQq+XnnkWNAhpu3d+PvZ//J5XKQnTcGmfxCmw1jOrev/NwY/3Qe2fnjPn98VzNmmRzkF475gvfjsmM+Z2tfUtJN+fwaWMyte1bZOA+TILIkv5R3MwrRWyxMDvDk+TBf3FTSJcvU1eWSmjaH4uK12Nn50arlR3h7SxcFEEWRU6dOsXHjRiorK2nWrBkDBgzA3V06R0eoM1O9JRv9nnxkKjkuQ8PRdvFr8oWz8ylIOc3WxV9RmHoG34goRjw3Hf/o5pLZs5gFjiXkkvRbBmajQNu7gogfGnpFld4bxZiTQ/E776DbtBlVQAABH3+EU//+kn53NmRt4IP9H1BQU0D/kP78J+4/BGil6xNGbTkkzIakBWCnhUFzIP4RUEj3vu7PLOd/a05yLK+K9sGuLHwojrZBrpLZu1257F1PFMWVMpnsd+A1YL9MJlsKCOdt/0DCcf1lf5E/Sd+SkJBwQwb1ev1fnuNsSo71p/Cn362T0At+P7uPICIignCJY87b9+LXz65Un78Pl9j3vN+Fy4/PYKhneeKuBiflvGMbx3cV42m8VhE458Bccd/z3x8ajr3Sfpezf5UT+6OLP7+h78JNQSYDmcw6IW38vxyFXIWbyodAtS/uriHI1E5kuaSyIdbE75qhRJpTeXjvKZyy/CgyHiNd/AO5QoZcJUOhtP48O4GmYbJLow3rpBil1bFAJkNx3jis22WAzPqzYUzIGhyRP+/baKPhmPPPcan9zrvOC+w02rPuW1dfj0ajOc++7MJzyC885/ljvOS+yEB+of3G7bcA1XXKwoo0lvNhuV7j4vkHC5x3S29SDBbhhu/JV8stflbZaGBbWTWvpeaRUmugp5uWN6ICaOYoYa2MpZbMrK/Izp4PyAgL+zchwVNQKKSzWVhYyPr168nMzMTb25uJEycSHi6duIMoiNQkFVK9MROh1oxjnC/OA0NQaKVLzdOVl7Jr+RJO7tyGo5s7g558lhY9+lifHRKReayU3T+kUllUS3BLD7qPicTNVzr5fIu+hrJ58yj/+mtQqfD69zO4T56MXMLo46myU8xOnM3B4oPEuMUws/tM4n3jJbOHxQwHvoZtM6G+CjpMhj6vgKPHXx97neRX1jF7XTK/HsnH19mej8bHMqKt/z+2HOGvlpVMQA1gBzgh1dP4Yi71aVzQsKsppW+PbFrHkR++QalUNqzaXxz5ODvR/ztwbjX7TyviF61aW1e35Q0r2+f+f95KuVJxiVV7+bkV/7Pnkv15Zf3SK+qXXCn/06r9n7ed/3tqWhrR0TEX2bpgzH+ydXbV3jpm2Z/2/asxKy6OPPx5bH96f846K6IgYi6ta5BIr8aYo8NUWIMgCGTKSzjikI0YuJZ1wX3YJ+/KALtiWu3fQnXOEdxyg/GXBaF3iUHvFIFBUCOKYDGBq7cGryCtVUyjQcHQ3vHOEbC402Wo/4q/+/XBLbnGW/Ws+seTXmvg9dQ8NpZVE+agZknrMAZ4OEsaBSgq+pXUtHcwGArx8RlOZMSL2Nv7S2IPoKamhm3btnHgwAHs7e0ZOnQo7du3RyFhg1lDeiWVa9IxFdSgDnPGdVgE6gDp+p+ZjUYO/P4z+1avRLCY6ThyDJ1GjkHtIF3aWkVhDbtWpZJ9ogxXHw1Dn2pDaGvp0g9FQaDql18p/uB9LCWluNw9Aq/nnkPl4yOZzbK6Mj459Ak/pfyEq50rr3V5jdGRo1FIqNRHeoI1HbD4JIT2gEGzwVc60Yw6o4V5O9L5Ynsqogj/6hvF473C0ahvW5mHm8KVarAGAR8AvwLtRVGsvWmjusr+Ik2Fq68frmFRBAYFXjAZvpSzYXUgFJeedJ+X0mN9XXGeg3HeZFx+cRpQo60/27+UE3KBk3EpB+a89J3zbG3fvoM+ffpI9TbeFlQnJBB7m05eLXojhoZeU8ZsHcZcHWK9NZwgs1Ng8leSHF7G8bIUFOo0PGNS+cz+CbJk4UwPceFfYW1JMKjICBtAacY09tQepetR6LJDhlmuxdC6J8bYPug0bhSkV5Gyv7jRtpP72V5dWjyDnPAOcUbjfPN7Ttiw0dTc4mfVP5Zqs4UPMwtZkFuKnVzGjHA/Hg3ywk7CSEd19VHOnHmDqupDODm1olXLj3B1la4XtcViISkpiYSEBAwGAx07dqRXr17WCLtEmMvrqVqXQd2xUhSudrhPaIZDa09JHdaUxD1sX7qI6pIiojp2pecDD+Pq4yuJPbAq7ib9lsmxhFyUajnd7o2kde9AFBKmPNYdPkzhzFnUHzuGfds2BH36KQ5t20pmz2QxsTx5OV8e+ZJ6cz0PtHiAx9s+jrNaOsl+yjNg4wxI/g1cQ2DsUmg+3JoxIwGiKPLb0QLeXnuK/Kp6hrb2Y/qQZgS6SVhLdgdxJffyFWDMLZKdvan9RUJaxxJSVvm3X1X+p4ZpbwWiScCYr29s3mvM0WEpr7dulIPKxxFNWy9UgVqKVdUcTDnGyVMnkcvraBt7hgKNnpmyVzHKnVnSMpwBnlb5VJlMxuR7RvLRr948cOhZdvYuYWo/R4acFhlxPBHnhb/h7eRE+xEjsH/8HnRqH6t6YYNsfPrhc726NC7qC5ojewU7oXWzNRK2ccdxK59V/zgsosiKgnJmpRdQZjIz3s+d6WF+eNtJFyU3GEpIS3uXgsIfUas9ad5sDn5+o63pvhKRmprK+vXrKS0tJSIigoEDB+Lt7S2ZPcFoQZeQg25HLjKZDOf+ITj1DECmki7SUZKVwbYl88k5cRTP4FDGvDqT4FbSOR2CIHJyVz77fk2nvsZEi+7+dBoeLulin6moiOL336f61zUovbzwnzMb5+HDJUt5FEWRHbk7eHf/u2RVZ9EjoAfPxz9PuIt0qaQYdLDzffjjM5CroO9r0PkpUEknKHE8r4r/rTlBUmYFLfyc+XBcLJ3CpUs/vBO5Ug1Wj5s5kD/ZtvUXsXHHIIoi5rL6hshUQ6pfQQ1YrCmlChe1VdGvsx/qICdUAVrMWDh27BiJiZspKirC3t6OTp1F7Ow2slNoy3xexsfOnm/ahNNce2FNgUwm45kRXZkpW0B44ht86bidN9uFsCK2jHtqW3PfGU8qV61CXLYMh9hYwseOJfb+QcgdHDDWmSnN1TeoF1qdruzjZY3Zr/aOKjyDtBc0SHbxckDKppU2bNwIt/JZ9U9jX6WeV1PyOKqvI97ZkW/bhBPrLN1qtSAYyM5ZTGbmZwiCkZDgqYSGPolSKZ3Ue1lZGRs2bODMmTO4u7tz3333WRu1SxgFqDtcQtW6DCzVRhzaeuEyOAylq3T1QLXVVexZ+S1HN2/ATqul7yNP0qbvQOQSpjzmnalg58oUynL1+Ee50n1MFF7B0n2OQn095YsXU/rVPLBY8HjsMTynPorcUbrarvTKdN7Z/w6783YT6hzKZ30/o2dgT8nsIQhw9HvY/D/QF0Lb+6Dvf8HZTzKTpXoD7204zYr9Obhr1Lw9ujVj44JQ2OYIF3HbJkja+ovYuF0Rak0XRKaMOTqEWjMAMrUcdaATTt0DGmTSnVA4n3tQlpeXk7RtM4cOHaK+vh4fHx+GDOmAXPE9FVX7WK38NyuM3ens4siCVmF4XiaHWSaT8crw1rwuvs7JxK9ZlrmYH30C+cQli186pPDoqAmMTnGj5sefKXj5ZYrefhuX4cNxHTcO/5ho/KNcG89lMlooy9U3NkcuztZxZEsOQoODqLJXWKNcQU54BmvxCnLCzVeDXCHd6rENGzZuH3LrjbyVls/PxZX426n4okUII71dJXU6Sko2kpL6NnV12Xh69iUqcjoaTZgk9gDq6+vZsWMHe/fuRalU0r9/fzp16oRSKd00yZijo3JNGsZsHaoALe4TmmEXKl2zV4vZzJGNv7Pnh+UY6+qIHTSULvdOwEErnaNTXVrHnp9SSTtYgpO7PQMfbUVEey9Jvzu6DRspfucdTPn5OPXvj/eLL6CWsOlzlaGKL498yffJ3+OgdOCFuBe4r9l9qCRU6iMnEdZNg/yDEBAH45dBoHTpskazwJI9mXy8JYU6k4VHuoXxf32jcHG4c+q7bza3rYNlw8btgGgWMBXUXOBMmUvrrBtloPTWYN/CA3WwE3bBzii9NRdFewRBIDU1lcTERFJTU5HL5TRv3pz4+FgEYR2ZWS9ikjux2GkR2/TOTPBzZ3Z0IOq/SGGQyWS8PqIlr4qTuG9fAN+UfUL/yjI+bN2XLzK/5WdXP6Z9+SKdi1yoXLWKyh9+oGL5chzatsV13DicB1ujWiq1At9wF3zDzz3YLWbB2qurwekqzdFxYmceZpNVO0ChkuMZqL0gvdDdzxGFyuZ02bDxd6HWIvBZdhGfZxcjAs+F+vBUsDeOEkY69PrTCOL7HD12CkfHKGJjl+Dh3l0ye4IgcPjwYbZs2UJNTQ3t2rXjrrvuwslJOqdDUQ/lq85Qe6AIuVaF271RaNr7SJopkHH4AAlL5lOen0tIm3b0eehRPAKDJbNnMYns/SWNw5tykMmh4/Aw2vUPRqmW7rtTn5xM0cxZ1CYlYRcdTfDixTh27vTXB14nFsHCjyk/8smhT6gyVHFv9L083e5p3O2lk+ynOh82vw5HV4DWF0Z+CW3GgYQpj1uTi3nr91NklNbQJ8aLGcNaEOElneDK3wWbg2XDRgOiKGKpMFgV/bIbHKp8PZitkRy5kwp1kDOaOB9rdCpQi9zu8n9CtbW1HD58mKSkJCoqKtBqtfTq1YsOHTpgsZwi+fRT1NamgcdY5tTfT7LezP8i/ZkaePWrezKZjDdGtOIVQaRvoic/e37OzKSfGd15Cm8Z0vl3wrP0COjB9FenE/nydKp++YXKlavORbVGjMB17FjsY6IvOK9CKW90nOhmfU0QRCoKayjN0VOSo6M0W8eZxEKO78izvj8KGe7+jhfUdXkEalFJ+EC1YcNG0yOKIr8UV/JmWj55BhN3e7syI8KfIHsJa2VMFaSnf0Ru3jLAnuio1wgIuB+5XLppSlZWFuvWraOwsJCgoCAmTJhAQIB0PYlEk4Budx4hO+XUUoy2VyDOfYKQ20t3jeX5eWxfuoD0g0m4+vox8sXXCG8fL10ESRA5k1RE6loRc10W0R196DIqAq2bdPVA5vJySj76mMpVq1A4O+P739dwHTMGmYTRxzP1Z/jkt084U3GGOJ84pnWcRjP3ZpLZw1QHez6FXR+AYIEez0P3Z629rSQiXy/w0NdJ7DhTQriXI19PjqdPjHR1iH83bA6WjX8sQr35wlS/bB1CjbVHqUwlRxWgRdvZH3VwQ6qfy9UJQBQUFJCYmMixY8cwm80EBwfTt29fmjVrhijqSEmdSUHBD9jbB0HkEv6d40q9RWBpm3D6ely7wpBcLmPmyNa8JIj02j+Nn4NX0mHvAlbFDGV5u3/x2bEFjPxlJI+0foSHH3gY94ceom7/fipWrqJy1Soqli27KKp1OTse/lo8/LXEdLIqTImCSHVZHSXZekqyqynJ0ZNxuJRTuwus76MMXH0d8Qo+F+3yDHLCzsF267Fh43bkiK6WV1PySKyqoZXWgc9ahNDZVbpJnCCYyctfTnr6XMxmHYEB95OfH0dQ0DDJbFZWVrJp0yZOnDiBs7Mz99xzD61atZI0ba3+ZBmVv2dgKa+n1hsiJ3ZA6Sldzy5DbQ1//Pg9h9atQalW0fOBh2k/eDgKpXQpXUUZ1exceYaijGrs3WHE0x3wi5Au5VE0mahYvpySTz9DqKvD7YH78XrqKRQu0tnM1eXywYEP2FS0CX9Hf97v9T79Q6RrTowowslfYOOrUJUNzUfAgDfBLVQae0BVrYm5W86wZE8djnYmZgxtzkNdQ1HZygKuCdssx8Y/AtEiYio8P9WvGnNJXWN3NaWXA/YxblZnKsgZla8G2TXcTMxmM6dOnSIxMZGcnBxUKhVt27YlPj4eX19fRFGksPBnUlJnYTZXExL8GAc1E3n+TBH+9nJ+jI0k2vH6V/jkchmzR7fBIsDgg/fzbctmdD8zl4kVGQwa+RnvpazkiyNfsCZtDdM7TadnfE808fGYz0a1Vqy8qFbrz1GtSyGTy3Dx0uDipSGyg3VlSxRF9BWGRiGN0mwdeckVnNlX1Hics5dDg8OlbYx4OTjZZONt2LhVlBhNvJ1ewHcF5XiolLwfE8R4P3drM3KJKC/fzZmUN6mpScHNrQvRUa+i1cZQUJAgiT2j0cju3bvZvXs3AL169aJbt26o1RJG5gprqPwtHUNqJUpvDZ6PtCI17wjNJHKuBMHC8W2b2fX9N9TpqmnVux/dx0/E0dVNEnsANVUG9q5OI3lvIQ7Oau6a2JxCQ7KkzpV+506K3p6NMT0dx+7d8Zn+EnYREZLZqzXVsuDYApacWIJCrmCoy1BeH/Y69krpInMUHLX2s8raBd4t4aE1ECadaIZFEPkuMZv3N56mss5Er0Al7z/UGw+tdIIrf2dsDpaNvx2iKGKpMjY27zVm6zDl6REb6ofkjirUQU5o2npbHapAJ+TXGVGprq7mwIEDHDhwAL1ej7u7OwMHDiQ2NhaHhkhQbW0GyadfpaLiD1yc2xEd8xYfFzvz6elCurpqWdAqFHfVjf8pyuUy3rm3DRZB4IHDMj7t9CnDTr+M99J7eeferxkdPZpZ+2bx1JanuCvoLqZ1nIa/mz8ekyZdGNW6TK3W1SKTyXByt8fJ3Z7wWK/G12urjdaarixdg6BGNWkHz/Xq0rrZ4RnkRI0gkuleilewExoXtU023oYNCTEKAgtyS/kgsxCDIPJYkBfPhfrirJQutbe2NpOU1LcpLd2Mg30wbVp/gaendFEAURQ5fvw4mzZtorq6mlatWtGvXz9cXV0lsQdgqTFRvTmLmr0FyOyVuA4Px7GzPzKFzNp8RgJyTx1n2+L5FGem4R/Tgnum/w+f8EhpjAFmk4UjW3I4sC4Li0Wg3YBg4gaHonZQUpRwWhKbhowMimfPQb99O+qQEAK//AJtr16SfXcEUeD39N+Ze2AuxXXFDA0fyr/b/5vkpGTpnKuaUtj6FhxcAvauMPQDaP8QKKSbsu9JK+WNNSdJLtTRKcyd14a3oOTMIZtzdQPYHCwbdzyCwYwx19pzyvegnILdiQg6o3WjQoY6QItjR19r3VSQEwp3+xu6GYuiSFZWFomJiZw6dQpRFImKiqJjx45ERERYGzxjlRjOyppHZtbnyOV2xMS8iYv3GJ5OzmFDaTET/T2YGRWIqgkLmxVyGe+NaYtFhKf3gb73N4xPmwbfjqbzgLf4cdgPfHNqKV8d/Yq7f76bx9o+xkMtHkKlUKGJj78wqnUVtVrXgsZZTUhLD0JanuuVUV9jsjpbOQ3S8dk6KotEfj9+FAAHZzVeQReKaTh53NjnZ8OGDet9bFNZNa+n5pNeZ6CfhzP/i/QnQiNhrYxZR2bm52TnLEYuVxER/gLBwZORy6WbxOXn57Nu3TpycnLw9fXlnnvuISQkRDJ7okWgZm8BVZuzEQ1mHDv74dwvBIWjdKl51aXF7Pj2a07/sRMnDy+G/usFYrr2lNRhzThcyu4fU6gurSesrSdd74nE1Vs6yX6LTkfp519QvnQpcjs7vF98EfcH7kcmYfTxaMlR5iTO4WjpUVp6tOT93u8T6x0LQDLJTW/QYoLE+ZAwG0w10Olx6PUiOEgXfcwpr2XW2lOsO15IgKsDn9/fnsGtfJHJZCSckczsPwKbg2XjjkIURMzFtedEKHKqMRXVNqb6qTVgH+3SIJHujMrPEVkTdYc3GAwNvasSKS4uxt7eni5duhAXF4e7+4WqQRUViSSfnkFtbRre3kOIjnqVYtGVEYfSOFNbz8yoAB4O8JTkAahUyPlwbFsEQeSlhAKMgxYwsfBt2PAyqsJjPDJsLkPChvBO0jt8dPAjfkn9hVc6v0Jnv87W493czkW1DhygYsXKa6rVuhbsHVUENnMnsNm592/Lpm20CGvXGO0qydGTcyobUbB+yHYaJZ5BTlbHq8HpcvHWILf14bBh46o4U1PPf1Pz2FauI1Jjx7LrrP+8WkRRoKDwJ9LS3sVoLMXP9x4iIp7Hzk66gnmdTsfWrVs5dOgQjo6OjBgxgtjY2MYFMCmoT6mgck065uJa7CJdcR0WjspXur5Lpvp6En/9kf2//ggyGV3unUD8iNGo7KRzksvy9OxcmULe6Qrc/R0Z8UwsQc2lU80TLRYqf/qJkg/nYqmowGX0KLyffRalp6dkNotri/no4Ef8mvYrng6evNXtLYZHDEcuYWNrUjbBhpeh9AxE9IVBb4NXjGTmagxmvkhIY97OdBQyGc/1j2Zqz3DsJWxs/U/D5mDZuK2xVF+Y6mfM1SMaLQDIHJSog5xwaunZmOq3M2k34b2bVsmntLSUpKQkDh8+jMFgwNfXlxEjRtCqVauLcvdNpkpSU+eQX7ASe/tA2rZdiKdHb/ZV6nn4+BlMosDyNhH0cpdOAhisTtbc8bGYBYHX1mfBiDeZ6NsGEmZByWn8xi/jwz4fsitvF7P2zeLRjY8yMHQgL8S9gI+jD2BN9dPExaGJi7vhWq1rQaGS4Rfpil+ka+NrZpOFsryaxl5dJdk6jiXkYTFb0z6Vdgq8ArV4Bp9zvNz8HFHYinJt2Gik0mTm/cxCFuWV4qj4f/bOMzqqcgvDz9T03kglFQKEBJIQepPeQRQQkaJYYkNsiEERLwgIggURIUgTFUQRaaF3JIXe0yshvbdp5/4YCCI1kEPReda665qZc87+Jkxmzv723u8r5VNfF8a5OtRrFf2flJQc42L8p5SVncbSsiWBgYuxsgwSLZ5GoyE6Opp9+/ah0Who164dnTp1wthYxMpcfhXFW1KoPleAzNYYu+eaYtzUVtQK0oXD+9m/ehnlBfk0btuRTqPGYWkvXsJaXa4memMyZ/dnoTSR02lEI5p1dBHVD7Ey8Cc/EAAA0XFJREFULo7Ln31GzbnzmISE4LRkMSbNmokWr0Zbw6pzq1h8ajEanYbnA57npcCXMFOIlySTn6BPrBK2g60PjFwLfj31ClEioNMJbDiZxaytF8gprWFIS1fe790YZyvxBFf+qxgSLAOPDDqVFnVW+XWqftqSGv2TUgkKFzNMQxxrW/3k9ibi9V3rdCQkJBATE0NSUhJSqZSmTZsSFhaGu7v7DXEFQeByzgYSEmag0ZTQ0OMlvLzeRCYz4ZfsAt67mIm7sZKVgb74itiC83cUMinfPBPMq6uP8fGf55EOHsGoEQHw+0vwfWcY/iMdPDqwftB6fjjzA0tPL+VA5gFebfEqI5uMRCG91tJyXVWrnma16oJcIcPJ0xInz2u77FqtjqLsymtiGhllnD+czekafQIuk0uxczW7knRdkY13NUNu2KEz8B9DoxP4MbuAz1OyKVZrGeVix/tezrc0Mq8PqquzSUz6nJycPzFSOtGs6TycnAaKmnTEx8ezbds2CgsLadSoET179sRexEqHrlpD6Z4Myg9mIZFJseztiUUH13rrmrgZl5MS2LNiCZcunsPR04d+b7yLW5MA0eJptTrO7s8iZmMKqmotAZ3dCOvvhbG5eC2P6qwscubOpWxrFHJnZ1y+mItl376ivnd2p+9mTtwcssqzeML9Cd4NfRd3S/HMiakqhv1zIHoRyE2g53QIexnk4rU8Hk8vYtrGc5zIKCbIzYqFz4YQ0lC89sP/OoYEy8BDQdAJaPKrrrT66X2n1DkVoC9IILMxQtnQAqW7q7465WKG5AHcGFdWVnLs2DHi4uIoLi7GwsKCrl27EhwcfEvjSb2IxccUFR3G0rIF/v4zsDD3RysITEvM4ruMPDrZmLO4mSfW9SBmUReUcinfPtuS8B+PMeWPM8ifbM6I8Tvh52dgeT/o9wVGIWMIDwqnv3d/ZsXMYm7cXP5I/IOI1hGENrjeGV4ikYg+q3W3yGR6s2N7N3Oa4Azod+dKciuvGCSXk59RRtLRXM4duATohUBsnM2uUy+0czNHKaIPjQEDD5ODRWV8lJDF+Ypq2lmbM93Plabm4u1Wa7XVpKcvITXte0CLZ8NXadjwFeRy8aoAubm5bNu2jaSkJOzt7Xn22Wfx8/MTLZ6gE6g8mkPJtlR05WpMQ5yw6uWJzFK8m+OK4iIO/LyCs/t2YWppRc+X36RZl25IpeJ9L6afK+Dgr4kUZVfg5m9Dh6f9sHMVUbK/spKCyKUULF0KEgn2r7+O3QvPi7ZxBxBfFM/nMZ8TfTkaX2tfFvdYTFuXtqLFQ6eFYyv1IhaVBRD8HDzxEZiLV33MKa1mdtQFfj+WhYOFEV88HcSQlq6GtnqRMdxVGHggaMtV11WmVJllCNVXWv2MZPpWv87uV2anLJCZP1jJ7kuXLhETE8OZM2fQaDQ0bNiQHj164O/vj0x28y8wnU51RcTiWyQSJY0bfYqr6wgkEhllGi2vnE1jV2Ep41zt+dTXVdQ2nNthJJfx3ahgXl51lMnrTyMdGsiwF3fDby/Axjfh8mnoPRN3C3cWPLGAPRl7mB0zm3HbxtHfuz/vhL6DvcmNu8APclbrbpFKJdg0MMOmgRmNWukfEwSBsoJq8tLLyE3XV7rSzhRw4a/L+gMkYO1o+jeDZHPs3S0wFnEo3YABsUmrqmFa4iW25Jfgbqwkspkn/RysRK0C5OZtJTFhJtU1l3B06IOv7weYmLiJEg/0G2J79+4lNjYWIyMjevXqRVhY2C0/s+uDmtQSijcmo84qR+lhgfWYZijdxWv51qjVHN/6J0d+/wWNSk1o/yG0eXIERqbiCUoU51Ry6LdEUk/lY+lgQt/w5ngGijMzDPr3TunmLeTOnYvm8mUs+/bF8b13UTg7ixIPoLi6mAUnFvBr/K9YKC2IaB3BU42eQi6isTWphyBqkv4716Mt9P4NXFqIFq5arWXpwRS+3ZOIRisQ3sWH17r6Ym5kuPV/EBh+ywbqHUGtQ5Vd/jchijK0hdX6J6WgcDLDNMgBpbslSo8rrX4PIfnQaDScO3eOmJgYMjMza72rwsLCcHJyuu25RcWxXLgwhcrKxFoRi6sD22lVNTx3KoWkqmpmNXJjrKt4LSp3i5FcxqJRIby4Mo5Jv51CLg3iyZG/wq5P4PA3kHsehq1AYmbPEx5P0NalLUtOLWHZ2WXsy9jHay1fY3jj4Tf98rnprNZDqmrdDIlEgqW9CZb2JvgEX/PqqixR1SZceellZCcWkxB7zavLws74b0mX/n+mIu5QGzBQH5RrtHydlsOijDzkUgmTvZx52d0BYxFnZcrKzhGf8D+Ki2MwN/cnuOkcbGzaiBZPq9Vy9OhR9uzZQ3V1NSEhIXTt2hUzM/GqZJriGkq2plB1Mg+ZpRLbEY0xCXIQNelIPhbD3pWRFF/Oxju4FV1Gj8fG2VWUeACqKg1xW1I5uTsDmVxK2yE+BD3hjkwh3nun6vQZcmbOpOrYMYybNsX1i7mYhoSIFk+tU7P24loWnlhIhbqCEY1H8GqLV7EyEs+zi+J0vVHwuT/A0g2eWgbNhog2ZyUIAtvOXmbGlvNkFFbRq5kTEX2b4mEnXlJu4EYMCZaB+0IQBDQF1VcqU3oxCnV2BWj1im8yK6W+KtXGGaW7BQpXc6TKhzsDU1JSQlxcHEePHqWyshJbW1t69+5NixYt7jgIfb2IhStBgZHY23etff5wUTnjz6agE2BNkA8dbMQVs6gLxgoZS0aH8vzyWN799SQyqYRBPadDg0D48w1Y3BVGrAbnQEzkJrwZ/CYDfAbwWfRnzIqZxR+JfzClzRSCHG49oH7TWa2rVa0WLbAeNuyBV7VuhkQiwczaCC9rI7wCryXAVeUq8tPLyU0vJf+KdHzy8bza582slNfNdDl4WGBuY2SQjTfw0NEJAutyipiRdIkclYannGyI8HHG2Ui8TQGVKp+k5PlcurQGhcIG/8bTcXEZhkQi3md8cnIyUVFR5Obm4unpSe/evWnQoIFo8XQqLeX7Mynbl4kggMUT7lh0cRf1eyw/I429KyNJO3UcW1d3hk6ehmcL8ZIOQSdw/q9sjmxIpqpUhX/bBrQZ7IOZlXjy+Zq8PHLnf0nJ+vXIbG1xnjEdq8GDkYhYfTycdZjPYz8nqSSJts5teb/V+/jaiOcThqoCDn2l/x8S6PIhtHtDL3csEuezS/l04zn+Si6gsZMFq8e3pr3vw9/k/S9iSLAM1AldpZqaq21+GWWoM8vQVWoAkCilKN0ssOjgeq3Vz/LRMKkTBIGUlBRiY2O5cOECgiDQuHFjWrVqhbe39x2lewVBICdnI/EJ09FoivHweBFvrzeRya59UP54qYAP4jPwNDFiZXNvvE0fjdf+d4wVMpaOacW45TFMXHMCqUTCgKBhYO8HvzwLS3vC4G8hYCgAXlZeLO6xmG1p25gTM4dRW0bxpN+TvBX8FjbGtx6OfZRmteqCibkS96a2uDe9JjtcU6UhP6OsNuHKTS8j/UwBwhVrAGNzRW2ly/6KgqHVQ6rKGvhvcrSkgikJWRwvq6SlhSk/BHgRYiVeNUenU5GZuYrklK/R6apxdx+Hl+cbKBTiSb0XFhayfft2Lly4gLW1NcOGDaNJkyaiVpCqTudTsiUFbXENJs3tserjhdxWPJGiqvIy/vr1J05s34zSxISuY18iqEdfZHLxbtWyE4s5sDaBvPQyGnhb0u/VwOvEhOobnUpF0cqV5C/8Dp1aje24cdiHv4LsFjPO9UFaaRpzY+eyN3Mv7hbufN31a7q4dxFvY0wQ4PQ62PExlF3Sf5/2+BSsxGuXLaxQMW/HRX6KTsfSRMH/BjXjmTAP5AYl3YeGIcEycEsEjQ51dsW12amMMjT5VfonJSB3NMW4qZ1ehMLdEoWT6SN3U1lTU8PJkyeJjY0lLy8PExMT2rVrR2hoKDY2d6eeU1mZxsWLH1NYdFAvYtF4BRYWTWqf1+gEPk26xOLMPLraWrCoaUOsHrCYRV0wUV5JspbF8taaE8ilEvo0bwkv7YU1z8G65yH7FHT7GKQyJBIJvT1709G1I4tOLuLHcz+yK30XE4InMNRv6B29Qe44qzVsGJZ9+zz0qtatMDKR49rIBtdG194vapWWgsxr5sh5GWWc2JmO7krlVmks03t1XalyObhbYN3A4NVloH7JrlExIymbdTlFOCnlfN3Eg6ecbJCKWFHNz99DQuIMKitTsLPrjJ9vBGZmPqLFq6mp4cCBA/z1119IpVK6detGmzZtUCjEm5FUZZVTvDEJVWopCmczbIc1wsjbWrR4Oq2Wkzu3cnjtamoqKgjs3pt2w57F1FK8trWywmr+Wp9EQmwOZtZGdB/XlEZhTqImrOV79pAzazbq9HTMu3bFadL7KD09RYkHUK4qZ/Gpxaw6vwqlVMnEkImMajIKpUzEVu+sYxD1AWREg3MQPPUDNBRPNEOt1bHqrzS+3BlPhUrL6LaevNXdD2tTQzv7w+bRvQs08EARBAFtUU2top8qowzVpXLQ6G8YpRYKlO6WmIY66atTbuZIH+FByby8vFrvKpVKhbOzM4MGDSIgIOCuv5h1OhXp6ZGkpC5AIlHQqNEnuLmOvK79pVSj5eWzqewpLOMlNwc+9nFB/hjcRJsZyflhXCvG/BDDGz8f51uphF7NGsCYjbD1PTj0JeSchaGRYGKtP0dhxjuh7zDIZxDTo6fz6V+fsj5hPRFtImhmd2dvklvOakVEkDNrVq2v1uOAQimjgbcVDbyv3QBp1ToKLpXXVrryMso4sz8LrfqKV5dCip2bOSqZjnOKSzi4W2DrYoZMRElnA/9OqrQ6vs/I5au0XHQITGjoxJsejpjJxWuvqqhIIiFxBgUF+zA19bqhPbq+0el0nDp1ip07d1JeXk5gYCDdu3fH0lK86oq2XEXptjQq4i4jNZVj/aQvZqENRN04TDt9gj3LF1OQmY57s0C6jn0JBw9P0eKpVVpO7EjnWFQaAhDaz5Pgng1RGIkoDJKQQM7MWVQcPozSxwf3yEjMO7QXLZ5Wp2VD0ga+OvYVhdWFDPYdzJst38TB1EG0mJTlwK5P4cSPYOYAAxdAi2dBRGPrffF5/G/TORJzy+noZ8/H/Zvi5/TojCX813l075ANiIquWnNN0S9Dr+qnK1cDIFFIUbiaY97W5UqrnyUyK+UjP2ei1WrJy8tj5cqVJCcnI5PJaNasGWFhYbi6utZp/cXFcVy4OIWKigQcHfrQqNFHGBldL3yRUlnD6NPJpFTVMLexO6Nc7Or7JYmKuZGc5eNaMfqHGF7/6RjfPRtC96ZOMOAr/VzW1vchshuM+BkcrrXy+dr4sqzXMjYlb+KLuC94ZtMzDGs8jDdavnHXg8K389Wy8famuLDokZjVqgsyhRTHhpY4Nrx2A6jT6ijKqSS/VsGwnJIU2JN4AQCpTIKdq3mtObK9hwX2rubIH/KcooFHE0EQiBYUvBdzgYxqFX3trZjq60JDE/HakdXqUlJSvyYzcxVSqTF+vhG4uY1CKhVvh7ykpISlS5eSlZWFq6srw4cPx91dPE8iQaOj/PAlSnelI6h1mLd3xbKbB1IT8W6Rii9ns+/HpSTGHsHK0YmB73yIb6u2olaQEo/mcvi3RMqLavAJdqTdUB8s7USU7C8uJu+bBRT98gtSMzOcPvwQm2dGIBGx+ngs5xizYmZxvvA8LRxasLDbQprZi2dOjKYGjnyn97TS1EC7N6HTe2As3kZASn4F0zedY9eFXBrambL4uRB6NBWv+mjg3jAkWP8BBK2A+nIFlukSCn+NR5VRiiavCq7MkMgdTDBuZIPSw1IvRNHAFMlj1LdbUVFR611VUlKCpaUlTzzxBMHBwZib182zQ60uITFpNpcurcHYyIWgwCXY2z9xw3EHi8oYfyYVqQTWBvnSzkY8bxAxsTBWsOL5MJ6LjCZ89VG+fy6EJ/ydoNUL4NhE3zIY2Q2eXAKNe9eeJ5FIGOAzgM7unfn2+Lf8cvEXdqTt4O2Qtxnoc/dmojeb1bq0fMUjP6t1t0hlUuxczLFzMadxG73k8J49e2jZtHWtOXJeehnJJ/I5dygb0AtL2Tib/U1Iwxx7NwuUIt7sGXj00egEnjmVxAHMaCKTsq6FuCI6gqAl69IakpPno1YX4eIyHB/viSiV4g3Ml5aWsnPnTk6dOoW5uTlDhgyhefPmd5yRvVcEQaD6YhElm5LR5Fdh3NgGq/7eKBzEEyFQVVWSdWQ/J5Z8iVQmp8OI0YT0G4xcKV7CmpdexoG18WQnlmDvbk6P55vi4ieewayg0WCydy9Jkz5AW1aG9fBhOLz5JvK7bMu/Fy5XXGZe3Dy2pm7FydSJWR1n0ddLPHNiBAEubIZtEVCUAo36QK8ZYCdeu2xptZoFuxNZdigFI7mMyX38GdveEyMRK9cG7h3DN/a/DEEQ0Jao9K1+VypU6qxyBLUOR6RUmxXoW/2CHPWzU24Wou7SiUlWVlatd5VWq8XLyws3NzeefPLJOvug3ChiMR4vzzdvao65IiufiIRMvE2MWRXoJeru8YPA0ljByhdaMyoymldWHWPJmFA6N3KAhu2uzGU9Cz+PgCemQMd3rpOWtVRaMrn1ZIb4DWH6kelMOTSF3xN+58PWH9LYtnGd1nG1qnW6YUPCLCweu1mtu0UikWDtZIq1kyl+ofqqqCAIlBfVXDfTlXGhkIvRl2vPs3I0uZZ0uVtg72GOyQP2izPw8JBLJQRamOJXlMunoUGitiIXFR0hPmE65eXnsbYOo5HfR1hYNBUtnlqt5q+//uLAgQPodDo8PDx49tlnMTISsTKXW0nxpmRq4ouQO5hgN7YZJv62dz7xHhF0Os4d2MOBn5ZTUVxE005P0PGZMZjbitf5UFmqInpDEucOZ2NspqDLs41p0t5F1FnQisOHyZk5E8uERIzatMFp8mRRN8iqNFUsP7OcH878gIBAeFA4Y5uNxVQhoiR5zjkCT02FfSfBwR9G/Q6+3UQLp9UJrDuawZxtFymoUPFUsBvv9W6Mo4V4gisG7p/H887aQC26Gg2qzPLr2v10ZSr9k3IJShdzzMIaoHS34Nilc7Tv0+GxLiOr1WrOnj1LTEwMly5dQqlUEhwcTKtWrXB0dGTv3r11Tq4qK9O4GD+VwsIDWFoE4u+//KY3ExqdwEeJWSzLyqebrSWLmjXE4l+yc2RlomDVC2GMXBLNiyvjWDomlI5+DmDtDuOi9IbEu/+nN0gcvBCU1yee/rb+rOyzkj8S/2D+0fkM3zScZ/yf4bUWr2GurGN17y5ntR7XqtbNkEgkWNgaY2FrjHeLa3MCFSX6pCs/o5y8jDJyUkpJPJpb+7y5rdF1SZeDhwVm1o93wm/g1nzk48LejHjRkquqqkwSEmeSlxeFsZELAQELcHToLWrb2vnz59m+fTvFxcX4+/vTs2dPTp06JVpypatUU7ornfK/spEopVj188a8rTMSEWchL8WfZ8/yxVxOSsDZtzHuT/Slz/BnRIun1eg4tSeTuM0paFQ6grq506qvJ0amIgqDpKeT8/nnlO/chcLNjeJXXsZ/wgRR3ztRqVHMOzqPyxWX6eXZi7dD3sbF3EWUeABUFsLemRC7FAuZMfT5HEKfB5l4v9fY1EKmbTzLmaxSQhra8MPYVgS6WYsWz0D9YUiwHiMEnYAmt5Ka9GtCFJrcymutfvYmGPta6+em3C1QOJtd96WhKT732CZXxcXFxMXFcezYMSorK7G3t6dPnz4EBQXd0bvqVuhFLJaSkvqNXsTC72Pc3Ebd1MOlWK3hpbOp7C8q5xV3Bz7ycUH2mP4ub4W1qZLV41vzzJIjjF8Rx7KxrWjna6/37HhyiX4ua+dUKEjU+2XZeF53vlQi5Um/J+nm0Y2vjn3F6vOr2Za6jXdD36WPV597eu/dblbrUfLVEgszKyPMmhvh2fxaW1Z1hVrfXpheTl56KXkZ5aScyq/9HDC1VNaqF9q7m+PgboGFnfFj+7dvQHw0mgrS0haRnhEJyPD2moiHx3hkMvF2yC9fvkxUVBSpqak4OjoyZswYvLy8RIsn6AQqYi9Tuj0VXaUGs1YNsOzZEJmIVeCywnwO/LSC8wf2YG5jS5/X36FJ+87s279flHiCIJB2poCDvyZQkltFwwA72j/li00D8ST7teUVFHz/PYXLl4NCgcNbb2E7biyZf/0l2mfO2YKzzI6ZzfHc4zSxbcKsjrMIcRLPJwytBo4ugz0zoLoEQp8nRtGZ9q0HihYyq7iKmVvOs+lUNs5Wxnw1ogUDg1wMn+OPEYYE6xFGW6q6XtUvsxxBpQVAYiJH6W6BSYB9baufzEy8XZSHgSAIJCcnExMTQ3x8PACNGzcmLCwMLy+v+/qgKS45yoULEVRUJODg0JtGjT7C2OjmZpWJldWMPpVCRrWK+f7uPOP8eIlZ1AUbs2tJ1gsr4lg2rhVtvO30bYHt3wSnpnoZ98VdYdgK8Op0wzWsjKz4uO3HDPEdwvTo6Uw6MKm2bdDb2vue1nVHX61/YVXrVhibKXD3t8X9b+1MqmpNbZXr6lxX+rlCBJ0+6zIylV/XWujgboG146Nnq2DgwaJvjf6TxMTZ1KhycHIaiK/P+xgbO4sWs6Kigt27d3Ps2DGMjY3p168fwcHBde48qAvVScWUbExGfbkCpZcV1gO8UbqINzerVtVwdNMfRP+xFkGno/WQYYQNfhqlsXgbQYXZFRxal0D62UKsnUzp/3oQDQPE+64SdDpK/thA7vx5aPPysRo8GIeJE1E4OYoWM78qn2+Of8P6hPXYGNswte1UhvgOQSYVsZMkaQ9ETYa88/rvu96zwKkZ6r17RQlXpdKyaF8S3+9PQhBgQjc/Xu7sjanScLv+uGH4F3tE0Km0qLPKr3lOpZehLanRPymVoHAxwzTEsbY6Jbc3+dfuZFRXV9d6V+Xn52NqakqHDh0ICQnB2tr6vq6tVpeQlDSHrEs/Y2zkQmDgYhzsb907vbewlJfOpiKXSFjXwofW1o+nmEVdsDM3YvX4Njyz5AjPL49lxfNhtPK8cjPv2x1e3AM/PwMrB0Ovz6D1y9fNZV2luUNzfur7E78l/MaXx75k6MahjG46mpcDX76v/vibVrV+/VVf1foXzWrVBaWxHBc/a1z8rGsf06i0FFyqqJ3rys8o4+SeDHRXrBcURrLaCtfVipdNA1Okj5HAjYF7p6T0JPHx/6O09DgWFs0JaP4N1lbiVQG0Wi0xMTHs3bsXtVpN69at6dy5MyYi/p1qCqsp2ZJM1ZkCZNZG2I70x6S5vahtawnRh9j34w+U5uXi17odnUc9j5XjzTfv6oPqCjWxm1M4szcLuZGMDk/7EdDFFZmIf8eVx4+TM+Mzqs+cwTgoEPdvv8UkMFC0eGqtmtXnV/P9qe+p1lTrv0eCXsZCKaIkeWEybJsCFzfruzWGrwb/fjf9rqsPBEFg46lsZm05z6WSavoFOvNh3ya4Wv93vsf+bRgSrIeAoBPQ5FVel0ypcypAb5eDzNYYpadlbTKldDFHovj33/Tk5uYSExPDqVOnUKlUuLq6MmTIEJo2bXrfppKCIJCTu4mEhOmoVIV4uL+Al9eEm4pYXD1+aVY+UxOzaGRqzIrmXng85mIWdcHBwoifXmzNiMVHGPtDDCtfCCOk4ZUky84Hxu+E31+CqEn6uaz+80B+4+9HJpUxrPEwunl0Y/7R+fxw5ge2pGxhUqtJdPPodl83Ojetaq1Z+6+e1aoLcqUMJ09LnDyvyQVrtToKL1VcqXLp/brOHbqEZo/+w0emkGLnYnbNINlD79UlV/w7Zg0NQE1NLklJc8i+/DtKpQNN/Gfj7PwkkjsYht8PiYmJREVFkZ+fj4+PD71798bBQTxPIl2NlrK9GZQdyEQikWDZoyEWnVyRiPg+zk1NZs+KxWSeO4ODhydPf/QZHgHiJR06rY5zh7KJ3pBMTaWaJh1caDPQGxML8Voe1Zcvk/vFPEo3bkTu6IjL7FlYDhiARESVx/2Z+5kTN4e00jQ6uXXi3dB38bISr5WUmjLYPxeOLASpArpNhTavgkK8dtnTmSV8uukssalFNHOx5MsRLQnzEk9wxcCDwZBgPQC05aprbX5XPKeE6iutfkYylO4WWHR2v+I5ZSFqT/ijhlar5eLFi8TExJCamopMJiMgIKDWu6o+qKpK58LFjyksPICFRXNaBP2AhcWtfTHUOoGIhExWXiqgl70l3zZpiPm/RMyiLjhaGPPzi20YsfgIY36IZdULYbT0uCKza2wJI37SD/zu/xzyL8LwH8Hi5ju1diZ2TO8wnSf9nmRG9Awm7p1Ie5f2TG49mYaWDe97rX+valXGxlL867prs1pBQVgPH/6vntW6W2Qyqb5i5W5Bk3b6x3Q6gZLcSvJqvbrKSIjL5eyBSwBIpRJsriZdV6pd9m7mohqTGqh/tNoaMjJ+IDVtITqdhoYeL+Pp+SpyuXhV+fz8fLZt20ZCQgK2traMHDkSPz8/8SpIOoHKk3mUbE1BV6rCtKUjVr09kVmJtzlWWVrCoTWrOL1rO0bm5nQf/yrNn+iFVMSWx8yLRRxcm0BBVjkuftZ0HO6HvZt41RxddTWFy5aRv3gJaLXYhb+C/fjxSM3Em+1KLk7m89jPOXTpEJ6WnizstpCObh1Fi4dOByd/hl3ToDwHgp7RJ1eW4rXL5pXVMHfbRdYezcDWVMnMJ5szLNQdmaF1+1+BIcGqZwS1DtWlv7X6ZZShLazWPykFhZMZpkEOtQa+cnuT/+QcRHl5ea13VWlpKVZWVnTv3p2WLVtiVk8f2jqd+oqIxddIJPLbilhcpVCtYfyZVA4Xl/OGhyOTvZ2R/ktbMe8GJ0t9kjV88V+M/iGG1eNbX1MwkkrhiQho0BzWvwLfd9aLX7iF3vJ6wU7BrOm/hp8v/My3J75lyIYhPB/wPOObj8dYfv87hBKJBLOwMMzCwtB8OJnSP/+kaM3a/+Ss1t0ilUqwaWCGTQMzGoXpE2RBECgrqCY37cpMV0YZaafzuXBY79WFBGycTLH/W3uhg7u5qCplBu4NQRDIz99BQsJMqqrTsbfvjp/vZExNPUWLWV1dzb59+4iOjkahUNCzZ0/CwsKQy8W75VBllFG8MQlVehkKN3Psnm2CUUPxzF61Gg0ntm3mr3U/oa6ppmXv/rR9aiTGdfRerAul+VUc+i2R5ON5WNga0/ulALxbOoja8li2bTu5n3+O+tIlLHr1wvG9d1G6uYkSD6CkpoRFJxfx84WfMZWb8n6r9xnhPwKFVMTPlowY2Po+XDoObq1gxM/gJl67rEqjY/nhFL7elUiNRsv4Dl680c0PS2PD5+e/CUOCdR8IgoCmoPpKm5/ed0qdXQFa/YyDzEqpN+9t46xX9XM1R6r87+76CoJAZmYmMTExnD17Fp1Oh7e3N3379qVRo0Z3bSapVqvJzMykurr6huesrKw4f/48Op0KtboYQfDF1mYxCoU15eUyLlyIv/V1dQL5ag3hCHzooMBMVcLFCyX3/HrF4Orre9B829eJvLIa8jKSOVlkhPLvksYSPxgUBRV5kFEIBXE3yLj/k1BJKJFBkZSqSqnSVHHk5BGslFYYy41v+hqNjY1xc3OrU6uo3MYG2zFjsBk9+kYFwv/orNbdIpFIsLQ3wdLeBN8Q/dC6IAhUFKvIuyKikZdeRnZiMQmxObXnWdob4+BhQYVEgC4PafEGaikvv0h8wv8oKvoLMzM/WrZYia1te9Hi6XQ6jh8/zq5du6isrKRly5Z069atzobvdUFbWkNJVCqVx3KRWiiweaoRpsGOom5cphyPY+/KSAovZeIZFEyX0S9i5+YuWjxVtYZj29I4sSMDiRRaD/SmRXd35CLeT1SfP0/OjM+ojIvDqHFjPJYvx6xNa9HiaXQafov/jQUnFlCqKmWo31Beb/k6tsYitsqVZMHOT+D0WrBwhiHfQ/Nh+s1DERAEgV3nc5mx5Twp+RU84e/IlH5N8Hb49892/xcxJFh1QFuhRpV5zW9KnVmGrlIDgEQpRelmgUUH12utfpb/nZmd26FWqzlz5gwxMTFkZ2djZGREq1ataNWqFfb29ne+wD/IzMzEwsICT0/PG3buSktLUCjLUasKkUidMDZyQaG48y5mqUZLWlUNThIJnsZKzB7RlsCysjIsLEQc7L0NKo2W5LwKtIKAp705Jv/8ctdq9I72qnIwswBL17saCC5XlZNdkY1Kq8JMaUYDGmBjaVP7vCAIFBQUkJmZeU8yzrdUIIyI0Fe1Bg40VLXuAolEgrmNEeY2RngFXvu7rSxV1Va58tL1SoY6ufAQV2pArS4iKflLsrJ+Qi63oFGjT3B1eQapVLyv/NTUVKKiorh8+TIeHh707t0bFxfxPIkEtY6yg1mU7clA0Oqw6OKGRVd3pEbivcbCS5nsXRlJyvE4bJxdGDJpKl4tQ0VteYyPzeGv3xOpKFHRKMyJtkN8MbcR795CU1hI3pdfUfzrr8isrGjwySdYP/0UEhFbHmOyY5gVO4uEogRCnUL5IOyDOhvV1wl1FRz+Bg7OB50WOr4LHSaCkXiJTkJOGZ9uOseBhHx8HMxYPq4VXRqLp7ho4OFjSLBugaDRoc6uuK46pSm4UjGRgNzRFJNm9rXJlNwgeXwDRUVFxMbGcvz4caqqqnBwcKBfv34EBgbel4lkdXX1DcmVIAhoNCXAJdQqLUqlPUZGjrdtB7x6Xr5aw6VqNcYyKV4mSpQi7V497ijlMrwczEjOqyAlvxwvB3NM/j40LpODnS+UZumrWeoqsPHSP34bzJXm+Ch8KKwuJK8yj3KhHE2lBjsTO6QSKRKJBDs7O/Ly8u77NdzWV8swq3VPmFoq8Whmh0eza5LQe3bveYgr+u+i06nJyvqJ5JSv0GrLcXN7Fm+vCSgUNnc++R4pLi5mx44dnD17FktLS5566imaNWsmatta9dkCirekoC2sxripHdZ9vZDbi/c3W11RzpHffuF41EbkSiM6j3qeln0GIJOL19J1OaWEg2sTyEkpxbGhBb1fbk4DbyvR4gkqFYU//UT+twvRVVVh89woHF57DZmVeDEzyzL5Iu4LdqbvxNXclXld5tHdo7t4CsmCAOf+gO0fQ0k6NB0EPf4HNvc/B3wrSirVzN8Zz6ojaZgqZXzUvymj2zZEYVBr/ddjSLDQf2DLK6HyRO612alL5XBFzlhqoUDpbolpqwb6hMrNXNRdsscZnU53nXeVRCLB39+fsLCwm1ac7pW/X0enU1FdnYVGUw4oMTPzQia785etThDIqlZRqNZiJZfhbqL815kH1zdGchne9mYk51eQkleBt4MZxn9PsiQSsHIDhQkUZ+jFL2y99T/fBqlEir2JPVZKKzJKMsitzKW4phhnM2fMleb1/oX7z6qWYVarfjFsNj14CgoPkpAwnYqKBGxs2tHIbwrm5uJVAVQqFYcOHeLQoUMAdO7cmfbt26NUiqliV0HxxiRqkkqQO5li/0IAxn7iJY86nZYze3Zw8JdVVJWV0rxrD9oPfw4za/FiVhTX8NcfSVw8chlTSyXdxjShcesGov5Nle/fT87MWahSUjDr0AGnyR9g5OMjWrxKdSWRpyNZcXYFMqmMN1q+weimo+tlDveWZJ+CqA8g7RA4BcDgTeAlnmiGRqvj59gM5m2/SEmVmmfCPHi7RyPszA2dTf8VDFkCULY3E8/9Mgq5iEQhReFqjnlbl2utflZG/1rPqfqiqqqKEydOEBsbS2FhIWZmZnTq1ImQkBCsRNoBEwQdKlUBNaocJEgwMnamplp5V8mVWieQVlVDhVaHo5GcBkqF4d/4LjFSXEuykm+WZAGY2oHcGApTID8erD3A5M43JQqZAgeFAxjB5YrLpJWmYWlkSQNT8XxkrpvVOnqUojVrb5zV6tMbqem9e3cZMCAWlZWpJCTOJD9/JyYmHgQ2X4S9vXhVAEEQOHPmDDt27KC0tJSAgAB69Ogh2uc86NvzS3ekURGdjdREjvUgH8zCnJHIxPvMzjx3ht0rFpOXmoyrf1O6jpmGk7evaPE0ai0nd2UQtzUNnVZHcC8PQvp4ojQW7zatJjmFnNmzqNi3H2XDhrh9txDzLl1Ee+/oBB2bkjfx5dEvyavKY4D3ACYET8DJzEmUeABU5MPu/8HRFWBqC/2/hODRIKI58eHEfD7ddI4Ll8to423Lx/2b0dRFPMEVA48mhgQLMG5sQ2JGMgHdQlA0MEViKN3eNTk5ObXeVWq1Gjc3N7p06ULTpk1FVYzSaCqorr6ETleNXG6JsbEzUqkSVU3ZHc+t0upIqapBIwh4mCixUdRtnYIg0LFjRyIiIujTpw8Aa9eu5YcffiAqKuqeXo8gCEyYMIEtW7ZgamrK8uXLCQ4OvuG41NRUxo8fT2FhIcHBwaxatQqlUnnX598PY8eOZd++fbU3Ut8vWYqFqx/J+RV4219LslasWMH06dMBmPLhB4zp3wGKUklJuMiIFyfcsPZ58+Zx9uxZli5dCsCaNWtYv349GzdtJL8qn/yqfMpV5ZSrylHr1KKpSUkkEkxDQzENDb3NrNYwjBuLOBtgwMBdotGUkZL6LRkZy5FKlfj6vI+7+1ikUvF2yLOysoiKiiIjIwNnZ2eGDh1Kw4bitVcJWh3lR7Ip3ZmOUKPBvK0Llt09kIqoVlmal8u+H38g/shBLOwc6DfhfRq37ShqwppyIp9DvyVQml+NdwsH2g31wcpBvA0dbWkp+d8upHD1aqTGxjhOmoTtsyORiFh9PJV3itkxszmVf4rm9s2Z33U+QQ5BosVDo4KYxbDvc1BXQJtw6DwJTKxFC5leUMlnW84TdfYybjYmLBoVTK9mDQybt/9RDAkWoHQxp9RDQOlqUHK5G7RaLRcuXCAmJoa0tDTkcnmtd5WYQ80AanUpanUxlZUaJFIFJiYN70rE4iolag3p1SqkEgk+Jkb3JGYhkUhYtGgRTz/9NF27dkWr1RIREXHPyRXA1q1bSUhIICEhgejoaMLDw4mOjr7huKlTpzJx4kRGjBjBK6+8wtKlSwkPD7/r86+SmprK2LFj2bt3b53WOWfOHJ566qnan6vV2iszWfokq6KshGnTphEXF4dEIiEkJISBg2KxUVQwKWI8E8ePZMQLr/HKq6/Xrv3NN98kNDSUQ4cO0axZM6ZPn87u3buRSqQ4mjpibWTN5YrLXFJdYtjGYXzY+kNaNWhVp3XXletmtW5V1TIoEBp4CAiCjkuXfiUxaQ5qdQHOzk/h4/0uRkbiGfeWlZWxa9cuTpw4gZmZGQMHDqRFixZ3rfx6L1THF1G8KRlNbiVGftZY9/dG4SSe75K6upqYP9cR9+fvIJHQ7ulnCR0wBIWReG1rBVnlHFibQNbFImxdzBj4Vgvc/cVTzRO0WorX/Ubel1+iLS7G+qmhOLz1FnI7uzuffI/kVuby5dEv2Zi8EXsTe2Z0mEF/7/5IRTS2Jn47bJsMBYng2x16zQQH8dq9K2o0LNybyJIDKcilEt7t2YjxHb1v7Oww8J/CkGAZuGvKyso4evQoR48epaysDGtra3r06EHLli0xFbl9ShAEcnO3EJ/wP8zNpqNUNsTIyIlPN13g3KXS2uO0Wi2yW6gdqQUBlU5AKgFjqZRb7Sk1dbFk6oBbGxEDBAQEMGDAAGbPnk1FRQWjR4/G5z561jds2MDo0aORSCS0adOG4uJisrOzcXa+ZnIoCAL79u1j7dq1AIwZM4ZPPvmE8PDwuzpfDIwVMryvCF8k51cQu2srPXr0wNZWf5PQo0cPorZtZ8Tw4ew+fJSfvp0B+fGMeXYEn0yfSXh4OHK5nIULF/Lqq68SFhbGqFGj8Pb2ro2hlCnxsPSgwLiAKk0Vz297nv7e/Xkn9B3sTequQlkX/lnVqp3VioggZ9asK7NahqqWgQdDcXEcOmE65y+kYWXZkkZBkVhaBooWT6PRcOTIEfbv349Go6Fdu3Z06tQJY2Pxkg51fhXOR6XkR51BZmeM3eimGDexFbWCdOHwfvavXkZ5QT7+7TvTceRYLO3FS1g1NQL7frrI2QNZKE3ldBrRiGYdXZCK2D1TERNDzmczqblwAZPQEBp8+CHGTZuKFk8tqFlyaglLTi9Bo9PwQsALvBj4ImYK8ZJk8uJh24eQuEMvuDTyV2jUU7RwOp3A+uNZzI66QG5ZDU+2dOX93v40sBJxlszAY4MhwTJwWwRBICMjg5iYGM6dO4dOp8PHx4f+/fvj5+cn6g7mVaqqMrgYP5WCgn1YWDRDqXTA2LhulbIanQ6NALIryVV9MHXqVIKDg1EqlcTFxd3w/PDhw7l48eINj7/99tuMHj36useysrJwd7/mo+Lm5kZWVtZ1CVJBQQFWVla1rZdXj7nb8+uDiIgIPv30U7p168asWbMwMjLCWCHDy96MlPxyzsSn4OLqesM6CgoLsbaxQe7kD0WpuJmoyMrMqD2uXbt2NGnShJ07dxITE3PT2MZyY9YPWk/k6UiWnVnG3oy9vN7ydYY3Ho5cRPnpqxhmtQw8THQ6DWfPvQuU06zpfJycBoiadFy8eJFt27ZRVFREo0aN6NWrF3YiVjp01RpKd2dQfigLE8Cqjyfm7V2RyMX7jrmclMCe5Yu5FH8eJ29f+r/5Pq7+4iUdWq2OM/uySNgkIGgvEdDFjbD+XhibidfyqM7KImfOXMqiopC7OOM67wss+vQR9b2zK30X07OmU5heSDePbrwT+g7uFuL5hFFVrG8FjPkeFKbQcwaEvQRy8VoeE4u1zP/uMCcziglys2LRcyEEe4gnfmLg8cOQYBm4KSqVqta76vLlyxgZGREWFkZoaOg9eVfdCzqdmoyMZSSnfIVEIsXPbwpurs9x8WJC7TH/rDT90ydKrdORWqWiUqvDyUiBk1Jeb18sZmZmDB8+HHNz85vKzq9Zs+auryUIN/oG/XOdtzvmbs4HGDJkCCkpKahUKtLT02nRogUAEyZMYNy4cbdd48yZM2nQoAEqlYqXXnqJ2bNn8/HHHwNgotQnWVpBoLBCjUqjRXml/VIikVxbn5EF2DeC7HwkOjWU5YC5I+UVFcTFxaFWq8nPz7/le8xEbsIbLd9ggPcAZsbMZFbMLP5I/IOI1hG0cGxx2/XXF4ZZLQMPA6lUTlDg98TGptKgQS/R4uTm5hIVFUVycjL29vaMGjUKX1/xxB0EnUDl0RxKtqWiq1BjGuzEWctLeHQW74a8oriIAz+v4OzenZhaWdPzlTcJ6NwdiYgbhulnCzj4awJFlysxc4IBL7fCzkW8sQRdZSUFkZEULP0BJBLs33gdu+efF7Wt+WLhRT6P/ZyYyzE4K5yJ7BZJa2fxzInRaeHYCtg9HSoL9eIVT3wE5uJVHy+XVDM76gLrj1fjaCHwxdNBDGnpitSgnGrgHxgSLAPXUVhYWOtdVV1djaOjI/379ycwMFBU+d1/UlJyggsXIygvv4C9fXcaN5pa56rV38UsGpoosa6jmMXdIJVKb1nFq0sFy83NjYyMaxWdzMzMG+bZ7O3tKSkpQaPRIJfLrzvmbs4HWL9+PXB3M1i9evUiJyeH0NBQIiMja6thRkZGjBs3jrlz5153vIlSTvNGXmzZtuuK8IU5mZmZdOnSBXt7e4qLi6+s3YjMSgUuzs5QdgnUVUyd/hWjRo3CycmJyZMn167zVnhaebKo+yJ2pO3g89jPeW7rcwzxHcJbIW9hayzeDMM/McxqGXiQmJs3RiLJFuXalZWV7N27l9jYWIyMjOjTpw+hoaG3bLmuD2pSSyjemIw6qxxlQ0usxzZD6WaBdu8lUeJp1GqObdnAkd/XoFWraTVwKK2HDMdIxKpzcU4lh35LJPVUPpYOJvR9NZDUgtOiJVeCIFC6aRO5c79Ak5ODZb9+OL77DgoR28WLqotYcHwB6xLWYaG0IKJ1BA7ZDuImVykHIGoy5JyGhu2h90xwFk80o1qtJfJAMt/uSUKrE+jvrWDWmC6YGyx7DNwCwzvDADqdjqSkJGJiYkhISEAqldKkSRNatWpFw4YNH6gCjkZTRlLSF2Rm/YiRkROBzb/DwaHuPdR/F7PwNTXCVMSbhFtRlwrWwIEDWbBgASNGjCA6OhorK6sb2vskEgmdOnVi3bp1jBgxghUrVjBo0KC7Pr+ubNu27bqfr850CYLAH3/8QUBAwI2vo19fPvnoIwoLiigpLmL79u3MnDkTiURC165dr6191Y8MGjocLJw5HbOfzRs3cOL4CZSm5ixZsoQdO3bQo0eP265PIpHQ07MnHVw7sOjUIladXcWu9F1MCJ7AUL+hyESU4b3ZWu48q2Xw1TLw6KHVajl69Ch79uyhurqakJAQunbtipmZeLMymuJqSramUnUyD5mVEtsRjTEJchC1bS0pLpp9q5ZSnJONd0gYXZ57ARtn1zuffI+oqjTEbknl1O4MZHIpbYf4EPSEOzKFlLS94rzOqtOnyZnxGVUnTmDcrBmu8+dhWs9qsn9HrVOz5sIaFp5cSKW6khGNR/Bqi1exMrJi7+W94gQtSoMdH8G5DWDlDk8vh6aD9R6MIiAIAlFnLjNjy3kyi6ro1cyJiL5NST4dY0iuDNwWw7vjP0xVVRXHjx8nNjaWoqIizM3N6dy5MyEhIVhaPljPBkEQyM2LIj7+U1SqfNzcRuPj/TZyed12+QQBcmrUXK5RYyKT4mWiRPEA5sTul759+7JlyxZ8fX0xNTVl2bJl1z0XGRmJi4sL06ZNY/z48UyZMoWWLVvywgsv3PH8+uLZZ58lLy8PQRBo0aIFixYtAiAuLo5FixYRGRmJra0tH3/8Ec8N7IZaq+OVt97HwsoagNmzZzNixIhrax8/HkGpJPyj+cz/5F2My9NA4cW8efMIDw/nxIkTd1U1NVWY8nbI2wzyGcSM6Bn878j/WJ+wniltptDM/vZiJWJwp1kt46BAdK1bG6paBh46ycnJREVFkZubi6enJ3369MHJSTxPIp1KS/n+TMr2ZSIIYNHNA4vObkiV4m2G5KensmdlJOmnT2Dn5sHQDz/FM0i8pEOnE7jwVzZH/kiiqlxNk7bOtB7kjZmVePL56txc8uZ/Scn69cjs7XGeMQOrIYNFbXk8lHWI2bGzSSlJoa1zWyaFTcLHWjxzYlQVcPBLOPw1IIGuEdDujTua2N8P57NLmbbxLEeSC/FvYMHq8a1p76tvX08WLaqBfwuGBOs/SHZ2NrGxsZw6dQqNRoOHhwfdunXD399fVO+qW1FVlXVFxGIPFubNCAr8/p6UsXSCQB5SymvUWCtkuBsrkYpcffvkk0/q5ToSiYRvv/32ps9t2bKl9r+9vLxuKgJxu/NvhqenZ50l2nfv3n3Tx6+2EF7l+eef5/nnn6eiRkPK38yIvb29b7r2g4f/AnU1FCZDQSKtA3w4d/ZsnXckfax9WNpzKVtStjA3bi7PbH6GYY2H8UbLN7AyEs8E9VbcalbLauUqEtb/oZ/VGjbMUNUy8MApLCxk+/btXLhwAWtra4YPH46/v7+oFaSqU/mUbElBW1KDSaA9Vn28kNuIp7ZWVV7G4bWrObljC0oTE7qOfZmgHn2QifgddymxmINrE8hLL6OBtxX9X/fDsaF4m5U6lYrCFSso+G4ROrUa2xeexz48HJm5eLNdaaVpzImdw77MfXhYePB116/p4i6eOTGCAKd/hR1T9S3lAU9Bj2lg5SZOPKCgvIZ5O+L5OSYdKxMF/xscwDOt3JEbPFIN1AFDgvUfQaPRkJOTw9KlS8nIyEAulxMYGEirVq1El/K+FTqdhozMZSQnf4VEIsHPNwI3t9FI70ERrlbMAgkNjBQ41qOYhYF7w8xIfkVdsIKUvAq8HMxQ3OoLSmGs9ykpSsO4Jg9KdPov0Dp6pUgkEvp596OTWycWnljITxd+YnvqdiaGTGSQ7yBxvVduw99ntQ5HRuIZn0Dxr79StHq1YVbLwAOjpqaGAwcO8NdffyGVSunWrRtt2rRBoRBPxU6VVU7xxiRUqaUonM2wHd4YI2/xNjx0Wi0nd27l8NrV1FRUENijD+2eHomppXgxywqrOfx7IolxuZjbGNHj+ab4tXISNWEt37WLnNmfo87IwLxrV5wmvY/S01OUeABlqjIWn1rMj+d/xEhmxDsh7zCyyUiUMhFns7OOwtYPIDMGnFvA08vAo41o4dRaHav+SuPLnfFUqLSMbuvJxO6NsBLR2NrAvxdDgvUvp7S0tNa7qry8HBsbG3r27EnLli0xeYg3cyWlJ7lwIYLy8vPY23ejcaNP6ixicZVKrZbUKhUaQcARvVqggUcDMyM5nnZmpBZcMyO+5S6gVA623tQUpGFUWaCvatl6gazu/54WSgsmhU1isO9gph+ZzseHP2Z94noiWkfQ2PbhqftJJBLUfn64vviiYVbLwANDp9Nx6tQpdu7cSXl5OYGBgXTv3l3UVnBtmYrS7WlUxF1GaqrA+klfzEIbIBFRbS3t1An2rFhMQWY6HgGBdBnzEg4enqLFU6u0HN+WxvHt6QhAq36etOzZEIWReC2P1fHx5MycSeVfR1D6+uC+NBLz9u1Fi6fVafkj8Q++Pv41RdVFDPEbwhst3xDXg7DsMuz6FE6sBjNHGLgAWjwLIrY87r2Yy/82nSMpr4KOfvZ83L8pfk4Wdz7RgIFbYEiw/oUIgkBaWhqxsbGcP38enU6Hn58fxsbGDBky5IF4V90KjaaMpOQvyMzUi1g0b74QB/ue97zTV3xFzEIukeBnaoSmsrKeV2zgfjE3luNpZ0pqQeUVdcHbJFkSCSojO4zMrKAoHfIu6pMs5b0N3De2bcyKPivYkLiB+UfnM2zTMEb6j+S1Fq9hrhSvjeZuuCtfLUNVy8B9kpGRwdatW7l06RKurq6MGDECNzfx2qsEjY7yw5co3ZWOoNZh3t4Vy24eSE3Eu90ovpzN3lVLSYo7gpWjEwPfjcA3tI2oFaTEuFwO/55IeVENvqGOtB3ig6WdeH+r2uJi8r7+hqJffkFqYYFTRAQ2z4xAImLL49Gco8yOmc35wvO0dGzJwu4LaWYn4lyrpgaOLIT9c0GrgvZvQcd3wFi8jYDkvHKmbz7P7gu5eNqZEjk6lG5NHA0dMAbuG0OC9S9CpVJx6tQpYmJiyM3NxdjYmNatW9OqVStsbW3Zu3fvQ0uuBEEgL28b8fGfUqPKvSJiMRG5/N52iARBIEelIadGjalMiucVMYuyel63gfrB3FhBwytJVkp+BV63S7IATGxAZgRFKZCfANYe9xxbKpEyxG8IT3g8wdfHvmb1+dVEpUbxbui79PXq+9C/SG/rq2Woahm4R0pKSti5cyenT5/GwsKCIUOG0Lx5c9G+AwRBoPpCISWbU9DkV2Hsb4tVPy8UDuJJoKuqKjmyfi3HNv+BVCanw4jRhPQbjFxES5HctFIOrk0gO6kEe3dzejzfDBc/a9HiCRoNRb+sIf+bb9CWlWEzYgT2b7yO3EY8U9vs8mzmHZ1HVGoUTqZOfN7pc3p79hZ3zurCZtgeAUWp0Lgv9JwOduKJZpRWq/lmVwLLD6diJJfxYV9/xrTzxEj+4BWHDfw7MSRY/wIKCgpqvatqampo0KABAwYMoHnz5g/Uu+pWVFVlER//CfkFuzE3b0pg4KJ7ErG4iiAIpFerKFZrsVHIcHsAYhYG7h+LK0lW2tUky8EM+e1u9pSmelPiolQoToOqatBqQHZvH1tWRlZ81PYjhvgNYfqR6Xxw4AN+T/idD1t/KK76VR24wVdrraGqZaBuqNVqDh8+zMGDB9HpdHTs2JEOHTrc1Ay93mLmVlK8KZma+CLkDibYjWuGSWPx/OgEnY6z+3dz8OcVVBQX0axzNzqMGI25rZ1oMStLVRzZkMT5w9mYmCvoOsof/3bOohrMlh86RO6sWdQkJGLapg1OkyeLutFSpali2Zll/HDmByRICA8KZ1zAOEzkIn7e5JyDqA8gZR84+MNz68HnCdHCaXUCv8ZlMGfbRQorVQwLcefdXo1xsBDv78PAfxNDgvWYotPpSEhIICYmhqSkJKRSKU2bNiUsLAx3d/eHviuvX6OGjMzlJCd/CYCv72Tc3cbek4jFVS7XqMlVabBRaw1iFo8hlsYKGtqaklZYSWp+JV72pshul2TJFPpdzNJLUHMWVj8FT/0Apvd+8xZgH8Dqvqv5LeE3vjr2FU/9+RTPNXuOVwJfwVQh3m57XbiuqjXZMKtl4M4IgsC5c+fYvn07JSUlNGnShJ49e2IjYqVDV6mmdFc65X9dQqKUYdXfG/O2zkhEVFvLuniePcsXk5OcgLNfYwa9NwVnX/HmKrUaHad2ZxK7JQWtWkeLbu6E9vPCSMSWR1VaGjmzP6d8924U7u64LfgG827dRG15jEqN4ou4L8ipzKGPZx8mhkzE2VxEAazKQtgzA+J+ACNL6DMHQp+/5w20uyEmpZBpG89y9lIprTxtWDEgjADXB68wa+C/gSHBesyorKys9a4qLi7GwsKCrl27EhwcjIXFozOQWVp6ivMXIigvP4e93RM0avQJJib3Z+p4sqySMadSmGsq4GmixErxcN6+giDQsWNHIiIi6NOnDwBr167lhx9+ICoq6p6vOWHCBLZs2YKpqSnLly8n+CYGkampqYwfP57CwkKCg4NZtWoVSqXyrs+/H1544QXi4uIQBIFGjRqxfPlyzG8iBzxp0iQ2b94MwEcffcTw4cMBvcz7u+++i0qlonmLlrw//UtS8uGPVd9z/tw5li5dCugNmtevX197DSRSvaKgaTakHYIlXWHEz+DU9J5fi0wqY1jjYXRv2J0vj37JsjPL2JK8hfdbvU+Phj0eqaTdMKtl4E5kZ2cTFRVFWloaTk5ODB48GC8vL9HiCVqBitjLlG5PRVelwSysAZY9GiIzF69joqwgn/2rl3Hh0D7MbWzp8/o7NGnfWTSvJ0EQSDtdwMF1CZTkVuHZ3I72T/lh7STeJoy2vIKC7xdRuHwFEoUCh7ffxnbMaKQiVh/PFpxldsxsjucep4ltE2Z3mk2IU4ho8dCq9UnVns+gpgxajYcuk+9r0+xOZBVXMXPLeTadysbFyphvnmlJ/0DnR+pz3sC/D0OC9Zhw6dIlYmJiOHPmDBqNhoYNG9KjRw/8/f2RyR6dnmG9iMU8MjNXYaR0pHnAtzg49LrvD7INuUW8dT4dO6UcR6XioSVXoK8uLFq0iKeffpquXbui1WqJiIi45+QKYOvWrSQkJJCQkEB0dDTh4eFER0ffcNzUqVOZOHEiI0aM4JVXXmHp0qWEh4ff9flXSU1NZezYsXXywpo/f36t6tjbb7/NggUL+OCDD647ZvPmzRw7dowTJ05QU1ND586d6dOnD+bm5owZM4Zdu3bRqFEjPv74Yw5uXUeXASMY8MwL/Ni3C4cOHaJZs2ZMnz795p5bSnMYuxnWjILI7vDk99BkwF2v/2bYGtvyaftPedLvSaYfmc47+96hnUs7Pmz9IQ0tG97Xtesbw6yWgX9SUVHB7t27OXr0KCYmJvTr14+QkBBRZ22rk4op2ZiE+nIlRt5WWPX3RukinmCMWlXD0Y3rid7wK4JOR5snh9Nq0FMojcXbUCi8VMHBdQlknCvEpoEp/d8IomEz8doPBZ2Okj82kDt/Htq8fKyGDMFh4lsoHB1Fi5lflc/Xx77mj8Q/sDG24ZO2nzDYdzAyqYj3E0m7IWoy5F0Ar87Qe9Z9bZTdiUqVhkX7kvl+XxISCbzV3Y+XO/lgIqKxtQEDV3nkEiyJRPIJ8CKQd+WhDwVB2HLrM/69aDQazp07R0xMDJmZmSgUClq0aEGrVq1wcnJ62Mu7Dr2IxXbi46ddEbEYhY/3O/csYnEVnSDwReplvkjNIczKjKUBnuQnJV47YOsHcPl07Y8m9zGjU0uD5tBn1m0PCQgIYMCAAcyePZuKigpGjx6Nj8+9z/Fs2LCB0aNHI5FIaNOmDcXFxWRnZ1/nUSYIAvv27WPt2rUAjBkzhk8++YTw8PC7Ov9+uZpcCYJAVVXVTZPmc+fO0blzZ+RyOXK5nKCgIKKioujatStGRkY0aqS/+e/RowczZ87kuTHjyCisImLGXF577TXCwsIYNWoU3t7eN1+Eexi8tFefZK0ZBZ0/gM6T7lu+t4VjC37p/wtrLq5hwfEFDNkwhHEB43ix+YsYy8UzQ71XbpjVMlS1/lNoNBpiY2PZu3cvarWaNm3a0LlzZ1GtNzSF1ZRsTqbqbAEyGyNsn/XHJMBe1La1+COH2L/6B0rzcvFr3Y7Oo57HyrGBKPEAqivUxG5K4fS+LJTGMjo87UdAF1dkIrY8Vh47Ts5nn1F95gwmQUE4ffstJoH3PqN8J1RaFavPr+b7U99To61hTLMxvBT4EhZKETtgCpJg+xS4uAVsPGHET3ohCxHfO3+evMSsrRfILqlmQJALH/Txx9Xa8Hlo4MHxyCVYV5gvCMLch72Ih0VJSQlxcXEcO3aMiooKbG1t6d27N0FBQQ/Vu+pWVFdf4mL8J+Tn78LcvAnNmy/EyqrFfV+3Uqtjwvl0NuYVM7yBLZ83dsNIKiX//pdcL0ydOpXg4GCUSiVxcXE3PD98+HAuXrx4w+Nvv/02o0ePvu6xrKws3N3da392c3MjKyvrugSpoKAAKysr5Fdkea8ec7fn1wfjxo1jy5YtNG3alC+++OKG54OCgpg2bRpvv/02lZWV7Nmzh6ZNm2Jvb49arSYuLo7Q0FDWrVtHRkYG1qZXWoqCQnH39mPnzp3ExMTcfhGWLjB2C2yaCPtmQc4ZGLIIjO7vBkEulfNsk2fp5dmLL+K+YPGpxWxO3swHYR/Qxb3LfV1bLP5Z1br5rNYwjBs/PO8vA/VLQUEB3333HQUFBfj6+tKrVy8cHBxEi6er0VK2N4OyA5lIJBIsezbEoqMrEoV4VYDK/FzWTptM5vkzODT0YtjUmbg3bS5aPJ1Wx7mDl4j+M4WaSjVNO7rSeqAXJiK2PKovXyZ37heUbtqE3MkJlzmfY9m/v6gJ677MfcyJnUN6WTqd3DrxXuh7eFp5ihIP0LcA7p+rl16XKaHbVGj7GsjFa3k8nVnCtI1niUsrIsDVkq9GtCTMS7z2QwMGbsWjmmD95xAEgdTUVGJiYrhw4ULtnEtYWBje3t4P1bvqVuh0GjIzV5Cc8iWCINSLiMVVLlWrGHs6hdPlVXzs40K4u8PNv3j+UWmqKit7YLNoZmZmDB8+HHNz85sqdK1Zs+auryUIwg2P/fP13u6YuzkfYMiQIaSkpKBSqUhPT6dFixYATJgwgXHjxt1xncuWLUOr1fLGG2+wZs2aG87p2bMnsbGxtGvXDgcHB9q2bYtcrhci+eWXX5g4cSI1NTX07NmzNlG0NlVSVl7OqePHUKlU5OblYW9/BxNLhTEMXgjOgbAtAiJ7wIjV9SLra29iz8yOM3nS70lmHJnBG7vfoItbFyaFTcLNQjz/oPvlulmtuDiK1v5aW9UyDgrEZthwLPv0Rmr6aAh5GKgbWq2WX375hYSEBOzs7Bg5cmRtRVgMBJ1A5YlcSqJS0ZWqMG3piGVvT+RW4t0cV5aWcPCXlZzftQ0TC0u6j3+N5t16IhWxbS3zQiEHf02gIKsC10bWdBjWCHs38VoeddXVmG3eTNLEt0Grxf7VcOzGjxf17zKpOInPYz/n8KXDeFl58V337+jg2kG0eOh0NMjeCd+8BOU50GIUdPsILMSrPuaWVTN320V+PZqJnZmSz4cGMjTEDZmIKo8GDNyORzXBel0ikYwG4oB3BEEoetgLEouamppa76q8vDxMTExo164doaGhoqo/3S+lpae4cGEKZeVnsbPrSuNG0+5bxOIqx0oqGHsmhUqtjpXNvehh/+iq/Eil0lsmv3WpYLm5uZGRkVH7c2ZmJi4uLtcdY29vT0lJCRqNBrlcft0xd3M+wPr164G7m8Hq1asXOTk5hIaGEhkZWfu4TCZj+PDhzJkz56ZJWUREBBEREQCMHDkSPz8/ANq2bcuBAwcA2L59O/Hx8bXnfDl7Bs+MfBa5uTXvvD+ZzRvW31n+WCKBNuHg2AR+HasXv3hqGfh2u/15d0mrBq34deCvrD63moUnFzJ4w2DGNx/PuIBxGMkeXUlfiUSCaatWmLZqdWNVa+ZMrAYONFS1HkNkMhk2Njb4+PjwzDPP1G5QiEFNeiklG5NRZZShcDPH7tkmGDUUz+xVq1FzYttm/lr3M+qaahwDQ3j6rfcwNhMv0SnJq+Lwb4kkn8jDws6YXi8G4BN8i428ekAQBMqiosiZMwfzS9mY9+6N47vvonSrn+/Nm1FSU8J3J7/jlwu/YKowZVKrSQz3H45CqhAtJunRsPV9/LNPgFsYPPMzuIonmlGj0bL8UCrf7E6kRqPlpY7evP6ELxbGIr5GAwbugoeSYEkkkp3AzbYyIoDvgP8BwpX//wJ4/ibXeAl4CcDJyalOw/o3o7y8/L6vURcqKiq4dOkSly9fRqvVYm5uTuPGjXF0dEQmk3Hy5Ml6j1kfr1EQqhCE9QjsBiyRSsIpKgwhOjoBSLjvNR4UFHyPKTbomEoFijOF/HPFVlZWlJXd3FJYq9Xe8jkxqKmpQaFQ3DTm35OSf/LP47t3787ixYvp168fsbGxmJubY25ufsNxHTt2ZNWqVTz11FNERkbSq1cvysrK7vr8q5SXl9/xd7Vu3bra/y4tLSU5ORkfHx8EQeC3337D29v7hvO1Wi3FxcXY2dlx5swZTpw4wbfffktZWRl5eXk4ODhQU1PDZ599xrvvvktZWRlnz55l48aNHDp0iBoU9F6zmpW/buDJPk9cd7NTXV19y/evceAsAs58htmPT5HkM4ZMt0H11t/viSeTnSbze9HvfHviW9aeWcvTtk/TxKTJPV3vQX/W0LAhvPcuisRETA4cRLt2LUU//YTKy4uqjh2oDgmBelYpe+Cv8T9C37592bt3r2jJlba0hpKoVCqP5SK1UGDzdCNMWzoiEbEKkHw8lr0rl1J0KRPPFiF0GT2e0wlJoiVXqmoNR6PSOLEzHalMSuuB3rTo7o5cROGD6vPnyZnxGZVxcRj5+5M7YgRNXnpJtHganYZ18etYcGIBZaoynm70NK+1eA0bYxE3bUsyYcdUOLMOLFw412QiTYdNFXXOauf5XGZsPkdqQSXd/B2Z0r8pXvZmosQzYKCuPJQESxCE7ndznEQiWQJsusU1FgOLAUJDQ4UuXbrc15r27t3L/V7jTuh0OuLj44mJiSE5ORmZTFbrXeXm5ia6ZOj9vsbcvG3Ex0+npiYHV9dn8fV5975FLK6iEwRmp1xmQVoObazMiAzwwl5587fn+fPnb9kGWPYAWwQBjIyMMDIyuu+YTz31FHv37qVly5aYmpqybNmy2mv27duXyMhIXFxc+PTTTxk/fjwzZsygZcuWvPbaaxgZGd32/Jthbm6OTCa763XrdDpee+01SktLEQSBoKAgvvvuOywsLIiLi2PRokVERkZSXV1N3759Ab0oxk8//VRbif3000/ZtGkTOp2O8PBw+vfvjyAIvPvuu3z11Ve1cyRz5n7B66++QruOf+HrbF1rIm1sbEzLli1vvcgn+sMf4fieX4avWSUM+AoU9TezOIQhHM46zGcxn7EwdyE9Gvbg/Vbv08Csbm0vD+Kz5qZ07QovvoimqKi2qqVcuQqb39fXe1Xrob1GA/eEoNZRdjCTsj0ZCFoBiy7uWHR1Q2ok3i1CQVYG+1ZGknLiKDbOrgz5YCreLVvpn0xIqvd4gk7gYsxl/lqfRGWJisatG9BmsA/mNuJVozUFBeR9+RXF69Yhs7amwbRpWD81lPQrlXwxiM6OZlbMLBKLE2nVoBWTWk2isa2I1WpVJRz+Bg7OBwTo9D50eIvcw7E0FemeJj6njP9tOseBhHx8Hc1Z8XwYnRuJN4dowMC98Mi1CEokEmdBELKv/DgEOPMw11MfVFRU1HpXlZSUYGlpyRNPPEFwcPBNfYQeNfQiFtPIz9+Jubk/zQO+rRcRi6tUaLS8cT6dLfklPOtsy8xGbigfwZmzm/HJJ5/Uy3UkEgnffvvtTZ/bsuWaiKaXl9dNRSBud/7N8PT0rFOFQSqVcujQoZs+9/cWQmNjY86dO3fT4+bMmcOcOXOue0wikXDw4MHrHuvQOoSYYyfJKq4ivaASDzvT2iTrthiZw7CV+qHqPdMhPx6Grwar+mvBaefajt8H/s7ys8tZcmoJB7MO8nLgy4xuOhqF7PFoSbmdr5ZhVuu/hSAIVJ8toHhzMtqiGoyb2WHd1wu5nXhiStUV5Rz57WeOR21CrjSi83Mv0LJ3f2Ry8f5+LieXcGBtArmppTh6WtLn5eY08Bav9VxQqShc/RP5336Lrroa29GjsX/tVWSW4rVZZpRl8EXcF+xK34WruSvzu8ynm4d45sQIApxdDzs+hpIMaDoYenwKNuLZWxRXqvhyZwKrjqRhppQxdUBTRrVpiEJElUcDBu6VRy7BAj6XSCQt0LcIpgIvP9TV3AdZWVm13lVarRZPT0969epF48aNHynvqluh02nIzFpFcvK8KyIWH1wRsai/L8LMahVjTidzvrya//m6Mt5NPNlfA48PduZGCMCl4ioyCitxt73Lm32JBDq/B07N4PeXYHEXGL4KPNrU29qUMiUvBb5EP+9+zIqZxZfHvuTPpD+JaB1BmHNYvcURm9sqEBpmtf71qLIrKNmYRE1yCXInU+zHB2DsK14LmU6n5czuHRz8ZSVV5WU0f6InHYY/h6mVtWgxy4tqOPJHEhejL2NqpaTbmCY0bt1A1JbH8n37yJk5C1VqKmadOuL0wQcY3cp2oh6oUFcQeTqSlWdXIpPKeLPlm4xuNlrcOdHsk3qLlPTD4NRcr+LqKZ5ohkar4+eYdL7YEU9plZqRrT14u0djbM3EU3k0YOB+eeQSLEEQnnvYa7gf1Go1Z8+eJTY2lqysLJRKJcHBwbRq1QpHEU0D65vS0lNcuDiFsrKz2Nl1uSJiUb8KanElFYw9nUKNTsePgd48YSfe7p6Bxw97cyMEAbJLqqCw8qZKibfEvy+8uAt+fgaW94d+cyFkbL2uz9XclW+e+IZ9GfuYGTOTF7a/QB+vPrwX+h4Opo9Xu8oNVa21N/HVMlS1/hVoK9SU7kijIjobqYkc60E+mIU5I5GJl3RknDvNnuWLyUtLwdW/GV3HvoST1/0rft4KjVrLiZ0ZHI1KQ9AKhPRuSHDvhiiNRRQGSU4mZ9YsKvYfQOnlhfv3izDv3Fm0eDpBx8akjXx17CvyqvLo792ft4LfwslMRI/M8jzY/T84thJMbaH/lxA8GkRUeTycmM+0jee4mFNGW287Ph7QlCbOhnsFA48+j1yC9bhSXFxc611VWVmJvb09ffr0ISgoCGPjR8+o9FZoNOUkJ88nI3MlSqUdAQHf4OjQp96rSr9eLuSdCxm4GCv4vbkvjcwen9+RgQeHg4V+Fza7pIqySjVanXD3srsOjfVJ1m/jYeMEyD4FvWeBvH53PTu7d6a1c2uWnlnK0tNLOZB5gNdavMYI/xHI68Gy4EHy96qW9sMPKdmwwVDV+pcgaHWU/5VN6c50BJUG87YuWHb3QGoqXmteSW4O+1cvI/7IQSzsHej/1gc0atNeVKW+5ON5HPotkbKCarxbONBuqC9WDuK1PGpLS8n/9lsKV/+E1MQExw8mYTtyJBKleNWVk3knmRU9izMFZwi0D+TLrl8S6CCeOTEaFcQshn2zQV0JbV6Fzu+DibVoIdMLKpmx5RzbzubgbmvColEh9GrmZOhwMfDY8Hh9+z9iCIJASkoKMTExtXLcjRs3JiwsDC8vr8fugyAvbwcX4z+pFbHw8X4HhaJ+d4q0gsDM5GwWpOfS3tqcJQGe2CoMb0MDt8bBwggBgZx0Le/9epI5TwfdfZJlYgMj18KuaXDoK8g9r5/TMq/fCpOx3JjXWrzGAO8BfBbzGbNjZ7M+cT1T2kyhpeNthDkeYWTW1oZZrX8J1fFFFG9MQpNXhZGfNdb9vVE4iae2pq6uJmbDr8Ru/B2JREq7Yc8SOuBJFErx2tbyM8s5uDaerPhi7FzNGPRWC9z8xTOYFbRain9dR95XX6EtLsb66adxmPAmcjs70WLmVOTw5bEv2ZS8CQcTBz7r8Bn9vPshlYg4gxS/HbZNhoJE8OsJvT4Dez/RwpXXaPh2TyJLD6Qgl0l4r1djXujghbGIxtYGDIiB4c72HqiurubkyZPExsaSn5+Pqakp7du3JzQ0FGtr64e9vDpTXX2J+PhPycvfgblZY5oHLMDKqv5vCss1Wl49l8b2glJGu9gxw88NhcEE0MBd4GhhjJWJnN+PZyCVSvh8aOCdfbKuIpXph68bBMKG1/RzWSNWg0uLel+nh6UH33X7jl3pu5gdO5vRW0czyGcQE0MmYmci3o2XmNx0Vmvtr4aq1mOAOq+Sks0pVF8oRG5njN3ophg3sRW1gnTh4F72/7Sc8sIC/Nt3puPIsVjai9cyW1WuIvrPFM4dyEJpKqfTiEY06+iCVEThg4roGHI++4yaixcxDQ3FKeJDjJvcm23D3VCtqWbluZVEno5Eq9PyYvMXGd98PKYKETc38uL1iVXiTrDzg5G/QqOeooXT6QR+P57F7KgL5JXV8GSwK5N6++NkaehuMfB4Ykiw6kBubi6xsbGcPHkSlUqFi4sLgwcPplmzZigUj4eC2N8RBC0ZmStJTp6PIGjx8XkfD/fn61XE4irpVTWMPp1CQmU1n/m58rzb4zWjYuDhY2GsYGL3RszfGY9cKuGzIc3vPskCaP4U2PnCL8/CD71g0Lf6x+oZiURC94bdaefSju9Pfc/KsyvZnbGbCS0n8FSj+o/3ILnbWS0DDxddtYbS3emUH7qERC7Fqo8X5u1dkMjFSzouJ8aze8VisuMv4OTtS/8Jk3D1bypaPK1Wx5m9WcRuTkFVraV5Fzda9ffC2Ey872JVZha5c+ZQtm0bchdnXOfPw6J3b1ET1h1pO/gi7gsuVVyim0c33gl9B3cLd1HiAVBVBPs+17cEKsz0FatWL9Z7a/XfOZZexLQ/z3Iys4QW7tYsfi6Elh4ienYZMPAAMCRYd0Cr1dZ6V6WkpCCTyQgICKBVq1a4udWv6MODpLT09BURizPY2XaiceNPMTER50M7uriccWdS0ArwU6APnW0fnE+VGAiCQMeOHYmIiKBPnz4ArF27lh9++IGoqKh7vuaECRPYsmULpqamLF++nODg4BuOS01NZfz48RQWFhIcHMyqVatQKpV3ff798OyzzxIXF4dCoSAsLIzvv//+phsLkyZNYvPmzQB89NFHDB8+HIBdu3bx3nvvodPpMDc3Z/ny5fj6+jJv3jzOnj3L0qVLAVizZg3r16+vvcbfmdDdD61Ox9e7E5FKJUwfFFC3JMulBby0F9aOht9e0Kthdf9ElCFtU4UpE0MmMshnEDOiZzA9ejrrE9fTR9Gn3mM9aO40q2Xepg0YfLAeOIJOoPJoDiXbUtFVqDENccKqlycyC/FujsuLCjn480rO7tuJqZU1vV6ZQLPO3ZCIaLWRdraAQ78mUHS5EvcmNnR4uhG2LuK1POoqK8lfsoTCpT+ATIbDhDexHTcOqYjz1RcLLzI7djaxl2Pxs/Fjaful4qqU6rRwbAXsng6VhRAyBp74CMzsRQt5uaSa2VEXWH88C0cLI+YNC2JwC9e6faYbMPCIYkiwbkF5eTnHjh0jLi6O0tJSrKys6NatG8HBwZiZPb5O4RpNBckp88nIWKEXsWj2FY6O/UTbgfspu4BJFzPxMFayMtALH9PHv9wvkUhYtGgRTz/9NF27dkWr1RIREXHPyRXA1q1bSUhIICEhgejoaMLDw4mOjr7huKlTpzJx4kRGjBjBK6+8wtKlSwkPD7/r86+SmprK2LFj6+SF9eyzz/Ljjz8CMHLkSCIjIwkPD7/umM2bN3Ps2DFOnDhBTU0NnTt3pk+fPlhaWhIeHs6GDRto0qQJCxcuZPr06Sxfvpw333yT0NBQDh06RLNmzZg+fTq7d+++5Tom9miERiewcG8SMomETwc1q9v719wBRm+AqElw+GvIPQdDI/XzWiLgbe1NZM9ItqZsZW7cXL6o+oK0v9KYEDwBKyPxvHgeFDfMaq1dS3lB4cNe1n+OmtQSijcmo84qR9nQEuuxzVC6ibeZpVGpOLplA9Hr16LTqGk1cCithwzHSMSZvOKcSg6uSyDtdAFWDib0ezWQhs3txKsg6XSUbtpE7hfz0OTkYDlgAI7vvI2iQd3MxetCYXUhC44v4LeE37BUWvJRm4940u9JcQVzUvZD1GTIOQMN2+vFgJzFE82oVmtZsj+ZhXuT0AoCr3f1JbyLD2YiGlsbMPCgMbyb/4YgCGRmZhIbG8vZs2fRarV4e3vTp08fGjVq9Fh4V90OQTjBkegp1NRcxtV1JD7e79a7iMVVtILAp0mX+D4jj0425ixu5om1CGIWs2Nmc6HwwrW4Wu19/zv52/ozKWzSbY8JCAhgwIABzJ49m4qKCkaPHo2Pz73LDm/YsIHRo0cjkUho06YNxcXFZGdn4+zsXHuMIAjs27ePtWvXAjBmzBg++eST2sTlTuffL3379q3977CwMDIzM2845ty5c3Tu3Bm5XI5cLicoKIioqCiGDRuGRCKhtLQUgJKSElxcXACQy+UsXLiQV199lbCwMEaNGoX3bXxjJBL94LNWJ/D9/mRkUglTBzSt202WXAn95+vnsra8B0u6wTM/65UHRUAikdDXuy+d3Drx4aYP+T3hd3am7dRXuHwHiTuk/oD4e1UrYc+eh72c/wya4mpKtqRQdSofmZUS22caYxLoIGrbWmLcEfatWkpJzmV8QtvQ+bnnsWngIko8gJoqDXGbUzi1JxOZQkrbJ30I6uqOTCHe303VqVPkzPiMqpMnMQ4IwHX+fEyDxROsUevU/HLhF7478R2VmkpG+o/klaBXxN2EKUqF7VPg/EawcoenlkGzIXo/QREQBIGtZy4zY/N5soqr6BPQgA/7Nrl7n0MDBh4jDAkWeu+q7OxsFi9eTHZ2NkqlkpCQEFq1aoWDw+M/K1RdnU18wqfohO3I5Y0ICPgKa6sQ0eKVarS8cjaV3YVljHO153++rsj/hSX/qVOnEhwcjFKpJC4u7obnhw8fXqsu+XfefvttRo8efd1jWVlZuLtfa9F0c3MjKyvrugSpoKAAKysr5HL5dcfc7fn1hVqtZtWqVXz11Vc3PBcUFMS0adN4++23qaysZM+ePTRtqp/DiIyMpG/fvpiYmGBpacmRI0dqz2vXrh1NmjRh586dxMTE3HENEomED/r4o9EJLD2YgkwqYUq/JnW/qQwdBw7++pbBJd1g6BJoLF4Ln7nSnCdtn+S1Lq/xWfRnfHz4Y35L+I0pbabgb+svWtwHzmOmoPo4olNpKduXSdk+/UaHRTcPLDq7IVWKtxGYn57KnhVLSD9zEjs3D4ZG/A/PQPGSDp1O4MLhbI5sSKKqXE2Tds60GeSDqaV4LY/q3Fzy5s2n5I8/kNnb4zxjBlZDBova8ngw6yCfx35OSkkK7Vza8X6r9/GxFs8njJpyODgfDn+jb4/uOgXavQ4K8eTsz10q5dNNZzmSXIh/Awt+erE17XzEaz80YOBhY0iwgEOHDnHx4kUcHBzo168fgYGBGBmJ6IL+gBAELZmZq0hKnocgaJFIhhLWaoYoIhZXSa2q4blTyaRU1TC7kRtjXMX9AP1npamsrAwLiwcz42VmZsbw4cMxNze/6ftlzZo1d32tm5no/jNZuN0xd3M+wJAhQ0hJSUGlUpGenk6LFi0AmDBhAuPGjburtb766qt06tSJjh073vBcz549iY2NpV27djg4ONC2bdvahHD+/Pls2bKF1q1bM2fOHN5++20iIyMBfUtuXFwcarWa/Px87O3v/L6RSPRJlfZKkiWXSfigt3/dk6yGbfVzWWue1RsTd42ATu+KmiQ0tm3M8t7L+TPpT+YdncfwTcMZ0XgEr7d8HQvl4z2j+F9AIpF8ArwI5F156ENBELY8kOACVJ7MpWRLCtoSFSZBDlj18URuLV77dVVZKYd/Xc3J7VsxMjXliXEvE9SjL1IRuzouJRRxYG0C+RnlOPtY0f91Pxwbimcwq6upoXDFSgoWLUJQq7F7cTx2L7+MzNxctJipJanMiZvD/sz9eFh4sOCJBXRy6ySexYtOB6d/hZ1ToSwbmg/Tz6BauYoTDygor+GLHfH8EpOOlYmC6YMDGNHKHbmIKo8GDDwKGBIsICQkhKKiIgYPHvzYeVfditKyM1y4MIWystPY2nbEv/GnREcni5pcHS4qZ/zZFHQC/BLkQwebf/+NolQqRXqLnc26VLDc3NzIyMio/TkzM7O2he4q9vb2lJSUoNFokMvl1x1zN+cDrF+/Hri7GaxevXqRk5NDaGhobSI0bdo08vLy+P777295XkREBBEREYB+VsvPz4+8vDxOnjxJ69ata383vXtfU5ubOnUqo0aNwsnJicmTJ9eu805IJPr2QK1O4Pt9yciutA/W+e/YyhXGbdUbEu+ZDpdPweDvwEi8myuJRMIg30F0ce/CN8e/4ecLP7MtdRvvhL5Df+/+/5rPon8x8wVBmPsgA6oyy3CNllJYfBGFixm2I/wx8hKvhUyr0XByx1b++nU1NVWVBPXsQ7unn8XEQrxEp6ywmozDOs6mH8fcxoie45vhG+Ioastj+a5d5Mz+HHVGBubdu+H0/vsoPTxEiQdQpatibuxcVp9fjZHciHdC3uHZJs+ikImoRpx5VD93mhkLLsF6P0B38UQzNDqByAPJfLUrgSqVljHtPHmrWyOsRDS2NmDgUcKQYAEWFhbY2Nj8K25oNJoKUlK+Ij1jGUql7T9ELJJFi/vjpQI+iM/Ay8SIlc298TJ9/CuA90tdKlgDBw5kwYIFjBgxgujoaKysrG5o75NIJHTq1Il169YxYsQIVqxYwaBBg+76/Lqybdu2636OjIxk27Zt7Nq165ZJpVarpbi4GDs7O06dOsWpU6fo2VPvnVJSUkJ8fDyNGjVix44dNLniG3P69Gk2b97MiRMnUCqVLFmyhB07dtCjR4+7WqdEImHawGZoBb3whVwq4e2e9zBLpTCBId/r57J2fARLk+CZn8DGs+7XqgNWRlZMaTOFIX5DmHFkBh8e1M9oRbSOwNfGV9TYBh4fBK1AwY/nUVSCzVA/TEOckIjYep166jh7VyyhIDMdj4Aguo55EXsPT9HiqWu0HNuexvHt6eh00KqfJy17NUQhYstjdXw8OTNnUvnXEYz8fPH4YSlm7dqJFk+r07I+cT1fZH1Bha6CJ/2e5PWWr2NvImKnR2m23mj95M9g7gSDFkLQMyBiy+Oei7lMOVTF5YrzdGrkwMf9m+Dr+O/fcDVg4O8YEqx/EXl5O7kY/wk1Ndm4ujyDj8/7oolYXEWjE5iWlMWSzHy62lrwfTNPLOWPtxjIw6Bv375s2bIFX19fTE1NWbZs2XXPRUZG4uLiwrRp0xg/fjxTpkyhZcuWvPDCC3c8v7545ZVXaNiwIW3btgXgySef5OOPPyYuLo5FixYRGRmJWq2ubR20tLTkxx9/rG0RXLJkCUOHDkUqlWJjY8MPP/yAIAiEh4czf/58jK9IHs+bN4/w8PDahOtuuCrZrtUKtRLub3VvVPcXKZHoZxEcm8C65/WmxE8vB+8udb9WHWlm14wf+/7Ibwm/8eXRL3l649OMajqKV4JewUzx+CqX/ot5XSKRjAbigHcEQSi62UESieQl4CUAJyenOil3/hOjJlAklGNacQH2X7jzCfdAdUkRmYf3UpKahNLSCp/eg7Hy9OFMciokp9Z7PEEQKE2HyycENFVg6QEWflVUWqRz6HB6vccDkJSXY75xEyb79yOYmFA+fDhVnTqSrlLBffz73I7E6kR+K/yNTHUmnnJPXnV8FXeVO2eiz4gST6pV4Zb5Jw3TfkUiaMjwGEq6x1NoS0xh/35RYl6u0PHTBRWn8rQ4GAu8FWxMkEMFmeeOknlOlJAPjfLy8vv6W34cMLzG+0Nys9mNx43Q0FDhZiIDdWHv3r10eUx9W6prLhMf/yl5edswM2uEv//0m4pY1PdrLFFreOVcGnsKy3jJzYGPfVweiJjF+fPna6sf/+RBzmA9DP7trw9u/Rpv9+9+FZ1O4P3fTrHuaCbv9mzE60/43ftCCpLgl5GQnwC9ZkDrV+plLutu/g6Lqov48tiX/J7wO46mjrzX6j16Nez12FTZ6+OzRiKRHBUEIbR+VnRP8XcCN9PjjgCOAPmAAPwPcBYE4fk7XfNR/q6qqawkev0ajm7egEyhoM2TwwnuOwj5Tbzu6ovctFIOrk0gO6kEBw8LOjzth4uftWivUVCrKfplDXkLFqArL8dmxAjsX38NuY14prbZ5dl8cfQLtqVuo4FZA94JeQejVCO6du0qTkBBgAubYFsEFKdB437QazrY3lqZ9X4pqVLzza4Elh9OxUQh481ufnhp0uj+hEiv8RHgcb5nvFsMr/HuuNV3laGC9RijF7H48YqIhRof73fx8Bgv6pzVVZIraxh9OpnUqhq+aOzOsy52osc0YOBOSKUSZg8NRKsTmLs9HplUSniXe1TjsvOB8Tth/SsQ9QFkn9JLuyvE93KzMbZhWrtpDPEdwozoGby37z1+d/6dD1t/iKeVp+jxDYAgCN3v5jiJRLIE2CTyckRD0Ok4u28XB35eQWVJMc06d6fDM6Mxt7EVLWZFSQ3RG5I5/1c2JuYKuj7nj39bZ1ENZssPHSJn5kxUiUmYtWuL0+TJGPndxwbMHahUV7Ls7DKWnVmGBAnhQeGMCxiHidyEvWl7xQmac1b/WZWyHxyawHN/gI94SY5WJ7A2LoO52y5SWKlieKg77/RsjIOFEXv3ilN9NGDgccGQYD2mlJWd5cKFKZSWnaoVsTAxEW8o9+8cKCzjxbOpSCWwNsiXdjbiCQEYMFBXZFIJc58OQqsTmB11AblUwoud7nH31sgChq2CfbNh3yzIvwjDV4Nl/cvf34wWji34pd8vrLm4hgXHF/Dkn08yttlYXgx8ERO5eJLKBm6PRCJxFgQh+8qPQwBx+rxEJuviefYsX0xOcgLOfo0Z8v7HNPC9h9bau0Sr1nFydwZxW1PRqnW06O5Bq76eKE3EuxVRpaaSM/tzyvfsQeHhgdvCbzHv2lVU0YwtKVuYf3Q+OZU59PHsw8SQiTibi/iZUVEAe2bA0WVgbAV950LIOJCJ93uNTi5g2sZznMsuJczTlhUDmhLg+vgbpxswUF8YEqzHjL+LWCgUNjRr9iVOjg9OcWxZVj5TEjLxMTFmVaAXDU0MYhYGHj1kUgnzhumTrBlbziOTSni+g9e9XUwqha6ToUGAvpq1uDMM/1FUBa6/I5PKGNlkJD09ezIvbh5LTi9hc/JmPgj7gK4e/94WnEeczyUSSQv0LYKpwMsPdTV1pKwgn/2rl3Hh0D7MbWzp+/o7+HfoImrSkXq6gEO/JlCSV4VnoD3th/pi7SSeway2vJz8776jcOUqpAoFju++g83o0Ujvcq7zXjhbcJZZ0bM4kXeCJrZN+LzT5wQ7BYsWD60aYpfC3plQUwatXoQuH4CpeNXHzKJKZm65wObT2bhYGfPNMy3pH+j82LQvGzDwoDAkWI8R+fm7uXhxKtU1l3BxGYGvz/soFA9mx0itE/goMYvlWfl0t7Pku6YNsTCIWRh4hJHLpHw5ogVancCnm84hl0kY3dbz3i/YZADY+eq9spb3g37zIPi5elvvnbA3seezjp/xpN+TzIiewZt73qSTWyc+CPsAdwv3O1/AQL0hCMKD+4evR9SqGuI2/k7MhnWgE2jz5HBaDXoKpbF41dDCSxUcXJdAxrlCbBqYMuCNIDyaiddSLuh0lKxfT+68+WgLCrB68kkcJ76F3MFBtJj5Vfl8fexr/kj8AxtjGz5t9ykDfQYik4r4HZm4C6Im66vq3l2g10xwaipauEqVhkV7k/h+fzISCUzs3oiXOnljIqLKowEDjzOGBOsxQC9i8T/y8qIwM/MjpNkarK0f3Ox3sVrDi2dTOVBUTri7A1N8XJAZdqsMPAYoZFK+fqYlr/10jI83nEUqkTCqTcN7v6BjE3hxt15h8M/X9X5ZvT4DMf1r/kFog1DWDljLT+d/YuGJhQzZMIQXmr/A8wHPYyQzVJQN3IggCMQfOci+H3+gLD+PRm060OnZcVg5OokWs7pCTcymFM7sy0JpLKPDMD8COrsiE9FgtvLYMXJmfEb12bOYtGyJ06LvMGneXLR4Kq2KH8//yOJTi6nR1jCm2RheDnwZc6WIbfMFSXoBi/itYOMFI36Gxn1EM0YXBIE/T15i5pYLXC6tZmCQCx/08cfF2tCibMDA7TAkWI8wgqAlM2s1SUlfXBGxeOeKiIV4LQ7/JLGymtGnUsisVvGlvzsjnA1iFgYeL5RyKd+ODCb8x6NM+eMMcqmEEWH3Ma9oagvProOdU+GvBZB7Hp5eAWYP7m9DIVUwptkYenv2Zk7cHBaeWMjGpI182PpDOrh2eGDrMPDok5OSxJ7li8m6cBaHhl70ee1t3JuKl3TotDrOHrhE9MZkVJUamnZ0pfVAL0zMxfveUmdnkzv3C0o3b0beoAEuc+di2a+vqC2PezL2MDduLhllGXRx68K7rd6loeV9bN7ciepS2D8HjnwHcmPoPg3ahINcvE2VU5nFTNt4jqNpRTR3tWLByJaEeorXfmjAwL8J8baSDNwXZWXniDv6NPHx07CybEHrsK14er76QJOrvYWl9D0aT4lGy7oWPobk6gqCINChQwe2bt1a+9jatWvp3bv3fV3zzTffxNfXl8DAQI4dO3bT41JTU2ndujV+fn4MHz4clUpVp/PvhwULFuDr64tEIiE/P/+Wx02aNImAgAACAgKuM1vu2LEjLVq0oEWLFri4uDB48GBA73t11c8L9AbN/fr1q9e1K+VSFo4KpktjByavP83auIz7u6BMrpduH/I9ZMTo/bKyT9XLWuuCk5kTczvPZXGPxcgkMsJ3hjNxz0Syy7PvfLKBfzWVJcVsX/wNP05+i8KsDLqPf41Rs74UNbnKuFDImhmx7P8lHns3c4ZFhNFlZGPRkitdVRV5335LUp++lO3cif2rr+KzZTNW/fuJllwlFiXy8o6XmbBnAgqpgkXdF/FNt2/ES650Oji2Cr4JhsNfQ+BweOModHhLtOQqt6yad389ycAFh0grqOTzoYFseK29IbkyYKAOGCpYjxhabSXJKV+RkbEMudyaZk3n4eQ08IEOkAqCwNKsfKYmZtHY1JgVgd64Gz+4xO5RRyKRsGjRIp5++mm6du2KVqslIiKCqKioe77m1q1bSUhIICEhgejoaMLDw4mOjr7huKlTpzJx4kRGjBjBK6+8wtKlSwkPD7/r86+SmprK2LFj62Sw1759e/r3739bz4jNmzdz7NgxTpw4QU1NDZ07d6ZPnz5YWlpy4MCB2uOGDh3KoEGDAHjzzTcJDQ3l0KFDNGvWjOnTp7N79+67XtfdYiSXsWhUCC+ujGPSb6eQSSQMDXG7v4sGjQB7P/hlFCztCYO/hYCh9bPgOtDWpS2/DfyNledW8v3J7zl06RAvBb7EmKZjUDzA9kUDDx+tRs3xqE38te5nNKoaQvoOpM3QZzA2E69trSSvisO/JZJ8Ig8LO2N6vxSAd0sHUStIZVu3kjNnLprsbCz69Mbp3XdRuLqKEg+gpKaEhScWsubiGkwVpnwQ9gHDGg9DIaYtSvoR2DoJsk+Ae2sYuQZcb/S4rC9qNFp+OJjKgt0JqLQ6Xu7szetdfbEwNnyGGDBQVwwJ1iNEfv4eLsZPpbo6CxeX4VdELKwf6BrUOoEPEzJZdamAXvaWLGzSELNHWMzi8mefUXP+Qu3PGq2WQtn9rdeoiT8NPvzwtscEBAQwYMAAZs+eTUVFBaNHj8bH5x79loANGzYwevRoJBIJbdq0obi4mOzsbJydr0n7CoLAvn37WLt2LQBjxozhk08+ITw8/K7Ov19atmx5x2POnTtH586dkcvlyOVygoKCiIqKYtiwYbXHlJWVsXv3bpYtWwaAXC5n4cKFvPrqq4SFhTFq1Ci8vcUxxTRWyFgyOpTnl8fy7rqTyKQSBre8z5sy1xB4aS+sfU4/m3X5NDzxEYg54H4TlDIl45uPp69XX2bHzOarY1/xZ9KfRLSOoLVz6we6FgMPh+TjsexdEUlRdhZeLULoMuZFbF3ucxPhNqiqNRyNSuPEznSkMiltBnsT1M0duUK89371uXNc/uwzquKOYtSkCS6zZ2EWJp6ip0anYV38OhacWECZqoynGz3Nay1ew8ZYPHNiijP0LchnfgNLVxi6VL9xI2LCuuNcDjO2nCetoJLuTZyI6NcEL3szUeIZMPBfwJBgPQLU1OQQnzCd3NwtehGL4AcrYnGVQrWG8WdSOVxczhsejkz2dkZqELO4JVOnTiU4OBilUklcXNwNzw8fPpyLFy/e8Pjbb7/N6NGjr3ssKysLd/drSnBubm5kZWVdlyAVFBRgZWWFXC6/7pi7Pf9BEBQUxLRp03j77beprKxkz549NG16vbLV+vXr6datG5aWlrWPtWvXjiZNmrBz505iYmJEXaOxQsbSMa0YtzyGt9eeQCaVMCDI5f4uauEEYzbClvfg4Hy94efQSL0nzQPGxdyFr574iv2Z+5kZPZPx28fTx7MP77Z6F0dTxwe+HgPiU5CZwd5VkaSeOIqNixtDPpiKd8tWosUTdAIXoy/z1/okKktVNG7TgLaDfTCzFm8eSFNQQN6XX1K87jdkNjY0+HQa1kOHIrnPDbXbcST7CLNjZpNYnEjrBq15P+x9GtmI5xOGqlLfBnjwS0CAzpOg/QRQipfoXLxcxv82neNgYj5+juasfD6MTo3EU1w0YOC/giHBeogIgpasrJ9JTJqDIKgeiojFVeIrqhl9OpnsGjULmnjwVIPHo9f6n5WmsrIyLCwsHkhsMzMzhg8fjrm5OUZGN95Y/H3+6E4IgnDDY/9sr7ndMXdzPsCQIUNISUlBpVKRnp5OixYtAJgwYQLjxo276/Xeip49exIbG0u7du1wcHCgbdu2tQnhVX7++WfGjx9/3WPl5eXExcWhVqvJz8/H3t7+vtdyO0yUMn4Y24qxP8Ty1hp9ktW3+X0mo3IjGPAVOAfq23qWdINnfta3ED4EOrl1IqxBGMvOLCPydCT7s/bzatCrPNPkGXHbmgw8MKrLy/lr3U+c2L4ZhZExXUaPp0Wv/sjk4n21X04u4cCaeHLTynDysqRPeHMaeIm3kSCoVBT+uJr8hQvRVVdjO2YM9q+GI/vbBk19k1Gawdy4uezO2I2ruStfdvmSJzyeEK9VXxDg7O+w/WMozYRmQ6DHp2B9H2I8d6C4UsX8HfH8GJ2OmVLGJwOa8mybhihEVHk0YOC/hCHBekiUlZ3nwsUplJaewNamPY0bf4qpqedDWcuuglJeOZuKsUzK7y18CbEytAXcLVKpFKn05l9Idalgubm5kZFxTXghMzMTF5frqyr29vaUlJSg0WiQy+XXHXM354O+egR3N4PVq1cvcnJyCA0NJTIy8pbH/ZOIiAgiIiIAGDlyJH5+1xKMgoICYmJiatdxlalTpzJq1CicnJyYPHnyDc+LgalSzrJxrRjzQwxv/nwcqURC74AG93dRiQRajQcHf1g7GpY8oa9kNepVP4uuI8ZyY8JbhNPfuz+fxXzGnLg5/JH0BxGtIwhxEm+Ww4C46HRaTu/axsE1P1JdXkZgt160H/4cppbiJTrlRTX89Uci8dE5mFop6Ta2CY3DGiCRite2Vr53L7mzZqNKS8OsU0ecPpiMkfc9GobfBRXqChafWsyqc6uQS+VMCJ7Ac02fE9f+4NIJiPoA0v+CBs3hycXg2V60cBqtjp9i0pm3I57SKjXPtm7IxB6NsDUzzFkbMFCfGBKsB4xexOJrMjJ+QC63eigiFlcRBIHFmXlMS7xEU3MTljf3ws0gZlFv1KWCNXDgQBYsWMCIESOIjo7GysrqhvY+iURCp06dWLduHSNGjGDFihW1QhF3c35d2bZtW53P0Wq1FBcXY2dnx6lTpzh16hQ9e/asff7XX3+lf//+GBsb1z52+vRpNm/ezIkTJ1AqlSxZsoQdO3bQo0eP+1r/3WBmJGf582GMXhrN6z8d47tRIfRoWg/eQJ4d9HNZv4yEn4ZDt4+gw9uizVDcCXdLdxZ2W8ju9N3Mip3F2KixDPQZyMSQidibiFstNFC/lGWl8+OkCeSlp+LWJICuY1/C0VOcmUUAjUrLiZ3pHI1KQ9BBSJ+GBPdqiNJYvNsHWXY2GS++RMXBgyi9vHD/fhHmnTuLFk8n6Pgz6U++OvYV+VX5DPQZyITgCeK21Jbnwu7/6RUCTe301e+Wz4k6u3koMZ9pG88Sn1NOOx87Ph7QFP8G4lUCDRj4L2NIsB4g+QV7uXhxKtXVmbg4D8PXd9IDF7G4ikqnY1J8Jj9nF9LX3opvmnpgJmIvu4Hb07dvX7Zs2YKvry+mpqa1AhBXn4uMjMTFxYVp06Yxfvx4pkyZQsuWLWvlzW93fn3x9ddf8/nnn3P58mUCAwNr1xUXF8eiRYuIjIxErVbTsWNHACwtLfnxxx+vaxH85Zdf+OCDD2p/FgSB8PBw5s+fX5t0zZs3j/Dw8NqES2zMryRZzy2N4dXVR/n+uRCe8K+HJMvaA57frjck3vUpXD4Dgxbc/3XvEYlEQreG3Wjr0pYlp5ew/Oxy9qTv4Y3gNxjWaBiyByzKYaBu6LRaNn/1OfHRh7B0cGTAxA/wa91eVKW+pGN5HP4tkbLCanxaOtBuqC+W9uIZzGpLSsj79lvsflxNlZkZTpM/wGbkSCQK8VpaT+SeYHbMbM4UnCHQPpCvu35NcwfxpOzRqHBPXw9/PQfqSmj7GnR6D0ysRQuZVlDB9M3n2XEuB3dbE75/LoSeTZ0eysauAQP/FSQ3m9143AgNDRVuJjJQF/bu3Xtb+en7oaYml/iE/5GbuwVTU1/8/adjYy3eAPKtuPoa81Uaxp9J4UhJBW81dOJ9rwaPlZjF+fPnadKkyU2fe5AzWA+Df/vrg1u/xtv9u9cHJVVqRkVGc/FyGYtHh9ClcT3tXgsCHPoKdn4CDQL4y/NN2vYedsfTxCa5JJnPoj8jOjuaJrZNmNJmCoEO/2/vzuOiqt4Hjn8OmwgoqCiigIJgLqi4a+FWaWSpad+CsnDnF2bufrWvldpumlkumftSbplmpriUoVmhqOEOooKCuygIKALD/f0xRiqoKFwGxuf9evl6OXfumfNcwbnzzDnnOQ2L5LWL4v1UKbVH07Tir/ajo8LeqzbPnkZSahr/eWs41jb6TVu7mJDKjpWxnIlNplJ1e/xfro3bY/pVzdMMBpK//56LU7/EkJLCNX9/Gk38FKuK+q0FPpd+jql7p7L+xHqqlK3C0KZDec7rOSyUTmuQNA2OboJN/4PLx8HnGeNeejqu0Uy7kc30rceYvyMOK0vFoCe96fuEJ7Y6Vnn8h56fqUoCc78+kGssqLvdq2QES0ealnOziMVnaFomXp7DqFEjxCRFLP5xJO06wQfiuJiZxdf1atDdRcdSs0KUIo5lrVnSrwU95+4kZMke5gY3K5pqWkoZNwV1qQ+r+tE0aQTUqWacRmhCXo5ezOk4h03xm5gUOYnXNrxGD58eDG0yFCdbJ5PGJvLXKeQtwsPDdUuurqdmsvOnExzecYYydta0e6U29fyrYaFj4YP0iJ2c/+QTbsTEYNesGS5j/0fE+fO6JVcZ2RksOrSIeQfnYcgxMKDBAPo36I+dtZ0u/QFwMQY2vg3Hf4VKPuxv8B4NXxyhW3c5ORo/7E3ks00xXEy9wYtN3PhvwGO4lLe9f2MhRJGQBEsnaWkxHIkey9Wrf1OhwuPUeex97Oz0W5xbEHs0K2bujcXB0oI1jX1oXF7HG4oQpZCTnQ3f9mvJq3N3MmDxbhb0bs7j3kW0RsmnIwzYStb8btgs7gYBnxoLYphw9FgpRYBnAG3c2jAzaibfHfmOX0/9ytAmQ+nu012/b/NFiWLIzuFAeCKR6+PJvmGgYQd3mj1XE1t7/abmZSYmcuGzSaRu3ox1tWpUnzqVcs90Mk5bO3++yPvTNI0tJ7fw+e7POZN+ho41OjK86XDcyum3TxjXr0D4RNg1G2wc4JlPoMUALv/+h25d7jl5hQnrDrE/MYXGHk7MCW6Gn7uTbv0JIfInCVYRMxiuERc3jVMJ87GyKk+9upOpWvUFk8511jSNmQkXmYw9DezKsKiBJ65lpJiFEPmpYG/Dt/1a8OqcnfRdFMnCPi1o5VWpaF7c2Zu9TSbR5sIi2DASzu6D5z43lng3IXtre0Y1H0U37258FPER4/8az+pjq3mn5TvUraTftExheicPJbFjZSzJ56/hUa8iT7zkQ0VX/SrJ5qSnc2n2HC4vWACWllQeOoSKvXtjYavf6Er05Wgm7prI7vO7qV2hNvP959O8qo7T9A3ZsHcRbP0QMpKhSS948h2w16+gzNmU60wMi+bHqDO4lC/D1EA/ujaqhoVOVR6FEPcmCVYRylvE4r9YW5t2Ct6NnBxGxSSw8twVWpHF0sY+2Mk+F0LcUyWHMnw3oCWvzI6g70JjktXCs2imLBms7CBoGfz2Efw+2Th9KHAJlCtkifgiULtCbRYGLOTnEz8zefdkgtYHEfhYIIMaD6K8jVQbMydXzqXzx6pjnDyYhGOVsjz3ZkNq+FbSr2hGTg5X163jwuTPyb54kfJdu1BlxAisXYqgoMxdXM64zLS/p/HD0R9wLOPIu63e5UWfF/Ut6HJim3E64IVDULMNBHxiLL+uk4wsA7O3n+Dr8OMYNI23nvTmjXa1sC8jH++EMCX5H1gEjEUsPuTChfXY2dWiSeNlVKjQwtRhcTEzi74H4om8ms6omlVpEh8tyZUQBeTsUIalA1oRNPsv+izYxeJ+LWhao4jWhVhYGEu3V/WFHwfC7PYQ+B24mX5vKqUUXWp1oZ17O6b/PZ0VMSvYFL+JEc1G0MWri1QeK+VuXMsickM8B7YmYmVjweM9vGn4pBuWVvrdG67v28e5jz8mY99+bBs0oPpXX2LXuLFu/WUZslgWvYxZ+2ZxPfs6Pev25I1Gb+BYRr99wrgSD5vfgSPrjBVEX1oE9brpNgVY0zQ2HDjHxxuOcDr5Os/6VuV/neviXlGm/gtREkiCVQialsPpM8s5fvwzcnJu4OU59GYRC9NO9wE4lHad4P0nuJyVzez6NelaxYnwk9GmDkuIUqVyuTIsG9CKoNkR9JofyZJ+LWjsUYSj0vW7QyVv435ZC56FLlPB79Wie/1CKG9Tnv+1/B8veL/ARxEfMXbHWH44+gPvtHoHnwr6VT4T+sjJ0Tjyxxl2/nSC62lZ1HuiGi27emFXXr/p4lnnL3Dxiy9I+fFHLCs74/rJJzh264q6y+bsReH3xN/5LPIz4q/G80S1J/hv8//i5aTfPmHcSIMdU+DP6cY9rJ58B1oPAmv9ytkfOpPChHWH2RV3mTpVy7FsQCta1yqiacxCiCIhwxkPKS0thj17A4mJeZdy5Xxp2WIDnp5vlYjkKuxiMl32xpID/NjEh65VnEwdklnRNA1/f3/CwsJyj61cuZKAgIBCvebgwYPx9vamYcOG7N27N9/z4uPjadmyJT4+PgQGBpKZmflA7QsjLi4u377vNHr0aHx9ffH19b1ts2VN0xg7diy1a9embt26fPXVV4Bx36t/9vMC4wbNzz33XJHH/7CqlLdl6YBWVHKwIXjeLvYlJBdtB1UbwIBwcG8BP4YapxcZsou2j0KoV6keSzovYXzr8ZxIOcFL615iUuQk0rPSTR2aKKAzsVf4/pNIwr+LwcnFjpffbk6H1+rollzl3LjBpW9mc/zZZ7m6fj2VBgygVthGnLq/oFtyFZcSx8BfBjLw14EAzHhqBl8//bV+yVVODuxbDtOawu+fQ/0X4K09xj2tdEquktJu8PbqAzw/bQfHLqTxUXdf1g9uI8mVECWQJFgPyGC4zrHjk9gV2ZVr1+KoV/czGvstMXmFQDB+gP0y/jx9DsZT286WjU1r06icTBcoakopZs2axfDhw8nIyCA9PZ2xY8cyY8aMh37NsLAwYmNjiY2NZfbs2YSGhuZ73rhx4xg2bBixsbFUqFCBefPmPVD7f8THxz/w3g+jR4/Ot+9brV+/nr179xIVFcXOnTuZNGkSV69eBWDhwoUkJCQQHR3NkSNHCAoKAmDw4MHs2bOHP/74g+TkZD788EOmTZv2QLHpraqjLcsGtMLJ3prX5+3kQGJK0XZgXwleXwMtQyFiJnzbA65dLto+CsFCWfBi7RdZ98I6uvt0Z8nhJXRd05WNcRsxh70UzdXVpOtsnH2QNZ//TUZaFp3616f7iCZU9tBnLz1N07i6ZQsnnnuei198gcMTj+O1/meqjBiOpYM+hTOuZl5lUuQkeqztwd8X/mZks5Gs7rqatm5t9ZvOmrgb5j0Na/4PHKtDv1+gx2woX02X7jKzc5j7+wnaTw7n+90J9H3Ck99GtqdnyxpYShELIUokmSL4AJKSthMd8x4ZGQm4uv4H71qjsbHRbyPEB5FhyGFETAI/nL9C9ypOTKnjQdlHYL3V7yuPcikhLfexwWDA0rJwC5id3R1o83Lte57j6+tLly5dmDhxIunp6QQHB1OrVq2H7nPt2rUEBwejlKJVq1YkJydz9uxZXF1dc8/RNI1t27axcuVKAHr16sX48eMJDQ0tUPvC0DSNrVu3snTp0jx93+rw4cO0a9cOKysrrKysaNSoERs3buTll1/m66+/ZunSpVjc/Aa7ShXjRr5WVlbMnDmTgQMH0qJFC1577TW8vHSc0vOQqjmVZdmAVgR+E8Fr83aydEBL6lcrwjUdltbw7KfGEa2fhxrXZb2yzLh/VgnhZOvEuNbj6OHdgw8iPmDU9lGsil3F/1r+Dy/Hkvcze1Rl3TCwd9NJ/t5yCgW06OKJX0cPrG30K+6QERPD+Y8/4drOnZTx8cFjwXzsW7fWrT9DjoHVx1Yz/e/pXMm4Qg+fHrzV+C0qldVxNOfqWeOG4fuXg0NVeOFraBhkXFOpk9+iL/DBz4c5cSmddrUr8+7z9fCu4qBbf0KIoiEJVgHcuHGR2NgPOX/hZ+zsvGjSeCkVKrQ0dVi5LtzIovfBOPZevcYYz6oMqeEiC9GLwbhx42jSpAk2Njbs3r07z/OBgYHExMTkOT58+HCCg4NvO3b69Gnc3d1zH7u5uXH69OnbEqSkpCQcHR2xsrK67ZyCti+MpKQknJyc8u37Vo0aNWLChAkMHz6ca9eu8dtvv1GvXj0Ajh8/zooVK1izZg2VK1fmq6++wsfHuJbn8ccfp27duvzyyy/s2rWrSGLWg1sFO5aHtCLwm794be5Olg5oRV3XIq6u17gnVH4MlveEuR2h+9fGxfIlSIPKDVj23DK+P/o9X+39ihd/epFe9XoR0jBE3w1bxT1pmkZs5Hn+XH2c9OQb+DR3oXX3WpSrqF8J9OwrV7j41Vckr1iJZblyuLz3LhVefhllpd/Hi8hzkUzcNZGYKzE0qdKEr5/+mnqV6unWH1kZ8Nd0+H0K5GSB/3BoMxzK6DMSCHDsQhofrj9MeMxFvJztWdC7OR3qVNGtPyFE0ZIE6x5uLWJhMNzA03MoNUtIEYt/7E+9Ru8DcVzJMjDPtybPVXYydUjF6s6RptTUVMqV0++mdyt7e3sCAwNxcHCgTJm8vxO3rj+6n/ymWd2ZJN/rnIK0B+jevTtxcXFkZmZy6tQp/Pz8ABgyZAh9+vQpVHwAnTp1IjIykscff5zKlSvTunXr3KTsxo0b2Nrasnv3blavXk3fvn35/fffAUhLS2P37t1kZWVx6dIlnJ312y+msNwr2rEsxDiS1XPuTpYNaMVjVYv4d86tGYSEw4rXYGUwtP0vtH9b12/KH5SlhSVBdYLoWKMjU/ZMYd7BeWyI28Do5qOx0EpOnI+KCyev8vuKWM6dSKGyRzk69a9PNW8n3frTsrK4smw5F6dPJyc9nQqvvELltwZh6aRfn2fSzvD57s/ZfHIzrvauTGo3iWdqPKPfF4qaZqwKuHksJJ+COs9Dpw+gon6jtSnXs/jyl1gW/xVPWWtL3nmuLsGta2KjY5VHIUTRkwTrLtLSYoiOeYeUlL04ObWkzmMfYm9fsqbA/HwhmbeOnKSitRXrmnjjK+utip2FhUXulLc7PcgIlpubGwkJCbmPExMTqVbt9vn8zs7OpKSkkJ2djZWV1W3nFKQ9wJo1awDjGqzevXsTHh5+12t75plnOH/+PM2aNWPOnDkkJyfn2/edxo4dy9ixYwF49dVXc0ep3NzcePHFFwFjondrQjdu3Dhee+01XFxcePvtt3PjLKlqVLK/mWT9Rc+5ESwPaYV3lSJOssq7Qp8N8PNw2P4ZnD8I3b8B25K1H1WlspX4yP8jevj04KOdHzE0fCgNyzakvdZeRtKLQXrKDSLWniD6r7OULWdDh9frULe1K0rHtTlpO/7g/CefkHn8OPaPP47L22Mo46NfZclrWdeYf3A+Cw8tRKEY2GggvX17U9ZKv0p9nDsIG8dA/O9QpR4ErwWv9rp1Z8jRWBGZwOTNMVy5lklQcw9GdKqNs0PJ+UJXCFFwkmDdwWDIIC5+OqdOzcHKqhz16n5G1ao9StQHBU3T+OLkeT6LO0ez8nYsaOBJZRtrU4cl7vAgI1hdu3Zl+vTpBAUFsXPnThwdHfNM71NK0bZtW1atWkVQUBCLFi2iW7duBW7/oDZt2nTb4w4dOuTb960MBgPJyclUqlSJ/fv3s3//fjp16gTACy+8wNatW+nbty/btm2jdm3j6OOBAwdYv349UVFR2NjYMGfOHLZs2ULHjh0LFb/ePJ2NSVbQ7AhembOT5SGtqFW5iNdGWJWBbtPBtaGxuuDcp43rsio9/Ho/vTR1acqK51ew7Mgyoo9Fl6j3THNkyMph39YEdm+Ix5CdQ+OOHjR7tiY2ZfW7rWfGx3P+04mkhYdjXcMDt5kzceigXyKtaRrr49bzxZ4vuHDtAs96PsvwpsOpaq/jptzpScZNwPcsAFtH6DwZmvYBS/3+XSNOJDFh3WGOnL1KC8+KvPd8PXyr67hnlxBCd5Jg3SIpaTsxMeO4nnEK16o98PZ+u8QUsfjHdUMOQ6NPsfZCMv9xqcDkx9yxfQSKWZi7zp07s2HDBry9vbGzs2PBggW3PTd37lyqVavGhAkT6N+/P++88w6NGzfOLW9+r/ZFZeLEiQQFBeXpe/fu3cyaNYu5c+eSlZVFmzZtAChfvjzffvtt7hTBMWPG0LNnT7744gscHByYO3cumqYRGhrKF198ga2tcZ3IlClTCA0NzU24SrJalR1YNqClMcmaHcGK/2uNp3MRV0tTClr+H1SuA9/3hjkd4MX54PN00fZTBKwtrAmuH0z4xXBTh2K2NE3jRNRF/vjhGFcvXqdmQ2eeeNEbJxf9ZjAYUlO59PUsLi9ZgoWNDVVGjaTC669joeP/z4OXDvLprk/Zd3Ef9SrVY1LbSTRxaaJbfxiyIHIuhH9i3NuqRQi0Gw12+n0GSLh8jU/CjrDhwDmqO5VlxqtN6Nygqnw5IYQZkAQLuJF5iZyc2UTt24mdnSdNGn9HhQqtTB1WHuduZNHrwAn2p15nrJcrgzyqyBuxiY0fP75IXkcpddcy7xs2bMj9u6enZ75FIO7VPj81a9a85/TA/Hh5eeXbd7NmzZg7dy4Atra2HD58ON/2Tk5OrF+/Ps/xHTt23Pa4SZMmd32Nksi7SjmW3tyM2JhktaJGJR1KUnu1g5DfjMUvlr4ET4+HxwcbEzDxSEg6k8bJcI3D5w9QwdWeLoMb4VFPv6p5msFAypo1XPhiKobLl3Hs3p0qw4ZiVbmybn1evHaRby99y871O6lkW4n3H3+fbt7dsFA6fpF47FfjCPGlGPDqAAGfQJW6unV3I1vj880xfLP9BBYKhj1dm/9r54WttX5VHoUQxUsSLODsme/R2IOn5xBq1vi/ElXE4h9RV43FLFINBhY28OQZZ5k+IERJUdulHN/1b8mrc/4dyXKvqMOIQoWa0G8z/DgQtrwH5w5Al6/ARtZfmrscQw4/T9vH9TRoE+hD/bbVsdRx9sK1PXs4/9HHZBw+TNnGjXGZNYuyDXx16y/TkMmSw0uYvX82N7Jv0Kd+H0IahuBgo2NJ8kvHjAUsjm40Fq54ZTnUDtDtSwtN01gbdYYJv1/nyo1jdPOrxuiAOlRz0nEtmRDCJCTBAjw8+hIXVwEvzyBTh5KvH89fYWj0KZxtrPi5kQ91HeTNWIiSpq5reb7t35JX5+wk6OZIllsFHRIfG3t4aSH8Phm2fgSXjkLgd+Dkft+movSysLTgmQG+HIzdS8MO+v2ss86c4cLkyVzdEIZV1apUmzyZ8s911nWd1daErXy++3MSUhPo4N6BNoY2vNTsJV36AyAjBbZPgohZYGULHd+Hlm8Y1zzqZF9CMhPWHWLvqWRqlrdgTp9WNKtZspYgCCGKjiRYgIVFGZTScdHsQ8rRNCbFneOLk+dp6WjPPF9PnG3kRyZESVW/muO/I1lzIlge0prqenw7rRS0HQUuDeCH/sZ1WS8vhhqPF31fosSo6uVI9Cl9Ep2c69dJmjuPpHnzQNNwfvNNKvXvh0VZ/b7Qi70Sy8TIiew8u5NajrX4puM3PF7t8QeevlxgOQaI+g5+fR/SLxn3nHvyPSjnok9/wIWrGXy2KYZVexJxdijDpP80pFLqMUmuhDBz8mm9hEo3GBh85BTrL6YQVLUiEx9zo0wJ2gNHCJE/3+qOLOnXktfm7sxdk+XqqNOH1McCYMBWWP4KLOoCnSdBs7769CXMkqZpXN2wgQuTPyf77FnKPRuAy8iRWFevrlufyRnJzIiawcqjK3GwduDtFm/z8mMvY2Wh40eSk3/BxtFwdh+4t4Ke30O1xrp1l5FlYP4fcczYeoxMQw7/19aLQU96U87WmvDw47r1K4QoGSTBKoFOZ2TS+0AcB9OuM65WNd5wryzFLIQoRRq5O7GoXwuC5+3i1Zsl3F3K2+rTWeXa0P9XWD0Afh4GZ/fDs5+BVcmuwChM7/qhQ5z/+BOu79lDmXp1qT7pM+yaNdOtv+ycbFbGrGRG1AzSstJ4qfZLDPIbhJOtk259kpxgXK94aDWUrw4vzgPfF3VdZ7X58Hk+Wn+EU5ev0bGeC2M716VmUVcXFUKUaJJglTB7U9LpdTCO64YcljT04ulKJWtTUSFEwTTxqMCivs0Jnrfr5nTBVlQpp1OSVdbJuEB/64ewYwpcjDZOGXSook9/olTLvnSJC1OnkvLDaiwrVKDqB+/j1KMHylK/KnZ/nfmLzyI/41jyMVq6tmR089H4VNBvc2Iyr8EfXxr/ALQbA08M0bUgTMy5VN7/+RB/HEvCp4oDS/q1oI2PfhUXhRAll0nmnCmlXlJKHVJK5Silmt3x3NtKqWNKqRil1DOmiM9UVp+/QveoY9hZWLC+aW1JrkooTdPw9/cnLCws99jKlSsJCAgo1GsOHjwYb29vGjZsyN69e/M9Lz4+npYtW+Lj40NgYCCZmZkP1F6PmOLi4vKNKTw8HEdHR/z8/PDz8+P9998HICEhAU9PTy5fvgzAlStX8PT05OTJk4WOuaRpWqMiC/q04FxKBq/O2cmltBv6dWZhCU+Pg//MhzNRMLs9nC7874EwH1pmJknz5nP8mQBSflxLxd69qbVpIxVeekm35OrU1VMM3jqYkC0hZGRnMLXDVOZ0nKNfcqVpcGAVTG8G2z6FOp1hUCR0eFu35OpKeibvrT3Is19u5+Dpq0zoWp+wIW0kuRLiEWaqRT0HgR7A9lsPKqXqAUFAfSAAmKmUMvuNIXI0jU9OnGXg4ZM0KW/Hhqa1ecxep2+6RaEppZg1axbDhw8nIyOD9PR0xo4d+0D7UN0pLCyM2NhYYmNjmT17NqGhofmeN27cOIYNG0ZsbCwVKlRg3rx5D9T+H/Hx8bRv375IYho9enS+MQG0adOGqKgooqKieO+99wBwd3cnNDSUMWPGAMYNiENCQqhRo8Y94ymtWnhWZH7v5iReuUbPOTu5mqnp26Hvi9BvEygLWPAs7F+pb3+ixNM0jdTffuNEl65cmDQJu2bN8PrpJ1xG/xfLcuV06TM9K50v9nzBC2tfIOJsBEOaDGHtC2t5yuMp/aa8n/kb5gfAD/3ArhL02Wj8wkGnCptZhhwW/hFH+8nhfBtxkp4taxA+sj29Hq+JlY4l9IUQJZ9JpghqmnYEyO9NthuwXNO0G0CcUuoY0AL4q3gjLD7p2QbeOnKKDZdSeM21Eh/Xro6NFLMosN8WzubCyRO5jw3ZBiytCpeTV6nhRYfeIfc8x9fXly5dujBx4kTS09MJDg6mVq1aD93n2rVrCQ4ORilFq1atSE5O5uzZs7i6uuaeo2ka27ZtY+VK4wfmXr16MX78eEJDQwvUXq+Ytm7dytKlS/PEdC/Dhg2jadOmTJ06lR07djBt2rSHjrM0aOVVifm9mtNnYSSTIqHNE5lUsNdxjZRrIwgJh5XBxrVZ5/bD0xOMo1zikXLj+HHOf/Ip6Tt2YOPlhfuc2Ti0aaNbfzlaDj8d/4kv937JpeuX6FqrK0OaDKGKnY7TVVPPw9b34e/vwN4Zuk4Dv566/r7/HnuRD34+zNHzaTzhXYn3nq/PY1X1SVaFEKVPSVuDVR2IuOVx4s1jeSilQoAQABcXl0KXdU1LS9OvNOxdXNQUk3HgFBb04joBZ5P585x+1YVMcY16cHR0JDU1FYDMrEwM2Ybc5zS02x4/jMyszNzXv5fhw4fTpk0bbGxs2LZtW542vXv3JjY2Nk+7N998k1dfffW2YydPnqRSpUq5r+Hq6srRo0dxcPh3k82kpCQcHR25fv06AE5OTiQkJJCamlqg9rdKS0vDYDDc8zoLGlP58uXzjenatWv8+eefNGjQgKpVq/LRRx9Rt27d3LYTJkygR48e/Pjjj9y4cYMbN4zT5+4WV0ZGRqn//X3Lz4ape67Tbeqv/Le5LQ42+havUTWG453lSPU/p3H5yO8crjeKbGsdN269yVzea0ozQ0oKF6fP4MrSpVjY2eHy9hgqvPoqytpatz6jLkTx6a5POZR0iIaVG/JVh69oULmBbv2RnQk7Z8G2zyA7Ax4fZNy+wNZRty7jL6Xz4foj/HLkPB4V7Zj9elM61nORQlRCiNvolmAppX4B8ttcaqymaWvv1iyfY/nOp9E0bTYwG6BZs2ba/aY73U94ePh9p0wVpciUdAYdiCNTy2FpvZp0KIb1VsV9jXo5cuQI5W5Oa3lmwKDbnktNTc19Tm/lypXjlVdewcHBAWdn5zzP//DDDwV+LUtLS+zs7HJjt7S0xMHB4bZrycjIyO0XwMHBAUtLS8qVK1eg9gDdu3cnLi6OzMxMTp06RZub32QPGTKEPn36PFRMFhYW+cbk7+/PqVOncHBwYMOGDfTs2fO2hHPbtm24urpy4sQJunXrlnv8bj9DW1tbGjfWr6xycWgP5Gi/MD0qi1kxVnzXrxWOdvp94AXgyadhzyIqrh+B/+F34JVlUKXu/dsVgrm815RGWnY2yd9/z8Uvv8Jw9SpOL79E5cGDsaqo375L59LP8cWeL9gQt4EqZavwsf/HPO/1vH5Jh6bB0Y2w6X9w+QTUDoBOH4Gztz79AakZWUz/7Rjzd8RhY2nB6IA69PWvSZlCzpgQQpgn3RIsTdOefohmicCtk6XdgDNFE1HJsfLcZUZGJ1Dd1prFDbzxkfVWpZaFhQUWd5nSGRgYSExMTJ7jw4cPJzg4+LZjbm5uJCQk5D5OTEykWrVqt53j7OxMSkoK2dnZWFlZ3XZOQdoDrFmzBjCuwerdu/c9RxkKGlNycnK+MZUv/++XBp07d2bgwIFcunQJZ2dnoqKi2LJlCxEREfj7+xMUFFSo6YylScPKVsx6vQH/t2QPwfN3sqR/S8rb6pxkNe0FlevAitdg7tPQ/Ruo+7y+fYpilx4RwfmPP+HG0aPYNW+Oy9j/YVunjm79ZWRnsPDQQuYfnI8hx0BIwxD6+fbDzlq/Sn1ciIZNb8PxreBcG3r+AD4P83GjYHJyNFbtSeSzTTFcSrvBi03cGB3wGFX02nZBCGEWStpin5+AIKVUGaWUJ+AD7DJxTEXGoGm8f+wMg4+cormjPRua1pbkyoytWLEit8DDrX/uTK4AunbtyuLFi9E0jYiICBwdHfMkHEop2rZty6pVqwBYtGhR7shPQdo/qILG1KFDh3xjOnfuHJpmHIDetWsXOTk5VKpUCU3TCA0NZerUqXh4eDBq1ChGjhxZqFhLmyfruDCzZ1MOn71Kr/m7SM3I0r9Tj5bwf9uMH0pX9ITwiZCTo3+/QneZCQkkvvUWp3r3ISc9nepffonH4kW6JVeaprEpfhNdf+zKjKgZ+Ff3Z+0La3mr8Vv6JVfXLsOG/8LXj8PpPRAwEUL/1DW52h1/mW4z/uC/P+zHvWJZ1r75BJ+/3EiSKyHEfZmqTHt3pVQi0BpYr5TaBKBp2iFgJXAY2Ai8qWla4RbUlBBp2QZ6H4hjZsIFgqtVYnmjWlSwLmlL4ISpdO7cGS8vL7y9vRkwYAAzZ8687bkzZ4wDuRMmTGDKlCl4e3uTlJREv3797tte75gmTpyYb0yrVq3C19eXRo0aMXjwYJYvX45Sijlz5uDh4UHHjh0BGDhwINHR0Wzbtq3QMZcmHeu5MO2VJhxITKH3gkjSbmTr32n5atAnDBq9AuEfw/fBcCNN/36FLgxp6VyY8gUnOj9H2h9/UnnoELzW/0z5ZzrpNj0v+nI0fTb1YeS2kZS3Kc/8Z+Yzpf0U3Mq56dIfhmyInAvTmkLkHONo7Ft7odUbYKnPyO+Z5OsMXvY3/5n1FxdTbzA10I/VoY/TyN1Jl/6EEObHVFUE1wBr7vLcR8BHxRuRvk5ev0GvA3HEXsvgY5/q9HWTvTHMxfjx44vkdZRSdy3zvmHDhty/e3p6smtX3kHde7XPT82aNe9bhKCgMXl5eeUb06BBgxg0aFCe4yEhIYSE/Ful0dLSkj179hQwcvMS4FuVaa80ZtCyv+m7IJKFfZtjZ6Pz27K1LbzwNVRtCJvHwryOEPQdVPTSt19RZLScHFJ++omLn08h++JFHLt1pfLw4Vi7uOjWZ9L1JKb9PY3VsatxKuPEu63e5UWfF7HUszLliW2wcQxcOAw120DAp1DVV7furmcamL39BF9vO4amweAnvXmjfS39/08KIcyOvGvoLCI5jb4H4zBosLRhLdpVlDKuQoh/PdvAlS81jcHL/qbvwkgW9G5BWRudF84rBa0HGotdfN8bZneAlxZCrQ769isKzfrECeJnfk3G/v3YNmyI2/RplG3USLf+sgxZLI1eyqx9s8jIzuC1eq/xRqM3KG+jX2Em2+vnYHlPiP4ZnDzg5SVQt4vx91YHmqax/sBZPtkQzenk6zzXwJW3O9fBrYKOa8mEEGZNEiwdLT2bxOiYRDxsbVjc0JNadjJvWwiR1/MNq2HI0Ri2Ior+iyOZ16s5ttbFUJ2sVgcI+c34YfbbHtDxA2j9pm4fZMXD07KzOTt2LBXX/kR25cpUm/gp5bt0Qem4b+L2xO1MipxE/NV4/Kv7M6r5KLwcdRzpvJEKv0+hxa6vwKoMPPkutB5kHHXVycHTKby/7jC74i9Tz7U8U15uREuvSrr1J4R4NEiCpQODpvH+8TN8k3CRdhXK8U39GjjJeishxD1086uOIUdjxPf7GLB4N3OCmxVPklXRC/ptgR/fME4ZPHcAukwF67L69y0KTFlZoeVopAUE0PSjD7Gwt9etrxMpJ5gUOYkdp3dQs3xNZjw1g7ZubXXrj5wc2L8CfhkPaee44NKBqj2/hvL6VRa9lHaDzzfHsDwygQp2NnzcvQGBzd2xtJAvF4QQhSef+ovY1WwDbxyKZ+vlVPpVd2aCd3Ws5A1bCFEAPZq4YcjR+O8P+/m/JXuYHdy0ePbZKeMALy2G7ZOMxS8uxUDgd+CY7z7vwkSqfTaR2G3bdEuurmZe5euor1kevRxbK1tGNhvJq3VexVqnYhIAJETCxtHGyoDVm0LQd0QfS6OqTslVZnYOi/6M56tfY7meZaDfE5689ZQPjmV13ipBCPFIkQSrCMVfv8Hr+08Qd/0Gkx5z4/VqeTefFUKIe3mpmTuGHI0xqw8w8Nu9fP1aU2ysiqHgq4UFtB9tLCKwOgRmt4fAb43l3UWJoFdlQEOOgR9if2D639NJvpHMi7VfZJDfICqV1XGq3NUzxhGr/SvAoapxb7YGLxt/D4+FF3l3mqbxW8wFPvj5CHGX0unwWGXeeb4etSo7FHlfQgghCVYR+eNKKv0PxgOwvFEt/CtIMQshxMMJauGBQdMYu+Ygby7dy4xXmxRPkgVQ5zno/wssfxUWPgfPfW4sjS3MUuS5SCbumkjMlRiaujRldPPR1K1UV78Os67DX9Ph9ymQkw1tRoD/cOMoqk6OXUjlg5+PsO3oRbwq27OgT3M6PFZFt/6EEKKkbTRcKi05c4nAfcdxtrFiQ9PaklyZOU3T8Pf3JywsLPfYypUrCQgIKNRrDh48GG9vbxo2bMjevXvzPS8+Pp6WLVvi4+NDYGAgmZmZD9T+QURHR9O6dWvKlCnD5MmT73peXFxcvjEBhIeH4+fnR/369WnXrh0ACQkJeHp6cvnyZQCuXLmCp6cnJ0+eLHTM5qRnyxq8360+Ww6fZ8jyv8kyFOOmwFXqwoCt4NkG1g2G9SPBUAybIYtik5iayPDw4fTd1JermVeZ3G4yC55ZoF9ypWlweC3MaAFbPwTvp+DNXfDUe7olVynXsnh/3WECpv7O3lNXeOe5umwc0laSKyGE7iTBKoTsHI2xRxMZFZNI2wrlWN+0Np52ZUwdltCZUopZs2YxfPhwMjIySE9PZ+zYsQ+0D9WdwsLCiI2NJTY2ltmzZxMaGprveePGjWPYsGHExsZSoUIF5s2b90Dt/xEfH0/79u3veU7FihX56quvGDly5D3PGz16dL4xJScnM3DgQH766ScOHTrE999/D4C7uzuhoaGMGTMGgDFjxhASEkKNGjXu2c+jKLh1Td57vh5hB88xdEUU2cWZZJWtAD1XweODjRu8Ln4B0i8VX/9CF9eyrvHV3q/o9mM3dpzewZt+b/LTCz/xTM1ndJuCyLkDsKgLrAwGm3LQa51x+mlFT126M+RofLfzJB0+D2fBn3G83Nyd8JHt6d/Gq/hGgoUQjzSZIviQkrOy+b9DJ9l2JZX/c6vMe97VsJTSxsUued1xMs+k5z42GLK5blm4X2ubavY4dal1z3N8fX3p0qULEydOJD09neDgYGrVunebe1m7di3BwcEopWjVqhXJycmcPXsWV9d/F3prmsa2bdtYuXIlAL169WL8+PGEhoYWqP2DqlKlClWqVGH9+vV3PUfTNLZu3crSpUvzxLR06VJ69OiBh4dH7uv9Y9iwYTRt2pSpU6eyY8cOpk2b9tBxmru+/p7kaBofrj+CpVJ8EehXfJXOLCyh0wdQtQH89JZxXVbQUnBtWDz9iyKTo+Ww/sR6pu6ZyoXrF3jO6zmGNhlKVfuq+nWafgl++wj2LARbJ3huCjTpBYV8j76XP49f4v11h4k+l0oLz4qM61KP+tUcdetPCCHyIwnWQzh+LYPg/XGcysjk88fc6VlN9sx4FI0bN44mTZpgY2PD7t278zwfGBhITExMnuPDhw8nODj4tmOnT5/G3d0997GbmxunT5++LUFKSkrC0dERKyur284paHs9JCUl4eTklG9MR48eJSsri/bt25OamsqQIUNyr9va2ppJkyYREBDA5s2bsbGx0TXO0q5/Gy+yczQ+DYvG0kIx+aVGxVtOuuHL4Oxj3C9rXid4YQb4vlh8/YtCOXDxAJ9Gfsr+i/upX6k+n7f/HL8qfvp1aMiCyLkQ/gncSIMWIdBuNNhV1K3LhMvX+HjDEcIOnqO6U1lm9mzCs75V9RuVE0KIe5AE6wFtv5zKgEPxWCpY6VeL1k5SgciU7hxpSk1NpVy54lkDZ29vT2BgIA4ODpQpk3dq6IoVKwr8Wpqm5Tl25weDe51TkPYA3bt3Jy4ujszMTE6dOoWfnx8AQ4YMoU+fPgWOtyAxZWdns2fPHn799VeuX79O69atadWqFbVr1waM0xpdXV05ePAgHTt2fOC+HzVvtKuFIUdj0qYYLJRi0n8aYlGcSVa1xhASbpzmtaqvcdrXk+8aR7lEiXTx2kWm7p3KT8d/opJtJT544gO61uqKhdJxmtyxX2Dj23DpKNR6Ep75BKrU0a279BvZfB1+nNm/n8BSKYZ3rE1IW6/i2UNOCCHuQhKsB7Dg9CXeiU3E286WxQ08qVFW1ls96iwsLLCwyP/DyoOMYLm5uZGQkJD7ODExkWrVqt12jrOzMykpKWRnZ2NlZXXbOQVpD7BmzRrAuAard+/ehIeHF+xC78LZ2Znk5OS7xuTs7Iy9vT329va0bduWffv2Ubt2baKiotiyZQsRERH4+/sTFBSk+2ibOXizgzeGHI0pW45iaQGf9ijmJMuhCgT/BGH/hR1fwLmD8OJcKOtUfDGI+7phuMGSw0uYs38OWTlZ9PXty4AGA3Cw0fELwUvHYNP/IHaTcfPqV1ZA7WdApxGknByNtftOMzEshnNXM3jBrxqjn62Dq6NskC2EMD1JsAogK0fjndhEFp1JomOl8sysV4NyxbH5pyjVHmQEq2vXrkyfPp2goCB27tyJo6NjnoRDKUXbtm1ZtWoVQUFBLFq0iG7duhW4vR6UUnTo0CHfmLp168agQYPIzs4mMzOTnTt3MmzYMDRNIzQ0lKlTp+Lh4cGoUaMYOXIk3333ne7xmoPBT/mQnaPx1a+xWFooPnqhQfEmWVY20GWqcV1W2H9h7lMQtAwq1y6+GES+NE1ja8JWJkdOJjEtkSfdn2Rks5G4l3e/f+OHlZEC2z6Dnd+AdVno9CG0+D/j74lOohKSmbDuEH+fSqahmyMzejamaQ39ph8KIcSDknI693ElK5tX9x9n0ZkkBrpXYWEDT0muRJHr3LkzXl5eeHt7M2DAAGbOnHnbc2fOnAFgwoQJTJkyBW9vb5KSkujXr9992z+sc+fO4ebmxpQpU/jwww9xc3Pj6tWreWKaOHFivjHVrVuXgIAAGjZsSIsWLejfvz++vr7MmTMHDw+P3GmBAwcOJDo6mm3bthU65kfFsKd9eLNDLZbtSuC9nw7mO1VTd837GavBXU+GOU9CzMbij0Hkir0Sy4AtAxj621BsrWyZ3XE2Xz75pX7JVY7BWLziqybw1wxoFARv7YHH39ItuTp/NYPhK6N4YcYfJF65zuSXGvHjwCckuRJClDgygnUPsekZBB84wemMLL6s40Ggq7yJi9uNHz++SF5HKXXXMu8bNmzI/bunpye7du16oPb5qVmz5n2nB1atWpXExMT7xuTl5ZVvTACjRo1i1KhRtx0LCQkhJCQk97GlpSV79uwpYOQCjD/vkZ0eIztH45ttJ7CysGBcl3rFv6C/xuPGdVnLX4VlQfDkO8aNY0WxSc5IZnrUdL4/+j0O1g78r+X/eKn2S1hZ6Hh7j/8DNo42rsPzaA0BP0A1P926y8gyMG9HHDN+O0a2QeONdrUY9KQ3DmXkI4wQomSSd6e7CL98lZBD8dgoC1b51aKFFLMQQpQgSinGBNTBYNCYuyMOC6V49/m6xZ9kOblD303GMu5bP4BzB7Co9ErxxvAIysrJYmXMSmZGzSQ9K53AxwIZ2GggTrZO+nWafAq2vAeH1kB5N/jPfKjfQ7d1VpqmsenQeT7ecIRTl6/RqZ4LY5+rS41K9rr0J4QQRUUSrDtomsa805d4L/Y0dextWdTQC3dbKSEthCh5lFKMfa4u2Tka8/+Iw8pS8fazdYo/ybKxMxa7cG0Ev4yjUbkj0KET3KUAjCicP8/8yWe7PuN4ynFaubbiv83/i08FH/06zEyHP740/kFB+7eNG1Db2OnWZfS5q7y/7jB/Hk+itosD3/Zrib+Ps279CSFEUZIE6xaZOTmMjT3NkjNJBDiXZ0bdGtjLeishRAmmlGJcl3rkaBqzt5/A0kLx32ceK/4kSyl4YjC41CNx704cJbkqcqeunmL2hdkcOHkA93LufNnhSzq4d9DvZ61pcGAV/DIOrp427n3W8X1wdNOnP+ByeiaLD98gfNPvlC9rzQfd6vNKCw+sLOX3SQhRekiCdVOqpgjcd5y/ktMZ7FGFMV6uWMgGhUKIUkApxfgu9cnO0fg6/DiWSjGiU23TbLLq/TQXE+XWUtSyc7Lpu6kvyRnJDGs6jNfqvoaNpY6zK07vhY1jIGGncWTyxXlQo7Vu3WUZcvg24iRfbDlK2o1sXm9Vg2Eda+NkJzNIhBClj9wFgZj0DMbiQMrVa8yo68GLVaWYhRCidLGwUHzYzReDQWP6b8ewtFAM6yil082FlYUVn7T5hDMHz9DNt5t+HaWeh1/fh6hvwb4ydJ0Ofj11ne65/ehF3v/5MMcupOHv7cyzLun07OKrW39CCKE3SbCAiOQ0MlGs8fOmiaMsnhVClE4WFopPejTAoGl8+WssVhaKt57ScW2OKFbNqzYnPDpcnxfPvgERX8P2yZCdYVxj1XYU2JbXpz8g7lI6H60/zC9HLlCjkh2zX29Kx3ousmWDEKLUk0nNQK/qzkwmVZIrUSCapuHv709YWFjusZUrVxIQEFCo1xw8eDDe3t40bNiQvXv35ntefHw8LVu2xMfHh8DAQDIzMx+o/YP47rvvaNiwIQ0bNuTxxx9n3759+Z4XFxeXb0yTJk3Cz88PPz8/fH19sbS05PLlyyQkJODp6cnly5cBuHLlCp6enpw8ebLQMQtjkjXxxYb0aFydz7ccZWb4MVOHJEoyTYPoDTCjpXGtVU1/eHMndPpAt+QqNSOLTzYcodMX24g4cZm3n63D5mFt6VS/qmmmtQohRBGTBOsmB2WCjTpFqaSUYtasWQwfPpyMjAzS09MZO3bsA+1DdaewsDBiY2OJjY1l9uzZhIaG5nveuHHjGDZsGLGxsVSoUIF58+Y9UPt/xMfH0759+3ue4+npybZt29i/fz/vvvvubXtX3Wr06NH5xjRq1CiioqKIiorik08+oV27dlSsWBF3d3dCQ0MZM2YMAGPGjCEkJIQaNWrcMx5RcJYWikkvNaKbXzU+2xjD7O3HTR2SKIkuHIEl3WH5K2BpA6+thleXQ6VaunRnyNFYEXmKDpPDmf37CV7wq87Wke34v3a1KCMFpYQQZkSmCIpSLSwsjHPnzuU+NhgMWFoW7kZdtWpVnn322Xue4+vrS5cuXZg4cSLp6ekEBwdTq9bDfyhZu3YtwcHBKKVo1aoVycnJnD17FldX19xzNE1j27ZtrFy5EoBevXoxfvx4QkNDC9T+QT3++OO5f2/VqlW+mw5rmsbWrVtZunRpnphutWzZMl555d+9kYYNG0bTpk2ZOnUqO3bsYNq0aQ8dp8ifpYXi85cakZ2j8fGGaCwtLOjn72nqsERJcO0yhH8KkXOhjAMETITm/cDSWrcuI+MvM2HdIQ6evkrTGhWY37s5Dd2cdOtPCCFMSRIsIR7SuHHjaNKkCTY2NuzevTvP84GBgcTExOQ5Pnz4cIKDg287dvr0adzd3XMfu7m5cfr06dsSpKSkJBwdHbGysrrtnIK2L4x58+blm3QmJSXh5OSUb0z/uHbtGhs3bmT69Om5x6ytrZk0aRIBAQFs3rwZGxupFKYHK0sLpgb6kZOj8cHPh7FU0PsJSbIeWYZs2LMAfvsIMlKgaR/oMBbsK+nW5Znk63wSFs26fWdwdbTlyyA/ujaqJlMBhRBmTRIsUard+aE/NTWVcuXKFUvf9vb2BAYG4uDgQJkyZfI8v2LFigK/lqblnaJ65weQe51TkPYA3bt3Jy4ujszMTE6dOoWfnx8AQ4YMoU+fPvnG9ttvvzFv3jx27NjxUHGvW7eOJ554gooVb6/OGRYWhqurKwcPHqRjx4759i0Kz9rSgq9eacygpXsZv+4wlhaK11vXNHVYoridCIewMXDxCHi2hYBPwaW+bt1dzzTwzfbjzNp2HE2DwU/58EY7L+xs5GOHEML8yTudEIVgYWGBxV3KFz/ICJabmxsJCQm5jxMTE6lWrdpt5zg7O5OSkkJ2djZWVla3nVOQ9gBr1qwBjGuwevfuTXh4+D2vb//+/fTv35+wsDAqVcr7LbezszPJycn5xvSP5cuX3zY9ECAqKootW7YQERGBv78/QUFBRTbaJvKytrRg2itNGPjdHt5dewhLCwtebelh6rBEcbh8Aja/C9E/g1MNCPwW6jxv3BhaB5qm8fP+s3yy4QhnUjJ4roErb3eug1sFO136E0KIkkiKXAihkxUrVuQWebj1z53JFUDXrl1ZvHgxmqYRERGBo6NjnoRDKUXbtm1ZtWoVAIsWLaJbt24Fbv+gTp06RY8ePViyZAm1a+e/n5JSig4dOuQbE0BKSgrbtm277ZimaYSGhjJ16lQ8PDwYNWoUI0eOLFSs4v5srCyY0bMJHR6rzP/WHGBlZML9G4nS60Yq/DLeWB3w+G/w5Lvw5i6o20W35Org6RRe/uYv3lr2N052NqwIacWMnk0kuRJCPHIkwRKiBOjcuTNeXl54e3szYMAAZs6cedtzZ86cAWDChAlMmTIFb29vkpKS6Nev333bP6z333+fpKQkBg4ciJ+fH82aNcs3pokTJ+YbExhHzDp16oS9/b9bIMyZMwcPD4/caYEDBw4kOjpa9r4pBmWsLPn6taa0rV2Z0av3s2pP3sIlopTLyYGopTCtKez4AnxfhLf2QNuRYG2rS5cXU28w5of9dJm+gxMX0/mkRwPWveVPSy/91nYJIURJJlMEhSiE8ePHF8nrKKXuWuZ9w4YNuX/39PRk165dD9Q+PzVr1rzv9MC5c+cyd+7c+8bk5eWVb0wAvXv3pnfv3rcdCwkJua3ku6WlJXv27ClY4KLQbK0tmf16U/ov2s2oVfuwtIDujd1MHZYoCgm7IGw0nNkL1ZtB0DJwa6pbd5nZOSz6M56vfo3lepaB/v6evPWUD+Vt9atGKIQQpYEkWEII8YixtbZkTnAz+i6MZMTKfVhaWNC1Ud41e6KUSDltnA54YCWUc4Xus6HBS3CX9aGFpWkaW6Mv8OH6I8RdSufJOlUY+1xdalV20KU/IYQobSTBEkKIR1BZG0vm9W5G7wWRDFsRhaVSPNdQCo2UKlnX4c9pxqmAOQZoMwL8hxv3ttLJsQupvP/zEbYfvYhXZXsW9GlOh8eq6NafEEKURpJgCSHEI8rOxooFvZvTe8EuBi//G0sLCPCVJOsfSqmXgPFAXaCFpmm7b3nubaAfYAAGa5q2qdgC0zQ4/CNsfg9STkHdrtDpA6hQU7cuU65lMfXXoyz+6yR2Npa881xdej1eE2tLWcothBB3kgRLCCEeYfZlrFjQpwXB83YyaOnfzOyp6FS/qqnDKikOAj2Ab249qJSqBwQB9YFqwC9Kqdqaphn0Dsgh9QQs/AxO/gEuvvDCz+DZRrf+sg05LI9M4PPNMaRczyKohQcjOtamkkPevf+EEEIYSYIlhBCPOIcyVizq24LX5+3izaV7mfVaU56q62LqsExO07QjkO+m3d2A5Zqm3QDilFLHgBbAX7oFY8iGDSNpumcRlHWC57+AJr3AwlK3Lv88don3fz5M9LlUWnlV5L3n61OvWnnd+hNCCHMhCZYQQgjK2VrfTLJ2EvrtXr4Jbipra+6uOhBxy+PEm8fyUEqFACEALi4u963eeS/1TsWQVqUTZ3xeJzvNAbb//tCvdS8Xr+WwPCaTPecNOJdVvOlXhmYuGVw4upcLR3Xp8jZpaWmF+ncq6cz9+sD8r9Hcrw/kGgtLEiwhHpCmabRp04axY8fy7LPPArBy5Urmz5/Pxo0bH/o1hwwZwoYNG7Czs2PhwoU0adIkz3nx8fH079+fy5cv06RJE5YsWYKNjU2B2z+ItWvX8u6772JhYYGVlRVTp07F398/z3lxcXEEBQXliSklJYXXXnuNU6dOkZ2dzciRI+nTpw8JCQm0bduWPXv2ULFiRa5cuUKTJk0IDw+nRo0ahYpZFI5jWWuW9G3Jq3Mj+L8le5gb3Iy2tSubOixdKaV+AfKbEzlW07S1d2uWzzEtvxM1TZsNzAZo1qyZ1r59+4cJ06hdOw5v20ahXuMe0m9kMzP8GHP+jMNSKUZ0rM2Atl7YWus3Spaf8PBw3a6xJDD36wPzv0Zzvz6QaywsWZ0qxANSSjFr1iyGDx9ORkYG6enpjB079oH2obpTWFgYsbGxxMbGMnv2bEJDQ/M9b9y4cQwbNozY2FgqVKjAvHnzHqj9P+Lj4+/7pvLUU0+xb98+oqKimD9/Pv3798/3vNGjR+cb04wZM6hXrx779u0jPDycESNGkJmZibu7O6GhoYwZMwaAMWPGEBISIslVCeFoZ823/VpSq7IDAxbv5o9jl0wdkq40TXta0zTffP7cLbkC44iV+y2P3YAz+kYK5J2qWCRycjRW703kyc/DmfHbcZ5v4MpvI9vz1lM+xZ5cCSGEOZARLFGqHT36AalpR3IfGwzZWFoW7te6nENdatd+957n+Pr60qVLFyZOnEh6ejrBwcHUqlXroftcu3YtwcHBKKVo1aoVycnJnD17FlfXfyu6aZrGtm3bWLlyJQC9evVi/PjxhIaGFqj9g3Jw+LfUc3p6en7rUIz74WzdytKlS/PEpJQiNTUVTdNIS0ujYsWKWFkZfzbDhg2jadOmTJ06lR07djBt2rSHjlMUvQr2NnzXvyWvzomg36JIFvRuQetalUwdVknyE7BUKTUFY5ELHyD/3bZLuL9PXWHCusNEJSTTyM2RmT2b0rRGBVOHJYQQpZokWEI8pHHjxtGkSRNsbGzYvXt3nucDAwOJiYnJc3z48OEEBwffduz06dO4u//7hbibmxunT5++LUFKSkrC0dExN0n555yCtn8Ya9as4e233+bChQusX78+z/NJSUk4OTnlG9OgQYPo2rUr1apVIzU1lRUrVmBxc+NTa2trJk2aREBAAJs3b8bGxqZQcYqiV9Hehm/7t+SV2RH0XRjJor4taOFZ0dRhFSulVHdgGlAZWK+UitI07RlN0w4ppVYCh4Fs4M3iqCBYlM5fzWBiWDSr/z5N5XJlmPxSI3o0ro6FhT6jZEII8SiRBEuUaneONKWmplKuXLli6dve3p7AwEAcHBwoUyZvyeIVK1YU+LU0Le/yjTtHjO51TkHaA3Tv3p24uDgyMzM5deoUfn5+AAwZMoQ+ffrke3737t3Zvn077777Lr/88kuBY9q0aRN+fn5s3bqV48eP07FjR9q0aUP58sYqZGFhYbi6unLw4EE6duyY53WE6Tk7lGHpgFYEzf6L3gt2sbhvC5rVfHSSLE3T1gBr7vLcR8BHxRtR4WVkGZi3I44Zvx0j26AR2r4Wb3bwxqGMfBwQQoiiIu+oQhSChYVF7qjMnR5kBMvNzY2EhITcx4mJiVSrVu22c5ydnUlJSSE7OxsrK6vbzilIezCOSIFxDVbv3r0LXD2nbdu2HD9+nEuXLuHs7HxbTMnJyfnGtGDBAsaMGYNSCm9vbzw9PYmOjqZFixZERUWxZcsWIiIi8Pf3JygoqNCjbUIflcuVYdmAVgTNjqD3gkgW92tBEw+ZQlbaaJrGpkPn+HD9ERKvXOeZ+i6M7VwPj0p2pg5NCCHMjhS5EEInK1asICoqKs+fO5MrgK5du7J48WI0TSMiIgJHR8c8CYdSirZt27Jq1SoAFi1aRLdu3Qrc/kEdO3Ysd4Rq7969ZGZmUqnS7etwlFJ06NAh35g8PDz49ddfATh//jwxMTF4eXmhaRqhoaFMnToVDw8PRo0axciRIwsVq9BXlfK2LB3QCmcHG3rN20VUQrKpQxIP4MjZq7w6ZydvfLsXexsrvuvfkm9ebybJlRBC6EQSLCFKgM6dO+Pl5YW3tzcDBgxg5syZtz135oyxQNmECROYMmUK3t7eJCUl0a9fv/u2f1g//PADvr6++Pn58eabb7JixYrc6X+3xjRx4sR8Y3r33Xf5888/adCgAU899RQTJ07E2dmZOXPm4OHhkTstcODAgURHR7Nt27ZCxyz0U9XRlmUhrahgb8Pr83ayPzHZ1CGJ+7icnsnYNQd47qvfOXLuKh+84Mv6wf484e18/8ZCCCEemkwRFKIQxo8fXySvo5S6a5n3DRs25P7d09OTXbvyFiu7V/v81KxZ877TA0ePHs3o0aPvG5OXl1e+MVWrVo3NmzfnOR4SEkJISEjuY0tLS/bs2VPAyIUpuTqWZVlIKwK/+YvX5u5k6YBW+FZ3NHVY4g5ZhhyW/HWSqb8cJT3TQHDrmgx92gcnOykmI4QQxUFGsIQQQhRYdaeyLBvQinK21rw2byeHz1w1dUjiFtuOXiRg6nbe//kwjdyd2DikDeO71pfkSgghipEkWEIIIR6Ie0U7lg5oSVlrS3rOjSD6nCRZphZ3KZ1+CyPpNX8XhhyNOcHNWNy3BT4uxVNVVQghxL8kwRJCCPHAalSyZ9mAVthYWdBzzk5iz6eaOqRH0tWMLD7ecIROX2xjZ9xl/te5DpuGtaVjPZd8t2oQQgihP5MkWEqpl5RSh5RSOUqpZrccr6mUuq6Uirr5Z5Yp4hNCCHF/NZ2NSZaFheKVOTs5diHN1CE9Mgw5Gst3neLJyeHM+f0EPRq7sXVkO0La1qKMlaWpwxNCiEeaqYpcHAR6AN/k89xxTdP8ijccIYQQD8OrskPuPlmvzolgeUgrU4dk9nbFXWbCukMcOnOVZjUqsKB3Cxq4SbERIYQoKUwygqVp2hFN0/LuwCqEEKLU8a7iwLIBLTHkaLwyJ4Lz6TmmDsksnU6+zsyoDF7+5i8up2fyZZAf37/RWpIrIYQoYUriGixPpdTfSqltSqk2pg5GiDtpmoa/vz9hYWG5x1auXElAQEChXnPw4MF4e3vTsGFD9u7dm+958fHxtGzZEh8fHwIDA8nMzHyg9g8jMjISS0vL3M2E7xQXF5dvTFeuXKF79+40bNiQFi1acPDgQQASEhLw9PTk8uXLued5enpy8uTJIotZFD8fl3IsHdCKLIPG9Kgb5ORopg7JrGQbcnjp6z/5+4KBIU/5sHVEe7r5VZd1VkIIUQLpNkVQKfULUDWfp8Zqmrb2Ls3OAh6apiUppZoCPyql6mualqdElVIqBAgBcHFxue+ePveTlpZW6Nco6czlGh0dHUlNzX9BvcFguOtzRenzzz8nODiYZs2aYTAYePvtt1m9evVD971p0yaOHDnC3r17iYyMJCQkhN9++y3Pee+99x5vvPEG//nPfxg6dCgzZsygf//+BW7/j5MnTxIaGnrbflb5MRgMjBw5kqeeeorr16/ne30jRozIN6bx48dTt25dFi9ezNGjRxk0aBDr1q3DycmJvn37MmLECL766itGjBhBr169qFixIqmpqXf9GWZkZJjF76+5/D+8m6GNLEi/ZmD7dtk4uihZWVow8T8NuXDsAC92rG3qcIQQQtyDbgmWpmlPP0SbG8CNm3/fo5Q6DtQGdudz7mxgNkCzZs209u3bFyre8PBwCvsaJZ25XOORI0coV85Yevjd2EQOpl3Pfc6QbcCykAu8fR3K8oGP2z3PadmyJd26dWPmzJmkp6fTu3dvGjVq9NB9btmyhb59+1K+fHmeeuopUlNTSUtLw9XVNfccTdPYvn0733//PVZWVrlJzLBhwwrU/lYODg5YWlrm/jvezdSpU3n55ZeJjIykbNmyec7/J6aVK1fmienYsWO8/fbblCtXjqZNm5KQkMC1a9dwcXFhzJgxNG3alHnz5rFz505mzZqFjY1xn57U1NR847K1taVx48YP+k9b4pjL/8N7eRSu0RTa+FQm/HRJnHgihBDiVqYqcpEvpVRl4LKmaQallBfgA5wwcVhC5GvcuHE0adIEGxsbdu/O8x0AgYGBxMTkXWo4fPhwgoODbzt2+vRp3N3dcx+7ublx+vTp2xKkpKQkHB0dsbKyuu2cgrZ/UKdPn2bNmjVs3bqVyMjIfM9JSkrCyckp35gaNWrE6tWr8ff3Z9euXZw8eZLExERcXFywtrZm0qRJBAQEsHnz5tzkSgghhBCitDNJgqWU6g5MAyoD65VSUZqmPQO0Bd5XSmUDBuANTdMumyJGUTrcOdJ0t9EPPdjb2xMYGIiDgwNlypTJ8/yKFSsK/Fqalne9yp1rK+51TkHaA3Tv3p24uDgyMzM5deoUfn5+AAwZMoQ+ffrcdu7QoUOZOHEilpZ3HxG8V79jxoxhyJAh+Pn50aBBAxo3bpybiAGEhYXh6urKwYMH6dix4137EEIIIYQoTUySYGmatgZYk8/xH4Afij8iIR6OhYUFFhb5T9l5kBEsNzc3EhISch8nJiZSrVq1285xdnYmJSWF7OxsrKysbjunIO0B1qwx/reLj4+nd+/e91wLtHv3boKCggC4dOkSGzZswMrKihdeeOG2mJKTk/ONqXz58ixYsAAwJmKenp54enoCEBUVxZYtW4iIiMDf35+goKBCjbYJIYQQQpQUMplbCJ2sWLGCqKioPH/uTK4AunbtyuLFi9E0jYiICBwdHfMkHEop2rZtm1vNb9GiRXTr1q3A7R9UXFwc8fHxxMfH85///IeZM2fellz9E1OHDh3yjSk5OTm3ouDcuXNp27Yt5cuXR9M0QkNDmTp1Kh4eHowaNYqRI0cWKlYhhBBCiJJCEiwhSoDOnTvj5eWFt7c3AwYMYObMmbc9d+bMGQAmTJjAlClT8Pb2JikpiX79+t23vV7x/hPTxIkT843pyJEj1K9fnzp16hAWFsaXX34JwJw5c/Dw8MidFjhw4ECio6PZtk2qzgkhhBCi9CtRRS6EKG3Gjx9fJK+jlGLGjBn5PndrKXVPT0927dr1QO3zU7NmzQcqFb5w4cK7xuTl5ZVvTK1btyY2NjbP8ZCQEEJCQnIfW1pasmfPngLHIoQQQghRkskIlhBCCCGEEEIUEUmwhBBCCCGEEKKISIIlSqX8yoML8yU/byGEEEKUFpJgiVLH1taWpKQk+dD9iNA0jaSkJGxtbU0dihBCCCHEfUmRC1HquLm5kZiYyMWLF/M8l5GRYdYfxM39+iD/a7S1tcXNze0uLYQQQgghSg5JsESpY21tnbth7Z3Cw8Np3LhxMUdUfMz9+uDRuEYhhBBCmC+ZIiiEEEIIIYQQRUQSLCGEEEIIIYQoIpJgCSGEEEIIIUQRUeZQiU0pdRE4WciXcQYuFUE4JZlcY+ln7tcH5n+N5n59UDTXWEPTtMpFEUxJIfeqAjP3azT36wPzv0Zzvz6QayyofO9VZpFgFQWl1G5N05qZOg49yTWWfuZ+fWD+12ju1wePxjWayqPwb2vu12ju1wfmf43mfn0g11hYMkVQCCGEEEIIIYqIJFhCCCGEEEIIUUQkwfrXbFMHUAzkGks/c78+MP9rNPfrg0fjGk3lUfi3NfdrNPfrA/O/RnO/PpBrLBRZgyWEEEIIIYQQRURGsIQQQgghhBCiiEiCJYQQQgghhBBFRBKsWyilPlBK7VdKRSmlNiulqpk6pqKmlJqklIq+eZ1rlFJOpo6pKCmlXlJKHVJK5SilzKq8qFIqQCkVo5Q6ppQaY+p4ippSar5S6oJS6qCpY9GDUspdKfWbUurIzd/RIaaOqagppWyVUruUUvtuXuMEU8dkjsz9XmXu9ykw33uV3KdKP3O/VxXXfUrWYN1CKVVe07SrN/8+GKinadobJg6rSCmlOgFbNU3LVkpNBNA0bbSJwyoySqm6QA7wDTBS07TdJg6pSCilLIGjQEcgEYgEXtE07bBJAytCSqm2QBqwWNM0X1PHU9SUUq6Aq6Zpe5VS5YA9wAtm9jNUgL2maWlKKWtgBzBE07QIE4dmVsz9XmXu9ykwz3uV3KfMg7nfq4rrPiUjWLf454Z1kz1gdtmnpmmbNU3LvvkwAnAzZTxFTdO0I5qmxZg6Dh20AI5pmnZC07RMYDnQzcQxFSlN07YDl00dh140TTuradrem39PBY4A1U0bVdHSjNJuPrS++cfs3kdNzdzvVeZ+nwKzvVfJfcoMmPu9qrjuU5Jg3UEp9ZFSKgHoCbxn6nh01hcIM3UQokCqAwm3PE7EjN7wHjVKqZpAY2CniUMpckopS6VUFHAB2KJpmtldY0nwCN2r5D5Vesh9ysyY672qOO5Tj1yCpZT6RSl1MJ8/3QA0TRuraZo78B0wyLTRPpz7XePNc8YC2Rivs1QpyPWZIZXPMbP61vpRoZRyAH4Aht4xEmEWNE0zaJrmh3HUoYVSyiyn0ejN3O9V5n6fgkfyXiX3KTNizveq4rhPWRX1C5Z0mqY9XcBTlwLrgXE6hqOL+12jUqoX8DzwlFYKF+E9wM/QnCQC7rc8dgPOmCgW8ZBuzvf+AfhO07TVpo5HT5qmJSulwoEAwGwXhOvF3O9V5n6fgkfyXiX3KTPxqNyr9LxPPXIjWPeilPK55WFXINpUsehFKRUAjAa6app2zdTxiAKLBHyUUp5KKRsgCPjJxDGJB3BzYe084IimaVNMHY8elFKV/6n4ppQqCzyNGb6Pmpq536vkPlVqyX3KDJj7vaq47lNSRfAWSqkfgMcwVvY5Cbyhadpp00ZVtJRSx4AyQNLNQxFmVn2qOzANqAwkA1Gapj1j0qCKiFKqMzAVsATma5r2kWkjKlpKqWVAe8AZOA+M0zRtnkmDKkJKKX/gd+AAxvcYgP9pmrbBdFEVLaVUQ2ARxt9RC2ClpmnvmzYq82Pu9ypzv0+B+d6r5D5V+pn7vaq47lOSYAkhhBBCCCFEEZEpgkIIIYQQQghRRCTBEkIIIYQQQogiIgmWEEIIIYQQQhQRSbCEEEIIIYQQoohIgiWEEEIIIYQQRUQSLCFKOKWUu1IqTilV8ebjCjcf1zB1bEIIIQTIvUqIW0mCJUQJp2laAvA18OnNQ58CszVNO2m6qIQQQoh/yb1KiH/JPlhClAJKKWtgDzAfGAA01jQt07RRCSGEEP+Se5UQRlamDkAIcX+apmUppUYBG4FOcsMSQghR0si9SggjmSIoROnxLHAW8DV1IEIIIcRdyL1KPPIkwRKiFFBK+QEdgVbAMKWUq2kjEkIIIW4n9yohjCTBEqKEU0opjAuHh2qadgqYBEw2bVRCCCHEv+ReJcS/JMESouQbAJzSNG3LzcczgTpKqXYmjEkIIYS4ldyrhLhJqggKIYQQQgghRBGRESwhhBBCCCGEKCKSYAkhhBBCCCFEEZEESwghhBBCCCGKiCRYQgghhBBCCFFEJMESQgghhBBCiCIiCZYQQgghhBBCFBFJsIQQQgghhBCiiPw/ESf13rW/UMUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Generate example data points\n", "X = np.linspace(-3, 3, 100)\n", "Y = np.linspace(-3, 3, 100)\n", "\n", "# Create a range of values for beta_1 (keeping beta_0 fixed at 0)\n", "beta_0_fixed = 0\n", "beta_1_values = np.linspace(-5, 5, 100)\n", "\n", "# Create a range of values for beta_0 (keeping beta_1 fixed at 2)\n", "beta_1_fixed = 2\n", "beta_0_values = np.linspace(-5, 5, 100)\n", "\n", "# Calculate the corresponding Y values for each combination of beta_0 and beta_1\n", "Y_pred_beta1 = beta_0_fixed + beta_1_values * X[:, np.newaxis]\n", "Y_pred_beta0 = beta_0_values + beta_1_fixed * X[:, np.newaxis]\n", "\n", "# Create a figure with two subplots\n", "plt.figure(figsize=(12, 6))\n", "\n", "# First subplot: Varying beta_1 with fixed beta_0\n", "plt.subplot(1, 2, 1)\n", "for i in range(0, len(beta_1_values), 10):\n", " plt.plot(X, Y_pred_beta1[:, i], label=f'Y = {beta_0_fixed:.2f} + {beta_1_values[i]:.2f}X')\n", "plt.xlabel('X')\n", "plt.ylabel('Y')\n", "plt.legend()\n", "plt.grid(True)\n", "\n", "# Second subplot: Varying beta_0 with fixed beta_1\n", "plt.subplot(1, 2, 2)\n", "for i in range(0, len(beta_0_values), 10):\n", " plt.plot(X, Y_pred_beta0[:, i], label=f'Y = {beta_0_values[i]:.2f} + {beta_1_fixed:.2f}X')\n", "plt.xlabel('X')\n", "plt.ylabel('Y')\n", "plt.legend()\n", "plt.grid(True)\n", "\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We hence aim to estimate two appropriate values $\\hat \\beta_0$ and $\\hat \\beta_1$ from data in a way that they provide a model which represent well our data. In the case of our example, we expect the geometrical model to have this aspect:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABQIklEQVR4nO2deXgUVfaw35MQSFgkgIAYUBARF7YgCA4uBBVUECK4Maigjo46LrggYWQUZnAIouLPj3FcRkUHRcQlIqDICHFBQUF2BVFEISAiENYgIbnfH1WddDpVvaU76aTP+zz9JH1rO11dferWWcUYg6IoihI/JFS1AIqiKErloopfURQlzlDFryiKEmeo4lcURYkzVPEriqLEGar4FUVR4gxV/FWIiJwrIhuqWo6agIisE5HeUdhvcxH5RET2i8jjkd6/olQFqvgrARHZLCIX+o4bYz41xrSvCpl8EZFxIlIoIgdEJF9EPheRs6tarmAxxpxhjMmNwq5vAX4DjjHG3BepnYpIbxExIvJAiNuNE5HpFTjuNPu4A33Gn7THR9jvR4hIkX097BORlSIywGv9BiLyhH1tHxSRn0XkTRE5y+W4re39H7BfO0RkjohcFILsI0TkszA/etBU1nGqElX8cYiI1HJZNNMYUx84FlgEzIrCsUVEqtN1dyLwjQkj09HPeQYYDuy2/1Y233kf15bzSuAHn/W+sK+HVOAF4A0RaSwidYCFQEdgAHAMcBrwOnBpgGOn2vvsDCwA3vHcbJRKxBijryi/gM3AhQ7jvYGtPuvdD6wG9gIzgWSv5QOAlUA+8DnQyWtZFtYPdz/wDXC517IRwGJgCpaymeAgyzhgutf70wEDNLXfN8T68W8H8oAJQKK9LBF4HGtm/CNwh71tLXt5LvCILUMBcDJwKtYPfzewAbjK69iX2p9hv32s++3xY4E59uffDXwKJPieY6AO8CSwzX49CdTxPufAfcCv9ue5weV7mwYUAkeAA8CFQe57NPAL8F+X/da1P9s19r67uV0T3p8NuNhev9CWZ5W9/Hhgtn1Ovgdu9nMtTgMes+Vr5HVdvQ98BozwumY+89qunv2ddgP+ZJ+3eiH8Blp7XxNe4/cDO7y+R8frGOvGchgosj97vj3eH1gB7AO2AOO89p0MTAd22dfMV0Bzf9ez23Fq2qs6zbzihauwfuBtgE5YP0BEpCvwIvBnoAnwLDDbnn2B9WM5F+uCHg9MF5EWXvvtAWwCmmEpYVdEpDZwPdYPZo89/DJwFEtppwN9sRQAwM3AJUAXoCuQ6bDb67DMJg2AnVhK/zVbnqHA0yJyhr3uC8CfjTENgA5Ys0uwlPVWoCnQHPgrljLx5UGgpy1PZ+AsYKzX8uOwzlMacBPwLxFp5LsTY8wI4FXgUWNMfWPM/4Lcd2OsJ4VbHGQDGIKlVGYB87HOdUCMMR8A/8R+MjPGdLYXzcA6L8cDVwD/FJEL/OzqMNaN4hr7/fXAK24r208Ef7Jl3oh1E5pvjDkYjNwBeBvrGvCYPB2vY2PMt8Ct2E8hxphUe/2DtvypWDeB20Qk01423N5PK6zfzK1YEw9wuZ79HKdGoYo/9njKGLPNGLMbeA9LwYClXJ81xiw1xhQZY14GfsdSQhhjZtnbFRtjZmL9QL3trduMMf/PGHPUGFOAM1eJSD7Wj+Nm4ApjzFERaY6l2EcaYw4aY37FenrwKI6rgP8zxmw1xuwBsh32Pc0Ys84YcxTrxrbZGPOSLc/XwFtYSgusGe3pInKMMWaPvdwz3gI40RhTaCwfiZPiHwb83RjzqzFmJ5YCuc5reaG9vNAYMw9LoQXrawm072LgYWPM737O83As5V2EdfMbKiJJQR6/DCLSCjgHGG2MOWyMWQn8x0cmJ14BrheRhsD5QI7DOj3t6+EXrJvz5caYvVhPXr94ydDF9gvtCyNYYZv9tzEEdR2XwRiTa4xZY6+/GusmeL69uBBL4Z9s/2aWG2P2BXE913hU8ccev3j9fwiob/9/InCf/QPLt3+QrbBmeYjI9bYDzrOsA9YP1MOWII79hj3DaQ6sBc70OnYSsN1r/89izdSwZfDev9OxvMdOBHr4fJZhWLNlsGbElwI/icjHXk7myVimjA9FZJOIZLl8juOBn7ze/2SPedhl34A8eJ/nQATa905jzGG3jW1FnYH1JAHwLpZJon+Qx3eSZ7cxZr+PTGn+NjLGfIb15DQWmONyk1pijEk1xhxrjOlpP/GA9STYwmtfK+3rZjCWKSwUPHLuhqCu4zKISA8RWSQiO0VkL9Zs3bP+f7GeqF4XkW0i8qh9gw10Pdd4VPFXH7YAj9g/RM+rrjFmhoicCDyPZVtvYv8I1wLitX3QzkljzG9YJqVxtrloC9bTxbFexz7GGOMxzWwHWnrtopXTbn0+y8c+n6W+MeY2+/hfGWMGYf0Qc4A37PH9xpj7jDEnAZcB97qYNLZh/bg9nEDpzLKiBNp3oPN8Hdbv7j0R+QXL/JZMqbnnIJYPAAARScRS0G773wY0FpEGPjLlBZADLPv3ffgx87jwEdBXROqFuJ0Tl2P5WjYEcR07ndvXsMxWrYwxDYFnPOvbT3TjjTGnA3/A8mVcT+DrucaXLFbFX3kkiUiy18tfxIcTzwO32jMcEZF6ItLf/sF7HG87AUTkBqyZUtgYY9ZjzZYeMMZsBz4EHheRY0QkQUTaiojnkfoN4G4RSRORVCznpj/mAKeIyHUikmS/uovIaSJSW0SGiUhDY0whltOuyP5cA0TkZBERr/Eih/3PAMaKSFMRORZ4CEvJRYKK7vt6LPNQF6/XEKC/iDTBirhJtr/bJKwZufcsegfQ2hMZZYzZguXon2hfV52w/BavEpingIuAT0KQH6wbxXasiJwOIpIoIslYjt+gECs/4g7gYWCMMaaYwNfxDqCl7YPy0ADrieewWKGkf/Q6RoaIdLRvnvuwTD9FQVzPTsepUajirzzmYdnOPa9xoWxsjFmGZXefiuVw/R7b8WuM+QYrquYLrIu2I1YETUWZDNwiIs2wFFZtrEiLPcCblD7uP4/1Q1qNFWExD8tx5qSUsc0SfbFsqtuwzFuTKFVw1wGbRWQf1qP7tfZ4O+B/WDb5L4CnjXPs/gRgmS3PGuBreywShL1vEemJFd3yL2PML16v2Vjf51Dbhn47lp0+D+sJYKvXbjwhtrtExOP7GGrvdxvwDpaPYUEgeYwxu40xH7n4SfxtdxjLXPUNMBdLqW4AumP5e/yRLyIHsc7dpcCVxpgX7f0Guo4XAuuAX0TkN3vsduDvIrIf6yb8htf6x2Fdp/uAb4GPKb1J+7uenY5To5AQv3NFCYiIXAI8Y4w5MeDKiqJUOjrjVyqMiKSIyKUiUktE0rAe39+parkURXFGZ/xKhRGRuliP0adimbHmAncbY/ZVqWCKojiiil9RFCXOUFOPoihKnBFqSGGVcOyxx5rWrVtHfL8HDx6kXr1IhCJHD5UxclQHOauDjFA95FQZYfny5b8ZY5qWW2BioGBQoNeZZ55posGiRYuist9IojJGjuogZ3WQ0ZjqIafKaAywzGiRNkVRFEUVv6IoSpyhil9RFCXOqBbOXUVRKpfCwkK2bt3K4cPOhUYbNmzIt99+W8lShUY8yZicnEzLli1JSgquurcqfkVRyrF161YaNGhA69atsWrilWX//v00aNDAYcvYIV5kNMawa9cutm7dSps2bYLaRhV/lMhZkcfk+RvYll/A8akpjOrXnsx0vyXSFSVmOHz4sKvSV2ILEaFJkybs3Lkz6G1U8UeBnBV5jHl7DQWFVnHKvPwCxry9BkCVv1JtUKVffQj1u1LnbhSYPH9DidL3UFBYxOT5oXalUxRFiTyq+KPAtnznVqtu44qilCcxMZEuXbpwxhln0LlzZ5544gmKi4v9brN582Zee+21sI/VoUMHrrzySg4dOuS67uzZs8nOdmorXXE5KgtV/FHg+NSUkMYVRSlPSkoKK1euZN26dSxYsIB58+Yxfvx4v9uEq3A9x1q7di21a9fmmWeecV134MCBZGW5tXuumByVhSr+KDCqX3tSkhLLjKUkJTKqX/sqkkhRokvOijx6ZS+kTdZcemUvJGdFMC1/g6dZs2Y899xzTJ06FWMMmzdv5txzz6Vr16507dqVzz//HICsrCw+/fRTunTpwtSpU13X88e5557L999/z+7du8nMzKRTp0707NmT1atXAzBt2jTuuOMOAEaMGMFdd93FH/7wB0466STefPPNcnJMmTKFdevWcdZZZ9GlSxc6derExo0bI3p+QkWdu1HA48DVqB4lHqisYIaTTjqJ4uJifv31V5o1a8aCBQtITk5m48aNDB06lGXLlpGdnc1jjz3GnDlz2L9/P4mJiY7ruXH06FHef/99Lr74Yh5++GHS09PJyclh4cKFXH/99axcubLcNtu3b+ezzz5j/fr1DBw4kCuuuKKMHAB33nknd999N8OGDePIkSMUFTl2Ja00VPFHicz0NFX0SlzgL5gh0r8BY/cPKSws5I477mDlypUkJiby3XffOa4f7HoFBQV06dIFsGb8N910Ez169OCtt94CoE+fPuzatYu9e/eW2zYzM5OEhAROP/10duzY4bj/s88+m0ceeYStW7cyePBg2rVrF+pHjyiq+BVFqRCVFcywadMmEhMTadasGePHj6d58+asWrWK4uJikpOTHbeZMmVKUOt5bPzeeG4y3jiFTdapU8fvNgB//OMf6dGjB3PnzqVfv3785z//oU+fPm4fNeqojb8SiLb9U1GqksoIZti5cye33nord9xxByLC3r17adGiBQkJCfz3v/8tMZ00aNCA/fv3l2zntl4wnHfeebz66qsA5Obmcuyxx3LMMccEta2vHJs2beKkk07irrvuYuDAgSX+gqpCZ/xRRpO5lJrOqH7ty1zjEJlgBo/5pbCwkFq1anHddddx7733AnD77bczZMgQZs2aRUZGRkkzk06dOlGrVi06d+7MNddc47peMIwbN44bbriBTp06UbduXV5++eWgt/WWY8SIERw+fJjp06eTlJTEcccdx0MPPRTayYgw1aLnbrdu3Yw/h0wg3Mon5Obm0rt378gJ6kCv7IXkOTzypqWmsDgr8KNeZchYUaqDjFA95IwVGb/99ltOO+001+W+NWZisURJvNTq8eD0nYnIcmNMN991a/yM39+MO5XoX7CazKXEAxrMUL2o8TZ+fxEH+QWFjHl7DXn5BRhKbwqRtMFrMpeiKLFGjVf8/mbcO/YejnpNHU3mUhQl1qjxit/fjPtIkXPdj0iaYTLT05g4uCNpqSkIlm1/4uCO+lisKEqVUeNt/BmnNmX6kp8dx2sfPui4TaTNMGr/VBQllqjxM/65q7e7jjdvmKxmGEVR4o4ar/j3HCp0HU9NSVIzjKLEKFu3bmXQoEG0a9eOtm3bcvfdd3PkyBG/2+Tn5/P000+XvN+2bRtXXHFFROQZN24cjz32mOO4iPD999+XjE2ZMgUR8VsXyBfv4m8VWScYarziD0RmehqLs/rwY3Z/Fmf1UaWvKDGAMYbBgweTmZnJxo0b+e677zhw4AAPPvig3+18Ff/xxx9fUjEzmnTs2JHXX3+95P2bb77J6aefHvXjhkuNV/ypKc5d593GFUWpehYuXEhycjI33HADYDVKmTJlCi+++CKHDh1i2rRpDBo0iIsvvpj27duX1OnPysrihx9+oEuXLowdO5bNmzfToUMHwJotZ2Zmctlll9GmTRumTp3KE088QXp6Oj179mT37t0APP/883Tv3p3OnTszZMgQv01ZPGRmZvLuu+8CVnmGhg0b0rRp05LlM2bMoGPHjnTo0IHRo0eXjE+fPp1TTjmF888/n8WLF5eM79y5kyFDhtC9e3e6d+9eZlkkqPHO3XEDz2DUrFUUFpdmKCclCOMGngF7q7YmtqJUC0aOBJ8CZilFRZCY6Lh6UHTpAk8+6bp43bp1nHnmmWXGjjnmGE444YQSk8qXX37J2rVrqVu3Lt27d6d///5kZ2ezdu1aVq5cyf79+9m1a1eZfaxdu5YVK1Zw+PBhTj75ZCZNmsSKFSu45557eOWVVxg5ciSDBw/m5ptvBmDs2LG88MIL3HnnnX4/zjHHHEOrVq1Yu3Yt7777LldffTUvvfQSYJmbRo8ezfLly2nUqBF9+/YlJyeHHj168M9//pOvv/6ahg0bkpGRQXp6OgB3330399xzD+eccw4///wz/fr149tvvw3lDPulxit+f7Xxc3NV8StKLGKMcayE6T1+0UUX0aRJEwAGDx7MZ599RmZmpt/9ZmRk0KBBAxo0aEDDhg257LLLAMtU4ymctnbtWsaOHUt+fj4HDhygX79+Qcl8zTXX8PrrrzN//nw++uijEsX/1Vdf0bt375IngGHDhvHJJ58AcM4555SMX3311SVlo//3v//xzTfflOx73759ZYq+VZQar/hBwykVpUI4zMwLolwH54wzziiphe9h3759bNmyhbZt27J8+fJyNwanG4Uv3iWUExISSt4nJCRw9OhRwOqqlZOTQ+fOnZk2bRq5ublByXzZZZcxatQounXrVqaKp796aG4yFxcX88UXX5CSEp0M/xpv46/u5BcUaklnJe644IILOHToEK+88goARUVF3HfffYwYMYK6desCsGDBAnbv3k1BQQE5OTn06tWrXDnkcNi/fz8tWrSgsLCwpCxzMKSkpDBp0qRyDugePXrw8ccf89tvv1FUVMSMGTM4//zz6dGjB5999hm7du2isLCQWbNmlWzTt29fpk6dWvLeqfNXRVDFH8PkrMgjb09BVGsJKUosIiK88847zJo1i3bt2nHKKaeQnJzMP//5z5J1zjnnHK677jq6dOnCkCFD6NatG02aNKFXr1506NCBsWPHhnXsf/zjH/To0YOLLrqIU089NaRtr7nmGrp27VpmrEWLFkycOJGMjAw6d+5M165dGTRoEC1atGDMmDGcffbZXHjhhWW2e+qpp1i2bBmdOnXi9NNP99v8PRzioiyzG7FSAteNXtkLuabVfh5fU9YiF2xJ58oi1s+jh+ogZ6zIGGpZ5spm2rRpLFu2rMys2JeqljEYtCxzDSMS5Z635RdAK5dxRVGUMFHFHwUi1XXLqhlU3l6pJZ2VeGfEiBGMGDGiqsWotqiNPwr46wEQCqP6tSfBx+uvtYSUyqI6mIEVi1C/q6grfhFJFJEVIjLHft9YRBaIyEb7b6Noy1DZRKrrVmZ6GmmNUrSWkFLpJCcns2vXLlX+1QBjDLt27SI5OTnobSrD1HM38C3gCWzNAj4yxmSLSJb9frTbxtWR41NTHPvshmOiSU1JYnFW7whIpSjB07JlS7Zu3crOnTsdlx8+fDgkRVMVxJOMycnJtGzZMuj1o6r4RaQl0B94BLjXHh4E9Lb/fxnIpYYp/lH92pex8YOaaJTqRVJSEm3atHFdnpubW1JeIFZRGd2J9oz/SeABwDteqbkxZjuAMWa7iDSLsgyVjr8yER6i3eRdURTFjajF8YvIAOBSY8ztItIbuN8YM0BE8o0xqV7r7THGlLPzi8gtwC0AzZs3P9O75GmkOHDgAPXr14/4fgORX1BI3p4Cir3OfYIIaY1SylUNrSoZQ6E6yAjVQ87qICNUDzlVRsjIyKj0OP5ewEARuRRIBo4RkenADhFpYc/2WwC/Om1sjHkOeA6sBK5oJLWEkiwT7Aw9mPV6ZS8kL798ZcO01MRy9vxYSejxR3WQEaqHnNVBRqgecqqM7kQtqscYM8YY09IY0xq4BlhojLkWmA0Mt1cbDrwbLRkihScuP1DphGDXi1TUj6IoSjhURRx/NnCRiGwELrLfxzTBxuUHu55bdI8mZimKUhlUiuI3xuQaYwbY/+8yxlxgjGln/91dGTJUhGBn6MGuN6pfe23yrihKlaGZu0HgNhM3UKZUcrAz+cz0NG3yrihKlaG1eoLAKS7fg8eOv+yn3Rw6crTc8pSkRFo3SaHtmHkUGUOiCEN7tGJCZvQVvYaMKorihCr+IPCOy3fKyC0oLGL6kp/LjaemJHHG8Q1Y/EOpNavImJJ1J2R2jJLEkSsUpyhKzUNNPUGSmZ7G4qw+BG7uVkq9OrVYsmmP47IZS7dERjAXIlUoTlGUmocq/hAJJfImL7+AIpcEuSJjotpKUUNGFUVxQxV/iDhF5IRLNFsphhoymrMiT3v7KkqcoIo/RHwjchIlFONPeaJlfgklZDTYxDNFUWoG6twNg8z0tBIHqa8TNRyiYX4JplCcB3/+AHUEK0rNQxV/BXFSsE6RP/6IVsau9w3KH+oPUJT4QhV/BPBVsOl//5A9hwqD2lagyjN2I9k4RlGU2EcVf5B4J0M1TElCBPIPFTqaUB6+7AxGvbmKwqLAJa8NlNj4M9PTSo6Tl19AoggjOxTyYPbCkJKv/CVuOS3TxjGKEl+o4g8CXzt+fkHpbN4pMSozPY1lP+3m1SU/E0y3A+/s37eW55UcxxMK6nQMN+XuL3ELcFw2cXBHJg7uqFm+ihInqOIPAifnpzdOjtBF63cGpfS99zFj6RbXuH/vY/hT7oESt9yWLc7qo4peUeIEVfxBEIyTM9hKnf5wU/q++/Sn3MNx1KoTV1HiC43jD4JgnJy+67htkyhCo7pJrsuCOYY/5e4vcUv7ACiKAqr4gyKYbN2MU5sG3CYlKZGhPVrhNLH3LHM7jrez1Z8C95e4Napfe5ISy95ckhJFnbiKEmeo4g8C72xdN+as2l6m5AFQrub+kDPTeGt5XhnnMECjuklMHNyRCZkdyxzH8wTgW6/fn3IPWOvf96YTiiNCUZQagdr4g8QTq98ma66jrswvKCxR6Hn5BYyatYr6ybXKhHy6OYn3FZTW8ffNCcjNzeXOYb3LyQLuWbluiVuT52+gsLis9IXFRjN0FSXOUMUfIsFm5hYWm5IkLk/UjVtkUJExjHpzFeC/Vn5FG6tohq6iKKCmnpAJtzpnQWER/ny3hUWG8e+tc10eiUJq6txVFAVU8YeMkw3dLUrHlwDRmn7LPESisYqvAzrQuKIoNRM19YSBrw09EhU6ffGYda5ptZ8Hsxe6mpdCMdMsWr8zpHFFUWomOuOPAL5PARXF26wDllnHbb/eZppAzVTcbhJ5+QXafEVR4gid8UcI76eAXn5m6P6oV9vyHTiZdQxWJU9va5F3bH8wzdX9Oaa1GbuixA8647cZm7OGtmPm0TprLm3HzGNszprAG7kQrgM4KTGBnBV5rsrZgGt8fjA+gEByheoz8DxhrMnbq08MilKNiPsZf86KPB58Zw0Hj5QqzSJjmL7kZwAmZHYMeZ/eythjpgkmTyq/oLBMJU1f0lJTWJzVx3FZMKGavnKFsh9fyjxhtKo5TwwVDZlVlOpAXM/4PYrWW+l7M2PplrD3nZmexuKsPmzO7s+Uq7uUmamnprjX6nFzEAeqjx9sqKZHLrcs5GBDOyMRZRRraO9hJV6o2Yp/61aYMAH27XNcvGPvYb+ROIGqZYbLgM4typlcJMDxup7Q0O/MM5Tm6uGs70tNTAariTczRXGiZpt63n4b/vY365WYCCtXQocOJYuPFBXj794XqFpmMJ2ufE0qefkFzPxyC62PrcvGXw+WjAe6xSz+YTdjc9a4mp58zTiepwfv7l5u6wcyazh9zprYrrEm3swUxYmarfjvuMOa9U+eDEVF0NFWmtOnw7Bh1E70/8AztEcr12WBOl2NmrWqXF0cD4XFpozSD5YZS7f49Tl4lHag6B7v9QPZr90+p6fgXE1q11gTb2aK4kTNNvUkJMCjj1opszk5pePXXgsi9H3lWeo7BLkIcG3PE/wqWX9mgXGz17kq/YoQjOkp0uYKt/0tWr+zTCXRclVAqyEVNX8pSnWhZs/4vRk0yLoBfP89nHUW7NlDm/fnsvb9ufzY7ASuuuoRaqcdH3QUhz+zQLQqHQcyPXmOH8p4RfbneWJwqiBaHQnF/KUo1Zn4UfweTj4Zdu+GggJ29u1L088+o82vP/PV1Ous5ed8CgT+ofszC4STvBUM/kxPgY4frrki3swfwZi/FKW6U7NNPf5ISWHdP/5Bztdb+b/+t5eOn3suiMDjj/utqubPLBBs0bZQ6XZiY9dlnmQqt/IOB38/GlZYopo/FKXmEb+Kn9I4/ikdLqX16DkMGfZo6cL777d8BAMHwqFD5bb11+mqf6cWUZH33jdWOipv39o+bo1iwolJD9jRS1GUakf8mXq8sOL4S+99y1ueTuvRc+iQWMCcd8fBunXw3ntQrx40bAjLllmmIhtvs4An5PGemStJCMIWHw7FBu6ZuZKRM1eS5mV/duvs5YvHyRuq0lbzh6LULOJ6xm/F8ZdnXVEKrF0LhYVw223W4N690K6dZQbyjhCifMZnRRK/khL83zQ8e/bOKg3Fcasx6YqiRE3xi0iyiHwpIqtEZJ2IjLfHG4vIAhHZaP9tFC0ZAuEWx1/iuKxVC55+2rL1v/pq6QqXX27dAO6/H4qLg55xO9GoblIZM8rkKzu7lnTwxTODD8XRWlOdsoqiBE80Z/y/A32MMZ2BLsDFItITyAI+Msa0Az6y31cJzRsmB++4/OMfrRvAunVQu7Y19vjjkJjI00/dSsOC/WHJ4Om6NeXqLizO6kNmehrjBp4RcObvIS+/gIO/HyUpMfD66pRVFAWiqPiNxQH7bZL9MsAg4GV7/GUgM1oyBCI1JSl0x+Xpp8Pvv1v1fy68EIDO2zey6qmhbJ40gI7bN4Ysh28xsMz0NCZf2Zm6ScF9PfkFhWAoiSZyugU0qptU7rMFatyiKErNJKrOXRFJBJYDJwP/MsYsFZHmxpjtAMaY7SLSLJoyBCJsx2WDBrBgATlfb+XHe/7KPZ/8F4D3XrkHgL/2+wuvdbkk6N0VFBZx3xuryshkZdseCWr7wmJD3dq1qFu7lmPcfd3atfy2i6wpZZUVRQmMmChVoCxzEJFU4B3gTuAzY0yq17I9xphydn4RuQW4BaB58+Znvv766xGX68CBA9SvX79C+9jwy/4SJ3GrtavIzH647PI/nMf/brmT4lrB2e0TREhrZJVuXpO3l+YpsCNC/tiOaQ0d5famdmIC7Y9rENJ+I3EeK4PqIGd1kBGqh5wqI2RkZCw3xnTzHa8UxQ8gIg8DB4Gbgd72bL8FkGuM8Wt47tatm1m2bFmFZShXZbJzERx3eoVS9NtkzS0XN99i305mvfoALfeVNjHfXr8JQ66bzLZjAj/geEI173tjFSM7FPL4muAezBrVTWJfwVHHqCLfJi5OcoNlJvoxu39Qx/OQm5tL7969Q9qmKqgOclYHGaF6yKkygog4Kv5oRvU0tWf6iEgKcCGwHpgNDLdXGw68Gy0ZvHFqsrF1dwGj3lxVocYbTlEy249pyrm3vUS7+9/hrTMyAGhxYBef//tGNk8awLk/fu13nx45QgkLTUoUDhx2VvoAGac2DSi3v/GqQv0QihJ5ohnV0wJYJCKrga+ABcaYOUA2cJGIbAQust9HHecG5obCorKKMtRKlm4lDYb1PIFmTY7h/gH3ccbf3ier3x0ly//7xkNsnjSAkZ+96lgWwl8nLifSUlOoV7uW34qgi9bvLPO+OpRi0I5YihIdoubcNcasBtIdxncBF0TruG5EK8kp2IqOOSs6clr3/rTdsoE5L48EYOTiGYxcPIPPT+jELYPHcqBOXVKSEkNS+gIszupDm6y5IX2mzPQ0lv20mxlLt1BkDIkiDDkztjJ0/ZWYjiU5FaW6ETclG0KpmhmquSOYyKDSG0RtWo+ewzGHDzBt1sN03baBP/y8mrVPXsVRSeDjmR/y0A+1g5bVAL2yF9IwJckK63TB9zPlrMjjreV5JaahImN4a3ke3U5sHDNKVTtiKUp0iJuSDU6mDUHKJT5F09zhaXR+bc8T2Jdcn8HXPU6bB2bzTI8hANQyxVxw1YUsHnMBl3+zqNz2bklaefkF7P/9qGvSl9jr9MpeyNicNfTKXsjImSsdZ9MjZ66MqC29Ijb66uKHUJTqRtwofqcqky0bpzD5is6VXnlyQmZHru15AokiGElgcsaNjH1nNbxb6uee8t7jbJ40gIwXniax2FLQZ7Vu5FrOoajYULtWQklHLE/TFqFsfZ/pS34O+DQRKVt6RW301cEPoSjVkbgx9UB5k0xubi69q6jy5ITMjg6tHTuCMWTc+gJvvXIvjQv20WHRh/yw6EO+b9ySYX+cSL20411NOgePFLHu76Uhm576/OFQUFjEuNnrKhTqWlEbvXbEUpToEFeKPxYpl1vQrz0/ph5H17teo07h78z7ZDJtly3h5N1bWWp3Cbvyj9l81apDwH1WtBNYfkFhyU0mL7+AUbNWMf69deQfKgxKCUfCRq8loRUl8qjiDwMnZR2OcnIrm+Axz/yeVId5I7N4fE0tbvzqXR5a+DwAs16z6tpNyLiR/3S3K4UCSQnQZfyHfp28FaGw2JQUlfMu8ZDqsn68tW1UlOpC3Nj4I0UkY8vdTCF1ayeWW/fF7oMY+85qPnnxnZKxsYteZPOjl/H8W38nufAwhcVETek7ESjnIRI2ek3gUpTIo4o/RPzZrUPFzeRx6EhRifMXLEfttT1PYEJmR867IZPWo+fQ7Y7/suHYEwC46PsvWf/EFayechWtd1dcMaalpgTdN9if2SYzPY0hZ6aV+Ryh5ApoApeiRAdV/CESydhyN5NHat0kJmR25IeJl9IxrSE/TLy0jCM4LTWF3+o1ot9NT9N21Lu8km7V1jnmyCFyn/8zj8yfStvftoQsj4fFWX14+LIzys3WQ/kM4J4rEKzijuRNVlGUUvwqfhFpKSLneL2/V0Qesl8n+9u2phLJ2PJR/do7xuYfOHzUr3L0NqEUJSTyUN/baDN6DndeNooFJ/fgijUf8dELtzHtjYc5b9Nyx7IQbnhm577hr6kpSSHnPFRUcWsCl6JEh0DO3cmAV89B/gw8B9QFxgPDoiRXhRmbs6ZMOYKhPVo5hE+Gzqh+7cs4ZCGwAvR2BqfWTcIYyxafKOJYVK2w2PDXt1eXVOe8acw8hvZoRbcTGztG64jAH05qzP+S+vDe6efT+NBe/rjyfa7/ei6vzHqY75qcwEvdBvL2GRn8nlTH7+crMoa2Y+ZRZEyZhu6+n8PbqZ2b69x8JlzF7TmO2+1KncOKUjECKf72dmE1D4eMMY8DiMin0ROrYozNWcP0JT+XvC8ypuR9RZV/qLHlvpE7nqgYj1xuHCosLrPe9CU/89qSn3FqD28MfPnjHq4+qxUzlm5hd92GTP3DNTx31hD6r/+Um5a9y8T5Uxn1ySu81uViXknvz68Nmrge2yOXb3OWUEMrw4nq8T1fvmgCl6JUnECKP9nnvXdxNXfNUcXMWOps356xdEtEZv2hKMCKNGL3xUnpeygsNixav5PHr+pcojiP1ErinQ59+KDLhTzX+hDFTz7J7V/M4s9L32LOqefyYrdBrGnRzu8xK5LIFc7Tkb/z5fsEoihKeARS/PtF5BRjzHcAxpjdACJyKnDA75ZViNtMOpT69pGiMu3R2/ILXJ9Izk1PI+fMnlz4/AcM++o9rlr9IZd/k8uXLU/nxW6DWNCuJ0UJzs5c30SuYFs0hpN5G+h83TNzJZPnb9AbgKJUgECK/2Fgjog8Ani6h5wJ/BW4O5qCVQQ327nHcVmZhFIVFKxZ7ba9BaH4Y8scC9yfSDLT0xjT5Hj+ccHNTDlnGFetXsCI5bN5JmciW49pxktnXsYbnfuyv049v8cJtexCJMxDnkJzoP2BFaWi+I3qMcZ8AAzGMvFMs18ZwGBjzPvRFi5chvZoFdJ4NHFKYnKjUd0kRvVrz7AeJ4R1rENH3KOBclbk0WX8hxTYvoMDderyYvdB9L7lOf58+V/Ja9iMvy16gS+eHsHD/3uWE/ds83usSD3J+CZoZZza1PF8+d4HNaxTUcInmJINO4CngO+NMfnRFScyeOz40YjqCRVfc4d3VI935UywHL9j3l7DkDPTSMC/Td8Jz/bexwX/DtPihETmn/IH5p/yB8745XtuXPYuw1a8z/Dlc/jo5LN4ofsglrTqWFIWwkMkImucSla8tTyPIWemsWj9TvLyC8qdI280rFNRwsOv4heRPwH/BH4A2ojILcaY2ZUiWQVxrn4ZGUKt1eNm7nCqnllQWMSMpVtCVvre2/uaYYJ1MK877mTuG3Af2b1v4Lqv5zJs5ftc9P1SvmnWhhe7DWL2aedzpFZSxCJr3OL8F63fyeKsPgGri2pYp6KER6AZ/0jgDGPMThE5CSumv1oo/mjhVlgNQrc3u81YK+qE9t1vqDPjnfUb88R51/Gvs69i0Dcfc9OyHB6b9ySjc6cxPf1S2o9/gEsjYFsPFOfvT27vm0+kiuYpSrwQqGTDEWPMTgBjzCbAf/ZPHBDJMgJuM1Z/Tui01BTXZixu+w13Zvx7Uh3e6NyXfjf+i2FXT2DNcSdzz+LXuKBfN2Z16svUKW+Gtd9AcnnG/Z0fT8McreejKKETSPG3FJGnPC+H93FHJMsIuFWvPKlpXcf1e7VtzOKsPowb6L+OTsapTYFSx6nHVh42Iixu3YUbrxxHnz89w8xO/ei//hPuuPdKNnU8iyaffw7FoRunPHK6jbudn8ev6lzGd6L1fBQlNAIp/lHAcq+X7/u4I5K1epzaQU4c3JFNOw85rr9k054y27k9GSxav7PMTBjcHaShsqlJSx7qexs9b3+Zib1HkPzTj3R88EG2NDuBVaMnwIHg0zsWrd/pd9zt/HibcbSej6KEjl8bvzHm5coSpLoQTjaqP5wcvyNnrnRc19v2n5mexj0u623LL3B16PqLkgmFfcn1ebbHFbzQLZOphz+j2dvv0fXRv1H49GSSbr0F7rgDTjzR7z6CUdqB8gC02YuihE6gqB6/jlxjzMDIihP7VEYf2GAT0PwpPTelarBmzhVty+jhaGItNvY8h1vr9SY9bz1/WT2HC6dMgSeegMGD+aT/tYzZXp9tew+XO1cNU5IcG8c0DODD8CbSN2JFiQcCRfWcDWwBZgBLoWKm4lgn2OiQaPeBHdqjVZkicx56ntSIXtkLS+TLOLUpby3PK6P0PBmubjePeg7dvZxITBCKikN7NliRdio3p53Kj3NegalTOfLvZznvzTf5V4t2vNgtk3nte5WJgHLzYYeSYB3MjdjzvV7Taj8PZi/UqB8l7gmk+I8DLgKGAn8E5gIzjDHroi1YZRPJMM2K4p2ABtZMv+dJjfj6571BJzu5hYQePFLEwSP+Z/tpqSm0bpLC4h92hyz78akp0KoVTJrEJfXO4+zP5nLD8tk89d5kxix6kf927c+zFJCZfjn5h8rP9gHXcTf83YjLfK+ttNyDokDgkg1FxpgPjDHDgZ7A90CuiNxZKdJVIrEWHeLbgWvzrgK/yU5pqSkVst172jtuzu7P4qw+JY7kUPA1sWw6BNO79ufCP/2bEVc8zMZjT+CBT17h7eyhcOutnH3kV8f9RNI+H2vfq6LEAgFLNohIHaA/1qy/NVb5hrejK1blE+vRIRVJdgoGT1vEbic2JjM9LeQkMqeSyR4fhJEEctt2J7dtd07ZuZk71sxj4LRpvPb7s3x80pm8cOZAPmnTFURISpCI2udj/XtVlKogUOvFl4HPga7AeGNMd2PMP4wxNS47JpJhmqHiW6jMO/kov6CQXtkLA3ajioSc3jPhYO3s/tZzai3543FtKH72OdiyhW9uH8VpOzbxyqyHWfDC7Qxd+QGJvxcwcubKcuchXKrye1WUWCVQHP91wClYJZg/F5F99mu/iOyLvniVh1uyULSjQ/xlnuasyCNvT4FrBI63fE7yJyaE7ovfll9gKdwgJ/yeBwPXjFnf/XjeN23Kza0uptdtL3JP/3v5vVZtJs6fyuf/vpH7P3mFo1u2RCQDt6q+V0WJZQLF8Qe6MdQYKiNM04lANuhrWjlrYF/TipP8B38/6hgu6Y/jU1P89rv1h2+BuMnzN1DoExlUWGxK1tmWX4BJtLqEvXNGBmdtXceNy94t0yVs1q9DmNzm9LC/E29ZYL928VIUgivLHDdEO0zTiYA2aIcWAgIszupTbtxX/jZZc0OSxTMTdksMCwbvzxPos5XJQxDhy1Yd+LJVB1rl/8KI5aVdwr5KO50XultdwkbNWgWEFpHjOS+5ubncOax3eB9MUWoQcTOjj1X82aArap8OZj2PMci7HEJF7N/e2waSv3UT5+VbUo/jHxfczNm3v8z4C26m+YFdPJMzkY+fvZnhS97isTe+DFs+RVFU8Vc5o/q1J8nHFu+JbBnVrz0JPt7TUOzTbkXQPLtsVDeJhilJ5bLynJyyweArm5N93ZNg1it7IV9s8p8ncKBOXV7qZnUJu+XyB9nasBljF73IB08Mg7vugu+/D1lGRVFU8ccGvjrWfp+ZnkZaoxS/RcrcyFmRx2sO2b9gOWSTEoUDhy0fgK9TOTM9jau7l7cxJSYIdZNKL5mUpAQa1bXKKzjJ5l1kzfOxPBb/vPwC/CUGp3k9LRQnJPLhKWdzzR+z6T/8SeafcjY88wyccgoMGgSLFhFWk2JFiVNU8Vcxk+dvoLDIxwFaZEqcu6kpSSzO6sOPdmJVsLbtcbPX+e3iVVhkyjlevZ3KTpUzi4oNjerVYXN2fzZn92fi4E7Ure3fTbTsp938svcwEFpxuMVZfUpuKt6sO+5kJlw5Gn76CcaOhc8/hz59ID0dpk2D338P4SiKEp+o4q9iopVgFGo0j+9x3UJIPeO+ZZ89Twxjc9aU5CSc8dAHTF/yc9gdxR6+7IxyJqekROHhy86AFi3g73+Hn3+G//wHiorghhvghBNg/HjYsSOsYypKPBA1xS8irURkkYh8KyLrRORue7yxiCwQkY3230bRkqE6EGsJRp7jutX694y7haG+uuTnkpyEg0cC9/n1d4zM9DQmX9G5jKlr8hWdyz71pKTATTfB6tWwYAF07w7jxlk3gBtvhFWrwpIhWPwl3ylKrBLNcM6jwH3GmK9FpAGwXEQWACOAj4wx2SKSBWQBo6MoR0wTrbLC9WonhqV49xz8nZwVea6zdM+4v7LPFcW370BQ5i0RuPBCcpqcxsz2/+PSRbO4YvoMUl56CTIy4J57oF69CEhXSiwV9lOUUIjajN8Ys90Y87X9/37gWyANGAR4Gry8DGRGS4bqQDBdpsIhKTG8r/ZQYTFj3l7jWr7ZY3evG2R5ZzfSUlOoU8tZxmBLR/viUcRfJB3L3/reRo/bpzH5gps49O0GGDiQs66/HqZODalLmD+0AJxSXakUG7+ItAbSsWr6NzfGbAfr5gA0qwwZYpnM9LSwHLj+CNfGD5byOuTytOCZjLstD4Zre57A4qw+HDnq7H4Od9++inhfcn3+1e1yLr7jJZg5k8KGDeHOO6FlS7j/fstBXAHcnnryPGUvFCVGERPlMDgRqQ98DDxijHlbRPKNMaley/cYY8rZ+UXkFuAWgObNm5/5+uuvR1y2AwcOUL9+/YjvN5KEK+PavH2YiHXaLUvHtIasydtb8r55CuwI0hddv04t2hxrmVy89+F0jFDxt7/aiQk0ql1M0rrv6P7RPNI+/QSAneeey9YhQ9jXoUNoHWCADb/s50iR880rQYS0Rimk2t3E8gsK2bH3MEeKiqmdmEDzhskly7ypDtckVA85VUbIyMhYbozp5jseVcUvIknAHGC+MeYJe2wD0NsYs11EWgC5xhi/Bu1u3bqZZcuWRVy+3NxcevfuHfH9RpJwZWwdYrkGX/y1fyw2ZW8p93U8yuNrgnMXpSQllmke40Y4NXV6ZS903Kcnf8AjZ0pSIk/+oQn9Pn4LnnsO9ti9BwYMgJkzoW7doI7na+N3+gyLs/o4rpeSlOho0qsO1yRUDzlVRhARR8UfzageAV4AvvUofZvZwHD7/+HAu9GSIZ5xioEPlpSkRHqe5BxsVWSCf45wmj97R/74w7Xapx/cMoV95S0oLOLvq/ZDdjZs2QJPP20tmDPHcgAfcwx8913A43n8M254TEHqC1BijWja+HthlXXuIyIr7delQDZwkYhsxGrrmB1FGeKWijzITRzckc27ws8j8Dip3UQIVrRQlaOTo9ztWCX2+Xr14Lbb4OhR+MtfrLH9+6F9e8v087b/nkOZ6Wllsoy98YTGajMYJdaIZlTPZ8YYMcZ0MsZ0sV/zjDG7jDEXGGPa2X9Db+yqBGRvBZy7npLJ4eJxUrspxFAIVQ5fR3kgpVxCYqIV8WMMePuThgyxbgD33gvFzvb8QDX/g8nV8OQDrMnbq/kAStTRzN0aSrgJYJ7kqUgkkLmZXkIhGDn8JVGF1Yjl6qutG8A330CdOtbYlCmQmMj6tFOYu2htmWN7TDmec+cbkhtIBrcsaFX+SrRQxV+NCCVL1EnZBNOQa2iPViXb+1YNDYZ2zUqTpDLT02jZKLnM8mYNapeTy42kxMD9d/11MPPI4F0ozilPwvW8nnYaOV/8wJkPvM0nrdMBOHXbRvr36Qgi5E6fW0ZhFxlTotDditU55WqoD0CpbLQRSzUh1CxRp45crZuksPgHd8taAtDtxMalA6HrfZo1qFPy/7Dnv2DjrwfLLN+x/wjtmtXj0JHigA7eYJwB/pSmd3cyt0Ysgc7r5Pkb2CW1uf7qf4Ax3L5kFg988goAva8bwLfA2L63Mz39Usdje/CXgRyoLlKk8DydVGaHOSU20Rl/NSESs8LP/Sh9gGIo2Z9T1dBg8L6xuN1kNv56kMVZfQLeVzxtGv1REcdpzoo87ntjld/zWmY/Ijx99lW0Hj2HYVdPKBme8OHTbJ40gKdmP0rto4Xk5RcwNmdNuWO5Pa0FqosUCQI9GSnxhSr+akKoCs7phx6MGg9UnTOShCKPG+EWufOcH7eaRN7tIZ3Y3OVsek38iJ63TePnhs0BGPjtJ3z3+OUs/df1LJq/rET5B1K6geoiRQI1JyneqOKvJoSq4Jx+6KEcJ5KzTTeCOUYgBR6M89YpYibQ+fEc19/+R/Vrz94mzTnv1hdod/87vNnhAgCaH9jN4mduZMLlneCDDwIqXbfIo0hERXnQkFLFG1X81YRQo1PC+UF77y/c2aa3c7dX28aO63jGAx0jmCqlgRynbhEzgZ5oPG0r/e3fO4GrMDGJ+/vfQ+vRcxh1yV2lO7rkEhaPuYB7Pp1eLrnC8x25tcj0Hq9o+edYK/+tVC3q3K0mODlr/Tnnjk9NcVRu9WoncriwmCJjEKwqm4eOFJXbX5rL9oE4dKQ01v3Vm89m2PNflLH192rbmFdvPjvgfkIp2eDPceo223YrSeHBuwOZv/1npqcxcubKMmOzOvVlVqe+nLHjB+ZOuxuAuz9/nbs/f50lrTpw85C/sb9OvRKl69TtzHs8EuWfo1X+W6meqOKvRgRdmx73H/ojlwdX8tlte89st03WXEcbve+TRjBK3onFWX2CXtdftIrbk48n9NLN3BPoicn7mG6sa94WjGHuJ9/QYtiVdN36DT23rGXNk1cDsHDmAr/HCqbkQ7DXQ6gTh3DRyKHqgSr+GkpFf+iBtnd7ogjFdOCvEFywBJoNu8npeaK4741VjjKk1k2iV/ZCx88eqDib9zEA+p93OjmzP+Su979l6HvP8ZclswDoc/VFcDXccGUWL550TrntI13yIZSJQzhoY5rqgyr+GkxFf+j+th/Vrz33zlxZpqF7gj3uzdicNcxYuoUiY0gUYWiPVkzItOziQ3u0YvqSn8vt25NEFgyBZsP+TByez+a7PClROHD4KHsOWWUvnGL7Ayn9pISyyWcl5/KvF1oDc+bAZZcB8NCsbB4CZnTqy67T/4znZ+ld8qGiN9lgqOhsPRJPJkop0Xx6UueuEhbLftqNb+WaYnvcw9icNWWarRcZw/QlP5eEOXY7sXG5C7BcElkAAs2GA2XuOjlv69WuRWFx2acA19h+NwI9tAwYAMbw4ezF/FbX6j0wdPWH3DF8CAufu4WmB3Yza5l1Uwyr7ESIRCLOv7IS0eKBaOdd6IxfCYsZS7e4jntm9IHWmTx/g+PNI5QZYjCzYX+Zu97LPbRx6WXgHdsfSJkVFhlGzlzJ5PkbShS00+xt/LrD5N35KnWOHmHKe49x6Xefc9KebXz1r+utHZ2SS+b557tuHykiMVuPlOlOfQTRf3pSxa+ERTBJR+E2bA/Fdp1xalNHc5FbiGQwBLqZOJmP3MjLL2DUm6vAUPIU4W068nzW32vV5vbL/8p9HY+y66V5jPvoOWsHdpOOzEmTyBw9KuQuYcESidl6RRPR1EdQSrTzLtTUo4RFMGUGAq0TidjyQKGQ4RDItOJrHgo0oy0sMq6mI6fPOq3bQFqPnsPgayeXDo4eDQkJlono4MFy21SUSJSNqGgimmYXlxLtvAtV/DHA2Jw1tB0zj9ZZc2k7Zl65Oi+xiJsD1ns80DpOFUB9naKBiMTMyDc5CvCbFAZl6/4/flXnoCuO+so4ql9716qpKef1spK+fv0VOnWyBufOhfr1g+4S5u9zetuLI1E2oqK+iIrWXapIglusEW2/jir+KiaQAzRW6XZi43IKK0HKOmYnZHbk2p4nlMwaE0W4tucJJT4AoLwTNERLRkVnRm5ONKBMQxd/pgZfB3Kw1K2dSGZ6GvVrO980vv/1gPVP06awapXVJezOO62xELqE+fucHgXp1qozlBaegbKoA5Hqciy3cQ9uny2/As2IqpqKnstAqI2/ignGSRqLTJ6/AR/rBcWmvGN2QmZH18/hVAG0sMiE5MCqaEZqpJxoHgdxsDH+AIeOWOvs+9153R37j9Ama25ZJ+dTT1mvN96wGsaA1SUMYORIePxxyyQU4ud0m9iHWrmjIiHE4crg9tl27K2+ih+im3ehM/4qpjIqM0aDSJhYIrGPis6MIu1Ec5LHjWC+YddQvquuKu0SlmIf48knrRaSXbvCrl1l9hPoc7q16qxIC89QCVcGt892pMi5VaaiM/4qJxIhcFVBJJKKIpWYVJGZUTgyOIUcgnu4Zdsx8xy/Y4ESn0IgCgqLePCdNeU/52mnwaFDcOAAO/oOoPkXH8OKFXDssdbypUvhrLMCfs5gz4MnIW9kh0JuGjOvTEJeRQn3enDbrnZi9Oa1gcJOAy2P5nkMBp3xVzHBOEljkUg4nyojMSnSMjjZk0fNWsWoN1e52s/dvsuEBAkpXPLgkSJX30/Oxr30viCL1g+8x6PnXV+6oEcPEGH0jx85bucJew3mPETbHxXu9eC2XfOGyS5bVIxA/pJAy2PBr6eKv4oJygEagwTTyzaUfUTDgRUNGZzsyYXFppyvwjsM0ek7rlc7kSJfJ0kQuPmESuTy6hI29JpHSpYPfO6fbJ40gP/37iRqHy01nXjCXoM5D/78UZEg3OvBbbvUlOAd06EQKOw00PJon8dgUFNPDODPARrLBMqIDWUfVUkoMoTrw/D9jt2ygwMRqGOYN1+c2Jk2o+fw451d+KlDN07M/4XL1n/KZes/ZUf9xgy+9jG20axk/UDnoTL8UeFeD07b5eZujJRYZQjkLwm0PBb8ejrjV5QQCNWHEYn9eOPm+/Eb1pqWxh9Hv8rJ9+cwq4NVJM7TJezHSQPggw8qdOxY90dFmkAhxIGWx8J51Bm/Erd4HHDednbfCqK+OIWPJiUIxVDGdJOUKOXs495VSnue1IjdB4+E3B6zyBh6ZS8s51BOrZtEUoKUyRD2to+P6tfe8kX0H8mo/iO5cvUCJr//f9aKl1wCwKIr/8yfTrqMIpfzEIlqqoGoDrV6POfS+1x7Jx4GCjGujPMYCFX8SlziFm/vcbQBjsrfqU9BxqlNmfnlFsrsyeup3ePM8z7G4h9206ttYzbvKnB18B5TJ5GDR4rLmQA8DmWEEt/CnkOFJCUKqSlJ7C0odFaaXhPKWZ0uIie9L891rEXG0H4AZMx6lh94lqWtOvCnIX8rdx5+3HnAUU638VCpVrV6/CQeBupl4VvEMNBkIxqo4lfikkA19f0l0Pnak3tlLyxXi6ewuDQRzc1pt2TTHn6YeCmtXez9+34vYnN2f3plLyx3c/A9Hlg3gXp1arHy4b7llrkly43dXIvFxtDlnjd4ftZ4uud9Qw+vLmGX3jgV7PPg3ULTG7fxUKku9fyDSTwM5Kvw+Hxyc3P5IUz/WEVQG78SlwRy0obiaIu2My+aSXGe8fw69bjy2kdp/cB7TD37qpLl8168wyoL8corQcsQLtGuSBkpqouc/lDFr8QlgZyroTjaou3MC8URnCDiWKjMbR8G64mlRBQRHjvvelqPnsMNVzxcuuLw4WyeNIDs95+iVtFR1+NXpOBgReouVWaRtkhUzvTIuyZvb5UUlVPFr8QlTkk/3oTiaAuUeBQoSa9ds3qOyz3jTvtPShCSEsvfOIqMcUwa8vd58/ILHGvjLWrbnbHvrIZNm6xCccA1qz/k+8cyufb+22l6wDLx9GprFearaGJSuAlclV2kraKJh97yQuS7awWDKn4lLnGrqBlOAl2gxKNASXoL7u1dTvm3a1aPBff2dt3/5Cs7M/mKzn57AngnDQWqIFpsoG5SgrOMbdpYpaELCljaNQOARr9YXcI2TxrAq6ccASqemBRuApd7kbbDQR03VCqaeBgLfQfUuavELZFMHgvWmeeGR8nn5uayOYj2kN7jELhdpPc+2mTNdSwQV1BYzI/Z/V1lJDmZHsut2kIb77qLdv/v/1njdpewP/UewbNnDSnXJSwUf0k430lVFGmryLUTCz4CnfErSg0gFLtzJGzUeYMHW9VBv/iiZGxM7jQ2P3oZL84aR8qR0tl2tBOT3OSOZpG2ihDt7lrBEJtnRlHijIo6+0KxO0e0OF7PniVdwra3trbvs2kZ3065grVTrqTN7ryoJyZFokibt3M4/e8f0mX8h1FzFMdCcUJV/IpSxUTC2ReK3TkqxfGaNmXp2x/RbvRsXjrzMgDqHylg0fN/ZsLlneCtt8LfdwAqWqTN1zm851Ah+QWF7r0QIigvVE1xQrXxK0oVE+kuYJFeN1gmz99AIQmMv/DPjL/wz/T/9lP+NXuStfCKK6y/frqEVYSKFGkLlMwXjSSySBQ4rAg641eUKiYWnH2RwFfeuaedS+vRc7jgT/+GunWtQe8uYb/9VvlCOhDMea5u30Ugoqb4ReRFEflVRNZ6jTUWkQUistH+2yhax1eU6kIsOPsigZu8h9ueAgcPWg3i7YJwrFhh5QaIwJdfVqKU5QnmPFe37yIQ0ZzxTwMu9hnLAj4yxrQDPrLfK0pcEwvOvkgQ8HPUrw/z5kFxMUycWLqS3SWMp5+OiByhOsoDJfM5fReVmSkcDaKm+I0xnwC+1ZsGAS/b/78MZEbr+IpSXYgFZ18kCNppLAJZWVY00EKvnsN/+Yu17Oqr4fffw5IhHEe5r9yN6iaRmpLk+hkCtVasDlS2c7e5MWY7gDFmu4g0C7SBosQDVe3sixQhO40zMqwbQF4enH8+/PADvPGG9TruOFiyBE48MejdhesoD0Xu6lJF1B9iotjuS0RaA3OMMR3s9/nGmFSv5XuMMY52fhG5BbgFoHnz5me+/vrrEZfvwIED1K9fP+L7jSQqY+SoDnJWBxkhenLK0aOc8vjjtPDpCrY6O5vdPXoE3H5N3t6S/5unwA4vn2zHtIYRkdH7GL6Eeoxof98ZGRnLjTHdfMcrW/FvAHrbs/0WQK4xJqAhs1u3bmbZsmURly83N5fedrp5rKIyRo7qIGd1kBEqSc6XXoIbbywzNC3jWlIfm0hm15aOm3j3Lriv41EeX2MZNdJSU1ic1SciYjn1Rwj3GNE+jyLiqPgrO5xzNjDc/n848G4lH19RlOrCDTeQ8/VWMm/+V8nQiEXTyTyzFb+d2RP2lp95V4ajvCY446MZzjkD+AJoLyJbReQmIBu4SEQ2AhfZ7xVFURyZPH8DKxufSOvRc+h09+t82fJ0AI79eimkplrO4NWrS9avDEd5VDKfK5moOXeNMUNdFl0QrWMqilKz8E6c2pdcn6uGPQrGcP+n07nji5nWgs6drb/TpsHw4ZXiKI9G5nNlopm7iqLELI6JUyLMGHiLFQ00Z07p+IgR1hPAn/4EhdFpwlJTUMWvKErMEtCe3r+/dQPYtAmaN7fGXngBatfmrGuvhe3bK1ni6oEqfkVRYpag7elt2sAvv0BBAVxlNYuvm5cHxx9vPQV8/HHlCx/DaHVORVFimpDs6cnJMHMmzJzJxrvvpt1TT1njnpDJ7Gx44IFyXcLiDZ3xK4pSI8m7/PJyXcLIyrJKQvfvbxWOi1NU8SuKUrPx6hJGly7W2Lx5VtG4+vXhu++qVLyqQBW/oijxQdOmVjnoo0fh7rutsYMHoX17y/Tz5ptVK18loopfUZT4IjHRaghjjFUMzsOVV1o3gJEjoci9I1dNQBW/oijxy5VXWjeA9euhXj1r7P/+D2rViqkuYZFGFb+iKEr79nDggPWKwS5hkUYVv6Ioiod69Uq7hGV7lRKLcJewqkYVv6Ioii8iMHp0VLqExQKq+BVFUfzh3SWsXTtr7I03rGSx446DzZurVLxwUMWvKIoSDMcfb8X8HzkCN91kje3YYZWLELFMRNUEVfyKoiihkJQE//mP9RQwbVrpeP/+1g1g7FhrWQyjil9RFCVchg+3lPzKlaVjjzxilYU47zzHLmGxgCp+RVGUitK5s3UD2LMHzj3XGvv0U8cuYbGAKn5FUZRIkZoKn3xihYM++GDpeOfO1g3g5ZerTDRvVPEriqJEGhGYMMF6CvB2+nq6hN10U5V2CVPFryiKEk0uucS6Afz4oxX+CfDii1C7Nj2GDYNt2ypdJFX8iqIolUHr1lYryIICKwEMSNm2DdLSrKeA3NxKE0UVv6IoSmWSnAyvvw7G8N1dd5WOZ2RYN4Ds7KiHg6riVxRFqSK2ebqELVlSOjhmjBUOeumlUesSpopfURSlqunRw7oB7NxplYMGeP99q0PYL79E/HDabF1RFCVWOPZYWL7cagRz//3w1VelfQIiiCp+RVGUWCMxEaZMidru1dSjKIoSZ6jiVxRFiTNU8SuKosQZqvgVRVHiDFX8iqIocYYqfkVRlDhDFb+iKEqcoYpfURQlzhAT470hAURkJ/BTFHZ9LPBbFPYbSVTGyFEd5KwOMkL1kFNlhBONMU19B6uF4o8WIrLMGNOtquXwh8oYOaqDnNVBRqgecqqM7qipR1EUJc5Qxa8oihJnxLvif66qBQgClTFyVAc5q4OMUD3kVBldiGsbv6IoSjwS7zN+RVGUuEMVv6IoSpwRN4pfRDaLyBoRWSkiy+yxxiKyQEQ22n8bVbGM7W35PK99IjJSRMaJSJ7X+KWVLNeLIvKriKz1GnM9dyIyRkS+F5ENItKvCmWcLCLrRWS1iLwjIqn2eGsRKfA6n89Uhox+5HT9fmPoXM70km+ziKy0x6vkXIpIKxFZJCLfisg6EbnbHo+Z69KPjFV/XRpj4uIFbAaO9Rl7FMiy/88CJlW1nF6yJQK/ACcC44D7q1CW84CuwNpA5w44HVgF1AHaAD8AiVUkY1+glv3/JC8ZW3uvFwPn0vH7jaVz6bP8ceChqjyXQAugq/1/A+A7+3zFzHXpR8Yqvy7jZsbvwiDgZfv/l4HMqhOlHBcAPxhjopGxHBLGmE+A3T7DbuduEPC6MeZ3Y8yPwPfAWVUhozHmQ2PMUfvtEqBltOUIhMu5dCNmzqUHERHgKmBGtOXwhzFmuzHma/v//cC3QBoxdF26yRgL12U8KX4DfCgiy0XkFnusuTFmO1hfEtCsyqQrzzWU/XHdYT8avljVJikbt3OXBmzxWm+rPVbV3Ai87/W+jYisEJGPReTcqhLKC6fvNxbP5bnADmPMRq+xKj2XItIaSAeWEqPXpY+M3lTJdRlPir+XMaYrcAnwFxE5r6oFckNEagMDgVn20L+BtkAXYDvWo3asIg5jVRozLCIPAkeBV+2h7cAJxph04F7gNRE5pqrkw/37jblzCQyl7ISkSs+liNQH3gJGGmP2+VvVYaxSzqWbjFV5XcaN4jfGbLP//gq8g/WYt0NEWgDYf3+tOgnLcAnwtTFmB4AxZocxpsgYUww8TyU87geB27nbCrTyWq8lsK2SZStBRIYDA4Bhxjak2o/7u+z/l2PZe0+pKhn9fL+xdi5rAYOBmZ6xqjyXIpKEpVBfNca8bQ/H1HXpImOVX5dxofhFpJ6INPD8j+VcWQvMBobbqw0H3q0aCctRZlbluZBtLseSvapxO3ezgWtEpI6ItAHaAV9WgXyIyMXAaGCgMeaQ13hTEUm0/z/JlnFTVchoy+D2/cbMubS5EFhvjNnqGaiqc2n7Gl4AvjXGPOG1KGauSzcZY+K6rAwPclW/gJOwPPqrgHXAg/Z4E+AjYKP9t3EMyFoX2AU09Br7L7AGWI11AbeoZJlmYD2GFmLNnG7yd+6AB7FmKxuAS6pQxu+x7Lor7dcz9rpD7OtgFfA1cFkVn0vX7zdWzqU9Pg241WfdKjmXwDlYpprVXt/vpbF0XfqRscqvSy3ZoCiKEmfEhalHURRFKUUVv6IoSpyhil9RFCXOUMWvKIoSZ6jiVxRFiTNU8Ss1ChE54PN+hIhMrSp5FCUWUcWvKF7Y2akxT3WRU4lNVPErcYOInCgiH9nF0D4SkRPs8Wki8oSILAImicj5XjXRV3hlfY8Ska/s7cfbY63t2uov2+Nvikhde9kF9vZr7OJrdUTkLBF5214+yK6/XltEkkVkkz3eVkQ+sAsKfioipzrJWflnUKkp6KxBqWmkiN0kxKYxVjYswFTgFWPMyyJyI/AUpWV7TwEuNMYUich7wF+MMYvtAluHRaQvVgr9WVgFv2bbhf5+BtpjZbcuFpEXgdtt89I04AJjzHci8gpwmy1Dun3Mc7HKM3TH+i16Kjc+h5Uhu1FEegBPA3185azwmVLiFp3xKzWNAmNMF88LeMhr2dnAa/b//8VKqfcwy0uZLgaeEJG7gFRj1U7va79WYKXTn4p1IwDYYoxZbP8/3d5ve+BHY8x39vjLwHn2vr4XkdOwbiJPYDU+ORf41L7R/AGYZd/AnsVq6OEkp6KEhc74lXjGu17JwZJBY7JFZC5WXZUlInIh1ix/ojHmWe8d2HXWfeueGJzLAHv4FKsCayHwP6wng0TgfqzJWL5903LioMu4ogSNzviVeOJzrAY3AMOAz5xWEpG2xpg1xphJwDKs2f184EZ7Ro6IpImIp8nHCSJytv3/UHu/64HWInKyPX4d8LH9/yfASOALY8xOrMJipwLrjFWv/UcRudI+johI54p/dEUpRRW/Ek/cBdwgIquxFPHdLuuNFJG1IrIKKADeN8Z8iGUm+kJE1gBvYvVRBaul3nB7v42BfxtjDgM3YJls1gDFgKd59lKgOdYNAKzqjatNacXEYcBN9vHXYbUNVJSIodU5FaUC2KaeOcaYDlUti6IEi874FUVR4gyd8SuKosQZOuNXFEWJM1TxK4qixBmq+BVFUeIMVfyKoihxhip+RVGUOOP/A+NbxKoJXZRLAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Extract the \"horsepower\" and \"mpg\" variables\n", "X = data.dropna()[\"horsepower\"].values.reshape(-1, 1)\n", "y = data.dropna()[\"mpg\"].values\n", "\n", "# Perform linear regression\n", "reg = LinearRegression().fit(X, y)\n", "y_pred = reg.predict(X)\n", "\n", "# Create a scatter plot of the data points\n", "plt.scatter(X, y, label=\"Data Points\")\n", "\n", "# Plot the regression line in red\n", "plt.plot(X, y_pred, color=\"red\", label=\"Optimal Model\")\n", "\n", "plt.xlabel(\"Horsepower\")\n", "plt.ylabel(\"MPG\")\n", "plt.title(\"Linear Regression for Auto MPG Dataset\")\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This line will also be called the **regression line**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimating the Coefficients - Ordinary Least Squares (OLS)\n", "\n", "To estimate the coefficients of our optimal model, we should first define what is a good model. We will say that **a good model is one that predicts well the $Y$ variable from the $X$ one**. We already know from the example above that, since the relationship is not perfectly linear, the model will make some mistakes. \n", "\n", "Let $\\{(x_i,y_i)\\}$ be our set of observations. Let\n", "\n", "$$\\hat y_i = \\hat \\beta_0 + \\hat \\beta_1 x_i$$\n", "\n", "be the prediction of the model for the observation $x_i$. For each data point $(x_i,y_i)$, we will define the deviation of the prediction from the $y_i$ value as follows:\n", "\n", "$$e_i = y_i - \\hat y_i$$\n", "\n", "These numbers will be positive or negative based on whether we underestimate or overestimate the $y_i$ values. As a global error indicator for the model, given the data, we will define the **residual sum of squares (RSS)** as:\n", "\n", "$$RSS = e_1^2 + e_2^2 + \\ldots + e_n^2 $$\n", "\n", "or equivalently:\n", "\n", "$$RSS = (y_1 - \\hat \\beta_0 - \\hat \\beta_1 x_1)^2 + (y_2 - \\hat \\beta_0 - \\hat \\beta_1 x_2)^2 + \\ldots + (y_n - \\hat \\beta_0 - \\hat \\beta_1 x_n)^2$$\n", "\n", "This number will be the sum of the square values of the dashed segments in the plot below:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAB2RklEQVR4nO2dd3gU1drAf2c3mw4ECDV0VLAECKigKAJ2FI2AgAXFa+cqYkFAuYqKEsX+2a56FRQbtqiAHWNBRYWAgHREQmghkJCeLef7Y2Y2s30TsqSd3/Psk90z7d3ZyTtn3iqklCgUCoWi6WCpawEUCoVCcWRRil+hUCiaGErxKxQKRRNDKX6FQqFoYijFr1AoFE0MpfgVCoWiiaEUfxgIIU4XQmysazkaA0KIdUKIofX1+EKILCHEdUdOIr8yfC6EuDrAsm5CCCmEiKqF48wTQsyuTfkUDQOl+E0IIbYLIc7yHpdS/iil7FUXMnkjhJglhLALIYqFEAVCiJ+FEKfUtVzhIqU8XkqZVR+Or5/LBTXdlxBiqBDCpf8WRUKIjUKIa2pBxvOllPMPdz+HgxBiohDiJ3/LIiWfECJJCPGaEGKPfj43CSGm1fZxIol+TeysazlCoRR/PSbIrO49KWUikAx8B7wfgWMLIYS6PkKzS/8tmgO3A68IIerFJKEB8hSQCBwLtAAuArbWqUSNFPWPHQbed3H9yeAuIcSfQohCIcR7QohY0/ILhRCrTDPyPqZl04UQW/UZzV9CiEtMyyYKIZYJIZ4SQhwAZgWTS0rpAN4CUoQQbfR9tBBC/E8IsVsIkSuEmC2EsOrLrEKIJ4QQ+4UQfwshbjGbDXQzx8NCiGVAKdBDCNFbCPG1EOKAPqMda5J3hP4divRj3aWPJwshFunf/4AQ4kfjJmJ+qhJCxAghnhZC7NJfTwshYsznXAhxpxBin/59/M6mhRDDhBBrTJ+/EUL8Zvr8kxAi3Xx8IcR5wD3AOH3Gvtq0y67671AkhPhKCJEc7HfQfwsppVwCHAD66MeymH7vfCHEQiFEK31ZrBBigT5eIIT4XQjRzvQ7XGf6zR7Xf7NtwAVe393jKVV4PcUIId7XZ9CFQogfhBDHh/ouofCSb6J+fh8XQhzUr6vzTesGvB79cBLwtpTyoJTSJaXcIKX8wLSvYNdiayHEZ0KIQ/q5nC1MTyz6dT5JCLFZ/10fEkL0FEL8om+zUAgRbVo/2P+w3/9/IUQC8DnQUb+mioUQHYUQJwsh/tCPs1cI8eTh/gaHjZRSvfQXsB04y8/4UGCn13q/AR2BVsB64CZ9WX9gHzAQsAJX6+vH6Msv1bezAOOAEqCDvmwi4ABuBaKAOD+yzAIW6O+jgQxgPxClj2UC/wUSgLa6nDfqy24C/gI6AS2BbwBp2jYL2AEcrx+/BZADXKN/7q8f63h9/d3A6fr7lkB//f0c4CXApr9OB4T3OQYeBH7V5WwD/Aw8ZDrnDn0dGzAC7WbU0s85iQXK0J6AooA9wC6gGRCnL2vt5/juc2naVxbaLPMYfdssICPA9TIU/brQf8+LABeQpo9N0b9fJyBG/13e0ZfdCHwGxKNdJwOA5iYZrjP9ZhuAzmjX2ndev5n7+/j7TsC/9PMQAzwNrDItmwfMDvDdJgI/BVhmlm8iYAeu17/Hzfq5N37vTAJcj372+yqwDu16O9prWQLBr8V39Vc8cJy+7k+m7SXwKdqT2fFABfAt0APtOv8LuDrM/+HtBP7/d18TpmP/AkzQ3ycCg+pa16kZf815Vkq5S0p5AO0fuJ8+fj3wXynlcimlU2q20ApgEICU8n19O5eU8j1gM3Cyab+7pJT/J6V0SCnLAhx7rBCiAE2hXQ+MkVI69Bnj+cAUKWWJlHIf2uPzeGM74Bkp5U4p5UG0m4Y386SU66T2NHEesF1K+bouz0rgQ2CMvq4dOE4I0Vxqs7SVpvEOQFcppV1qPhJ/RaGuAB6UUu6TUuYBDwATTMvt+nK71GbTxYCPGUVKWQ78AQwBTgT+BH4CBqOd981SyvwA59Ifr0spN+nnfyFVv60/Opp+i4+BO6SU2fqyG4F79fNdgaaUxwjtCcsOtAaO0q+TFVLKQ372PxZ4WkqZo19rc6rxPZBSvialLDIdv68QokV19hEG/0gpX5FSOoH5aL99uzCuR29uRXuCvQX4SwixxfT0cCEBrkX9CWI0cL+UslRK+ZcuhzePSikPSSnXAWuBr6SU26SUhWgz9TR9vaD/wzqB/v/9YQeOEkIkSymLpZS/Bln3iKAUf83ZY3pfinYnB+gK3Kk/IhboSqEz2uwAIcRVpkfIAuAEtJmqQU4Yx14opUwC2qFdwANMx7YBu037/y/aTAtdBvP+/R3LPNYVGOj1Xa4A2uvLR6PNxP8RQnwvqpzMc4EtwFdCiG1CiOkBvkdH4B/T53/0MYN8/QZkYD7P3nyPNtsaor/PAs7QX98H2CYQgX5bf+zSf4vmwLPAcNOyrsDHpnO3HnCi/W5vAl8C7wrNzPWYEMLmZ//ev9k/ftbxi24mytBNTYfQZqrgeb3VBu7zJaUs1d8mEvp69EBKWSalfERKOQDtprgQeF83jwW7FtugPQWEurb3mt6X+fkc1v+w93cm9DVyLdoT5AbdDHVhkHWPCIcdEqbwIQd4WEr5sPcCIURX4BXgTOAXKaVTCLEKEKbVwi6XKqXcL4S4EfhdCPG2fuwKINlLYRrsRjM7GHT2t1uv7/K9lPLsAMf/HbhYV1i3oP2jdpZSFgF3ov3zHA98J4T4XUr5rdcudqH9k63TP3fRx2rC98ATaKaqDOAg2rmuAJ4PsE2tlaaVUlYILQJloxAiXUqZiXb+/iWlXBZgsweAB4QQ3YAlwEbgf17r7Mbzd+ritbwEzbxh0N70/nLgYuAsNKXfAu28mK+3SBLqegyIlPKQEOIRYAbQnSDXoj7jd6Bd25v0YX/XdnXk9vs/HAY+15SUcjNwmdD8XKOAD4QQraWUJYch42GhZvy+2HRHjfGq7s3xFeAmIcRAoZEghLhACNEMzU4pgTwAoTkrTzgcYaWUG9BmjndLKXcDXwFPCCGaC8252FMIcYa++kLgNiFEihAiCQgVKrcIOEYIMUEIYdNfJwkhjhVCRAshrhBCtJBS2oFDaLNZwzF2lBBCmMadfvb/DjBTCNFGaA7U+4Cahlf+jGYGOhn4TX+c74pmp/0hwDZ7gW6ilqKXpJSVaDef+/Shl4CH9Rs++ve8WH8/TAiRqiutQ2jmAH/naCEwWQjRSQjREvB+eloFjNd/mxOpMsOBZtuvAPLRbg6PVPMrCa//hdjQm1QRxvXofbD/6NdXtH6s24ACtBtiwGtRNzF9BMwSQsQLIXoDV1Xzu5oJ9j8cir1Aa2EypwkhrhRCtJFSuvTvA/5/6yOGUvy+LEF77DNes6qzsZTyDzQb4XNos6staA4wdNvjE2jOnr1AKhBoNlgd5gI3CCHaol3w0WjOqoPAB2g2V9Au6K/QbODZaN/VQYCLUJ+5n4Nmk92F9nj7KJqjEDR7/HbdjHATcKU+fjSa47hY/64vSP+x+7PRbPN/AmuAlfpYtdFnTyuBdboCRj/2P7pt2R9GGGy+EGJlgHWqy2tAFyHESOAZNIfiV0KIIjRH70B9vfZov80hNBPQ9/i/6b2CdmNfjfb9PvJa/h+gJ9pv/QDwtmnZG2imoVy066G6tuVT8fxfKKvBRCjY9eiNBF5Hc9ruAs4GLtDt4qGuxVvQnmj2oJnR3kG76VWbYP/DYWy7QT/2Nt1M1BHNV7ZOCFGMdk2M1/1SdYbheVc0QYTmOHtJStm1rmVRKGoTIcSjQHsppcow9oOa8TchhBBxQou9jxJCpAD3o0WiKBQNGqHF+PfRTTMnozlU1bUdAKX4mxYCzRxwEM3Us54qe7RC0ZBphmYGK0HzizwBfFKnEtVjlKlHoVAomhhqxq9QKBRNjAYRx5+cnCy7detW6/stKSkhISGh1vdbmygZa4+GIGdDkBEahpxKRlixYsV+KWUbnwX+6jjUt9eAAQNkJPjuu+8ist/aRMlYezQEORuCjFI2DDmVjFICf0hVq0ehUCgUSvErFApFE0MpfoVCoWhiNAjnrkKhOLLY7XZ27txJebn/ygItWrRg/fr1R1iq6tGUZIyNjaVTp07YbP4KvPqiFL9CofBh586dNGvWjG7duqHV2vOkqKiIZs3CqVlWdzQVGaWU5Ofns3PnTrp37x7WNkrxR4jM7FzmfrmRXQVldEyKY+q5vUhPS6lrsRSKsCgvLw+o9BX1CyEErVu3Ji8vL+xtlOKPAJnZucz4aA1ldq3oZW5BGTM+0lrCKuWvaCgopd9wqO5vpZy7EWDulxvdSt+gzO5k7pcb60gihUKhqEIp/giwq0Brlbvn7enseXu6z7hCoQiN1WqlX79+HH/88fTt25cnn3wSl8sVdJvt27fz9ttvB10n2LFOOOEELr30UkpLSwOu++mnn5KR4a9d9eHLcaRQij8CdEyKq9a4QqHwJS4ujlWrVrFu3Tq+/vprlixZwgMPPBB0m5oqXONYa9euJTo6mpdeeinguhdddBHTpwdqI314chwplOKPAFPP7UWczeoxFmezMvXcXnUkkUIRWTKzcxmcsZTu0xczOGMpmdm5tbr/tm3b8vLLL/Pcc88hpWT79u2cfvrp9O/fn/79+/Pzzz8DMH36dH788Uf69evHc889F3C9YJx++uls2bKFAwcOkJ6eTp8+fRg0aBB//vknAPPmzeOWW24BYOLEiUyePJlTTz2VHj168MEHH/jI8dRTT7Fu3TpOPvlk+vXrR58+fdi8eXOtnp/qopy7EcBw4F79lpUKh5MUFdWjaMQcqWCGHj164HK52LdvH23btuXrr78mNjaWzZs3c9lll/HHH3+QkZHB448/zqJFiygqKsJqtfpdLxAOh4PPP/+c8847j/vvv5+0tDQyMzNZunQpV111FatWrfLZZvfu3fz0009s2LCBiy66iDFjxnjIAXDrrbdy2223ccUVV1BZWYnTWactd5XijxTpaSmkdUkCIGv68LoVRqGIIMGCGWp7siP1/iF2u51bbrmFVatWYbVa2bRpk9/1w12vrKyMfv36AdqM/9prr2XgwIF8+OGHAAwfPpz8/HwKCwt9tk1PT8disXDcccexd+9ev/s/5ZRTePjhh9m5cyejRo3i6KOPru5Xr1WU4o8gY8eOrWsRFIqIEyhoobaDGbZt24bVaqVt27Y88MADtGvXjtWrV+NyuYiNjfW7zVNPPRXWeoaN34xxkzHjL2wyJibG/d7fNgCXX345AwcOZPHixZx77rm8+uqrDB9edxNCZeOPIJMmTWLSpEkRt38qFHXJkQhmyMvL46abbuKWW25BCEFhYSEdOnTAYrHw5ptvuk0nzZo1o6ioyL1doPXCYciQIbz11lsAZGVlkZycTPPmzcPa1luObdu20aNHDyZPnsxFF13k9hfUFWrGH0FKS0v5bNUuZn2+RSVzKRotU8/t5WHjh9oJZjDML3a7naioKCZMmMAdd9wBaJOq0aNH8/777zNs2DB3M5M+ffoQFRVF3759GT9+fMD1wmHWrFlcc8019OnTh/j4eObPnx/2tmY5Jk6cSHl5OQsWLMBms9G+fXvuu69uW103iJ67J554ogzmkAlFoPIJWVlZDB06tPYE9WLo0KFk7yig5diHfZalJMWxLAzbf6RlrA0agozQMOSsLzKuX7+eY489NuBy7xoz9bFESVOp1WPg7zcTQqyQUp7ovW6jn/EHizhIIvIXbIVDO66RyNX+ci3xQyVzKRoT6Wkpda7oFeHT6G38wSIOCsrszPhoDbkFZUiqbgq1aYOPibL6HVfJXAqFoq5o9Io/WPmEvYXlEa+p07lVnErmUigU9YpGr/iDRRxUOrW6H5GsqZOcGMOcUanumX9KUhxzRqWqx2KFQlFnNHob/7DebVjw6w6/49HlJX63qS0zzMSJEwGVzKVQKOoXjV7xL/5zd8Dx+0+KJc7maeqpTTOMofhBJXMpFIr6Q6M39RwstQNQuW8blfu2eYwnxdkiaobZv38/+/fvB6qSuRQKRXjs3LmTiy++mKOPPpqePXty2223UVlZGXSbgoICXnjhBffnXbt2MWbMmFqRZ9asWTz++ON+x4UQbNmyxT321FNPIYQIWhfIG3Pxt8NZJxwaveI3kA4H0uHwGTfMMIN6tGbZ9OG1ansfM2aM+6IrLS0NWuNboVBUIaVk1KhRpKens3nzZjZt2kRxcTH33ntv0O28FX/Hjh3dFTMjSWpqKu+++6778wcffMBxxx0X8ePWlEav+JPitK7zIioKERXlMw6aGSbSppgRI0YwYsSIiB5DoWgsLF26lNjYWK655hpAa5Ty1FNP8dprr1FaWsq8efO4+OKLOe+88+jVq5e7Tv/06dPZunUr/fr1Y+bMmWzfvp0TTjgB0GbL6enpjBw5ku7du/Pcc8/x5JNPkpaWxqBBgzhw4AAAr7zyCieddBJ9+/Zl9OjRYU3Y0tPT+eSTTwCtPEOLFi1o06aNe/k777xDamoqJ5xwAtOmTXOPL1iwgGOOOYYzzjiDZcuWucfz8vIYPXo0J510EieddJLHstqg0dv4Z110PFPfXw2mBGWbRTDrouOhUKuJrUwwCkUQpkwBrwJmcU4nWP3nqIRFv37w9NMBF69bt44BAwZ4jDVv3pwuXbq4TSq//fYba9euJT4+npNOOokLLriAjIwM1q5dy6pVqygqKiI/P99jH2vXriU7O5vy8nKOOuooHn30UbKzs7n99tt54403mDJlCqNGjeL6668HYObMmfzvf//j1ltvDfp1mjdvTufOnVm7di2ffPIJ48aN4/XXXwc0c9O0adNYsWIFLVu25JxzziEzM5OBAwfyyCOPsHLlSlq0aMGwYcNIS0sD4LbbbuP222/ntNNOY8eOHZx77rmsX7++Omc4KI1e8Rumm0syygE8auNnZWmK37ijx8fH142QCoXCAyml30qY5vGzzz6b1q1bAzBq1Ch++ukn0tPTg+532LBhNGvWjGbNmtGiRQtGjhwJaKYao3Da2rVrmTlzJgUFBRQXF3PuueeGJfP48eN59913+fLLL/n222/div/3339n6NCh7ieAK664gh9++AGA0047zT0+btw4d9nob775hr/++su970OHDnkUfTtcGr3iB035x8ZEA/itj2OYYLKyso6kWApFw8DPzLwswnVwjj/+eHctfINDhw6Rk5NDz549WbFihc+Nwd+NwhtzCWWLxeL+bLFYcOg+wIkTJ5KZmUnfvn2ZN29e2Hph5MiRTJ06lRNPPNGjimewemiBZHa5XPzyyy/ExUUmw7/R2/gNOnfuTOfOnY/oMW+++WZuvvnmw9pHQZldlXRWNDnOPPNMSktLeeONNwBwOp3ceeedTJw40f1k/vXXX3PgwAHKysrIzMxk8ODBPuWQa0JRUREdOnTAbre7yzKHQ1xcHI8++qiPA3rgwIF8//337N+/H6fTyTvvvMMZZ5zBwIED+emnn8jPz8dut/P++++7tznnnHN47rnn3J/9df46HJrEjB+gXbt2R/yY48aNc783x/SHS2Z2LrkHy8gt0GypqqSzoqkghODjjz9m0qRJPPTQQ7hcLkaMGMEjjzziXue0005jwoQJbNmyhcsvv5wTT9SKUA4ePJgTTjiBM888k9tvv73ax37ooYcYOHAgXbt2JTU1tVo3kvHjx/uMdejQgTlz5jBs2DCklIwYMYKLL74YgBkzZnDKKafQoUMH+vfv7+4X8Oyzz/Lvf/+bPn364HA4GDJkSNAG8NWlSZRlBkhKSgK0cC8DowSuUQa3tk09OTk5ADV+0hicsZTxnYt4Yo3n/Tncks5HivpSSjgUDUHO+iJjdcsyH2nmzZvHH3/84TEr9qauZQyHuirL3GRMPZWVlSGTP2qTzOxcTjhjJEcPHsHgjKW8sXSNO5krXIIVmFMoFIqa0mRMPdHR0QGX1cQMEwyjB4BRiz+3oIybrrmCHm0SWPvHL2HvR6sZ5PuYqUo6K5o6EydOrPX/26ZEk1H8wUxatX0B+esB4JKSnAPVm6lPPbcXuetXeIypks4KheJwibipRwhhFUJkCyEW6Z9bCSG+FkJs1v+2jLQMACUlJZSU+K/Gaa6pUxsYphjv+kDGE0C4pKelkNIyTpV0VigUtcqRmPHfBqwHjMDW6cC3UsoMIcR0/fO0QBvXFsFMPUY9ndpy7nZMiiPXjx0+UDeuYCTF2VRJZ4VCUatEdMYvhOgEXAC8ahq+GDDa1c8H0iMpg0GXLl3o0qXLkTgUU8/tRZzNSlSzNkQ107LyLELQuVXNbPNHopaQQqFoOkR6xv80cDdgjldqJ6XcDSCl3C2EaBthGQDcqd1HAsMUc/VbSVQ4nKQkxTHm5ps5qXsr9zrVafKuagkpmiJWq5XU1FQcDgfdu3fnzTffdIdlh8sff/zBG2+8wbPPPuuzrFu3bvzxxx8kJydXW7ZZs2aRmJjIXXfdVe1t6wMRU/xCiAuBfVLKFUKIoTXY/gbgBtCSrw7XDGNkvpn3U1xcTFZWlju2vzbj+JOAjjEVEAMPD7IAx7qPUVBmJ/dgGeM7S+gMUETu+hVk7vnLo2qoIeMXX3wBQGxsbK3JV5sY57G+0xDkrC8ytmjRImjiktPprNXaMf6Ii4vjxx9/BODGG2/kySefZOrUqWFv73Q66dWrFw8//LBfWaWUFBcXe5RxCJeKigpsNtthn4PaPI/l5eVhXzuRnPEPBi4SQowAYoHmQogFwF4hRAd9tt8B2OdvYynly8DLoCVw1VZSi3k/RrKMMYsIdoxwZ+jm9fbkFdEy3sbQoUM9krkGZyx1Z+OaSUmysmy6pwxZWVnMmjXL/b4+Ul+SjkLREOSsLzKuX78+aGLRkUqOMo4xZMgQ/vzzT5o1a8bWrVv597//TV5eHvHx8bzyyiv07t2b999/nwceeACr1UqLFi1YvHgxK1as4PHHH2fRokXk5+dz2WWXkZeXx8knnwxAYmIi+fn5XHjhhaxduxaAxx9/nOLiYmbNmsUrr7zCyy+/TGVlJUcddRRvvvkm8fHxxMTEEBMTQ7NmzXj22Wd56aWXiIqK4rjjjvOoyx+K2jyPsbGx7uqeoYiY4pdSzgBmAOgz/ruklFcKIeYCVwMZ+t9PIiWDGZvNFnBZqHo6Rly+EaIZqHSC93oyviUFQpCZncvTt08AtH9sc2IWQPvLMwCVmKWov3jfjJxOJ5dddhmTJk2itLTUb68JI9Z+//79Pl2wqjOJcTqdfPvtt1x77bUA3HDDDbz00kscffTRLF++nEmTJrF06VIefPBBvvzyS1JSUjwy9A0eeOABTjvtNO677z4WL17Myy+/HPLY4ZRozsjI4O+//yYmJsbvcesjdRHHnwEsFEJcC+wALj0SB3W5XAGXmWvq+MNfXH6Z3cncLzd6KH7v9aTLhVMfN992AkX9qMQshaKKsrIy+vXrx/bt2xkwYABnn302xcXF/Pzzz1x6aZXaqKioALQaPRMnTmTs2LGMGjUKq1e/gB9++IGPPvoIgAsuuICWLUNHkodTorlPnz5cccUVpKenhywLXV84IopfSpkFZOnv84Ezj8RxzQTrohOqpk64M3Tv9ez7t7vHu5rWm3puL/cTg4FKzFLUZ7xn6GYTRXx8fNAZfHJyco3MlHFxcaxatYrCwkIuvPBCnn/+eSZOnEhSUpLfapUvvfQSy5cvZ/HixfTr18/tHzDjrwxyVFSUx8SwvLzc/T6cEs2LFy/mhx9+4NNPP+Whhx5i3bp1REXV79zYJlOrJzo6OmAs/4QJE5gwYULAbQPNxCV4lEoOtJ73eHpaSkSbvCsUjYkWLVrw7LPP8vjjjxMXF0f37t3dJYyllKxevRqArVu3MnDgQB588EGSk5PJzfUsYT5kyBB3meXPP/+cgwcPAlrwyL59+8jPz6eiooJFixa5twlVotnlcpGTk8OwYcN47LHH3E8G9Z36fVuqRbp161bjbf3N0A0Me/8f/xygtNKzmXtU87ZYhKBb6zg+2nYAiaTnjCVcNrAzs9NTw07MqmlJieqEjCoU9Zm0tDT69u3Lu+++y1tvvcXNN9/M7NmzsdvtjB8/nr59+zJ16lQ2b96MlJIzzzyT1NRUVq5c6d7H/fffz2WXXUb//v0544wz3Hk9NpuN++67j4EDB9K9e3d69+7t3iZUiWan08mVV15JYWEhUkpuv/32aoec1gVNRvGbO+JUl6q4fKvfsgtldicLft3hMx4d35yEGCvLth6g2cnpADildK8bblJWTWv5h+OQVijqK94z588++8z93ghxNmPY7w2Kioo8yq63bt2ar776yr38qaeecr+fPHkykydP9tlnoGZKRqQdwE8//RT8i9RDmoziN/evrAnpaSmkdUni121a82Zve79fHOUUVLiIA+KPGuix6J3lOWydE15illFHqDqJJuE6pBUKRdOjySh+o7PN4TB27Fh2fLmRQPFBxs0goffpABxa8al72Y4ntSiELndotkmnlAx6cAm3n3UM4049Kuhxa1JLSIWMKhSKQDQZxR8sjv/OO+8Max+TJk2i4ym5fu39e96eTuW+bUS37UGz/hcAULKhKqpAOip8tln16jSu+Z8gJvPzWp+FVzdkVPkDFN5IKcNqYK6oe6rbSbHJRPW4XK6AsfwjR45k5MiRIfdRWlrKOb1aekTkWP38Y7js5bjs5UinA+l0+Cz3WFdK5n65MYxvUD2MQnFmAoWMGv6A3IIyJFX+ANXYvekSGxtLfn5+tRWK4sgjpSQ/P79aJV2azIw/WBz/xo2a4u3VK3gcvZGdmJWV5Y7ImTK2r88TwL73ZwFQuXuT3/2Y2yhCZMwv3g7plCCzeOUPUHjTqVMndu7cSV5ent/l5eXl9bZ2lEFTkjE2NpZOnTqFvX6TUfzBCjHdeOONQPVs6EZEjlnBVqLV3HdH/kjfJwyzScggUhm7hkMagoeMKn+AwhubzUb37t0DLs/Kygq7LkxdoWQMTJNR/D169Ai9UjUwl0o2FGyutSO3334Dd8/9Lw6nC0xmIEtsYsB9hcrYDVVLKBjhhIyqEhIKRdOiySj+uLjDU2KZ2blk7yigwuGk3wNfIe3lFJTZ6dSmJVPP7eVWsJMmTeKF195ka14JUKX4ky+6G4DCn6sq9yWmngXgtvGnp6W4nay5BWVYhWDKCXbezWlTrXIOno7a3h7b+nPiqhISCkXTosko/g0bNtR4W8P5aZhwCsrs7Hn7XgDE5RnM+GgNc0ZdzDm9WlJaWkpyYgxF5Q52UOUYO/jDAgAsphoehuI3Z/9+uCLXbW936o61f3bs4K7Xc4HhbtNSoCgc78StnLyDTHvvd/cx/SV1zRmVypxRqWH5AxQKRcOnySj+YNU5Q2E4Pw1F7U2Z3UnGZ6t58rYMLBYLEydO5OHFf8H6Ve517Hu0WX1Mp+OxxieR0Pt0nKWFAFjjW1Bmd/LO8hy3sjezf9ETmhwdU/wqd3NWrrej1nA0z016xi2rt+xzv9zIsunDVW9fhaKJ0GQUf7BqeTNnzgy6reHkLF7zDaDN1Cv3bfNYZ9Wr04g9lEO/fv2YOHEiD2xYTFTzBTiK92tOU12hG8ldzfpfwI6nNfNQlykLgaoZvjnq59kEiWEyMuQIFoXj7aj1/g7mZd5OXNXXV6FoGjQZxR8sc/ess/zP5A0M52ewmHwjrh+0EgttbJXsik2EkoMe6yUNuJBEq4ODZeXeu8AqhN8Zv1kOCB6FE8pRG2yZ6u2rUDQNmkwCV1lZGWVl/sMTV61a5be+t4GRDGXP34E937cYG0BSfFVm8JgxYyj9/DEq92wBu6eCH9MvmS1v3Os2wRjE2axcNrCzT9KVgUUIt7M1WPlnf4lbxrZTz+2FzeqZcGazVu23tLQ0aL6DQqFoHDQZxR8bGxswUWLKlClMmTIl4LZG/XyLKTzTmtASa0JVB5/84kqKKxz8ui2f7B0F+qh59i5ACP7v7uso8zITtYy3MWdUKrPTUz2ygoVu4omJstKjTYLb2RosK9e71r/3tng/UJg+jxgxwm8LPYVC0bhoMqaenj17Htb26WkpJMZEcajcDoDTy4TjcLkQ8Ukkpp5F8ZpvtHBOYQHpIibKSlzrZIornLj8mHIOlVWZkMxJVwAFBQUseOwhH1kgcFaueR/mks5zv9yI3eV5fLtLqgxdhaKJ0WQUf7AibeHStm1bKg5ophBLbDOPZUbEj6H4q2qcCKKOOpWEtl2IdjopXPYusrKcyn3biD9mMKA5dad+oHURSk9L8XCybtq0yV1HyDuEs3OrOJITY/xG4Rj7MCt+wzfgLMr3WFdl6CoUTYsmo/iNejyHQ8eOHYluXoHTZsVV7tmJJzH1LHa/eRdFq75AWI3TKkFoETy75k0BwBJdZW5KHnGb+73dKXngs3Wkp6V4OFmzsrLYuHEj3/y1l+dWlnqEcJa3GcDgfh39ymrsw1zL33D8Wpu19vxeKkNXoWhSNBnFXxtVBv/1r38B0Dw1lTFzBS4pSUmKo7TSwf79+7Hv3wECWp97CwAVOWsBrVqnfd9WQIvjxxqFNaElu+bfDkDHq7VOQAdLNTOS2cFaXl7OjTfeSPaOAlqOfdhDnti+57O2hX+lbezDXMt/WO82LPh1B9Irp2FY7zY1PCMKhaIh0mQUf7A4/kceeSSsfbz22msAZGVdBY5yLMCy6cPJzM7l8vTzkfZyRHQsCccOAWD/kqfBYdciePQbT2LqWThLDmJNaOm+MXgzYsQI9hdXkHOgjLYxDvZVRLmzhs0hnC57OTvzfMNCjX14890GrdKiff92v+M17e2rUCgaFk1G8TscgWPwTz311LD2UV5epWTNPoP0tBR6tElgXY5+rEN6KVunHe8wmuI13+AsPuDjIzCzv7iCbXklmiM4Br99fkHLyo2JssITowFPH8CBHQVuH4CBYcuXlZ43i9yCMgZnLGXquWcrJ69C0QRoMorfrLS9+fnnn4HQNwBzvR/vMs/JiTFYLYLEWBtFXzytKWs/5iWjOYur7JDPsoRoLQQz50CZ3+gf75YvFiHo3Eoz9XiXcahwONmWV+KWDUxVOK2+P3tuQRlTF/zEoYPHcdXw1ECnQKFQNAJUHD9wzz33cNkNt9FzxhK6TV9MzxlLmJnp217RTPv27Wnfvr3HmM1mo23btnRuFecR82/Gnr8DXE6sia18ltmsFjKzc90z/Mp929j5z9/u5ZKqDOGUpDh6tElwK3V/ZRxcUpJzoCpix4j/F9YokwO6ipz3Z3PrdROCfm8zmdm5DM5YyprcQgZnLFUduxSKBkKTmfEfc8wxfsczs3P5ffsBnC5Je32W7ZSSBb9qGbqz0/3Pfvfs2eMz1r17d+6//35efPFFANaZk3wtXhm5fpq0FJTZ/fbzbXHqeEBT9t1MhdSGfuFrxvGu0ROTei43X94fqIr/NxzT5vWNsg+BzEreeDxhdPYsFNeQzUWq97CiKdBkFL+/qJ6CMjszvl2D0+U/4ued5Tkeit88w2/d2jMk8uabb6aiooKRI0fy4osvetjWb7j2X/zvpeexO124ivbhlC4q87ZrCV4mrEJ4VAEt/PV9mkdL4rr1c2fm7mruv5Cad40eYx9Hn3Iu48ZVxfmnp6UQbXFRbvev4M01h4LRGNs1Bqt62lC/k0Lhj8at+HfuhHnzYPJktmzZ4rN4b2E5ZfYq5RuoWqaBWfHn53smQY0bN45Bgwbxwgsv+JiUhl80lucemYGUENs8GWdFKQKBpXlb9zrCdDyjCqg1oSXNEyQle7dxXOfmpKedB2lVMf7mKBzvZiqJqWcRZ7NyTd9m5OTk0LlzZ/eylJQUSiocfmv6GD6DUJifMJ5NkHDxox7jDZHGeDNTKPzRuBX/Rx/Bf/6jvQDi4z0WVzpdgMWnxLKB1ctOf/3117vfSymxO10MzljKroIyWlPEX2vXER1l5c033+TXrfl8//0PgOTW179HVlZo28W3RBTuJzapNaX5e6v2ZzqOuQqo0yE58O3LLAVm9u/PPef01L9KvIfi9y7jQNkhiksld/57Ok+3imPtH7+4123bVrvhTPVqvpJo8hmY8Wf+aIztGlXvYUVToVEr/v/s3QuDBvHQr79iBSgt1frgLlgAV1xBtFWb7UcldQDAUbDbY/vLBnb2+PzKK68AcMUVV1BcrIVbGspv7dsPU1FaikhIwNmpPwt/WQ1RNnDYycuc495HYp+zKSg+iDO6OTj8V/o0KoBa45ModkqI1sxK7yzP4aenbwW0hCxzVi5oyr9zqzi25ZWw5+Oq3IRteSVkZue6bw5r1651r29uvvJe9yk+sgQyf4wekMKHKzyduQ29XWNjvJkpFP5o1FE9//f88/zf+vUgJQWZmRQYC668EoTgnDf+S6IVLNFxWKKr/rkFcOWgLj6OXXPZYmmx+g2LrHC4mP7aF5Tm5YDDTxz/n1/jKjmAdFR6jO95e7qPY9ZRsIf9eVVPBd6mpzFjxrgzc90yppxMXK/TPMZcUrr7+gKUlJRQUqKFeo4dO9Zd12fcuHGMGzfOY9tA5o/vNuR5VAFNSYpjzqjUBm0SCVb1VKFoTDTqGb8HF18MUjLv0UfhwQeZWFpK988Xs/bzxRxrtbE9qT0WIYiJsvB3xgV+d7Fp06aqD9YoBL5RNC4p2f7J0/onP3H8jkotjr+ipNpfwdv05A957Dk0Aw7+MB+A6LY9AE9zRXR0tPu9uS5QTo6WgWb2BwQzfxhPDAUFBSxrBO0aQ1U9VSgaC416xu+PeZ9/zryTToLSUvJO02bGu512YvJzGFNewsiTTwprPzHNW2Mx1eMHwBpFjFcBNG/sB3Zqcfymbfe8Pd3Dz2CNT8IanwTS5VFXx9v05I928QKX3TdZzWyuiI6Odit/81PMhAkTmDBhQsDt/I2PHTuWoUOHhpSroWDczAb1aM2y6cOV0lc0SprOjN+buDjWPfQQBS2OpuLkHsQ4KnkXYOlSzQ/w+ONwxx3aez9YygqQdheYFHh0UgfuuHcWzzzzFA5n8Obu0hU4Xt5ZWuDxOWnI1QCc2LUVPwXYxnDArnp1msd485MvAaCkwuG285tDW42aPllZWX736x0tBJ7mj0mTJgXctqGieg8rGjtNV/FTFcdfYY2iwhrF6DGz+PCtu7WFd92lvUaOhHffhfh4OnasKoHcoV1bSioclEZpZoHuw8Zx3tEtuP3KC1nw6vPsPVQ1626WNoKKnesAvU6OdGHf/497eeW+bR71c4ynAUdFGQiI7XQsAHcsXMWFwy6mf1fPJw1vByyANVF78og/amDVd9UVuN1uD/schTJ/lJaWBi2H0RBRvYcVjZ1Grfi//PLLoMu94/hXdDqOduNm091Swa9/fgTr1sFnn0FCArRoQdtevSBOM3EYETVp/boBMGXKNVw58kyef/7/sNo84/gTjh3C/k8f0z5E2cDt2DU9TVitJPQ+HTB19xIWLALKd64HtBvAZ2XH8OkGeCVjKaecN46Turfy64C1xrcAwJ6/EwBb607umPQuXbqEOHOeeEf/mBkxYgQFBQWcd9551dpnfcYwfcV7hf8qFI2FRq34Bw4cGHS5EcdvOEABCn9+l1UAO9aCwwGTJ8OLL0JhITf89pu2UmYmLt32PnbsWFbnFHDHK59Tum8HWAQt0+8BYN97MwFTtU4APUbf2iwZR0WOe1hYbTTrfwE2i0Aa5RykCxdQoDtq21+egaO0EIBcYLGtO6cdk8qu7FVAla8gum0PYrulAbD7zTuAqqS0XQVltEtKCuPsedKUzB+hzF8KRUMnYopfCBEL/ADE6Mf5QEp5vxCiFfAe0A3YDoyVUh4MtJ/D4bbbtA5XzzzzjHtsyZIl7vdGHH/bS2d5bOcuWxAVBS+8oL3efpvLr7hCG7/kEkoBhGDSTTcx+LEsdr11G9JRgYiOJa5bP4/97V/0RNUHaxQ47FjjmuPQo35iEltidzhpHy+YPrIvl2QYTwQSJB6OXyMnoP3lGRTl72H2ewV0TGrrE39evj3b7znpmBTH2vXr/S678847/Y6DMn8oFI2JSEb1VADDpZR9gX7AeUKIQcB04Fsp5dHAt/rniDB//nzmz5/vMRYfH+9+hG/XIpY4mxWLLRaLbp4JWLbg8su1Msvr1kF0NAOBgVJSarXyxDM3EOVyalE4leVU7t1G5V7/2cDajF/isle4h6KbJxPjLCF26WNaLZ1om98cAdBuAsaNYP+iJ1j79sOUVDiwWTWzkTWhJYmpZyFdLp9OW4ZT1hzHP3HiRHcG8MiRI939fb0xR/8oFIqGTcQUv9Qo1j/a9JcELgYMbTwfSI+UDP544YUXeOGFFwBIirMxZ1QqlvVfUbRysU+pY78cdxxUVGA77TRsSUnEA4P2bOXEXGMWrZVYOPDty/6316t0SlPIpbX7Sdhtiewv1m4GcbGxxMcGkcGLgjI7SIiyWrAmtKRZ6lnY92/36LTVMt7mTrCKiYkhJiaGzOxcXtnThQc2tGFwxlKe//iHgL2JR4wY4berl0KhaHhENI5fCGEVQqwC9gFfSymXA+2klLsB9L9tg+yi1lm4cCELFy50f05PS6FL4WpSK/9i2fThwZW+iT15eexp147MFTk8NUSLfbcA8VIyKGct7YoP+N9QD+M0nK8ApZt/xVFayNZ9WmmFtm3bktKhvf/tA2B3SaxCEC2k2w9gJj46yh2JY7PZwGJlxkdr2LFrD47SQq0Ry5RbGH3FxGodd+LEiY3KsatQNAUi6tyVUjqBfkKIJOBjIcQJ4W4rhLgBuAGgXbt2NXK0Ge0WzdsWFBS4x4qLi8nKyvIYMxqqhzrezp1atMzeTdlE3TCa3H0rObakhLU527UVDu5yx+x0jndRVRtUs+t3iKlEX5OUeBe7LNApwUXu+hXk7trl0W0rGs1kc2eqg7v1W/WdqQ7u3r/N/R7gxz0DyfriM2K/fgT0J4rTz9SU8pjORe7vZLfbcbkkk3pX8OxsrabP5JkP8+wnLipLi/1+d/M5MtOtWzeSk5MbhCPU+L1DMWjQIKBunLvhyljXNAQ5lYyBOSJRPVLKAiFEFnAesFcI0UFKuVsI0QHtacDfNi8DLwOceOKJsibZoUaDdWPbzOxc/j6kNRu591cXU/vGUNDiaM+xc88MK1vzhBO0e1jGKgsSC1z8KHY0j3WHQ3m8/9bdyEN5fAaw8S8uqvpiAPyTs9O9r7+3b0dWlpNTIpj7pxUZ15qWidGUlGwFAc44LW7/iTVROOJbu99X6Cb8J9Zo37Nlj9EURf/CoRKJtGg9gf/przll382J49YrhrqPWe5w8sSaKHb8/bd7H3tKhMf5MpOkRwJ5L9u/fz/Lli1rENm7WVlZYclZl98lXBnrmoYgp5IxMJGM6mkD2HWlHwecBTwKfApcDWTofz+JlAzLly93vzeSnIwOU7kFZew84OSZn1Z7jN2S8Qq/n9KNh6dMDLpvo+a+v4qOu5u34fSbXyfKaSfj82cZve67oPvSkrqku3lKedF+dhcJsFiwChC2KvNT8/4Xut9bmyW739usgkNFxbhcToTFgrBqvoRy3fcwbNC57nW7du3K9v3+awWF24jFYMyYMRQUFHDxxRdXa7twqYuOWN5VTxWKxkYkZ/wdgPlCCCua+XuhlHKREOIXYKEQ4lpgB3BppATo1auqqqK/JCeJxO70LKS2/5cPee53a0jFv2+f9qDyiF7SwLzvOJuV0QNS+G5DHnddeCf3jbqbab8tJuPL5wDoC1BRyp/mHQrhVvzSJZG4wOXCKcBZWFWhM+6ok93vrXHNAa0yZkmFgw1v3o99/3ai2/bAEtNMk/P9+wH47vj+7u0SExNJsUQTVY1GLOba/0eKuuqIZVQ8re9mAoWipkRM8Usp/wTS/IznA2dG6rhmrrvuOgBeffVVd5VJo7qkGe+xcPrO7tq1C6hSQKFmpZMfWE+H6DsY0KoLt8+fAsA1+rIYKamwROEsLSSxRStwGKGeWhw/ptDPXf/7NwBdbl/oDgldNn043acv1raoLPcoASGitScTc3XODRs2aDINSOERBKA5hi/5161cM7i73+9bF4pfdcRSKCJDo87c/eCDDwBN8QdqsuGPcMwdffr0cb9PT0sJqYj+/O4TWhdXcPDUC7ip8wlEuZwMyNtOYmUZIFnlstPj/67gvoXfcLbVhkRWlXYwxfSbw0ClXtp5cMZSWsTZ2A1gtWFNbI2jwLMZvLnKZmlpKVLChytysSa2ArRa/ysdnbm09bF+5a8L84fqiKVQRIZGrfjNTPVjkhEIbFbhYe4Jt++sxVL9SNjkxBiypg+n64JY9h4qZ207rY1i831/c6iihD+AM8eeRXOgLCoad0UfXfEbSVoGhtLOLSjDahEIIRBWK9b4FjgOGN2xbO51BmcsZVjvNkhLFFJqs2ezz6Bw52YmPbuZub2O93lqqan543Bs9KojlkIRGZpMPf70tBTmjEolJSkOgWYX79Qqjrlj+nqMhUzg0tm1a5fb3FNduicn0K55LEIP2jyU3AUJlOsloNsB3cwduqT2OrmbV/1/6dJegNMlsQit7Jt3dy+D3IIyFvy6Q+8epj3VFK/9luK13wK4E88MW3pmdq7f/Zi5+eabueiii/wuM2z0uQVlSKjWfkF1xFIoIkWTmfGDr0kmKyuLoV5jOVcs9LepD4Zzt6Z0T06ge3KC+/P3uetxSQlS0vGm//HhG3fQuuwQAImVpbgQbPlzq8c+KnI3eHyOO/5M5L4tRJfupVK/ITQzzejduKqecCrzc3yXoz0NzPp0nXu2fmBHgd8noXHjxgV8CjhcG31ddcS6+eabI7p/haKuaVKKPxzMbQeDcfzxx9fK8fYXV7D1H30GLCxarkFSe/pPfhse1ZS2Fo8jyXpuAh2Bg7HNNLu39KzFk5h6Fq02L6a43MGh4hKkhJZDrnL38zVs5GY/AZVVphRzMTjQSkEUlGm1+yscTrbmlZD24FcUlNrdZpsBya6AN8HasNEHKwkdKbz7DisUjY1Grfi3bNkSeiUv3nvvPSD4P39mdi5rd5dQ4XAyOGNpWLNQc1VQ4/1nq3Zx36drqXhar/opJTM+WqPH2VTxa+cTYNcmhjoreQSgvIh5OWv5Hjw6hFnKC8kts+EUMRAVjQBKt/6Os+yQO/QT0HoC1AApJQdLtRuBYbaxfv4AUY4yv2Wba8tGf6RLQvvrPaxQNCYateKvSQTKiy++CARW/IbdurRQi3IJN7bc3NTDeP/sDzuowKyEJWV2JwnRVkoqndjaH02HeMleO1RGRfF37z7csu0vospKKUD/8aTklQ8f5NaL7mb7R3Oo3Led6LbdENGJAOz/bC6yshxrp+OqDiPCd+0Ys/Vmab4F2srsTg4eKKN7c59FQOi2jeGQmZ3LW4d6s6ugjLfCvMkeLkbfYRXHr2isNGrn7vjx4xk/fnyt7tOwWztLDro7ZRl262CYq4Ia7zcs/YCilYs9GsEAlFY6uXJQF5yF+ziQt492I++iY9ej6J6cgAtJYVQ0Xc64mhbCQnfg7C2/seHJMZy08y+kvZzKvO24ivbhKgrgh3BUmHIFqohq0Z6oFu1JSYqjZbznU0HCsUNIOHaI22xkECznIT0thdEDUtxObKsQjB4QOvTVwLjJ5uQdxGkvr7ZzWKFQ+KdRz/i/+OKLWt+nYZ/2Vtah7NZGRdBJkya53zt2FJgUp3DH6yfF25idnsoj5YcolpKi56+mtFRLcG7evDm4JPu2raACOBgTTwcELSpK2CBdJACOynI84nqky9N+Lz2zlQ0sMdqTyLLpw91K18Cji5iJYDkPmdm5fLgiV8tJQMsV+HBFLid2bRWW8jdusvvenwVoPgKVwKVQHD5BFb8QohPQTUr5k/75DiBRX/y2lLL6RvQGTm3GlnduFcfWvBKkoYh1E0xxuYPM7Fz3uLffwSIEFpNtfy+SvTHx3HrOvznq65doUV7Mj/qyKJcTOwJrfFJIeaLbH+12GXhH1BQseQqn1w0jzmYlsVUcOPzf9AzFbfQShupF9Rg3U2+ns0rgUigOj1Az/rnAW6bPN6JVzIwHHgCuiJBch83MzDUcKte6XfWcsYTLBnZmdnrqYe+3JnbrzOxcsvXZfdqDX7F5+0EcLhcCgUTS9tJZ5Dx5qTtT1+6S3PNRVSWfiVMfJs5RyNJVW5FWGy4JLikRtlii23QDoHmsjW/6DufvVZ9jczmZ22MAV61czDElBylGK5wUY6+gwuaVo2Cy91fu2QxAzxlLcEpJSlIcnVvFufMa9hdXkHOgzCO00nryPaxZ43k+DAwFXbJBuw0163+Bx3iw8zX3y434fy5RCVwKxeESSvH3klIuMn0ulVI+ASCE+DHANnXOzMw1LPh1B5hMDNpnQip/o8xDIKobW+5dFfRgqR2H3hLRMIFobR891VypvSpUUyIpOLCfN956h6jkblUrCdyKu6jSxQ0DUlhw6B6cUvJcfAtePnk0hU9cAkDhwV2sevEa3u53HreaD2QOCTWSwfSZfW5BGeVtBjC4X0c2/vIVyYkx7puAO7QyLYVmzZr5/e7upyOvsNNgitu7MJs3RyKBK1jvYYWiMRBK8cd6fTYXV2tdy7LUGu8s95+U9M7ynJCKP5xIoPS0FHav/RnwjNbxh78kJm+KVi4GhEdopj8kVTH4wpqIdDpwmjp9fbchj6cnDnErzkpT2GanHkdzd3El3X6pSlBL3b2Zf0z7r8zb7nPM2L7nszzWxt87FlLhcNIxbThnH9fOvXzjxo3s2LHDr7zG05F5v6EUd7DzdaQSuAL1HVYoGguhFH+REOIYKeUmACnlAQAhRG+gOOiWdYgxY+0yZaHf8WDMmzcPCF2NMpTCN/BXFdS7GqgWJSMBL8UvLD73Aum0u/dhRNcYNvBdBWUUrP6as6MOsiKhr3ZsIUBKnDYLv3buwIdRMbBrEwCfvXG7+4hWl9Nd0dOccOWyl3PAXu5+YnEdew4/RFnJzM4lPS2FG2+8kYKCAq666iqf724o6DGPC1y66SiU4vaX9GVNqCpVcft7q5j75caI3gCMvsPmst4KRWMilOK/H1gkhHgYWKmPDQDuAW6LpGCHg1UIv0reGmJGDeErfiM0c9KkSUHXq05VUHTluKuwDCkhusMxdEyA3aZEWyOE1IxNN/90TIpzy78s63YALI9pt5ScnBy6drVQUlElS/ekDlCwG4Dv/3s9nb1MMoA7oqb5yZrJyGUvp8ROtcouJMZol9myMDJv/Z2v5gO0WkDGeKTr8t94442AiuNXNF6CxvFLKb8ARqGZeObpr2HAKCnl55EWrqZcNtB/xmWg8Zrg3bQ9EP4KjQVECKae24srBnbRPlqjiLJaaZM+A1ty18CbWSwIi4XSSgf7iz3j843IICkEG7ftwFGcX7Xsxlfc7y+q0B7gLEC3g7uJ9Sr0dui3jzn028fse38W+96fVa3ImjZt2tCmTRu/yzKzcxmcsZTu0xe7q4d6n6/43qcR3/s0j7FwcicUCoV/wonj3ws8C2yRUhZEVpzawbDjv7M8B6fUmozUVlRPdfFu1JIUb0NKrQ6OR2mGqGiszZKZ8dEaRg9IwQLY9+ewp0DSOr4FHa6cC8COp33LFziLNGV+sNTOvjz/LRUrHFXOZH/81bYHltwNtLXa+LO0kKjiA3z74UNcUVHCoZgEd9MXix4VVJ3ImpSU4I5vc4etD1fkMnpACv+nO88FsO+jhwHtBgeqLr9CcbiEiuO/DngE2Ap0F0LcIKX89IhIdpjMTk+NmKI3h2eGU6snUKOWwRlLPcwaQgjK7E7eWZ6DC3CVF1EiIGbNNwDu1ozeOMsK3e9dUpJzwFchupx2d11/fyRfeCe7/jeJvUIw+IbXmLByMZY/PqGVvZxutlhWSxcOSxSWdj2w6E8m4XLZZZf5HQ9UvfO7DXmkdUkie0eB1oBs/3bAN2lOhXUqFDUj1Ix/CnC8lDJPCNEDLaa/QSj+SOGvaXtN7c1mx+8/j1+Co1ArsWD4J0R0LDEWKDYp/qiWVccwZr7mEgoQoIyC00F0h2O05TlrfRZHNW9DtN4YJi+xFU8OmcC+nLWU7VwH9nJaAJJK2hTuI75bZ/d3nTlzJqtXrw76Pd955x2gynbu/f39Ve+cOnYsazI1OQ2nsxlzdFBdNGRXKBoyoRR/pZQyD0BKuU0IEbpDSQPHXEXTH7XZB9bDkalH60Bg5zRA/5ufprTCwaEAEaJtL51Fxxa+M2Fh847M9aRk/Q84Swuxxrdwj7lMzvCYNt3oULSf1Yf2wZ/7eL/POey95gZuuX0MUVHBLyO73e53PFgW9KRJk3jr0FK/y61CMGdUKulpKRFpyD5z5swabadQNBRCFWnrJIR41nj5+dzoiI+PDxqqaZ6lm8Mya2Jv9nD8CgsIC3E2Kz3a+D/+4J6tuDfNycg2BwI6jC22WM7qozmxzcXMott0pU36DNqkz/C7XVH2Epwmx683hbGJbNCzhAGuX/M1t9xxKYuOOoG8Dz4Al29EkMG6detYt26dz/iw3v4dvsN6t6G0tJTJQ7r4fE+LEDwxtq+H7yTQjbimnHXWWZx1ln+zmkLRGAg145/q9XlFpASpL4QK06zNWj1m5WUkUs0ZlcqdC/2bTn7ddpDf52pZpY+99x13Llzt82RQtHIxb6+3cWLXu7WZrxHH7zWbP1yKouOZc+pYPvtxAdHPr2PQu5kcuPYm+v5nCiQmhtwetISzQOM/Pa3lF8956i1GP6qVqTCSx8wz+Ug0ZF+1ahUA/fr1q/E+FIr6TFDFL6Wcf6QEqS+Yq2j6w1/T9sMpI2A4fq33Vn2e8t4qQEtAuzPVwdQZmunBKSX5erer9LQUbtfXMz95lGz4kRJg7pcXazLqNwZH0X63ryAQ0W17+CSXGRjj/+hdwaSA/w4cwz9Z8wDIi0mk/2P/wf7CXGw33QC33AJdA4egQvAibMaW6WkpHN2jGwAbPnnGZx+RaMg+ZcoUQMXxKxovoaJ6gjpypZT+u2w3YrzDM2vLmShM9nRvG3/bS2e5x80EUnoxUVbfGa/FGlLxe6MVjxvjd1m0yewDMGrCE6TlbmDbxw/R8vHHyXrySRg1ih8uuJIKWzMcLukTAdUizkZBmR1rnOeTSIs4z14ARmOU0tJSwDNrujaavSgUTY1Qpp5TgBzgHWA5PjUFGhfhhmkGCs88HI455hj3+8sGdnYXlQOjiBsM6tGS9yocuKR0Jzt9uCLXx8Zd4XBi8bp5GDcWqyW8n9BqERDEIZw80tsKCNkpvdnTqjODUo+FIUOofPG/DPngA46PjmNPs2T25hd5OF6N+5i1mWfZJ+8Ea8Ph/vXXXwOeM/FwiuYZUT/jOxdx7xHq4qVQ1GdCKf72wNnAZcDlwGLgHSmlr6eugVObYZo1weFwuN+bE9AAirMX0z05npW2s3CZKmcayU7fbcgjt6DM467sbfs3avw4Xf6jhcxO35SkOLq1juOL998MKG/Zlt/cZZbN9Ln6QUa33cm8Zs148663OOWnxaz4+kXIz2HXS9fyZv8L+C9lpKddQoHev7di71aPfRSU2jE/AxiO4UA292AN2T2ifjof+d9VoaiPhCrZ4JRSfiGlvBoYBGwBsoQQtwbbriESieiQ6pCTk+Nu8g2a8t86ZwSpKS04oeIvNv3yDWV2J7ZWnbC16uSW77sNeSybPpyUpLggebmAM3iF0OiEJK4ensr2jAtYNn04v2476K6j74E+HT+0cpHPojiblXtGncyHH37IvHnz2FYKC0w3h83JXbj7hzf4KOMyuOkmTqnUW0PaK7SXTsekOCZOnOiul1RcXExxcfCagGPHjvXblL2uf1eFoj4SsmSDHrt/Adqsvxta+YaPIivWkcdfFU3zeKQpL/dNUjJjPIl0uOpJj3FDvkDyG4jo4HH8hX9+zf/WWTix6x2kp6UEzCMQ0XHIilKf0E/DxFKw+mv27NlD+/btfXwQV417iEPzp5BScoDWL78M8r/M7zGAM4UFp16OwWYRuikmdEE3M4Gc8eaon2cTJFz8qMe4Px555JFqHVuhaGgEnfELIeYDPwP9gQeklCdJKR+SUja6bteBokCORFmAzOxcdxz/4IylHvH3BWV2sncUuD+XrP+BkvU/+MgXSs7oNt1oe+kst6PYm+I133Bw1VfumXCgQqbSXul/gc68efPYs2cPoDlebVbPHbWc8Cgzv1gOp5xCacfOHLt3G4kuB80cdi5b9QXWijKmvLeKk//zMW8s9d/Zyx+lpaVu56+Zmvyup556KqeeemrYx1YoGhqhZvwTgBLgGGCyKfJEAFJK2TyCsh1RajtMM1y8m5qbbdAAuQfLPEowFGVrjs6EY4d4yOdPfqtFaDN0ezkIi9tJHIxdBWXajSeQ3chP6Waz3Fav6qDe+7FExRITF8cHn3zCiGd+ZHC5oPDxSwDJnC+fY+oPb/B2v/O455/V3PRGNM0zPycmRksYD1Yqe8SIEYBvCGZNon5+/llrsqOUv6KxEiqOP1Rmb6MhUmGaoXDboE2mFbMNenxn/xrYO3rFn/wlFQ6ko1JL4Co+oHf6Ck7HpLig/W6DUWZ3cvBAlZN57pcbsXs5kw/8sYg71n3Jtk+eIc8ejTQl5o69PIMl795L1C8LSQPy41vw/ksfIxOSsbskr+zpUu0bsTnqBxxhNYO55557ABXHr2i8hFOWuckQiTDNULhtzV62Ffd4Z/92e39NTbzl7z59Mbi0JwBrYiv/zloTRtVNc2KYkbDlxhoFDrtPpUyDCoeTk1JTWbJkCcc/+J3PciPBbN68eURt/Qt7zzPcy37rfAIVSe1xOh1cdfQgxv75Fc1evpV/N2vLH52OJXfnLu6YvxcYUq3fyYj6KSgoCKsZjELR2GkyM/r6imFrjmrdmajWnT3GA9mhY6LCa+xSHf9ETJSVHm0SSE9LCb6dUws7DVTzJybKitVqJT4+Pqj88+bN49CfvgllzpKDVJQX8dCZ13PKpPk8cOb1vFmUx8b139PhpX8h59/B4wt/C/t7GYwdO5ahQ4dWezuFojGiFH8dM/XcXtgsAmtcM6xxzYCqyJap5/bC4vUkYBGCzq3CU+iBiqAZtIyvypA9duIj/OfZN6tksgZJ9BLCb92fOJuVlxd8QHp6Oi+88ELA7mMVDifZOwo4VOa/aqdBcUw8r594MfbOxxOf3IWnOvbi74I9fPHkFTB5MmzZEnR7M5MmTSI9PT3s9RWKxowy9dQHBNgL9nh8Bs1EkbnnL1KSrG67/YOvv8WIPh1C7jIzO5e3Tdm/HliiAEFxeVXS2J5SyazPtxATF0d6Wgp//HPAI3sYNGdxbPue2EsOUbzmG9r0P8e9zGw7H3pPJgBZeojlJbM9vhYQoGcAuFtMpphCQdvppq7xwPF7tvCvFZ8y+qWX4LnnYORImDKFiVdfHTgUCS3qJ1TIrELRVFCKv46Z++VG7E6Jq/iAe8zulO76/klxNpZNH1rt/c76dB0BCyXrdn+z47Vo5WKKgLkJ0aSnpfitnOl0SaJj44kp3ccJJdlMGXWXW6kbvPDCC+zatYuOHTsC8Mc/B9wKORyHsbBoTwjLpg8n7cGvOFjq+VSwrv1RzL50GqOvXwAvvqi9Pv2UiX37wpQpUFEBMb5tI0aMGEFBQQHnnXdeSBmefvrpMCRVKBouytRTxxhOXBEd65FkFSjBaN68ecybNy/kfgu8zChG/wDNUSzxVsMlG36kZMOP7uNWJV4JzHP14n3/UFpayv7iCr9hqI++8Drbcnbx67Z8jr/vC/2poWof3n0MvHGWHMRZchCA+0ce72NyslkF9488Hjp0gAcfhB074NVXiVq9mqhrroEuXeCBB2Dv3pDnKBD9+vVTJZkVjZqIKX4hRGchxHdCiPVCiHVCiNv08VZCiK+FEJv1vy0jJUNDoLoJRuEqfgMRHY+IDtxYJtBx3ZVAhfAwoUh7JS6Xi5wDZX5LIew9VO6uJ1RSqS+XLp/4/0DJZJa4FljjkgDN1DV3TF9SkuIQaOafuWP6ekb0xMXBtdcS36yZVrXzpJMYOmsWQzt0gH/9C0K0hfTHN998wzffhFfJNDM7l8EZS+k+fbFP8p1CUV+JpKnHAdwppVwphGgGrBBCfA1MBL6VUmYIIaYD04FpEZSjXhOpssIJ0VZKKp1IlyP0yiYOllSQmZ1bVbLBu0G7fg8IZKMPl0DJZMLiORcJN8TWYrGAxULmQ//lr9Vn0rogj7IF7xD3+uswbBjk54M1vGio2bM1+1WoLlyRaPuoUBwJIjbjl1LullKu1N8XAeuBFOBiwGjwMh9Ij5QMDYH0tBTmjEp1R++kJMW5+8keDjar/tM67NorTErtLmZ8tIaEaKv/7Z0OXC5X0PLOwRq6GFjWf0XZKt/+xs6ifFwlB/xsERy73U5ZRSUzPlrDIWHj75YdGThpHnPPvJbS9Rth7Vqar1+vOYRDFHwLF1UATtFQOSI2fiFENyANraZ/OynlbtBuDkDbIyFDfSY9LYVlWd/yy/dLWTZ9eK3MFt02fi9TTTiU2Z2UGmYaL3+AdDoQQpA8+v4ay3bloC50KVxN4V8/+CxzlhXiKCmo9j4rKiqorKjwUMSHYhN5/sRLOO+W19nTsSN7AG69FTp1grvugn/+Cbi/cDAXgDNaP4I281cmH0V9JuJRPUKIROBDYIqU8pAIUwkJIW4AbgBo165dRNLni4uL611avrc83jIWFBT4Xc+bu1KdSCS36af7ztQqk89kqsaM93PnGOE5nqah23TTi7G9sb+7+kcBDo99AeBnP+Z1EmOi6J6Uz6KCAjonSCaneu7jbn0qUt3f5ZhjjqG0wqHJ4SODg2kFBYioKD6eOZuTvl1CylNPwVNPkXf66ewcPZpDJ5zgvkGGe46n93NR6XRpVT+ByaZznLt+BZl7/iJJ7yZWUGZnb2E5lU4X0VYL7VrEupeZqY/XpD8agpxKxsBEVPELIWxoSv8tKaVRynmvEKKDlHK3EKIDsM/ftlLKl4GXAU488UQZiazLrKysepPNedtttwHwzDOefWW9ZTQKiJnbD/pj4nS9Lo9uS39iTdVPLaLjqsaExWc5mNo/Rnlub2vfC2fJAWbN/9KjEYv39h6YjhFnszJ6QGv+PgQVDuGx3RNropCtuwFw76+uatVKatu2Ldk7CvzKIYByJ8RY4PaS44g7PZWnpz3Gud9/SNuXX6bt999rK154Ibz3HklJSQAhr40C3cafUyL8noOUJCvLpg/VfAHfrqHMbsF4yI6zOZkz6jif71efrslgNAQ5lYyBiWRUjwD+B6yXUpqLyH8KXK2/vxr4JFIyNCTmz5/P/Pmhe9vHx8eHVPrgmZXrg8n84x1GCppzeVAPPdjKM5oTYbXiKi8KWffH2BQgul1Potv1BDQz0lu/7gjsHNbLUxuO0nBNJuvXr0cU7vTJFBb45g+U2Z08uLoIMjJI7dCB1A4diAViFy2ChAT++8cf/Hf6dEJh+GcMvE0+hilI+QIU9Y1I2vgHo5V1Hi6EWKW/RgAZwNlCiM1obR2DewEVHrzwwgu88MILIdczgnJsyd2wJXfzXGavQOodr6TTgXR6mnfmjEple76mtCyxzbHEVlXftu/PcW8bCCP00lC4UrqQpnDOYIlczuIDOPVktuoox/z8fIoLC5gzKtUj/NM4VnTbHnTq2t29vqGUk1q1IqlnTyoA41v1Kimh1/nnazfHj4L3HEpPSwlYO8kIjQ3kCzhSTX4UCm8iZuqRUv5E4ObsZ0bquI2dhQsXAoE7ThkU6s7dDlc+5rNM2KoyW2M6HOOzPD0txV2hM6p5sscy6bJ7lJD2x98ZmglocMZScgvKsHv11IXAncKsia08PoerHBMSEtyym80nhgzeuPMVvEM8pYT33oPx4xkKMHo0WQC33w6PPw4W37nS+HFj+WTVLgrWfe8eM4fkenci85YBVEN4xZFFZe42UgylUrRycVh1+A2MxC1je2dRPs6i/GCbBMRfkbbqxReFV2E0MzuXkkonRRUOnyQqQ4a2l87ipqn3AZ5KOTc3l9xcL3PSuHHaDeCkk6oiop56CqxWNqQcw+Lv1noce22LQcT2PR+B/5Bcf+fBLIORD5BrypqujplLoaguSvE3IDKzc8neUcCv2/JDZokaysYoxQAQJPTezWUDO7u3t1kEzrJCnGWFYct4dNsE9/v0tBQ6tfT0H7RtFu23Yqc/bFYRMpHNUJpOhx3pdPgoTcMO37lNS6JjYnyUcl5eHrv2VJV38Div8fHs7z+QAXd/RFpMIkOB3rs2c8HwVBCCrAWLNedu3kFc9nIk0t3TwDxbN2QwTELeMigfgOJIo4q01ROWL18edLmh4AynaKgsUXPnqQqHk5SkOLq1jmPZ1sDJURbgxK4mU0uAG4WIjg1oqmnbrMqMdMUrv7B5X4nH8r1FlRzdNoHSSpdf84cHYVR1cytNk5/CUJrm7mS7fvmETb9vYplXATa700W5vcr/4N36MudAGS1FNHvadgPgse79ufuHNzQz0IQLWQ90bdmRvYmtSOh9ulsm79/EaAYDkOXVDCbX5AMwN4QPeX6qiWFOOpId5hT1EzXjryf06tWLXr0Cz25rY1b4cxClD+DSj2Mcz+6sfgNG840l0E1m874Slk0fHtLsY3fJkN/P8AFEd+xNdMfePuMGCxcu9ImXzszOxdm8I1GtOyFssQg99NV8Xo0brVFc7oVTxtJt2iLWt+mGEygFCg/uIjZnLa/vXEfrPueQW1DGzMw1Psfa0aIva6KP83laswbIbQk0XhPM5iSJMic1ddSMv55w3XXXAfDqq6/6XW4oMu+ZdiDnp78nBIMuUxa63wfan7G+d4tF87YaIqThXsT4Dz/1d1sJ9/sZGI5T7xo/oXwD7ib3VhsCsDZr7XPcdUuWMPzxLPaU+kpantiCPxP7Mvy82/nz7Wl0KdxL6fofWLX+B4oSWzGq8HFmArPTU93Hch17Ds3wfVoz6iJV7tvGTgu004/hDOFErw7BJg5q1t/0UDP+esIHH3zABx98EHB5dat4+vtHDwef6pyhsMUSE+O/4Jp7nze8QscbXvEZD+cYoRS44cswO6G9i9wZvpESk/PXOD/O0kKcpYU4CvbiKKiy9XdMiiM+Pp7pI/v6dcx2bhVHgqOQ7X//zpCb/sfRd31MApAAtCs+wLKX/sXsS/rAF1+4j+Wyl+Oya81gzE8VKQG+Y6DxmqBCShVmlOJvIISKDPHG/IQQqmCav/0Zs81Q2wuLwFyGw+zcHdxT8xdExbcgytSq0Rh3z2j1pK1g8gTCcJzK8kM4ywp9HKeBfCPGE401voXWRtLl0F46w3q30ZrK/PKJT27AnFGpZH3xGd07dyQ5bwUAdqsNouMgOo6p509mKGh+gPPPZ9mMM7n9xwXsfP4qdj5/lfsYxm8UqEWmefxwyz9Xd+KgaNwoU08DwRwBEo5zLlDseEK0lXK7C6eUCCA+2kpppdNnfykBtvdGVlZQaZq4l1ZWOUrfuv4UrnjlFzKf1Kput7l4GoN7tuKt60/x2omvSSOlGs7H9LQUTj2pPwA/eDlOA5k43CUpAvDdhjxsX2hmraxJk/zKYbPZSLaBu9anfuN4v885uI4dwnH7/oYFUwG47ed3uR9wCgvNKkooiklwK12j25k1rgUm37h7vDbKP0eq/LeiYaIUfwMi3Nr0UPWPblZ6cTYrD18SXsnnQNsbs+nu0xfrNnrpYav3Nh28df0pJE39E4DtGRfgDxHjO+tc5qXAg5GZncvqnYeocDgZ7JX8ZH7ymZzq4Ald9zml9HyC8nri2FVQRtcgx5z8wFMsX7cNGdeC9oPcO3Evt9hi2ZByLEjJ4h/+osMVl1K48y+QLtY8PQ6Ape997SGjs6yQogowPCLhlHwI93rwF+UViageFTnUMFCmnkaKYQLxNlFUR1EE2742TAe1Ec1izIZLC/JwFh/wiVYJJI/xfUQAz3RSvC1gzkRmdi6vvvY6Fd6JbU6HO6y0aOViLOu/AuCCIcex49OvfI4xfNzZIATXbPsJAEtccxKbVZXHqO2SD0ZI6aAerWut/LcZFTnUcFAz/nrCli1ban2f1XlCqO72U8/txR3vrULYYonRJ84WfdzMzMw1HCp3AJKeM5Zw2cDOzE7XCptdNrAzC37d4VNLyEgiC4cqJ22Be8w8Gw705GLMRHu2TWBbXgmYyljYrILickfAnIm5X250t5cMROnGn+jQxjOZzV0ewuGARYtg5EjND/B+BtuBBEsUxTHRGFtVp+RDuIwdOzbgssOdravIodolkk9PasZfT0hOTiY5OTn0ivWEP/45gAs8Qjld+rjBzMw1erN1TUk6pWTBrzvcMe4ndm2FBa3dohGO6ZNEFoJdprBTc+ipMW5+cgHfJ5esLz7jpdffot8tL9LxqqdISYojIToKu8tTsZujcMzHNDu+zbkA/ujfvz/9+2u+CC68EKTk4Alp2C1WhgIVLgcxZaUsffkG2hQf4P0/dgDVd+wHY9KkSX7rPNXGbD03wJNJbSeiNQUi/fSkFH89Yfz48YwfP76uxQibd5bnACAdDpwOh8+493t/2879ciMuPOsBmZPIwiEck1N6WgrLpg8nNaWFj4kjOTmZq4ancn3PEu5Nc7Js+nB3gTvviCZD4QecaZtKWEsp2bKv2G0myszOJfuvTaxYu8nDdLS9xMWKlGP5rdPxOIFCoMfBXfz+/FW8dcOp8P33IUs+VIfS0lJKS0t9xmsjQbC2THeqeX3ky3goU0894YsvvqhrEaqFERET0/EYOidI7F7j5vfeSV/GuKFI/SVPhcuw3m30pwrf8XCYN28eAA899BCgzYhDmVamntuLy18UPuYea0JLn21yC8qY+sFqkOAoKXSPGaYjw5zU9opH+efRCwGYdeYNzPr2ZW0HepOO9EcfDVjyoTqMGDFC24dXFrN5tg5ViXTVma2bE9H8jYdCNa+vYleA36O28i7UjF9RI8KZ3YVapzYcxEbIY7jj3sybN4958+aRl5dHXp62TSjTSnpaCq+/8xH9rntUy/rVv48lrgWWuBZ4Y3fKgKajftc9SttLZ3nKdOJFdJu2iH4nXcJjwH6AadMY+/33jN2/H0o86x/VBrUxWz/cRDRVrK6KSOddKMVfDzAcoIfK7fScscSnzkt9JJAD1jweah2jAqgZmyV0RU4zgRLVqjMz2l9cgdMlcbokgzOWAoSMiBp36lH8et8I/s64gCfGatm9Zl9FOIlzuwrKmD6yL1HR/v0Cuwu3s+SMM0jetw/69GEhsHDdOkhMhObNYdOmsL8jBK/uap6tm2fs1Skbcbi+iMOJXmpsJqLa9Ov4Qyn+OiaUA7S+cmLXVj5lni3C0zE7Oz2VKwd1cc8arUJw5aAu7qgewLfOTzXrkh3uzGh/cYUW1aNjNi8smz6cvzMu8Bv6aO6EZtjgRenBavUuiI+2suuXT6hY/bnf5WWVTv766y/G33orrF4NQ4ZAii5HURH06hVWlzAInMFsKMhArTqDtvD0wu2LSGyJNT6p2r6IpADHCjRuEMgRWlBmD7pdfaY2/Tr+UIq/jgnlAK2vaCGNnmMu6euYnZ2eytY5I9iecQFb54zwUPr+KoDanaErcpo53JlRzoEyH1t9OOaFhQsXuruhgd6C0VFMtKM47H4DpZVOFi5cSP7a7/0ur3S6yNufzwefLNIUtBBw1FFVXcIMRo/Wlt1+O7hcfvcVyowSaGJf3Tpx6WkpDDzhKAb3ObrauQI1lSHQd9tbWB72sesjkcy7UM7dOiaUA7S+EigjtjomlupWHPVHdUtZeGPMgL0bztfUiWazWpgzKtVDHsNB6l2lNNxf2CUlMz5ag7W4guREPd9g7FgYO5ahJ58MK1aQ5XLB009rr7Q0+PpraF3lNHdnB5cc9Ni3MW5EMkmHZ//lwhrMmtPT06u9jflY3s7hUDIEcoRWOv3fBBsSwfIuDgel+OuYQDVjarMWeySojaSi2kpMOpxEtX7XPcquwjJcXg3kg8lg2MrNJSIAXC27UOnQZtHmm0/PGUtwSulToVQA2TsKwpKzzO4k7uxpLPnPOR7jS4zoHJeLvedcSK9fvofsbAqMnJDly+Hkk93n2jvyyPie7vLWUVF+lxvMzFzDO8tzmHKCnWu9EvLc5yczE4ApU6aE9d3Mx6rJ9RBou2hr5AwaoZKrQi0P5zxC6N7aNUWZeuqYcJyk9ZHacD5F2oEVDtNH9iUhPsGjgmgwGfzZyqe+v5qpH6ym0ilBWHzs58Zv6V2l1GIR7v34o/3lGR5PImXSxiNfeTauj4+PJz4+nszNhQw9czqHYuKpsJps4gMHghBM+/tbAKTTgXR6ViGFqt/CEtscS2xzv+fB8EcZE5VA/iin04nTWf2S4IYM1rgWWONC/xbe25mJs1lp1yJ4ufCaEiq5KtTycM8jBM67OFzUjL+OMe7y7yzPwSklViEC3v3rE2YTCxTVqOjX4ZppaoNdv3zCEEcBHy75mjK7k35Xzwoqgz97shGq6Syuylo2lyowfsunZ/wbCbRPn06szUJJZfWUY9HKxbyUDbPTX3CPGQ7mtw71dstVEWWj210fc8o/q3nn3XsBuOjlR7gISLBYKY+qKk9hhL0a33fM40W4pPT7ewbzR5mv1zVrahaYUFVIrm21CskFKkCXVLi5RnKEIlRpilDLwz2PEDjv4nBRir8eMDs9td4ren8YJpasrCxuvWLoYe2jrjActI4dq7ARuipoIL8EgDWxld91QfuNn5uoVSndOmcE3acvDrgfM2bfT8mGHwPKv2uQVv7ZXLbil6596T5tEX/f2o9/TjiRrgV7qHA5EZWlLH/+KkZd+Ti7aOtePz0thYRobebs7zwYM9QdT4/lbgu0m7zQY7w2SE9LoU9KMwB+rEaimr+exllZkVH8oZKrQi0/EucxFErxKxTVIJA9OdC6tbEfM4GqiRr7804G65gUBykpXD7tLfbmF9HrhYm0KS1wdwkDYOjncN55ANjtgR2pR8oftXfv3tAr+SFSjlBvQvkiQi2vD349ZeNXNFnMCU2Hyu1hJdD5syfbLAKrdyKaVfjYx81Jet1ax4Ud9mlGIj3r/+jyl1Y6sFkEFlssFr1QnNk+PvXcXgibja2tO/Fr5xOYev5tVTs9/3wQgu/G3kS5S1DuEn7PQ7j+qPbt29O+fftqfzfQfpO9jnh2lMdUOxErUAG62iZU4mEo31V98OupGb+iSeLtpDUwHG2AX/ObP7/EsN5teO83L7utaULnL0lv2dYDDO7Ziu35ZQFn/s1jrJRUunxmh4ZDGVEVjnqw1I7NKnCs+YIyu5Pew8f42sdNuur9Pmcz31XJ5R2tPP36cwAMe/+/NAccwkJ8ebHPefg7rxh/eI8fjtKf8dEaKvSnjurW6jGcoPHx8SHWrAWCJB6GanpjnM9HEEDd+PWU4lc0SUI1o/fnaDPw9ksMzljqU4vH7pIhnXm/bjvI1jkj6Kbb+705VOFke8YFDM5Y6nNz8D4eaMlvRet/JK1Lkk8hN3/Jcof++pHXN1l5Wkr63b6QV95/AHL/IsrUJWzEv54D/Tws23oAf3iPjx492u96oTB+k8q87e6x6tTzj5Qj1JtgiYeGnP58DmZmp6fyXGwUDoeDrXNGBDzWxIkTa01uM0rxK5okwZy0UD1HW6hEtHCT9GI6n+BR6TQcWb3HAoWHBtqHsX5BTAKXXvkYSVJy149vwi+arEteuwVeuwXmzwe0hDBZUUqwnNgPP/wQgFtvvTXIWoFllJXlfsfrC+7ftfiA33GDUD6H8847L6Q/I1KKX9n4FU2SUElB1XG0haoXFG7ly7aXzuKmqfeFvX9/CITfImzB9jE4YyluUYTg8SFX0W3aIq4Zc3/VSldfzfZHLyTj82dBVBWj82Zm5hp+3byPXzbvrXbBQbeM1ijtFYbsBsEK0NU27t81sZVHJJe3nMF8DpnZueT0u4FR100JKu/+/fvZv39/LUlehVL8iiaJPwecmeo42g7XmXd0W63ZosUWS3RMVYy9MR7IoWyz+t5QpO5H8E4aCvZ9cwvK/MYKfdfzJGZ+/Cds2wZttESv8X9+hVW6sLhctNFnvIN7asrP8GVU5v+DPX9HtQsOGjIKaxRCV/zhJHAFKkAXqSJt7nMpXdorgJyBkq8Mef/ZtYfiQ4eCdtcaM2YMY8aMqfXvoBS/okni3ZLRwG8F0Wrsy18Z51BVSr++YyhHt02gaOVifvx6CaAp/a/vGBpw/3Mv7cvcMX3dY/6eKsxF2AJ9XwOXhHibxb+M3bvDvn1QVsby/sNwAA7g9+evYvujF/LWMZXA4RccdFc5RetgFm5FyiNdpM2Q07H/HyrztgeUc8SIEW6/gz95d718PQ/eeZNb3iPZd0DZ+BVNltpMHgu1r1BJel/fMZShn85i06oCtq/6b9j7N8YCJYSZ7c7GPrpPX6xlEHutW2Z38XfGBQFlJDaWgSu0fgWbJ0/m6P/7P21c7xJ23dCJ/Pfk0cgKz1ludfwl6WkpxFi09UMl0xkEKkAXySJt6WkpJMZo6jNcOQ3MvowK4Tt+JFAzfoWiEVCdvgS10d0pd9QorV7yL7+4x2ZkzWP7YyN1s1HoTmyB6NSpE506dQp7fbfNPaGlRxG6SBZpA2jTpg1t2oTX4tNMpLtrhYNS/ApFPcBwTpZUOGrknKxOwbtaLY43aJB2A9i3j93dtO0tgBXJ2qcupfuB3GonJlVXoRrfR7qcSJdm8qlukTZzB6+0B7+i3wNfhezmlZKSQkpK9Z8Y60NxQmXqUSjqGA/nZEzNmoxXp+BdRIrjtWnD8o++Zep7Kznq+WtoX5xPYmUZ371yI7wCfPCB1jAmDNauXVutQ1cVmNvhUWAu3CJt3k3eD5ZWOYWD/RY1qUBq3s8lD2ufgxWju/nmm2t0jFAoxa9Q1DGhqjmGS3V8FpEojjf3y43YsZDTsgPbW3bg32kX8Pynj2oLjciUKVPgiScgQDgoQEkNmsn7s7mHW6QtVDJfoN8iLy8v6H6DxeCnp6XQvl1bKisrg/oIxo0bF/QYNUUpfoWijqmNbmb1Ae8kscXA4mNPp2d+Dt++fSeUlnp2CfvqKzAaxpiIjo6u0fFrYm83y22uphmosqaZUKUpQiVf/ec//2HTpk1B18nJ0SKiOneu3To+EbPxCyFeE0LsE0KsNY21EkJ8LYTYrP9tGWwfCkVToD44+2qDQPKW9zwGSkq0BvHnn68NZmdruQFCwG+/eawfHR1dI+VfU5t7OOfZ3zp2uz1oNdNQyVdnnnkmAwYMCHrcCRMmMGHChJDyVZdIOnfnAed5jU0HvpVSHg18q39WKJo09cHZVxuE/B6JibBkidYQfs6cqpX0LmHoTWVcLheuAE3jg2F0/jIctWtyC8NylIdK5vP3W2Rm57J85Wp+WbEq4DFCJV+dfPLJ3HTTTSG+VWSImOKXUv4AeFd1uhiYr7+fD6RH6vgKRUPBO7kq3MSl+kaoRDY3QsD06Vo00NKlVeP//jcIgbO0FKdX0/dwyM/PZ3vuXnfbQ/DNYA4md0yUpvxbxtuI0n0Q/r6D4Qx2Sf9Z0uFSUlJCeXlkksxCcaRt/O2klLsBpJS7hRBtQ22gUDQFaqObWX2g2k7jYcO0G0BuLpxxBmzdSmenE8rKoEMH+PVX6No1rF21bduW3B0FWGvgKPeopnnfOQxd+oj23o/j1XAGm3MGauKMr0vqrXNXCHEDcANAu3btIlJqtbi4OOIlXA8XJWPt0RDkbAgyQoTkfPVVhMPBd088QYcvvoA9e6BbNwD+zMjgwMCBQTfPy8ujldXBHakOnp19Ly8tgjtn6DGTFIWUt1+/foBW1tn83pvxnYugM9xdpmUK35lqPJ14HqOgoCDgPkArSxFseTj7qDFSyoi9gG7AWtPnjUAH/X0HYGM4+xkwYICMBN99911E9lubKBlrj4YgZ0OQUcojJOdrr0mpPQ+4X68Pu1J+vCLH7+otWrSQ1tgE2XXaIhnT+QR5VO/jZddpi2TXaYvkqXO+rTWxTp3zrew6bZEkOk4SHRfwGGeccYY844wzAu7HarVKi8US9Fiffvqp/PTTT2ssK/CH9KNTj3Tm7qfA1fr7q4FPjvDxFQpFQ+Gaa8hcuZP0659nKDAUmPjdAtIHdGb/gEFQWOizSUyUpcaOcnM1zUCVNcHkDHa5tFeAY9x8881BE7Dat29Pq1atAi4HGDlyJCNHjgwpe3WJmKlHCPEO2m+VLITYCdwPZAALhRDXAjuASyN1fIVC0fCZ++VGclt1ZU/nE4hyOflNCE7e+RfJK5dDUpK20urV0KePO65+zqhUrn7LCjiCZsV6Y+7gFaybV1WmcJRHprD3MUIlX82ePZsNGzYEXWfjRq1iZ69etRvhFTHFL6W8LMCiMyN1TIVC0bjwTgobCyAld/24gFt+eU9bqW9fbZ1evaB9e7ejtqCgoNqVM8MlPS2FeJtmMAl0jFDJV8cee2zApwqDG2+8Eah9G78q0qZQKOotfpOrhOCdi27QrP6LFrmH7Rs3Yv/+e7juOsaOHs1QvVx0pAiVwBUq+erss89m6tSpkRAtJErxKxSKekvIpLALLtBuANu2saxdO5YB/O9/TJo8mUc++AB2746YbDExMcSYOqZVl9LS0jqL41eKX6FQ1FvCTgrr3l0L/ywrA73JeXxuLnTsqCWMff99rcvWvn37kPV66iv1No5foVAooJpJYbGx8N578N57bL7tNo5+9llt3DD7ZGTA3XeDn+Yw5qJqoQqsAezZsyc8meohSvErFIpGSe4ll3D0M89o2b+nnKINTp+uvUaMgIULISHBvX51FX9N6glVl5kzZ0Zkv0rxKxSKxo3RJSwvD845B1at0orFJSZqin/lSjjmGHclzeTkZI/3gQjViOXOO+8MujwlJSWkjf+ss84KurymKMWvUCiaBm3aaOWgnU6480545hmtXLQeIz/muOOgTRuysrLcVTWDhVHabLaghwuVePXYY4+xbt26oOusWrUKqConUVso565CoWhaWK1aMxgpNXOPwV9/aU7gKVO0ZSEIVT5648aN7gQsfzRv3pwEk6nJH1OmTGHKlCkhZakuasavUCiaLpdeqin5jRvJGjBAewJ45hltWWIi7N/vt0sYgCNE6ehQyVfjxo3D4XAwbdq0GotfU9SMX6FQKHr1guJi7XX++WQBWcXFAbuEQc07hRmUlpZSUVFRc5kPA6X4FQqFwiAhoapLWEZG1bhXlzCADh060KFDhzoQ8vBRil+hUCi8EQKmTQvYJYxx49i9eze7I5gZHEmUjV+hUCiCYXQJ27VLSwTbvBkWLsQdzLl9u7thTG3zyCOPRGS/SvErFApFOHTsCJs2gd0ON99M0f/+p4137679XbxYSwzTCZV81bVrV8rKyoKuc+qppx6WyIFQph6FQqGoDjYbvPqq9hQwb17V+AUXaGagmTNBSs4666ygCVhPP/00t9xyS9BD/fzzz/z888+1JHgVSvErFApFTbn6au0GoCdaAfDww2CxsKp/f1b9+GPATcOpznnPPfdwzz331JKwVSjFr1AoFIdL377aDeDgQTj9dACmZGczZcgQ7Sngzz99Nrnuuut4/PHHj7SkgFL8CoVCUXskJcEPP4DLRda995JljPftq90A5s93r1pWVqbi+BUKhaLRIATMnq09BSxZUjU+caK27Npr60w0UIpfoVAoIsv552s3gL//BqNxy2uvgdOJcLm0MNEjjArnVCgUiiNBt25aK8jycpg4Ecd7erP4FL3JzHffVTWM0Xn66acjIoqa8SsUCsWRJDYW3n0XpGTT5MlV48OGaWagjAx3ddB+/frVeklmUIpfoVAo6oxdl1yiKflff60anDEDLBYYMYJvFi3im2++qfXjKsWvUCgUdc3AgVVdwvr318Y+/5zZI0cy+777av1wysavUCgU9YXkZFixQusSdtddZP3+O3z+ea0fRil+hUKhqG9YrfDUUxHbvTL1KBQKRRNDKX6FQqFoYijFr1AoFE0MpfgVCoWiiaEUv0KhUDQxlOJXKBSKJoZS/AqFQtHEUIpfoVAomhhC6sWA6jNCiDzgnwjsOhnYH4H91iZKxtqjIcjZEGSEhiGnkhG6SinbeA82CMUfKYQQf0gpT6xrOYKhZKw9GoKcDUFGaBhyKhkDo0w9CoVC0cRQil+hUCiaGE1d8b9c1wKEgZKx9mgIcjYEGaFhyKlkDECTtvErFApFU6Spz/gVCoWiyaEUv0KhUDQxmoziF0JsF0KsEUKsEkL8oY+1EkJ8LYTYrP9tWccy9tLlM16HhBBThBCzhBC5pvERR1iu14QQ+4QQa01jAc+dEGKGEGKLEGKjEOLcOpRxrhBigxDiTyHEx0KIJH28mxCizHQ+XzoSMgaRM+DvW4/O5Xsm+bYLIVbp43VyLoUQnYUQ3wkh1gsh1gkhbtPH6811GUTGur8upZRN4gVsB5K9xh4DpuvvpwOP1rWcJtmswB6gKzALuKsOZRkC9AfWhjp3wHHAaiAG6A5sBax1JOM5QJT+/lGTjN3M69WDc+n3961P59Jr+RPAfXV5LoEOQH/9fTNgk36+6s11GUTGOr8um8yMPwAXA/P19/OB9LoTxYczga1SykhkLFcLKeUPwAGv4UDn7mLgXSllhZTyb2ALcHJdyCil/EpK6dA//gp0irQcoQhwLgNRb86lgRBCAGOBdyItRzCklLullCv190XAeiCFenRdBpKxPlyXTUnxS+ArIcQKIcQN+lg7KeVu0H4koG2dSefLeDz/uW7RHw1fq2uTlE6gc5cC5JjW26mP1TX/Asxdq7sLIbKFEN8LIU6vK6FM+Pt96+O5PB3YK6XcbBqr03MphOgGpAHLqafXpZeMZurkumxKin+wlLI/cD7wbyHEkLoWKBBCiGjgIuB9fehFoCfQD9iN9qhdXxF+xuo0ZlgIcS/gAN7Sh3YDXaSUacAdwNtCiOZ1JR+Bf996dy6By/CckNTpuRRCJAIfAlOklIeCrepn7Iicy0Ay1uV12WQUv5Ryl/53H/Ax2mPeXiFEBwD97766k9CD84GVUsq9AFLKvVJKp5TSBbzCEXjcD4NA524n0Nm0Xidg1xGWzY0Q4mrgQuAKqRtS9cf9fP39CjR77zF1JWOQ37e+ncsoYBTwnjFWl+dSCGFDU6hvSSk/0ofr1XUZQMY6vy6bhOIXQiQIIZoZ79GcK2uBT4Gr9dWuBj6pGwl98JhVGReyziVostc1gc7dp8B4IUSMEKI7cDTwWx3IhxDiPGAacJGUstQ03kYIYdXf99Bl3FYXMuoyBPp968251DkL2CCl3GkM1NW51H0N/wPWSymfNC2qN9dlIBnrxXV5JDzIdf0CeqB59FcD64B79fHWwLfAZv1vq3ogazyQD7Qwjb0JrAH+RLuAOxxhmd5Bewy1o82crg127oB70WYrG4Hz61DGLWh23VX66yV93dH6dbAaWAmMrONzGfD3rS/nUh+fB9zktW6dnEvgNDRTzZ+m33dEfboug8hY59elKtmgUCgUTYwmYepRKBQKRRVK8SsUCkUTQyl+hUKhaGIoxa9QKBRNDKX4FQqFoomhFL+iUSGEKPb6PFEI8VxdyaNQ1EeU4lcoTOjZqfWehiKnon6iFL+iySCE6CqE+FYvhvatEKKLPj5PCPGkEOI74FEhxBmmmujZpqzvqUKI3/XtH9DHuum11efr4x8IIeL1ZWfq26/Ri6/FCCFOFkJ8pC+/WK+/Hi2EiBVCbNPHewohvtALCv4ohOjtT84jfwYVjQU1a1A0NuKE3iREpxVaNizAc8AbUsr5Qoh/Ac9SVbb3GOAsKaVTCPEZ8G8p5TK9wFa5EOIctBT6k9EKfn2qF/rbAfRCy25dJoR4DZikm5fmAWdKKTcJId4AbtZlSNOPeTpaeYaT0P4XjcqNL6NlyG4WQgwEXgCGe8t52GdK0WRRM35FY6NMStnPeAH3mZadArytv38TLaXe4H2TMl0GPCmEmAwkSa12+jn6Kxstnb432o0AIEdKuUx/v0Dfby/gbynlJn18PjBE39cWIcSxaDeRJ9Ean5wO/KjfaE4F3tdvYP9Fa+jhT06FokaoGb+iKWOuV1LiHpQyQwixGK2uyq9CiLPQZvlzpJT/Ne9Ar7PuXfdE4r8MsMGPaBVY7cA3aE8GVuAutMlYgX7T8kdJgHGFImzUjF/RlPgZrcENwBXAT/5WEkL0lFKukVI+CvyBNrv/EviXPiNHCJEihDCafHQRQpyiv79M3+8GoJsQ4ih9fALwvf7+B2AK8IuUMg+tsFhvYJ3U6rX/LYS4VD+OEEL0PfyvrlBUoRS/oikxGbhGCPEnmiK+LcB6U4QQa4UQq4Ey4HMp5VdoZqJfhBBrgA/Q+qiC1lLvan2/rYAXpZTlwDVoJps1gAswmmcvB9qh3QBAq974p6yqmHgFcK1+/HVobQMVilpDVedUKA4D3dSzSEp5Ql3LolCEi5rxKxQKRRNDzfgVCoWiiaFm/AqFQtHEUIpfoVAomhhK8SsUCkUTQyl+hUKhaGIoxa9QKBRNjP8H/gKBprqQ0PoAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Extract the \"horsepower\" and \"mpg\" variables\n", "X = data.dropna()[\"horsepower\"].values.reshape(-1, 1)\n", "y = data.dropna()[\"mpg\"].values\n", "\n", "# Perform linear regression\n", "reg = LinearRegression().fit(X, y)\n", "y_pred = reg.predict(X)\n", "\n", "# Calculate the residuals\n", "residuals = y - y_pred\n", "\n", "# Create a scatter plot of the data points\n", "plt.scatter(X, y, label=\"Data Points\")\n", "\n", "# Plot the regression line in red\n", "plt.plot(X, y_pred, color=\"red\", label=\"Optimal Model\")\n", "\n", "bool = True\n", "# Plot residual line segments\n", "for xi, yi, residual in zip(X, y, residuals):\n", " if bool:\n", " plt.plot([xi, xi], [yi, yi - residual], color=\"black\", linestyle=\"--\", label='Residuals')\n", " bool = False\n", " else:\n", " plt.plot([xi, xi], [yi, yi - residual], color=\"black\", linestyle=\"--\")\n", "\n", "plt.xlabel(\"Horsepower\")\n", "plt.ylabel(\"MPG\")\n", "plt.title(\"Linear Regression with Residual Line Segments\")\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Intuitively, if we minimize these numbers, we will find the line which **best fits the data**. \n", "\n", "We can obtain estimates for $\\hat \\beta_0$ and $\\hat \\beta_1$ by minimizing the RSS using an approach called **ordinary least squares**. \n", "\n", "We can write the RSS as a function of the parameters to estimate:\n", "\n", "$$RSS(\\beta_0, \\beta_1) = \\sum_{i=1}^n(y_i - \\beta_0 - \\beta_1 x_i)^2 $$\n", "\n", "This is also called a **cost function** or **loss function**.\n", "\n", "We aim to find:\n", "\n", "$$(\\hat \\beta_0, \\hat \\beta_1) = \\arg \\min_{\\beta_0, \\beta_1} RSS(\\beta_0, \\beta_1)$$\n", "\n", "The minimum can be found setting:\n", "\n", "$$\\frac{\\partial RSS(\\beta_0, \\beta_1)}{\\partial \\beta_0} = 0$$\n", "$$\\frac{\\partial RSS(\\beta_0, \\beta_1)}{\\partial \\beta_1} = 0$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Doing the math, it can be shown that:\n", "\n", "$$\\hat \\beta_1 = \\frac{\\sum_{i=1}^n(x_i - \\overline x)(y_i - \\overline y)}{\\sum_{i=1}^n(x_i - \\overline x)}$$\n", "$$\\hat \\beta_0 = \\overline y - \\hat \\beta_1 \\overline x$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Interpretation of the Coefficients of Linear Regression\n", "\n", "Using the formulas above, we find the following values for the example above:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "beta_0: 39.94\n", "beta_1: -0.16\n" ] } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Extract the \"horsepower\" and \"mpg\" variables\n", "X = data.dropna()[\"horsepower\"].values.reshape(-1, 1)\n", "y = data.dropna()[\"mpg\"].values\n", "\n", "# Perform linear regression\n", "reg = LinearRegression().fit(X, y)\n", "\n", "print(f\"beta_0: {reg.intercept_:0.2f}\")\n", "print(f\"beta_1: {reg.coef_[0]:0.2f}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "These parameters identify the following line:\n", "\n", "$$y = 39.94 - 0.15 x$$\n", "\n", "The plot below shows the line on the data:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABRfElEQVR4nO2deXgUVfaw35MQICwSQEAMq4iorGERHFwAFVQUIrgOKqjjOqi4MISRUZjBIQwi/vwYx2VEdFBEXKICDjJCXFBQkF1BFFEIiAiENUBI7vdHVSedTlUvSXe6kz7v8+RJ963t1K3qU7fOueccMcagKIqixA8J0RZAURRFqVhU8SuKosQZqvgVRVHiDFX8iqIocYYqfkVRlDhDFb+iKEqcoYo/CETkfBHZFG05qgIiskFE+sTq8UUkW0T+UHESOcrwgYgMd1nWSkSMiFQLw3FmisjEcMqnVA5U8XshIltF5GLfdmPMp8aYdtGQyRcRGS8i+SJySERyReRzETk32nIFizGmvTEmOxaOb/flrLLuS0T6iEihfS0OisgmEbklDDJeZox5ubz7KQ8iMkJEPnNaFin5RCRFRGaIyC92f34nImPCfZxIYt8T26MtRyBU8ccwfkZ1c4wxdYCTgSXA3AgcW0RE74/A7LCvxUnAA8ALIhITg4RKyDSgDnAWUA8YBPwQVYmqKPrDDgLfp7j9ZvCwiKwVkf0iMkdEanotv0JEVnuNyDt5LcsQkR/sEc03InKV17IRIrJURKaJyF5gvD+5jDEngFeBVBFpZO+jnoi8KCI7RSRHRCaKSKK9LFFEporIbyLyo4iM9DYb2GaOx0VkKXAEOE1EzhSRRSKy1x7RXusl7+X2ORy0j/Ww3X6yiMyzz3+viHzqeYh4v1WJSA0ReUpEdth/T4lIDe8+F5GHRORX+3wcR9Mi0ldE1nl9/5+IfOn1/TMRSfc+vohcCvwZuM4esa/x2mVL+zocFJEPReRkf9fBvhbGGLMA2At0so+V4HW994jIGyLSwF5WU0Rm2e25IvKViDTxug5/8LpmT9jXbAsw0OfcS7ylis9bjIjMtUfQ+0XkExFpH+hcAuEj3wi7f58QkX32fXWZ17qu96MDPYDXjDH7jDGFxpiNxpg3vfbl715sKCLvi8gBuy8nitcbi32f3yMim+3r+jcRaSMiX9jbvCEi1b3W9/cbdvz9i0ht4APgVPueOiQip4rIOSKywj7OLhF5srzXoNwYY/TP/gO2Ahc7tPcBtvus9yVwKtAA+Ba4y17WFfgV6AkkAsPt9WvYy6+xt0sArgMOA03tZSOAE8C9QDUg2UGW8cAs+3N1IBP4Dahmt2UBzwG1gca2nHfay+4CvgGaAfWB/wHGa9ts4GegvX38esA24Bb7e1f7WO3t9XcC59uf6wNd7c+TgGeBJPvvfEB8+xj4K7DMlrMR8DnwN68+P2GvkwRcjvUwqu/QJzWBPKw3oGrAL8AOoC6QbC9r6HD8or702lc21ijzDHvbbCDT5X7pg31f2NdzEFAIpNlto+zzawbUsK/LbHvZncD7QC2s+6QbcJKXDH/wumYbgeZY99oSn2tWdD5O5wTcavdDDeApYLXXspnARJdzGwF85rLMW74RQD5wu30ed9t977neWbjcjw77/TewAet+a+uzrDb+78XX7b9awNn2up95bW+A97DezNoDx4CPgNOw7vNvgOFB/oa34v77L7onvI79BXCT/bkO0Cvauk5H/GXnaWPMDmPMXqwfcBe7/XbgOWPMcmNMgbFsoceAXgDGmLn2doXGmDnAZuAcr/3uMMb8P2PMCWNMnsuxrxWRXCyFdjtwtTHmhD1ivAwYZYw5bIz5Fev1+XrPdsD/GWO2G2P2YT00fJlpjNlgrLeJS4GtxpiXbHm+Bt4CrrbXzQfOFpGTjDVK+9qrvSnQ0hiTbywfiVNSqGHAX40xvxpjdgMTgJu8lufby/ONNZo+BJQyoxhjjgIrgAuA7sBa4DOgN1a/bzbG7HHpSydeMsZ8Z/f/GxRfWydO9boW7wAPGmNW2cvuBB6x+/sYllK+Wqw3rHygIXC6fZ+sNMYccNj/tcBTxpht9r02KYTzwBgzwxhz0Ov4nUWkXij7CIKfjDEvGGMKgJexrn2TIO5HX+7FeoMdCXwjIt97vT1cgcu9aL9BDAUeM8YcMcZ8Y8vhy2RjzAFjzAZgPfChMWaLMWY/1kg9zV7P72/Yxu3370Q+cLqInGyMOWSMWeZn3QpBFX/Z+cXr8xGsJzlAS+Ah+xUx11YKzbFGB4jIzV6vkLlAB6yRqodtQRz7DWNMCtAE6wbu5nXsJGCn1/6fwxppYcvgvX+nY3m3tQR6+pzLMOAUe/lQrJH4TyLysRQ7macA3wMfisgWEclwOY9TgZ+8vv9kt3nYYz+APHj3sy8fY422LrA/ZwMX2n8fu2zjhtu1dWKHfS1OAp4G+nktawm849V33wIFWNftP8BC4HWxzFz/EJEkh/37XrOfHNZxxDYTZdqmpgNYI1Uoeb+Fg6L+MsYcsT/WIfD9WAJjTJ4x5u/GmG5YD8U3gLm2eczfvdgI6y0g0L29y+tznsP3oH7DvudM4HvkNqw3yI22GeoKP+tWCOWeEqaUYhvwuDHmcd8FItISeAG4CPjCGFMgIqsB8Vot6HSpxpjfRORO4CsRec0+9jHgZB+F6WEnltnBQ3On3fqcy8fGmEtcjv8VMNhWWCOxfqjNjTEHgYewfjztgSUi8pUx5iOfXezA+pFtsL+3sNvKwsfAVCxTVSawD6uvjwH/dNkmbKlpjTHHxJqBsklE0o0xWVj9d6sxZqnLZhOACSLSClgAbAJe9FlnJyWvUwuf5YexzBseTvH6/HtgMHAxltKvh9Uv3vdbJAl0P7pijDkgIn8HxgKt8XMv2iP+E1j39nd2s9O9HYrcjr/hICh1TxljNgM3iOXnGgK8KSINjTGHyyFjudARf2mSbEeN5y/Uh+MLwF0i0lMsaovIQBGpi2WnNMBuALGclR3KI6wxZiPWyPFPxpidwIfAVBE5SSznYhsRudBe/Q3gfhFJFZEUINBUuXnAGSJyk4gk2X89ROQsEakuIsNEpJ4xJh84gDWa9TjGThcR8WovcNj/bGCciDQSy4H6KFDW6ZWfY5mBzgG+tF/nW2LZaT9x2WYX0ErCNHvJGHMc6+HzqN30LPC4/cDHPs/B9ue+ItLRVloHsMwBTn30BnCfiDQTkfqA79vTauB6+9p0p9gMB5Zt/xiwB+vh8PcQT0l8fgs1A29STBD3o+/B/mLfX9XtY90P5GI9EF3vRdvE9DYwXkRqiciZwM0hnqs3/n7DgdgFNBQvc5qI3CgijYwxhfb5gPO1rjBU8ZdmAdZrn+dvfCgbG2NWYNkIp2ONrr7HcoBh2x6nYjl7dgEdAbfRYChMAe4QkcZYN3x1LGfVPuBNLJsrWDf0h1g28FVY53oCl5vQHrn3x7LJ7sB6vZ2M5SgEyx6/1TYj3AXcaLe3xXIcH7LP9RnjPHd/IpZtfi2wDvjabgsZe/T0NbDBVsDYx/7Jti074ZkGu0dEvnZZJ1RmAC1E5Erg/7Acih+KyEEsR29Pe71TsK7NASwT0Mc4P/RewHqwr8E6v7d9lv8FaIN1rScAr3ktewXLNJSDdT+Ealv+HSV/C3llGAj5ux99McBLWE7bHcAlwEDbLh7oXhyJ9UbzC5YZbTbWQy9k/P2Gg9h2o33sLbaZ6FQsX9kGETmEdU9cb/uloobH867EIWI5zp41xrSMtiyKEk5EZDJwijFGI4wd0BF/HCEiyWLNva8mIqnAY1gzURSlUiPWHP9OtmnmHCyHqt7bLqjijy8EyxywD8vU8y3F9mhFqczUxTKDHcbyi0wF3o2qRDGMmnoURVHiDB3xK4qixBmVYh7/ySefbFq1ahX2/R4+fJjatWuHfb/hRGUMH5VBzsogI1QOOVVGWLly5W/GmEalFjjlcYi1v27duplIsGTJkojsN5yojOGjMshZGWQ0pnLIqTIaA6wwmqtHURRFUcWvKIoSZ6jiVxRFiTMqhXNXUZSKJT8/n+3bt3P0qHNmgXr16vHtt99WsFShEU8y1qxZk2bNmpGU5JTgtTSq+BVFKcX27dupW7curVq1wsq1V5KDBw9St24wOcuiR7zIaIxhz549bN++ndatWwe1jSr+CJG1KocpCzexIzePU1OSGT2gHelpqdEWS1GC4ujRo65KX4ktRISGDRuye/fuoLdRxR8BslblMPbtdeTlW0kvc3LzGPu2VRJWlb9SWVClX3kI9VqpczcCTFm4qUjpe8jLL2DKwk1RkkhRFKUYVfwRYEeuc6lct3ZFUUqTmJhIly5daN++PZ07d+bJJ5+ksLDQ7zZbt27ltdde87uOv2N16NCBa665hiNHjriu+95775GZ6VSuuvxyVBSq+CPAqSnJIbUrilKa5ORkVq9ezYYNG1i0aBELFixgwoQJfrcpq8L1HGv9+vVUr16dZ5991nXdQYMGkZHhVka6fHJUFKr4I8DoAe1ITkos0ZaclMjoAe2iJJGiRJasVTn0zlxM64z59M5cTNaqnLDuv3Hjxjz//PNMnz4dYwxbt27l/PPPp2vXrnTt2pXPP/8cgIyMDD799FO6dOnC9OnTXdfzx/nnn8/333/P3r17SU9Pp1OnTvTq1Yu1a9cCMHPmTEaOHAnAiBEjuO+++/jd737HaaedxptvvllKjmnTprFhwwbOOeccunTpQqdOndi8eXNY+ydU1LkbATwOXJ3Vo8QDFTWZ4bTTTqOwsJBff/2Vxo0bs2jRImrWrMnmzZu54YYbWLFiBZmZmTzxxBPMmzePgwcPkpiY6LieGydOnOCDDz7g0ksv5bHHHiMtLY2srCwWL17MzTffzOrVq0tts3PnTj777DM2btzIoEGDuPrqq0vIAXDvvfdy//33M2zYMI4fP05BQVRL7qrijxTpaamq6JW4wN9khnD/BoxdPyQ/P5+RI0eyevVqEhMT+e677xzXD3a9vLw8unTpAlgj/ttuu42ePXvy1ltvAdCvXz/27NnD/v37S22bnp5OQkICZ599Nrt27XLc/7nnnsvjjz/O9u3bGTJkCG3btg311MOKKn5FUcpFRU1m2LJlC4mJiTRu3JgJEybQpEkT1qxZQ2FhITVr1nTcZtq0aUGt57Hxe+N5yHjjNG2yRo0aRZ+dtgH4/e9/T8+ePZk/fz4DBgzg3//+N/369XM71YijNv4KINL2T0WJJhUxmWH37t3cddddjBw5EhFh//79NG3alISEBP7zn/8UmU7q1q3LwYMHi7ZzWy8YLrjgAl599VUAsrOzOfnkkznppJOC2tZXji1btnDaaadx3333MWjQoCJ/QbTQEX+E0WAupaozekC7Evc4hGcyg8f8kp+fT7Vq1bjpppt48MEHAbjnnnsYOnQoc+fOpW/fvkXFTDp16kS1atXo3Lkz119/vet6wTB+/HhuueUWOnXqRK1atXj55ZeD3tZbjhEjRnD06FFmzZpFUlISp5xyCo8+Gt1S15Wi5m737t2NP4dMINzSJ2RnZ9OnT5/wCepA78zF5Di88qamJLM0I/CrXkXIWF4qg4xQOeSMFRm//fZbzjrrLNflvjlmYjFFSbzk6vHgdM1EZKUxprvvulV+xO9vxJ1C5G9YDeZS4gGdzFC5qPI2fn8zDnLz8hn79jpycvMwFD8UwmmD12AuRVFijSqv+P2NuHftPxrxnDoazKUoSqxR5RW/vxH38QLnvB/hNMOkp6UyaUhHUlOSESzb/qQhHfW1WFGUqFHlbfx9z2zErGU/O7ZXP3rYcZtwm2HU/qkoSixR5Uf889fudG1vUq+mmmEURYk7qrzi33ck37U9JTlJzTCKEqNs376dwYMH07ZtW9q0acP999/P8ePH/W6Tm5vLM888U/R9x44dXH311WGRZ/z48TzxxBOO7SLC999/X9Q2bdo0RMRvXiBfvJO/lWedYKjyij8Q6WmpLM3ox4+ZA1ma0U+VvqLEAMYYhgwZQnp6Ops3b+a7777j0KFDPPLII36381X8p556alHGzEjSsWNHXn/99aLvb775JmeffXbEj1tWqrziT0l2rjrv1q4oSvRZvHgxNWvW5JZbbgGsQinTpk1jxowZHDlyhJkzZzJ48GAuvfRS2rVrV5SnPyMjgx9++IEuXbowbtw4tm7dSocOHQBrtJyens6VV15J69atmT59Ok8++SRpaWn06tWLvXv3AvDCCy/Qo0cPOnfuzNChQ/0WZfGQnp7Ou+++C1jpGerVq0ejRo2Kls+ePZuOHTvSoUMHxowZU9Q+a9YszjjjDC688EKWLl1a1L57926GDh1Kjx496NGjR4ll4aDKO3fHD2rP6LlryC8sjlBOShDGD2oP+6ObE1tRKgWjRoFPArPkggJITHRcPSi6dIGnnnJdvGHDBrp161ai7aSTTqJFixZFJpUvv/yS9evXU6tWLXr06MHAgQPJzMxk/fr1rF69moMHD7Jnz54S+1i/fj2rVq3i6NGjnH766UyePJlVq1bxwAMP8MorrzBq1CiGDBnC7bffDsC4ceN48cUXuffee/2ezkknnUTz5s1Zv3497777Ltdddx0vvfQSYJmbxowZw8qVK6lfvz79+/cnKyuLnj178ve//52vv/6aevXq0bdvX9LS0gC4//77eeCBBzjvvPP4+eefGTBgAN9++20oPeyXKq/4/eXGz85Wxa8osYgxxjETpnf7JZdcQsOGDQEYMmQIn332Genp6X7327dvX+rWrUvdunWpV68eV155JWCZajyJ09avX8+4cePIzc3l0KFDDBgwICiZr7/+el5//XUWLlzIRx99VKT4v/rqK/r06VP0BjBs2DA++eQTAM4777yi9uuuu64obfT//vc/vvnmm6J9HzhwoETSt/JS5RU/6HRKRSkXDiPzvAjnwWnfvn1RLnwPBw4cYNu2bbRp04aVK1eWejA4PSh88U6hnJCQUPQ9ISGBEydOAFZVraysLDp37szMmTPJzs4OSuYrr7yS0aNH07179xJZPP3lQ3OTubCwkC+++ILk5MhE+Fd5G39lJzcvX1M6K3HHRRddxJEjR3jllVcAKCgo4KGHHmLEiBHUqlULgEWLFrF3717y8vLIysqid+/epdIhl4WDBw/StGlT8vPzi9IyB0NycjKTJ08u5YDu2bMnH3/8Mb/99hsFBQXMnj2bCy+8kJ49e/LZZ5+xZ88e8vPzmTt3btE2/fv3Z/r06UXfnSp/lQdV/DFM1qoccvblRTSXkKLEIiLCO++8w9y5c2nbti1nnHEGNWvW5O9//3vROueddx433XQTXbp0YejQoXTv3p2GDRvSu3dvOnTowLhx48p07L/97W/07NmTSy65hDPPPDOkba+//nq6du1aoq1p06ZMmjSJvn370rlzZ7p27crgwYNp2rQpY8eO5dxzz+Xiiy8usd3TTz/NihUr6NSpE2effbbf4u9lIS7SMrsRKylw3eiduZjrmx9k6rqSFrlgUzpXFLHejx4qg5yxImOoaZkrmpkzZ7JixYoSo2Jfoi1jMGha5ipGONI978jNg+Yu7YqiKGVEFX8ECFfVLStnUGl7paZ0VuKdESNGMGLEiGiLUWlRG38E8FcDIBRGD2hHgo/XX3MJKRVFZTADKxahXquIK34RSRSRVSIyz/7eQEQWichm+3/9SMtQ0YSr6lZ6Wiqp9ZM1l5BS4dSsWZM9e/ao8q8EGGPYs2cPNWvWDHqbijD13A98C3gmtmYAHxljMkUkw/4+xm3jysipKcmOdXbLYqJJSU5iaUafMEilKMHTrFkztm/fzu7dux2XHz16NCRFEw3iScaaNWvSrFmzoNePqOIXkWbAQOBx4EG7eTDQx/78MpBNFVP8owe0K2HjBzXRKJWLpKQkWrdu7bo8Ozu7KL1ArKIyuhPpEf9TwJ8A7/lKTYwxOwGMMTtFpHGEZahw/KWJ8BDpIu+KoihuRGwev4hcAVxujLlHRPoADxtjrhCRXGNMitd6+4wxpez8InIHcAdAkyZNunmnPA0Xhw4dok6dOmHfbyBy8/LJ2ZdHoVffJ4iQWj+5VNbQaMkYCpVBRqgcclYGGaFyyKkyQt++fSt8Hn9vYJCIXA7UBE4SkVnALhFpao/2mwK/Om1sjHkeeB6sAK5IBLWEEiwT7Ag9mPV6Zy4mJ7d0ZsPUlMRS9vxYCejxR2WQESqHnJVBRqgccqqM7kRsVo8xZqwxppkxphVwPbDYGHMj8B4w3F5tOPBupGQIF555+YFSJwS7Xrhm/SiKopSFaMzjzwQuEZHNwCX295gm2Hn5wa7nNrtHA7MURakIKkTxG2OyjTFX2J/3GGMuMsa0tf/vrQgZykOwI/Rg1xs9oJ0WeVcUJWpo5G4QuI3EDZRIlRzsSD49LVWLvCuKEjU0V08QOM3L9+Cx46/4aS9Hjp8otTw5KZFWDZNpM3YBBcaQKMINPZszMT3yil6njCqK4oQq/iDwnpfvFJGbl1/ArGU/l2pPSU6i/al1WfpDsTWrwJiidSemd4yQxOFLFKcoStVDTT1Bkp6WytKMfgQu7lZM7RrVWLZln+Oy2cu3hUcwF8KVKE5RlKqHKv4QCWXmTU5uHgUuAXIFxkS0lKJOGVUUxQ1V/CHiNCOnrESylGKoU0azVuVobV9FiRNU8YeI74ycRAnF+FOaSJlfQpkyGmzgmaIoVQN17paB9LTUIgeprxO1LETC/BJMojgP/vwB6ghWlKqHKv5y4qRgnWb++CNSEbveDyh/qD9AUeILVfxhwFfBpv31Q/YdyQ9qW4GoR+yGs3CMoiixjyr+IPEOhqqXnIQI5B7JdzShPHZle0a/uYb8gsAprw0U2fjT01KLjpOTm0eiCKM65PNI5uKQgq/8BW45LdPCMYoSX6jiDwJfO35uXvFo3ikwKj0tlRU/7eXVZT8TTLUD7+jft1bmFB3HMxXU6Rhuyt1f4BbguGzSkI5MGtJRo3wVJU5QxR8ETs5Pb5wcoUs27g5K6XvvY/byba7z/r2P4U+5Bwrcclu2NKOfKnpFiRNU8QdBME7OYDN1+sNN6fvu059yL4ujVp24ihJf6Dz+IAjGyem7jts2iSLUr5XkuiyYY/hT7v4Ct7QOgKIooIo/KIKJ1u17ZqOA2yQnJXJDz+Y4Dew9y9yO4+1s9afA/QVujR7QjqTEkg+XpERRJ66ixBmq+IPAO1rXjXlrdpZIeQCUyrk/tFsqb63MKeEcBqhfK4lJQzoyMb1jieN43gB88/X7U+4Bc/37PnRCcUQoilIlUBt/kHjm6rfOmO+oK3Pz8osUek5uHqPnrqFOzWolpny6OYkP5BXn8feNCcjOzubeYX1KyQLuUblugVtTFm4iv7Ck9PmFRiN0FSXOUMUfIsFG5uYXmqIgLs+sG7eZQQXGMPrNNYD/XPnlLayiEbqKooCaekKmrNk58/IL8Oe7zS8wTHh/g+vycCRSU+euoiigij9knGzobrN0fAkwW9NvmodwFFbxdUAHalcUpWqipp4y4GtDD0eGTl88Zp3rmx/kkczFrualUMw0SzbuDqldUZSqiY74w4DvW0B58TbrgGXWcduvt5kmUDEVt4dETm6eFl9RlDhCR/xhwvstoLefEbo/ale3fAdOZh2DlcnT21rkPbc/mOLq/hzTWoxdUeIHHfHbjMtaR5uxC2iVMZ82YxcwLmtd4I1cKKsDOCkxgaxVOa7K2YDr/PxgfACB5ArVZ+B5w1iXs1/fGBSlEhH3I/6sVTk88s46Dh8vVpoFxjBr2c8ATEzvGPI+vZWxx0wTTJxUbl5+iUyavqSmJLM0o5/jsmCmavrKFcp+fCnxhtG86rwxlHfKrKJUBuJ6xO9RtN5K35vZy7eVed/paakszejH1syBTLuuS4mRekqye64eNwdxoPz4wU7V9MjlFoUc7NTOcMwyijW09rASL1Rtxb99O0ycCAcOOC7etf+o35k4gbJllpUrOjctZXKRAMfr2qKe35FnKMXVy7K+L1UxGKwqPswUxYmqbep5+234y1+sv8REWL0aOnQoWny8oBB/z75A2TKDqXTla1LJyc1jzpfbaHVyLTb/erioPdAjZukPexmXtc7V9ORrxvG8PXhX93JbP5BZw+k8q2K5xqr4MFMUJ6q24h850hr1T5kCBQXQ0Vaas2bBsGFUT/T/wnNDz+auywJVuho9d02pvDge8gtNCaUfLLOXb/Prc/Ao7UCze7zXD2S/djtPT8K5qlSusSo+zBTFiapt6klIgH/8wwqZzcoqbr/xRhCh/yvPUcdhkosAN/Zq4VfJ+jMLjH9vg6vSLw/BmJ7Cba5w29+SjbtLZBItlQW0ElJe85eiVBaq9ojfm8GDrQfA99/DOefAvn20/mA+6z+Yz4+NW3DttY9TPfXUoGdx+DMLRCrTcSDTk+f4obSXZ3+eNwanDKKVkVDMX4pSmYkfxe/h9NNh717Iy2N3//40+uwzWv/6M19Nv8laft6nQOAfuj+zQFmCt4LBn+kp0PHLaq6IN/NHMOYvRansVG1Tjz+Sk9nwt7+R9fV2/m/gPcXt558PIjB1qt+sav7MAsEmbQuV7i0buC7zBFO5pXc4fOxEmaYlqvlDUaoe8av4KZ7HP63D5bQaM4+hw/5RvPDhhy0fwaBBcORIqW39Vboa2KlpROR98I3VjsrbN7ePW6GYssxJD1jRS1GUSkf8mXq8sObxFz/7VjY7m1Zj5tEhMY95746HDRvg/fehdm2oVw9WrLBMRTbeZgHPlMcH5qwmIQhbfFkoNPDAnNWMmrOaVC/7s1tlL188Tt5QlbaaPxSlahHXI35rHn9pNhQkw/r1kJ8Pd99tNe7fD23bWmYg7xlClI74LE/gV1KC/4eGZ8/eUaWhOG51TrqiKBFT/CJSU0S+FJE1IrJBRCbY7Q1EZJGIbLb/14+UDIFwm8df5LisVg2eecay9b/6avEKV11lPQAefhgKC4MecTtRv1ZSCTPKlGs6u6Z08MUzgg/F0VpVnbKKogRPJEf8x4B+xpjOQBfgUhHpBWQAHxlj2gIf2d+jQpN6NYN3XP7+99YDYMMGqF7daps6FRITeebpu6iXd7BMMniqbk27rgtLM/qRnpbK+EHtA478PeTk5nH42AmSEgOvr05ZRVEggorfWByyvybZfwYYDLxst78MpEdKhkCkJCeF7rg8+2w4dszK/3PxxQB03rmZNU/fwNbJV9Bx5+aQ5fBNBpaelsqUazpTKym4y5Oblw+GotlETo+A+rWSSp1boMItiqJUTSLq3BWRRGAlcDrwT2PMchFpYozZCWCM2SkijSMpQyDK7LisWxcWLSLr6+38+MCfeeCT/wDw/isPAPDnAX/ktS6XBb27vPwCHnpjTQmZrGjb40Ftn19oqFW9GrWqV3Ocd1+rejW/5SKrSlplRVECIyZCGShLHEQkBXgHuBf4zBiT4rVsnzGmlJ1fRO4A7gBo0qRJt9dffz3sch06dIg6deqUax+bfjlY5CRuvn4N6ZmPlVz+uwv43x33UlgtOLt9ggip9a3Uzety9tMkGXaFyR/bMbWeo9zeVE9MoN0pdUPabzj6sSKoDHJWBhmhcsipMkLfvn1XGmO6+7ZXiOIHEJHHgMPA7UAfe7TfFMg2xvg1PHfv3t2sWLGi3DKUyjLZuQBOObtcIfqtM+aXmjff9MBu5r76J5odKC5ivrNOQ4beNIUdJwV+wfFM1XzojTWM6pDP1HXBvZjVr5XEgbwTjrOKfIu4OMkNlpnox8yBQR3PQ3Z2Nn369Alpm2hQGeSsDDJC5ZBTZQQRcVT8kZzV08ge6SMiycDFwEbgPWC4vdpw4N1IyeCNU5GN7XvzGP3mmnIV3nCaJbPzpEacf/dLtH34Hd5q3xeApof28Pm/bmXr5Cs4/8ev/e7TI0co00KTEoVDR52VPkDfMxsFlNtfe7RQP4SihJ9IzuppCiwRkbXAV8AiY8w8IBO4REQ2A5fY3yOOcwFzQ35BSUUZaiZLt5QGw3q1oHHDk3j4iodo/5cPyBgwsmj5f954lK2Tr2DUZ686poXwV4nLidSUZGpXr+Y3I+iSjbtLfK8MqRi0IpaiRIaIOXeNMWuBNIf2PcBFkTquG5EKcgo2o2PWqo6c1WMgbbZtYt7LowAYtXQ2o5bO5vMWnbhjyDgO1ahFclJiSEpfgKUZ/WidMT+kc0pPS2XFT3uZvXwbBcaQKMLQbrEVoesvxXQsyakolY24SdkQStbMUM0dwcwMKn5AVKfVmHmcdPQQM+c+Rtcdm/jdz2tZ/9S1nJAEPp7zIY/+UD1oWQ3QO3Mx9ZKTrGmdLvieU9aqHN5amVNkGiowhrdW5tC9ZYOYUapaEUtRIkPcpGxwMm0IUirwKZLmDk+h8xt7teBAzToMuWkqrf/0Hs/2HApANVPIRddezNKxF3HVN0tKbe8WpJWTm8fBYydcg77EXqd35mLGZa2jd+ZiRs1Z7TiaHjVndVht6eWx0VcWP4SiVDbiRvE7ZZls1iCZKVd3rvDMkxPTO3JjrxYkimAkgSl9b2XcO2vh3WI/97T3p7J18hX0ffEZEgstBX1Oq/qu6RwKCg3VqyUUVcTyFG0RSub3mbXs54BvE+GypZfXRl8Z/BCKUhmJG1MPlDbJZGdn0ydKmScnpnd0KO3YEYyh710v8tYrD9Ig7wAdlnzID0s+5PsGzRj2+0nUTj3V1aRz+HgBG/5aPGXTk5+/LOTlFzD+vQ3lmupaXhu9VsRSlMgQV4o/FikVWzCgHT+mnELX+16jRv4xFnwyhTYrlnH63u0st6uEXfP7TL5q3iHgPstbCSw3L7/oIZOTm8fouWuY8P4Gco/kB6WEw2Gj15TQihJ+VPGXASdlXRbl5JY2wWOeOZZUgwWjMpi6rhq3fvUujy5+AYC5r1l57Sb2vZV/97AzhQJJCdBlwod+nbzlIb/QFCWV807xkOKyfryVbVSUykLc2PjDRTjnlruZQmpVTyy17owegxn3zlo+mfFOUdu4JTPY+o8reeGtv1Iz/yj5hURM6TsRKOYhHDZ6DeBSlPCjij9E/NmtQ8XN5HHkeEGR8xcsR+2NvVowMb0jF9ySTqsx8+g+8j9sOrkFAJd8/yUbn7yatdOupdXe8ivG1JTkoOsG+zPbpKelMrRbaonzCCVWQAO4FCUyqOIPkXDOLXczeaTUSmJiekd+mHQ5HVPr8cOky0s4glNTkvmtdn0G3PYMbUa/yytpVm6dk44fIfuFO3l84XTa/LYtZHk8LM3ox2NXti81Wg/lHMA9ViBYxR3Oh6yiKMX4Vfwi0kxEzvP6/qCIPGr/ne5v26pKOOeWjx7QznFu/qGjJ/wqR28TSkFCIo/2v5vWY+Zx75WjWXR6T65e9xEfvXg3M994jAu2rHRMC+GGZ3TuO/01JTkp5JiH8ipuDeBSlMgQyLk7BfCqOcidwPNALWACMCxCcpWbcVnrSqQjuKFnc4fpk6EzekC7Eg5ZCKwAvZ3BKbWSMMayxSeKOCZVyy80/PnttUXZOW8bu4Abejane8sGjrN1ROB3pzXgf0n9eP/sC2lwZD+/X/0BN389n1fmPsZ3DVvwUvdBvN2+L8eSavg9vwJjaDN2AQXGlCjo7nse3k7t7Gzn4jNlVdye47g9rtQ5rCjlI5Dib2cnVvNwxBgzFUBEPo2cWOVjXNY6Zi37ueh7gTFF38ur/EOdW+47c8czK8YjlxtH8gtLrDdr2c+8tuxnnMrDGwNf/riP685pzuzl29hbqx7Tf3c9z58zlIEbP+W2Fe8yaeF0Rn/yCq91uZRX0gbya92Grsf2yOVbnCXUqZVlmdXj21++aACXopSfQIq/ps937+Rq7pojysxe7mzfnr18W1hG/aEowPIUYvfFSel7yC80LNm4m6nXdi5SnMerJfFOh378t8vFPN/qCIVPPcU9X8zlzuVvMe/M85nRfTDrmrb1e8zyBHKV5e3IX3/5voEoilI2Ain+gyJyhjHmOwBjzF4AETkTOOR3yyjiNpIOJb99uKhIe/SO3DzXN5Lz01LJ6taLi1/4L8O+ep9r137IVd9k82Wzs5nRfTCL2vaiIMHZmesbyBVsicayRN4G6q8H5qxmysJN+gBQlHIQSPE/BswTkccBT/WQbsCfgfsjKVh5cLOdexyXFUkoWUHBGtXu2J8Xij+2xLHA/Y0kPS2VsQ1P5W8X3c6084Zx7dpFjFj5Hs9mTWL7SY15qduVvNG5Pwdr1PZ7nFDTLoTDPORJNAdaH1hRyovfWT3GmP8CQ7BMPDPtv77AEGPMB5EWrqzc0LN5SO2RxCmIyY36tZIYPaAdw3q2KNOxjhx3nw2UtSqHLhM+JM/2HRyqUYsZPQbT547nufOqP5NTrzF/WfIiXzwzgsf+9xwt9+3we6xwvcn4Bmj1PbORY3/5Pgd1WqeilJ1gUjbsAp4GvjfG5EZWnPDgseNHYlZPqPiaO7xn9XhnzgTL8Tv27XUM7ZZKAv5t+k54tvc+Lvh3mBYmJLLwjN+x8Izf0f6X77l1xbsMW/UBw1fO46PTz+HFHoNZ1rxjUVoID+GYWeOUsuKtlTkM7ZbKko27ycnNK9VH3ui0TkUpG34Vv4j8Afg78APQWkTuMMa8VyGSlRPn7JfhIdRcPW7mDqfsmXn5Bcxevi1kpe+9va8ZJlgH84ZTTuehKx4is88t3PT1fIat/oBLvl/ON41bM6P7YN4760KOV0sK28wat3n+SzbuZmlGv4DZRXVap6KUjUAj/lFAe2PMbhE5DWtOf6VQ/JHCLbEahG5vdhuxltcJ7bvfUEfGu+s04MkLbuKf517L4G8+5rYVWTyx4CnGZM9kVtrltJvwJy4Pg2090Dx/f3J7P3zClTRPUeKFQCkbjhtjdgMYY7YA/qN/4oBwphFwG7H6c0KnpiS7FmNx229ZR8bHkmrwRuf+DLj1nwy7biLrTjmdB5a+xkUDujO3U3+mT3uzTPsNJJen3V//eArmaD4fRQmdQIq/mYg87flz+B53hDONgFv2ytMa1XJcv3ebBizN6Mf4Qf7z6PQ9sxFQ7Dj12MrLjAhLW3Xh1mvG0+8PzzKn0wAGbvyEkQ9ew5aO59Dw88+hMHTjlEdOt3a3/pl6becSvhPN56MooRFI8Y8GVnr9+X6PO8KZq8epHOSkIR3ZsvuI4/rLtuwrsZ3bm8GSjbtLjITB3UEaKlsaNuPR/nfT656XmdRnBDV/+pGOjzzCtsYtWDNmIhwKPrxjycbdftvd+sfbjKP5fBQldPza+I0xL1eUIJWFskSj+sPJ8TtqzmrHdb1t/+lpqTzgst6O3DxXh66/WTKhcKBmHZ7reTUvdk9n+tHPaPz2+3T9x1/If2YKSXfdASNHQsuWfvcRjNIOFAegxV4UJXQCzerx68g1xgwKrzixT0XUgQ02AM2f0nNTqgZr5FzesoweTiRWY3Ov87irdh/Scjbyx7XzuHjaNHjySRgyhE8G3sjYnXXYsf9oqb6ql5zkWDimXgAfhjfhfhArSjwQaFbPucA2YDawHMpnKo51gp0dEuk6sDf0bF4iyZyHXqfVp3fm4iL5+p7ZiLdW5pRQep4IV7eHR22H6l5OJCYIBYWhvRusSj2T21PP5Md5r8D06Rz/13Nc8Oab/LNpW2Z0T2dBu94lZkC5+bBDCbAO5kHsua7XNz/II5mLddaPEvcEUvynAJcANwC/B+YDs40xGyItWEUTzmma5cU7AA2skX6v0+rz9c/7gw52cpsSevh4AYeP+x/tp6Yk06phMkt/2Buy7KemJEPz5jB5MpfVvoBzP5vPLSvf4+n3pzB2yQz+03Ugz5FHetpV5B4pPdoHXNvd8PcgLnFdm2u6B0WBwCkbCowx/zXGDAd6Ad8D2SJyb4VIV4HE2uwQ3wpcW/fk+Q12Sk1JLpft3lPecWvmQJZm9CtyJIeCr4llyxGY1XUgF//hX4y4+jE2n9yCP33yCm9n3gB33cW5x3913E847fOxdl0VJRYImLJBRGoAA7FG/a2w0je8HVmxKp5Ynx1SnmCnYPCURezesgHpaakhB5E5pUz2+CCMJJDdpgfZbXpwxu6tjFy3gEEzZ/Lasef4+LRuvNhtEJ+07goiJCVIWO3zsX5dFSUaBCq9+DLwOdAVmGCM6WGM+ZsxpspFx4Rzmmao+CYq8w4+ys3Lp3fm4oDVqMIhp/dIOFg7u7/1nEpL/nhKawqfex62beObe0Zz1q4tvDL3MRa9eA83rP4vicfyGDVndal+KCvRvK6KEqsEmsd/E3AGVgrmz0XkgP13UEQORF68isMtWCjSs0P8RZ5mrcohZ1+e6wwcb/mc5E9MCN0XvyM3z1K4QQ74PS8GrhGzvvvxfG/UiNubX0rvu2fwwMAHOVatOpMWTufzf93Kw5+8wolt28ISgRut66oosUygefyBHgxVhoqYpulEIBv09c2dNbCvacVJ/sPHTjhOl/THqSnJfuvd+sM3QdyUhZvI95kZlF9oitbZkZuHSbSqhL3Tvi/nbN/ArSveLVElbO6vQ5nS+uwyXxNvWeCgVvFSFIJLyxw3RHqaphMBbdAOJQQEWJrRr1S7r/ytM+aHJItnJOwWGBYM3ucT6NxKxCGI8GXzDnzZvAPNc39hxMriKmFfpZ7Niz2sKmGj564BQpuR4+mX7Oxs7h3Wp2wnpihViLgZ0ccq/mzQ5bVPB7OexxjknQ6hPPZv720Dyd+qofPybSmn8LeLbufce15mwkW30+TQHp7NmsTHz93O8GVv8cQbX5ZZPkVRVPFHndED2pHkY4v3zGwZPaAdCT7e01Ds025J0Dy7rF8riXrJSaWi8pycssHgK5uTfd0TYNY7czFfbPEfJ3CoRi1e6m5VCbvjqkfYXq8x45bM4L9PDoP77oPvvw9ZRkVRVPHHBr461v6enpZKav1kv0nK3MhalcNrDtG/YDlkkxKFQ0ctH4CvUzk9LZXrepS2MSUmCLWSim+Z5KQE6tey0is4yeadZM1zWh6Lf05uHv4Cg1O93hYKExL58Ixzuf73mQwc/hQLzzgXnn0WzjgDBg+GJUsoU5FiRYlTVPFHmSkLN5Ff4OMALTBFzt2U5CSWZvTjRzuwKljb9vj3Nvit4pVfYEo5Xr2dyk6ZMwsKDfVr12Br5kC2Zg5k0pBO1Kru30204qe9/LL/KBBacrilGf2KHirebDjldCZeMwZ++gnGjYPPP4d+/SAtDWbOhGPHQjiKosQnqvijTKQCjEKdzeN7XLcppJ5237TPnjeGcVnrimIS2j/6X2Yt+7nMFcUeu7J9KZNTUqLw2JXtoWlT+Otf4eef4d//hoICuOUWaNECJkyAXbvKdExFiQcipvhFpLmILBGRb0Vkg4jcb7c3EJFFIrLZ/l8/UjJUBmItwMhzXLdc/552t2mory77uSgm4fDxwHV+/R0jPS2VKVd3LmHqmnJ155JvPcnJcNttsHYtLFoEPXrA+PHWA+DWW2HNmjLJECz+gu8UJVaJ5HTOE8BDxpivRaQusFJEFgEjgI+MMZkikgFkAGMiKEdME6m0wrWrJ5ZJ8e47fIysVTmuo3RPu7+0z+XFt+5AUOYtEbj4YrIansWcdv/j8iVzuXrWbJJfegn69oUHHoDatcMgXTGxlNhPUUIhYiN+Y8xOY8zX9ueDwLdAKjAY8BR4eRlIj5QMlYFgqkyVhaTEsl3aI/mFjH17nWv6Zo/dvVaQ6Z3dSE1JpkY1ZxmDTR3ti0cRf5F0Mn/pfzc975nJlItu48i3m2DQIM65+WaYPj2kKmH+0ARwSmWlQmz8ItIKSMPK6d/EGLMTrIcD0LgiZIhl0tNSy+TA9UdZbfxgKa8jLm8LnsG42/JguLFXC5Zm9OP4CWf3c1n37auID9Sswz+7X8WlI1+COXPIr1cP7r0XmjWDhx+2HMTlwO2tJ8eT9kJRYhQxEZ4GJyJ1gI+Bx40xb4tIrjEmxWv5PmNMKTu/iNwB3AHQpEmTbq+//nrYZTt06BB16tQJ+37DSVllXJ9zABO2Srsl6Zhaj3U5+4u+N0mGXUH6ouvUqEbrky2Ti/c+nI4RKv72Vz0xgfrVC0na8B09PlpA6qefALD7/PPZPnQoBzp0CK0CDLDpl4McL3B+eCWIkFo/mRS7mlhuXj679h/leEEh1RMTaFKvZtEybyrDPQmVQ06VEfr27bvSGNPdtz2iil9EkoB5wEJjzJN22yagjzFmp4g0BbKNMX4N2t27dzcrVqwIu3zZ2dn06dMn7PsNJ2WVsVWI6Rp88Vf+sdCUfKQ81PEEU9cF5y5KTkosUTzGjbLk1Omdudhxn574AY+cyUmJPPW7hgz4+C14/nnYZ9ceuOIKmDMHatUK6ni+Nn6nc1ia0c9xveSkREeTXmW4J6FyyKkygog4Kv5IzuoR4EXgW4/St3kPGG5/Hg68GykZ4hmnOfDBkpyUSK/TnCdbFZjg3yOcxs/eM3/84Zrt0w9ukcK+8ublF/DXNQchMxO2bYNnnrEWzJtnOYBPOgm++y7g8Tz+GTc8piD1BSixRiRt/L2x0jr3E5HV9t/lQCZwiYhsxirrmBlBGeKW8rzITRrSka17yh5H4HFSu4kQrGihKkcnR7nbsYrs87Vrw913w4kT8Mc/Wm0HD0K7dpbp523/NYfS01JLRBl745kaq8VglFgjkrN6PjPGiDGmkzGmi/23wBizxxhzkTGmrf0/9MKuSkD2l8O560mZXFY8Tmo3hRgKocrh6ygPpJSLSEy0ZvwYA97+pKFDrQfAgw9CobM9P1DO/2BiNTzxAOty9ms8gBJxNHK3ilLWADBP8FQ4AsjcTC+hEIwc/oKoylSI5brrrAfAN99AjRpW27RpkJjIxtQzmL9kfYlje0w5nr7znZIbSAa3KGhV/kqkUMVfiQglStRJ2QRTkOuGns2LtvfNGhoMbRsXB0mlp6XSrH7NEssb161eSi43khID19/1V8HMI4N3ojinOAnXfj3rLLK++IFuf3qbT1qlAXDmjs0M7NcRRMieNb+Ewi4wpkihuyWrc4rVUB+AUtFoIZZKQqhRok4VuVo1TGbpD+6WtQSge8sGxQ2h630a161R9HnYC1+w+dfDJZbvOnicto1rc+R4YUAHbzDOAH9K07s6mVshlkD9OmXhJvZIdW6+7m9gDPcsm8ufPnkFgD43XcG3wLj+9zAr7XLHY3vwF4EcKC9SuPC8nVRkhTklNtERfyUhHKPCz/0ofYBCKNqfU9bQYPB+sLg9ZDb/epilGf0CPlc8ZRr9UR7HadaqHB56Y43ffi2xHxGeOfdaWo2Zx7DrJhY1T/zwGbZOvoKn3/sH1U/kk5Obx7isdaWO5fa2FigvUjgI9GakxBeq+CsJoSo4px96MGo8UHbOcBKKPG6UNcmdp3/cchJ5l4d0YmuXc+k96SN63T2Tn+s1AWDQt5/w3dSrWP7Pm1mycEWR8g+kdAPlRQoHak5SvFHFX0kIVcE5/dBDOU44R5tuBHOMQAo8GOet04yZQP3jOa6//Y8e0I79DZtwwV0v0vbhd3izw0UANDm0l6XP3srEqzrBf/8bUOm6zTwKx6woDzqlVPFGFX8lIdTZKWX5QXvvr6yjTW/nbu82DRzX8bQHOkYwWUoDOU7dZswEeqPxlK30t3/vAK78xCQeHvgArcbMY/Rl9xXv6LLLWDr2Ih74dFap4ArPNXIrkendXt70z7GW/luJLurcrSQ4OWv9OedOTUl2VG61qydyNL+QAmMQrCybR44XlNpfqsv2gThyvHiu+6u3n8uwF74oYevv3aYBr95+bsD9hJKywZ/j1G207ZaSwoN3BTJ/+09PS2XUnNUl2uZ26s/cTv1pv+sH5s+8H4D7P3+d+z9/nWXNO3D70L9wsEbtIqXrVO3Muz0c6Z8jlf5bqZyo4q9EBJ2bHvcf+uNXBZfy2W17z2i3dcZ8Rxu975tGMEreiaUZ/YJe199sFbc3H8/USzdzT6A3Ju9jurGhSRswhvmffEPTYdfQdfs39Nq2nnVPXQfA4jmL/B4rmJQPwd4PoQ4cyorOHKocqOKvopT3hx5oe7c3ilBMB/4SwQVLoNGwm5yeN4qH3ljjKENKrSR6Zy52PPdAydm8jwEw8IKzyXrvQ+774FtueP95/rhsLgD9rrsEroNbrslgxmnnldo+3CkfQhk4lAUtTFN5UMVfhSnvD93f9qMHtOPBOatLFHRPsNu9GZe1jtnLt1FgDIki3NCzORPTLbv4DT2bM2vZz6X27QkiC4ZAo2F/Jg7PufkuT0oUDh09wb4jVtoLp7n9gZR+UkLJ4LOivvzzxVbDvHlw5ZUAPDo3k0eB2Z36s+fsO/H8LL1TPpT3IRsM5R2th+PNRCkmkm9P6txVysSKn/bim7mm0G73MC5rXYli6wXGMGvZz0XTHLu3bFDqBiwVRBaAQKPhQJG7Ts7b2tWrkV9Y8i3AdW6/G4FeWq64Aozhw/eW8lstq/bADWs/ZOTwoSx+/g4aHdrL3BXWQ7FMaSdCJBzz/CsqEC0eiHTchY74lTIxe/k213bPiD7QOlMWbnJ8eIQyQgxmNOwvctd7uYfWLrUMvOf2B1Jm+QWGUXNWM2XhpiIF7TR6m7DhKDn3vkqNE8eZ9v4TXP7d55y2bwdf/fNma0dnZJN+4YWu24eLcIzWw2W6Ux9B5N+eVPErZSKYoKOyFmwPxXbd98xGjuYitymSwRDoYeJkPnIjJzeP0W+uAUPRW4S36chzrseqVeeeq/7MQx1PsOelBYz/6HlrB3aRjvTJk0kfMzrkKmHBEo7RenkD0dRHUEyk4y7U1KOUiWDSDARaJxxzywNNhSwLgUwrvuahQCPa/ALjajpyOteZ3QfRasw8htw4pbhxzBhISLBMRIcPl9qmvIQjbUR5A9E0uriYSMddqOKPAcZlraPN2AW0yphPm7ELSuV5iUXcHLDe7YHWccoA6usUDUQ4Rka+wVGA36AwKJn3f+q1nYPOOOor4+gB7VyzpiZf0NsK+vr1V+jUyWqcPx/q1Am6Spi/8/S2F4cjbUR5fRHlzbtUngC3WCPSfh1V/FEmkAM0VuneskEphZUgJR2zE9M7cmOvFkWjxkQRbuzVosgHAJR2goZoySjvyMjNiQaUKOjiz9Tg60AOllrVE0lPS6VOdeeHxve/HrI+NGoEa9ZYVcLuvddqC6FKmL/z9ChIt1KdoZTwDBRFHYgUl2O5tXtwO7fcchQjijbl7ctAqI0/ygTjJI1FpizchI/1gkJT2jE7Mb2j63k4ZQDNLzAhObDKG5EaLieax0Ec7Bx/gCPHrXUOHHNed9fB47TOmF/Syfn009bfG29YBWPAqhIGMGoUTJ1qmYRCPE+3gX2omTvKM4W4rDK4nduu/ZVX8UNk4y50xB9lKiIzYyQIh4klHPso78go3E40J3ncCOYKu07lu/ba4iphyfYxnnrKKiHZtSvs2VNiP4HO061UZ3lKeIZKWWVwO7fjBc6lMhUd8UedcEyBiwbhCCoKV2BSeUZGZZHBacohuE+3bDN2geM1FijyKQQiL7+AR95ZV/o8zzoLjhyBQ4fY1f8KmnzxMaxaBSefbC1fvhzOOSfgeQbbD56AvFEd8rlt7IISAXnlpaz3g9t21RMjN64NNO000PJI9mMw6Ig/ygTjJI1FwuF8qojApHDL4GRPHj13DaPfXONqP3e7lgkJEtJ0ycPHC1x9P1mb99Pnogxa/el9/nHBzcULevYEEcb8+JHjdp5pr8H0Q6T9UWW9H9y2a1KvpssW5SOQvyTQ8ljw66nijzJBOUBjkGBq2Yayj0g4sCIhg5M9Ob/QlPJVeE9DdLrGtasnUuDrJAkCN59QkVxeVcJuuP7xouWDnv87Wydfwf97dzLVTxSbTjzTXoPpB3/+qHBQ1vvBbbuU5OAd06EQaNppoOWR7sdgUFNPDODPARrLBIqIDWUf0SQUGcrqw/C9xm7RwYEIVDHMmy9adqb1mHn8eG8XfurQnZa5v3Dlxk+5cuOn7KrTgCE3PsEOGhetH6gfKsIfVdb7wWm77OzN4RKrBIH8JYGWx4JfT0f8ihICofowwrEfb9x8P36ntaam8vsxr3L6w1nM7WAlifNUCftx8hXw3/+W69ix7o8KN4GmEAdaHgv9qCN+JW7xOOC87ey+GUR9cZo+mpQgFEIJ001SopSyj3tnKe11Wn32Hj4ecnnMAmPonbm4lEM5pVYSSQlSIkLY2z4+ekA7yxcxcBSjB47imrWLmPLB/1krXnYZAEuuuZM/nHYlBS79EI5sqoGoDLl6PH3p3dfegYeBphhXRD8GQhW/Epe4zbf3ONoAR+XvVKeg75mNmPPlNkrsyeut3ePM8z7G0h/20rtNA7buyXN18J5UI5HDxwtLmQA8DmWEIt/CviP5JCUKKclJ7M/Ld1aaXgPKuZ0uISutP893rEbfGwYA0Hfuc/zAcyxv3oE/DP1LqX74cfchRznd2kOlUuXq8RN4GKiWhW8Sw0CDjUigil+JSwLl1PcXQOdrT+6dubhULp78wuJANDen3bIt+/hh0uW0crH3HzhWwNbMgfTOXFzq4eB7PLAeArVrVGP1Y/1LLXMLlhu3tRpLjaHLA2/wwtwJ9Mj5hp5eVcIuv3U62P3gXULTG7f2UKks+fyDCTwM5Kvw+Hyys7P5oYz+sfKgNn4lLgnkpA3F0RZpZ14kg+I87bk1anPNjf+g1Z/eZ/q51xYtXzBjpJUW4pVXgpahrEQ6I2W4qCxy+kMVvxKXBHKuhuJoi7QzLxRHcIKIY6Iyt30YrDeWIlFEeOKCm2k1Zh63XP1Y8YrDh7N18hVkfvA01QpOuB6/PAkHy5N3qSKTtIUjc6ZH3nU5+6OSVE4VvxKXOAX9eBOKoy1Q4FGgIL22jWs7Lve0O+0/KUFISiz94CgwxjFoyN/55uTmOebGW9KmB+PeWQtbtliJ4oDr137I90+kc+PD99DokGXi6d3GSsxX3sCksgZwVXSStvIGHnrLC+GvrhUMqviVuMQto2ZZAugCBR4FCtJb9GCfUsq/bePaLHqwj+v+p1zTmSlXd/ZbE8A7aChQBtFCA7WSEpxlbN3aSg2dl8fyrn0BqP+LVSVs6+QrePWM40D5A5PKGsDlnqTtaFDHDZXyBh7GQt0Bde4qcUs4g8eCdea54VHy2dnZbA2iPKR3OwQuF+m9j9YZ8x0TxOXlF/Jj5kBXGalZk54rrdxCm++7j7b/7/9Z7XaVsD/0GcFz5wwtVSUsFH9JWa5JNJK0lefeiQUfgY74FaUKEIrdORw26pwhQ6zsoF98UdQ2NnsmW/9xJTPmjif5ePFoO9KBSW5yRzJJW3mIdHWtYIjNnlGUOKO8zr5Q7M5hTY7Xq1dRlbCdrazt+21ZwbfTrmb9tGtovTcn4oFJ4UjS5u0cTvvrh3SZ8GHEHMWxkJxQFb+iRJlwOPtCsTtHJDleo0Ysf/sj2o55j5e6XQlAneN5LHnhTiZe1Qneeqvs+w5AeZO0+TqH9x3JJzcv370WQhjlhegkJ1Qbv6JEmXBXAQv3usEyZeEm8klgwsV3MuHiOxn47af8873J1sKrr7b++6kSVh7Kk6QtUDBfJILIwpHgsDzoiF9RokwsOPvCga+88886n1Zj5nHRH/4FtWpZjd5Vwn77reKFdCCYfq5s1yIQEVP8IjJDRH4VkfVebQ1EZJGIbLb/14/U8RWlshALzr5w4Cbv0TZnwOHDVoF4OyEcq1ZZsQEi8OWXFShlaYLp58p2LQIRyRH/TOBSn7YM4CNjTFvgI/u7osQ1seDsCwcBz6NOHViwAAoLYdKk4pXsKmE880xY5AjVUR4omM/pWlRkpHAkiJjiN8Z8AvhmbxoMvGx/fhlIj9TxFaWyEAvOvnAQtNNYBDIyrNlAi71qDv/xj9ay666DY8fKJENZHOW+ctevlURKcpLrOQQqrVgZqGjnbhNjzE4AY8xOEWkcaANFiQei7ewLFyE7jfv2tR4AOTlw4YXwww/wxhvW3ymnwLJl0LJl0Lsrq6M8FLkrSxZRf4iJYLkvEWkFzDPGdLC/5xpjUryW7zPGONr5ReQO4A6AJk2adHv99dfDLt+hQ4eoU6dO2PcbTlTG8FEZ5KwMMkLk5JQTJzhj6lSa+lQFW5uZyd6ePQNuvy5nf9HnJsmwy8sn2zG1Xlhk9D6GL6EeI9LXu2/fviuNMd192yta8W8C+tij/aZAtjEmoCGze/fuZsWKFWGXLzs7mz52uHmsojKGj8ogZ2WQESpIzpdegltvLdE0s++NpDwxifSuzRw38a5d8FDHE0xdZxk1UlOSWZrRLyxiOdVHKOsxIt2PIuKo+Ct6Oud7wHD783Dg3Qo+vqIolYVbbiHr6+2k3/7PoqYRS2aR3q05v3XrBftLj7wrwlFeFZzxkZzOORv4AmgnIttF5DYgE7hERDYDl9jfFUVRHJmycBOrG7Sk1Zh5dLr/db5sdjYAJ3+9HFJSLGfw2rVF61eEozwikc8VTMScu8aYG1wWXRSpYyqKUrXwDpw6ULMO1w77BxjDw5/OYuQXc6wFnTtb/2fOhOHDK8RRHonI54pEI3cVRYlZHAOnRJg96A5rNtC8ecXtI0ZYbwB/+APkR6YIS1VBFb+iKDFLQHv6wIHWA2DLFmjSxGp78UWoXp1zbrwRdu6sYIkrB6r4FUWJWYK2p7duDb/8Anl5cK1VLL5WTg6ceqr1FvDxxxUvfAyj2TkVRYlpQrKn16wJc+bAnDlsvv9+2j79tNXumTKZmQl/+lOpKmHxho74FUWpkuRcdVWpKmFkZFgpoQcOtBLHxSmq+BVFqdp4VQmjSxerbcECK2lcnTrw3XdRFS8aqOJXFCU+aNTISgd94gTcf7/VdvgwtGtnmX7efDO68lUgqvgVRYkvEhOtgjDGWMngPFxzjfUAGDUKCtwrclUFVPErihK/XHON9QDYuBFq17ba/u//oFq1mKoSFm5U8SuKorRrB4cOWX8xWCUs3KjiVxRF8VC7dnGVsEyvVGJhrhIWbVTxK4qi+CICY8ZEpEpYLKCKX1EUxR/eVcLatrXa3njDChY75RTYujWq4pUFVfyKoijBcOqp1pz/48fhttustl27rHQRIpaJqJKgil9RFCUUkpLg3/+23gJmzixuHzjQegCMG2cti2FU8SuKopSV4cMtJb96dXHb449baSEuuMCxSlgsoIpfURSlvHTubD0A9u2D88+32j791LFKWCygil9RFCVcpKTAJ59Y00EfeaS4vXNn6wHw8stRE80bVfyKoijhRgQmTrTeArydvp4qYbfdFtUqYar4FUVRIslll1kPgB9/tKZ/AsyYAdWr03PYMNixo8JFUsWvKIpSEbRqZZWCzMuzAsCA5B07IDXVegvIzq4wUVTxK4qiVCQ1a8Lrr4MxfHfffcXtfftaD4DMzIhPB1XFryiKEiV2eKqELVtW3Dh2rDUd9PLLI1YlTBW/oihKtOnZ03oA7N5tpYMG+OADq0LYL7+E/XBabF1RFCVWOPlkWLnSKgTz8MPw1VfFdQLCiCp+RVGUWCMxEaZNi9ju1dSjKIoSZ6jiVxRFiTNU8SuKosQZqvgVRVHiDFX8iqIocYYqfkVRlDhDFb+iKEqcoYpfURQlzhAT47UhAURkN/BTBHZ9MvBbBPYbTlTG8FEZ5KwMMkLlkFNlhJbGmEa+jZVC8UcKEVlhjOkebTn8oTKGj8ogZ2WQESqHnCqjO2rqURRFiTNU8SuKosQZ8a74n4+2AEGgMoaPyiBnZZARKoecKqMLcW3jVxRFiUfifcSvKIoSd6jiVxRFiTPiRvGLyFYRWSciq0Vkhd3WQEQWichm+3/9KMvYzpbP83dAREaJyHgRyfFqv7yC5ZohIr+KyHqvNte+E5GxIvK9iGwSkQFRlHGKiGwUkbUi8o6IpNjtrUQkz6s/n60IGf3I6Xp9Y6gv53jJt1VEVtvtUelLEWkuIktE5FsR2SAi99vtMXNf+pEx+velMSYu/oCtwMk+bf8AMuzPGcDkaMvpJVsi8AvQEhgPPBxFWS4AugLrA/UdcDawBqgBtAZ+ABKjJGN/oJr9ebKXjK2814uBvnS8vrHUlz7LpwKPRrMvgaZAV/tzXeA7u79i5r70I2PU78u4GfG7MBh42f78MpAePVFKcRHwgzEmEhHLIWGM+QTY69Ps1neDgdeNMceMMT8C3wPnRENGY8yHxpgT9tdlQLNIyxEIl750I2b60oOICHAtMDvScvjDGLPTGPO1/fkg8C2QSgzdl24yxsJ9GU+K3wAfishKEbnDbmtijNkJ1kUCGkdNutJcT8kf10j71XBGtE1SNm59lwps81pvu90WbW4FPvD63lpEVonIxyJyfrSE8sLp+sZiX54P7DLGbPZqi2pfikgrIA1YTozelz4yehOV+zKeFH9vY0xX4DLgjyJyQbQFckNEqgODgLl207+ANkAXYCfWq3asIg5tUZ0zLCKPACeAV+2mnUALY0wa8CDwmoicFC35cL++MdeXwA2UHJBEtS9FpA7wFjDKGHPA36oObRXSl24yRvO+jBvFb4zZYf//FXgH6zVvl4g0BbD//xo9CUtwGfC1MWYXgDFmlzGmwBhTCLxABbzuB4Fb320Hmnut1wzYUcGyFSEiw4ErgGHGNqTar/t77M8rsey9Z0RLRj/XN9b6showBJjjaYtmX4pIEpZCfdUY87bdHFP3pYuMUb8v40Lxi0htEanr+YzlXFkPvAcMt1cbDrwbHQlLUWJU5bmRba7Ckj3auPXde8D1IlJDRFoDbYEvoyAfInIpMAYYZIw54tXeSEQS7c+n2TJuiYaMtgxu1zdm+tLmYmCjMWa7pyFafWn7Gl4EvjXGPOm1KGbuSzcZY+K+rAgPcrT/gNOwPPprgA3AI3Z7Q+AjYLP9v0EMyFoL2APU82r7D7AOWIt1AzetYJlmY72G5mONnG7z13fAI1ijlU3AZVGU8Xssu+5q++9Ze92h9n2wBvgauDLKfel6fWOlL+32mcBdPutGpS+B87BMNWu9ru/lsXRf+pEx6velpmxQFEWJM+LC1KMoiqIUo4pfURQlzlDFryiKEmeo4lcURYkzVPEriqLEGar4lSqFiBzy+T5CRKZHSx5FiUVU8SuKF3Z0asxTWeRUYhNV/ErcICItReQjOxnaRyLSwm6fKSJPisgSYLKIXOiVE32VV9T3aBH5yt5+gt3Wys6t/rLd/qaI1LKXXWRvv85OvlZDRM4Rkbft5YPt/OvVRaSmiGyx29uIyH/thIKfisiZTnJWfA8qVQUdNShVjWSxi4TYNMCKhgWYDrxijHlZRG4FnqY4be8ZwMXGmAIReR/4ozFmqZ1g66iI9McKoT8HK+HXe3aiv5+BdljRrUtFZAZwj21emglcZIz5TkReAe62ZUizj3k+VnqGHli/RU/mxuexImQ3i0hP4Bmgn6+c5e4pJW7REb9S1cgzxnTx/AGPei07F3jN/vwfrJB6D3O9lOlS4EkRuQ9IMVbu9P723yqscPozsR4EANuMMUvtz7Ps/bYDfjTGfGe3vwxcYO/rexE5C+sh8iRW4ZPzgU/tB83vgLn2A+w5rIIeTnIqSpnQEb8Sz3jnKzlc1GhMpojMx8qrskxELsYa5U8yxjznvQM7z7pv3hODcxpgD59iZWDNB/6H9WaQCDyMNRjLtR9aThx2aVeUoNERvxJPfI5V4AZgGPCZ00oi0sYYs84YMxlYgTW6Xwjcao/IEZFUEfEU+WghIufan2+w97sRaCUip9vtNwEf258/AUYBXxhjdmMlFjsT2GCsfO0/isg19nFERDqX/9QVpRhV/Eo8cR9wi4isxVLE97usN0pE1ovIGiAP+MAY8yGWmegLEVkHvIlVRxWsknrD7f02AP5ljDkK3IJlslkHFAKe4tnLgSZYDwCwsjeuNcUZE4cBt9nH34BVNlBRwoZm51SUcmCbeuYZYzpEWxZFCRYd8SuKosQZOuJXFEWJM3TEryiKEmeo4lcURYkzVPEriqLEGar4FUVR4gxV/IqiKHHG/wd46pIRLXlfYgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression\n", "\n", "# Extract the \"horsepower\" and \"mpg\" variables\n", "X = data.dropna()[\"horsepower\"].values.reshape(-1, 1)\n", "y = data.dropna()[\"mpg\"].values\n", "\n", "# Perform linear regression\n", "reg = LinearRegression().fit(X, y)\n", "\n", "y_pred = reg.predict(X)\n", "\n", "# Calculate the residuals\n", "residuals = y - y_pred\n", "\n", "# Create a scatter plot of the data points\n", "plt.scatter(X, y, label=\"Data Points\")\n", "\n", "# Plot the regression line in red\n", "plt.plot(X, y_pred, color=\"red\", label=\"Optimal Model\")\n", "\n", "plt.xlabel(\"Horsepower\")\n", "plt.ylabel(\"MPG\")\n", "plt.title(\"Linear Regression with Residual Line Segments\")\n", "plt.legend()\n", "plt.grid(True)\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Apart from the geometric interpretation, the coefficients of a linear regressor have an important **statistical interpretation**. In particular:\n", "\n", "**The intercept $\\beta_0$ is the value of $y$ that we get when the input value $x$ is equal to zero $x=0$ (i.e., $f(0)$)**. This value **may not always make sense**. For instance, in the example above, we have: $\\beta_0 = 39.94$, which means that, **when the horsepower is $0$, then the consumption in mpg is equal to $39.94$**. \n", "\n", "**The coefficient $\\beta_1$ indicates the steepness of the curve**. If $\\beta_1$ is large, then the curve is steep. This indicates that a small change in $x$ is associates to a large change in $y$. In general, we can see that: \n", "\n", "$$f(x+1)-f(x)=\\beta_0+\\beta_1 (x+1)-\\beta_0-\\beta_1 x=\\beta_1 (x+1-x)=\\beta_1$$\n", "\n", "which reveals that **when we observe an increment of one unit of x, we observe an increment of $\\beta_1$ units in y**. In our example, $\\beta_1=-0.15$, hence we can say that, for cars with one additional unit of horsepower, we observe an drop in mps $-0.15$ units." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Accuracy of the Coefficient Estimates\n", "Recall that we are trying to model the relationship between two random variables $X$ as $Y$ with a simple linear model:\n", "\n", "$$Y = \\beta_0 + \\beta_1X+\\epsilon$$\n", "\n", "This means that, once we find appropriate values of $\\beta_0$ and $\\beta_1$, we expect these to summarize the **linear relationship in the population** or the **population regression line**. Also, recall that these values are obtained using two formulas which are based on realizations of $X$ of $Y$ and can be hence seen as **estimators**:\n", "\n", "$$\\hat \\beta_1 = \\frac{\\sum_{i=1}^n(x_i - \\overline x)(y_i - \\overline y)}{\\sum_{i=1}^n(x_i - \\overline x)^2}$$\n", "$$\\hat \\beta_0 = \\overline y - \\hat \\beta_1 \\overline x$$\n", "\n", "We now recall that, being estimates, they provide values related to a given **realization of the random variables**.\n", "\n", "Let us consider an ideal population for which:\n", "\n", "$$Y=2x+1$$\n", "\n", "Ideally, given a sample from the population, we expect to obtain $\\hat \\beta_0 \\approx 1$ and $\\hat \\beta_1 \\approx 2$. In practice, different samples may lead to different estimates and hence different regression lines, as shown in the plot below:" ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABUUAAAFTCAYAAAAeIm1ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAD2SElEQVR4nOzdd3hUxdfA8e9sGoSEQCihE1oIvUpHkN6rKE16k1cRBcWfqGBBRRERsABSBOmC9Ca9CtJD76GEXtJJnfePu8EQkrBJdlPI+TxPnk1umTl3k8zePTtFaa0RQgghhBBCCCGEEEKIzMKU1gEIIYQQQgghhBBCCCFEapKkqBBCCCGEEEIIIYQQIlORpKgQQgghhBBCCCGEECJTkaSoEEIIIYQQQgghhBAiU5GkqBBCCCGEEEIIIYQQIlORpKgQQgghhBBCCCGEECJTkaSoEEIIkcqUUvWVUmfTOo4XgVLqpFKqYVrHkRilVB+l1O60juN5lFLblVIDzN/3UEptSuuYhBBCCCGEsBVJigohhBA2opS6opRqEne71nqX1rp0WsQUl1JqrFIqQikVpJR6pJTaq5SqndZxWUprXU5rvT2t40gJpVR/pdQZpVSgUuq2UmqtUso1LWPSWs/XWjdLyxiEEEIIIYSwJUmKCiGEEJmEUso+gV2LtdYuQG5gG7DUBnUrpZTcd8ShlGoAfAV001q7AmWAJWkblRBCCCGEEC8+eXMihBBCpDKlVEOl1PVYP19RSo1USh1XSvkrpRYrpbLE2t9GKXU0Vk/OirH2faiUumjuZXhKKdUx1r4+Sqk9SqkflFIPgLGJxaW1jgTmAwWVUnnMZbgppWYqpW4qpW4opb5UStmZ99kppb5XSt1TSl1WSr2llNIxyVfzcOxxSqk9QAhQXCnlrZT6Wyn1QCl1Vin1Wqx4W5mvIdBc10jz9txKqTXm63+glNoVk2CN3RtXKeWklJqklPIzf01SSjnFfs6VUiOUUnfM19M3kd9RX6XUaXMsl5RSg+P+/hIqSymVSym1SikVoJQ6AJRI5Gl/CdintT5i/h080Fr/rrUONJfVWil1xFzWNaXUk9+hUsrT/Hz3Ne97qJQaopR6yfy39EgpNTXW8TF/D1PMf2dnlFKNE7j+p4b8m+sZopQ6b67nJ6WUsuTvQAghhBBCiPRIkqJCCCFE+vAa0AIoBlQE+gAopaoCs4DBQC5gGrAqJtkHXATqA27AZ8AfSqn8scqtCVwC8gLjEgtAKeUI9ALuAw/Nm38HIoGSQBWgGTDAvG8g0BKoDFQFOsRT7BvAIMAVuAv8DSwwx9MN+FkpVc587ExgsLnHZHlgq3n7COA6kAfwAD4CdDx1jQZqmeOpBNQAPo61Px/G81QQ6A/8pJTKmcDTcQdoA2QH+gI/mH8XlpT1E/AYyA/0M38lZD/QXCn1mVKqbqzfa4xgjN9JDqA18KZSqkOcY2oCpYDXgUkYz0MToBzwmjJ6o8Y+9hJGr+AxwHKllHsi8cXWBiOJWwnj77W5ebslfwdCCCGEEEKkK5IUFUIIIdKHyVprP631A2A1RoIJjITTNK31fq11lNb6dyAMI/mH1nqp+bxorfVi4DxGMjCGn9Z6itY6UmsdmkDdrymlHgGh5vpe1VpHKqU8MJJdw7XWwVrrO8APQNeY84AftdbXtdYPgW/iKXuO1vqkuRdqC+CK1nq2OZ7DwDLgVfOxEUBZpVR2rfVD8/6Y7fmBolrrCPOcrPElRXsAn2ut72it72Ikid+ItT/CvD9Ca70OCALindtVa71Wa31RG3YAmzCSz4mWZe5F2xn41PycncBILMdLa70L6ISRTFwL3FdKTYzpjau13q619jH/fo8DC4EGcYr5Qmv9WGu9CSOJutD8HNwAdmEks2PcASaZ414MnMVItlriG631I631VYxpFiqbt1vydyCEEEIIIUS6IklRIYQQIn24Fev7EMDF/H1RYIR5KPQjc/KyMFAAQCnVS/03tP4RRg/L3LHKumZB3Uu01jkwemGeAKrFqtsBuBmr/GkYvTwxxxC7/Pjqir2tKFAzzrX0wOh1CUYysRXgq5Taof5b8Ok74AKwyTyU/cMErqMA4BvrZ1/zthj3zcnZGLGf56copVoqpf4xD9d/ZI4r9vOaUFl5APs41x07pmdorddrrdsC7kB7jF7CMavA11RKbVNK3VVK+QND4sQBcDvW96Hx/Bz7Gm/ESSjHfY4Sk9DfqCV/B0IIIYQQQqQrkhQVQggh0rdrwDitdY5YX85a64VKqaLADOAtIJc5sXkCULHOj69HZby01vcwhumPNQ/Bv4bRKzV3rLqza61jhrvfBArFKqJwfMXGuZYdca7FRWv9prn+f7XW7TGSriswLziktQ7UWo/QWhcH2gLvJTAXph9G4jVGEfO2JDEPYV8GTAA8zM/rOp5+XhNyF2O6gdjPRRFL6jX3Bt2CMW1AefPmBcAqoLDW2g341cI4ElIwZi7QWLEl+TmKw5K/AyGEEEIIIdIVSYoKIYQQtuWglMoS6yupi8/MAIaYewwqpVQ28+I7rkA2jKTjXTAWB+K/ZFqyaK3PABuBD7TWNzGGjX+vlMqulDIppUrEmqNyCfCOUqqgUioHMOo5xa8BvJRSbyilHMxfLymlyiilHJVSPZRSblrrCCAAiDJfVxulVElzMi9me1Q85S8EPlZK5VFK5QY+Bf5IxtPgCDhhTnAqpVpizKX6XFrrKGA5RmLZWSlVFuid0PFKqfZKqa5KqZzm328NjOHx/5gPcQUeaK0fm/d1T8b1xJYXGGZ+7rtgrHa/LoVlJvXvQAghhBBCiDQnSVEhhBDCttZhDGGO+RqblJO11gcx5vmcirH40QXMizBprU8B3wP7MIZMVwD2WCHm74BBSqm8GIv8OAKnzPX/iTG/JxgJ203AceAIxrVGEn/CEvOK6s0w5iT1wxiOPR4jAQnG/J9XlFIBGMPEe5q3lwI2Y8zbuQ/4WWu9PZ4qvgQOmuPxAQ6btyWJOc5hGMm+hxiJyFVJKOItjKHlt4A5wOxEjn2I8fs9j5Hw/QP4Tms937x/KPC5UioQI8m7JAlxxGc/xvN5D2PhrVe11vdTWGaS/g6EEEIIIYRID1T86xQIIYQQQiSNuUflr1rros89WKQ6pVQfYIDWup6N65G/AyGEEEIIke5JT1EhhBBCJItSKqtSqpVSyl4pVRAYA/yV1nGJ1CV/B0IIIYQQIiOSpKgQQgghkksBn2EMAT8CnMYY4i0yF/k7EEIIIYQQGY4MnxdCCCGEEEIIIYQQQmQq0lNUCCGEEEIIIYQQQgiRqUhS1MbMc2y1Sus4MhJ5zoSwPvm/Sjp5zoRIfZn5/y4zX7sQQgghRFqQ4fM2pJTKDWwy/9hUa30/LePJCOQ5E8L65P8q6eQ5EyL1Zeb/u8x87UIIIYQQaUWSojaklPoJY/VVO6Cd1vr/0jikdE+eMyGsT/6vkk6eMyFSX2b+v8vM1y6EEEIIkVYkKSqEEEIIIYQQItNSSj33TbHWWqVGLKnJkuuGF/PahRACJCkqhBBCCCGEEEIIIYTIZGShJSGEEEIIIYQQmZ5SqphSar1S6qFS6oZSqq8N63JXSv2llApWSvkqpboncuxbSqmDSqkwpdScePYHxfmKUkpNSUIsqXLdSiknpdRM8/UGKqWOKKVaPuecBK9dKVVGKbVVKeWvlLqglOpoi7iFEC8uSYraUGq+qCaXpS/GlryAKaW2K6Uex3oxPpvEWFLzJiTRG4s4x3oqpdaZ47qllJqqlLKPtf8PpdRNpVSAUuqcUmqAreIWIjlepLbIfGyCN/7JudmOp/z0/MYgwXZW2iKR0aXX+4BY55Qy///9EWd7it6Up8c2x8L7PovbbSEykD+Bv4HcwEDgYxvW9RMQDngAPYBflFLlEjjWD/gSmBXfTq21S8yXubxQYGkSYkmt67YHrgENADfgE2CJUsozkXPivXbz+7GVwBrAHRgE/KGU8rJ+2EKIF5UkRW0rNV9Uk8vSF2NLX8DeivWiXDqJsaTm85XojUUcPwN3gPxAZYznYGis/V8Dnlrr7EA74EulVDWrRitEyrxIbdHzbvyTc7MdV3p+YwAJt7PSFomMLr3eB8T4Cfg39gYrvSlPj22OJccmJaEjRLqnlKoI5NJaT9RaR5k337VRXdmAzsAnWusgrfVuYBXwRnzHa62Xa61XAPctKP5VjPcuuyyMJdWuW2sdrLUeq7W+orWO1lqvAS4DCd6vJHLt3kAB4AetdZTWeiuwhwSeQyGEiI8kRW0kNV9ckispL8bJeQFLYiyp+nwl8caiGLBEa/1Ya30L2AA8uenXWp/UWofF/Gj+KmHlkIVIlhetLYrHUzf+KW2r0vsbg+eUJ22RyLDS+X0ASqmuwCNgS5xdKXpTnl7bnOcdm8J2W4j0qi6wWyllMn+oOBH4xZITlVJrlFKPEvhaE88pXkCU1vpcrG3HiPUeIwV6A3O15YuHJPu6IVnXHvtcD4zn4qSl9cU+PYFt5ZNRlhAik5KkqO2k5otqciX7xTiRF7CvlVL3lFJ7lFINkxBLmr0YW+BHoKtSylkpVRBoiZEYjV3/z0qpEOAMcBNYl8I6hbCWF7ot4jk3/sm42c4IbwwSbGelLRIZWLptq5RS2YHPgRHx7U5gm6VvyjNCmxPfsbZM6AiRVioDB4Ft5scQYLklJ2qt22itcyTw1SaeU1wA/zjb/AHX5IcPSqkiGD28f0/CaZVJ5nVDsq49JlYHYD7wu9b6TBLijXEG44Px95VSDkqpZhjX7pyMsoQQmZQkRW2nMgm8uCilximldiml/lRKPdNoJ/eFJRmS9WKcyAvYKKA4UBCYDqxWSlnaS6kyCT9fbkqpA8qYPy/eNxk2fs52YNzkBwDXzfGtiFP/UIznrb457jCESB8q8+K2RYne+CfzZrsyadAWJSHWRNtZaYtEBlaZ9NtWfQHM1Fpfi2dfSt+UVyZ9tzkJHWuThI4QaawyxhQZrwAlgQfAt/D8digZgoDscbZlBwJTWG4vYLfW+nISzqlMwtf93HYoOZRSJmAexhQcbyWnDK11BNABaA3cwvjgagnG+zUhhLCIJEVtpzLxvLiYX0xKaK3rA5uBftasVBmLcOgEvnbHOTzJL8aJvYBprfdrrQO11mFa698xho+1sjD0yiTwYozxBqE1xpxbqcp8vRsx3qBkw5jvKycwPu6x5mFzu4FCwJupGacQiajMC9gWmSV445+Cm+3KpHJblJRYLWlnpS0SGVRl0qCteh6lVGWgCfBDfPut8Ka8Mum4zUnkWFsldIRIE0opO6AMcMQ8ZcRFjNdYLGmHlLFYWtyFIGO+1sdT5TnAXilVKta2SiRvGHlsvUhCL9HErtvsue1QUq9dKaWAmRjzEXc2t6PJorU+rrVuoLXOpbVujvHB8YHklieEyHzsn3+ISKq4Ly7ARaXUHiAvRu+dmBeH9RjJtalxzl9vPi4+u7TWCa5OrLVumIRQn7wYa63Pm7cl+GIc5wWslQUvYJr4h5XFLTex5yvmDcddo/oEy0j2c/Yc7kBhYKo25uoLU0rNxlic4YMEzrFH5vET6cCL2hbF0gv4Ju7GZLRVMeeleluU3FhjSaydlbZIZAhp2VZZoCHgCVw1/++7AHZKqbJa66pgvCnH6B0aE89eLEhKpPc25znHJrfdFiK9Ko3Rw7ulUmoFUAHojzF3+XPboaS2M1rrYKXUcuBzpdQAjA9I2gN14jteGYu62QN2GG1QFiBSax0Z65g6GCNJlsY5d465zj7xFJ3YdVvUDiWjjf0Fo+1rorUOfd7BiV27MuZlPofR2WsoxsK4c5IYj7CCQ4cO5bW3t/8NY/oY6Xwn0oto4ERkZOSAatWq3YnvAEmK2kZiLy6NMOZ5A2OYkXvck1N4826xpL4Yk8gLmFIqB1ATY6h5JPA68DIwPNYxc8z19olTbqIvxhZeS5KeM0tuLMzl3lNKXQbeVEpNwHgz1Btj3iyUUnkxfqdrMFbAbgJ0A7onJR4hbORFbYsSvPE3S6ytmmOus08856V6W5RYrHEl1s5KWyQyuFRvqyy9D8CYpmJRrJ9HYiRJn/TCTuxNeUZucxI7NjntthDpXBXgFPA9xv/vRWCY1vofpdRz26FkGgrMwpiC4z7wptb6JDz5wGOX1vor87EfA2NindsT+AwYG2tbb2C51jpuj+3CPN2OxZbgdSfvkhKnlCoKDMaY3udWrGTrYK31fPMxSbn2N4ABgAPGoptN9X+LTopUZG9v/1u+fPnK5MmT56HJZLJ0kS8hbCo6OlrdvXu37K1bt34D2sV3jGTwbSP2i8sjjBeYmBeXh4Cb+Tg3jGFSaWkokBXjxXghsV6M4clwiI9ivYBVxngBixkS0cN8qANG78m7wD3gbaCD1vpsrLoK8/RwjBiJPV+28jFG4uBDjBfWUPM24L/rNv/YCWiBcW0XMJIR75r3aYw3RtcxfrcTgOFa65U2jF0IS71wbVGs4+O98begrUqoHYJUbossiDXudSfWzkpbJDKytGirErwPiP1/p7UO0VrfivnCGDb+WGsde4X4NzASJneAxjz9pjxDtjmWHMtz2m0hMpjKwEKttafW2lVrXVlrHbPYkE3aIa31A611B611Nq11Ea31glj7WsZKCqK1Hqu1VnG+xsYpb7DW+o3Y25RSjkABEu49WZmEr9vqtNa+5tizaK1dYn3Nj3WMxdeutX5fa53TXEZLrfUFW8Uunqt8njx5AiQhKtITk8mk8+TJ408iC2AqHf+CvSIFlFLfAQ+01l/Hs68C8D+tdXel1CDASWs9JdWDTGXmF+RjQMW4Q7USe77iHDcHmKC1PmGzQIV4gUhb9LTE2iHzfmmLhEgDL2pbJW2OEBmHUmozxnRZK+LZl2HboedJ7LrjHDcHaYdEIo4dO3alUqVK99I6DiHic+zYsdyVKlXyjG+f9BS1jSrA6fh2aK19AF+l1C6gOcaQiRee1jpca10mvjcFJPJ8xVBKrQOaATOUUn1sEKIQLyJpi2J5TjsE0hYJkVZeyLZK2hwhMpRKwJn4dmTkdsgCCV53DGmHhBAvMkmK2kaiLy5a6/9pretrrTtrrYNTMa706rkvxlrrVlrrAlrr2lrrOakTlhAZnrRFSSNtkRBpI7O2VdLmCJFOaK3zaK0zXTv0vOs2HyPtkMgQ7Ozsqnl7e5ctVapUuZYtWxYPDAy0ar6rRo0apXfu3Omc2DGff/553tj1NmjQoOS9e/fsrBlHejF8+PACK1ascE1pOWvWrHF95ZVXSsbd/vrrrxc9dOhQlpSW/zySFLUBS15cxH/k+RLCNuR/K2nk+RIibWTW/73Met1CCCGELTg5OUWfOXPm1Pnz5086ODjo77//Pk9qxzBt2jSPoKCgJ3m2HTt2XMidO3eUNeuIiEhoAIplIiPjrimZPJMmTfLr0KFD3IXdrGbx4sW+1apVe2yr8mNIUlQIIYQQQgghhBBCvBDq1asXdOHCBafbt2/bNWnSpISXl1fZSpUqee/fvz8rwHvvvVegQ4cOxWrVquVVtGjR8t9//31ueLbXYq9evYpMnjw5V9zye/ToUaR8+fJlSpYsWe7dd98tAPDll1/mvXPnjkODBg28atas6QVQsGDBCjdv3rQHGDt2rEepUqXKlSpVqtznn3+eF+Ds2bOOxYsXL9e1a9eiJUuWLFe3bt1SQUFBKm59nTt39hwwYEChmjVreg0dOrTQyZMnnerXr1+qXLlyZapVq1b6yJEjWQBOnjzpVKlSJe/y5cuXGT58eAFnZ+cqMddVs2ZNr7Zt2xYrXbp0ucjISAYPHlyofPnyZby8vMp+9913uQF8fX0dqlevXjqmx+2GDRtcIiMj6dy5s2epUqXKeXl5lf3ss8/yxsQ0e/bsnAArV650LVOmTFkvL6+yXbp08QwNDVUx1//uu+8WKFu2bBkvL6+yMXFaInbPXGdn5ypvv/12wdKlS5etVKmS97Vr1+wB/Pz87Js3b16ifPnyZcqXL19m06ZN2SwtP4Z9Uk8QQgghhBBCCCGEECKufv0ofOIEiQ4zT6ry5QmZNYtrlhwbERHBxo0bszdr1izggw8+KFCpUqWQzZs3X1y1apVr7969i505c+YUwOnTp7MeOnTodGBgoF2VKlXKdu7c2d/SeCZOnHjDw8MjKjIykjp16pTev39/1o8//vjOL7/84rFjx45z+fPnf6o75q5du5wXLFiQ69ChQ6e11lSrVq1M48aNA3Pnzh119erVLH/88celOnXq+LZq1ar43Llzcw4dOvRB3DovXryYZc+ePefs7e2pXbu21/Tp030rVKgQtnXr1mxvvvlmkX/++efcW2+9VXjo0KF3Bg8e/ODbb799qqfs8ePHsx05cuSkt7d3+IQJE3K7ublFnThx4nRoaKh66aWXvNu2bRuwcOHCnI0bN/YfP378rcjISAIDA0379u1zvnnzpsP58+dPAsSdDiAkJEQNHjy42KZNm85WrFgxrGPHjp7fffddnk8//fQOQO7cuSNPnTp1+ptvvsnzzTffeCxevNjX0uc5RmhoqKl27dpBU6ZMuTFkyJBCU6ZMyfPtt9/eHDx4cOH33nvvdvPmzYPOnz/v2Lx581KXLl06mZSy0yQpmjt3bu3p6WnRscHBwWTLluRkb5qReG1L4rW9pMR86NChe1rrVB+WYC3SFqUfEq/tZbSYpS2K34v8e0wPMlq8kPFifpHjlbYo/cpo8ULGi1nita3M1BYlV1hYmMnb27ssQM2aNQPfeeede1WqVCmzbNmyCwDt2rULHDRokP39+/ftAFq2bPnIxcVFu7i4RNauXTtg165d2XLmzGnRUPfff//dfc6cObkjIyPV3bt3HY4dO5alZs2aoQkdv337dpdWrVo9yp49ezRA69atH27bts21S5cujwoWLBhWp06dUIAqVaqEXLlyxSm+Mjp16vTQ3t4ef39/05EjR1y6dOlSImZfeHi4Ajhy5IjLpk2bLgAMGDDg/tixYwvFHFOxYsVgb2/vcIDNmzdnP3PmjPOqVatyAgQGBtqdOnUqS61atYIHDx7sGRERYXr11Vcf1qlTJ9Tb2zvs2rVrTr179y7ctm1b/44dOwbEjuvYsWNZChUqFFaxYsUwgD59+tz/6aef8gJ3ALp37/4QoEaNGiEx9SWVg4OD7tq1qz9AtWrVgjdv3pwdYM+ePdnPnz+fNea4oKAgu4cPH5py5swZbWnZaZIU9fT05ODBgxYdu337dho2bGjbgKxI4rUtidf2khKzUirJn/KkJ9IWpR8Sr+1ltJilLYrfi/x7TA8yWryQ8WJ+keOVtij9ymjxQsaLWeK1rYzUFlnao9PaYuYUjb1Na/3McUopbX6Mux0HBwcdHf1fPi0sLOyZoexnzpxxnDp1qsehQ4dO58mTJ6pz586ejx8/TnRqyvjiiOHo6Phkp52dnQ4NDY23LBcXl2iAqKgoXF1dI+Ne6/M4Ozs/uTCttfr++++vdu7cOSDucTt37jy7bNkytz59+hQbNmzY7bfeeuv+iRMnTv3111/Zf/7557yLFy92X7p06RVLrg0gS5YsGsDe3l5HRkY+83xawt7eXptMppjviSlHa83BgwdPu7i4JB5EImROUSGEEEIIIYQQQgjxQqlVq1bg7Nmzc4Exr2bOnDkj3d3dowHWr1+fIyQkRN26dcvun3/+ca1Xr15wiRIlwi5cuJA1NDRU3b9/32737t3Z45b58OFDu6xZs0a7u7tHXbt2zX779u1uMfuyZcsW5e/v/0yerVGjRkHr1q3LERgYaAoICDCtW7cu5yuvvJKsRYrc3d2jCxUqFD5r1qycANHR0ezbty8rQOXKlYPmzJmTE2DWrFnuCZXRtGlT/19++SVPTNL3+PHjTgEBAaZz5845FixYMGLEiBH3evbsee/w4cPON2/etI+KiqJPnz6Pvvzyyxs+Pj5PTY1QuXLlxzdu3HA8ceKEE8DcuXNz1a9f32YLMMVWr169gPHjx+eN+Xnv3r1ZEzs+PjKnqBBCCCGEEEIIIYR4oYwfP96ve/funl5eXmWzZs0aPWfOnMsx+6pUqRLcuHHjUn5+fo4jR4686enpGQHQtm3bh2XKlClXrFixx+XKlQuJW2bt2rVDy5cvH1KqVKlyRYoUCatWrVpQzL7evXvfa9myZam8efNG7N+//1zM9nr16oV07979ftWqVcsAvPHGG3fr1q0bevbsWcfkXNfChQsvDRw4sOj48ePzR0ZGqo4dOz6oXbt26JQpU6716NGj2OTJk/M1a9bskYuLS7zTAbz77rv3rly54lShQoUyWmvl7u4esW7duosbN250nTx5cj57e3vt7OwcNX/+/MtXrlxx6N+/v2d0dLQC+Pzzz6/HLsvZ2Vn/+uuvV7p06VIiKiqKSpUqhYwcOfJuUq5n37592T08PCrG/Dx//vyLlpw3ffr0awMGDCji5eVVNioqStWsWTOwTp06V5NStyRFhRBCCCGEECIDUkoVBuYC+YBoYLrW+kel1FhgIBDzxvQjrfW6tIlSCCFsLyQk5EjcbR4eHlFbtmyJN8FWqlSpxwsXLnxmqoFff/31OnA97vYDBw6cjfl+2bJlV+Irc/To0XdGjx59J+bnGzdu+MR8P3bs2Ntjx469Hfv40qVLh8csYATw+eefP7U/ofq8vb3Dd+3adT7ucZ6enhFHjx49YzKZmD59es4KFSoEA7Rp0yawTZs2T3pv2tnZMXXq1BvAjdjnv/322/fffvvt+3HLPXXq1OnEYmrfvn1g+/btnxnOH/v6X3755ZDYz2GMNm3aBD5+/Phw3O1NmjR5cmzs323fvn0f9u3b9yFA/vz5I9euXXsp7rlJIUlRIUSGIjf/QgghhBBPRAIjtNaHlVKuwCGl1N/mfT9orSekYWxCCCFS0Z49e5zfeeedIlprsmfPHjVnzpwraR1TeidJUSFERiM3/0IIIYQQgNb6JnDT/H2gUuo0UDBtoxJCiPRt4sSJfmkdgy20aNEi6OzZs0lagCmzk4WWhBAZitb6ptb6sPn7QEBu/oUQQgiR6SmlPIEqwH7zpreUUseVUrOUUjnTLjIhhBAifZKeokKIDCvOzX9djJv/XsBBjN6kD+M5ZxAwCMDDw4Pt27dbVFdQUJDFx6YHEq9tZbR4IePFnNHiFUKItKSUcgGWAcO11gFKqV+ALwBtfvwe6BfPeXJflE5ltJglXtvKaPEKkVFIUlQIkSEl9+Zfaz0dmA5QvXp13bBhQ4vq2759O5Yemx5IvLaV0eKFjBdzRotXiNTiM9+HLaO34H/VH7cibpSeWDqtQxJpTCnlgHFPNF9rvRxAa3071v4ZwJr4zpX7ovQro8Us8dpWRotXiIxChs8LITKchG7+tdZRWutoYAZQIy1jFEIIIazNZ74Pqwetxt/XHzT4+/rj7+uPz3yf558sXkhKKQXMBE5rrSfG2p4/1mEdgROpHZsQQgiR3klSVAgBQEQEfPcdhIertA4lUXLzL8SLTWtNeFR4WochRLq0ZfQWIkIintqmozVbRm9Jo4hEOlAXeANopJQ6av5qBXyrlPJRSh0HXgHeTdMohRDJJvdFlhk1alS+kiVLlvPy8irr7e1dduvWrdlsWV+NGjVK79y509nS42fNmpWzZMmS5UwmU7WknCdsS4bPCyF4+BBefRW2boWxY3PRrFlaR5SomJt/H6XUUfO2j4BuSqnKGMPnrwCD0yI4IUTKfLXrKzZe3Mj/ivwvrUMRIt3xv+qfpO3ixae13g3E94n2utSORQhhfTuu7KDPyj6MKTkmrUNJ1zZv3pxt48aNOXx8fE5lzZpV37x50z4sLCxd9fapXLly6LJlyy4MHDjQM61jEf+RnqJCZHKXLkGdOrBrF8yZAw0a3EvrkBKltd6ttVZa64pa68rmr3Va6ze01hXM29tprW+mdaxCiKSZfWQ2H2/7mKI5iuJkckrrcIRId9yKuCVpuxBCiIzrxJ0TtF/Unqz2WXF3dE/rcNK1GzduOLi7u0dmzZpVA+TPnz/S09MzAmDkyJH5y5cvX6ZUqVLlunXrVjQ6Ohowenr279+/cPXq1UsXL1683I4dO5ybNWtWomjRouWHDRtWAODs2bOOxYoVK9epUydPLy+vsi1atCgeGBj4TB5t+fLl2StXruxdtmzZMi1btizu7+//zDFVq1Z9XKlSpTCbPhEiySQpKkQmtncv1KwJt2/D339D795pHZEQIrNad34dA1cPpFmJZsxsNxOTklsUIeJqPK4xDs4OT21TJkXjcY3TKCIhhBC2cM3/Gi3+aEE2x2xs6LmB7A7Z0zqkpNlQo/QzXye/yQNARKAp3v1nJ+cCIPSm/TP7nqNDhw4Bfn5+jp6enuV79uxZZO3atS4x+95///07J06cOH3+/PmToaGhpkWLFj35JNHR0TH64MGDZ/v27Xu3S5cuJWfMmHH1zJkzJxcvXpz71q1bdgBXrlzJMmTIkLvnzp075erqGv3dd9/liV33zZs37b/66qv8O3fuPHfq1KnTVatWDfniiy88rPNECluTdxxCZFKLFkGjRpAjB/zzDzRokNYRCSEys2mHplEpXyX+7PInjnaOaR2OEOlShR4VaDu9LW5F3UCBW1E33Iq6UaFHhbQOTQghhJVEREXQakErAsMDWd9jPUXciqR1SOmem5tb9IkTJ05NnTrVN0+ePJG9e/cuMXmykWRdv369a8WKFb29vLzK7t271/XEiRNZY87r2LHjI4BKlSqFlixZMrRo0aIRWbNm1YULFw67dOmSI0C+fPnCmzVrFgzwxhtv3N+7d69L7Lq3b9+e7eLFi1lq1Kjh7e3tXXbRokW5rl69KjezGYTMKSpEJqM1jBsHn3wC9evD8uWQO3daRyWEyOyWdllKQFgArk6uaR2KEOlahR4VnkqCbt++Pe2CEUIIYXUOdg58WPdDCrgWoKJHxbQOJ3laHDib4D4H1+hE92fNH5no/gTY29vTpk2bwDZt2gRWrFgxdN68ebkGDBjwYMSIEUX3799/qmTJkhHvvfdegcePHz/pHJglSxYNYDKZcHJy0jHbTSYTkZGRCsBY5/c/cX/WWlOvXr2A1atXX05qzCLtSU9RITKRsDDo08dIiPbsaQyZl4SoECKt3Aq6Rbdl3bgXcg9HO0dyO0uDJIQQQojMKSo6imO3jgHQo2IPXin2ShpHlHEcO3bMycfH58mE9EeOHMlaqFCh8JCQEBNAvnz5Iv39/U2rV6/OmdSyb9686bh58+ZsAAsWLHCvU6dOUOz9DRs2DD548KDLiRMnnAACAwNNx48fl8nxMwiLk6JKqcJKqW1KqdNKqZNKqXfM292VUn8rpc6bH5P8RyaEsL3796FZM5g7Fz77zHh0kqZaCJFGAsMCab2gNavOrsL3kW9ahyOEEEIIkWa01gzfMJwav9Xg3P1zaR1OhhMQEGDXq1evYiVKlCjn5eVV9syZM1nHjx/vlzt37qgePXrcLVu2bLmWLVuWrFSpUnBSyy5evPjjWbNm5fLy8ir78OFD+5EjR96Nvb9AgQKR06ZNu9K1a9fiXl5eZatVq+bt4+OTJW45c+fOzeHh4VHx6NGj2Tp27FiqXr16pVJyzcI6kjJ8PhIYobU+rJRyBQ4ppf4G+gBbtNbfKKU+BD4ERlk/VCFEcp0/D61bg68vzJ8P3bundURCiMwsPCqczks6c+zWMVZ3W021AtXSOiQhhBBCiDTz3d7vmPrvVEbUHoFXLq+0DifDqV+/fsiRI0fOxLdv8uTJfpMnT/aLu/3Agf+G6McMu4+77+zZs44mk4kFCxZcTez8du3aBbZr1+50YjH26tXrUa9evR5ZdEEi1VjcU1RrfVNrfdj8fSBwGigItAd+Nx/2O9DByjEKIVJg506oVQsePoStWyUhKoRIW9E6mn4r+/H3pb/5rd1vtCzVMq1DSpZERtCMVUrdUEodNX+1SutYhRBCCJF+zTs2j1GbR9G1fFe+bfptWocjRKaSrIWWlFKeQBVgP+Chtb4JRuJUKZXXeuEJIVJi3jzo3x+KF4e1a6FEibSOSAiR2d0Luce+6/sY12gcfSr3SetwUiKhETQAP2itJ6RhbEIIIYTIAI7dOka/Vf14xfMV5rSfg0nJsi/pSenSpcPPnz9/Mq3jELaT5KSoUsoFWAYM11oHxF15K5HzBgGDADw8PCxeKTMoKChDraop8dqWxGsZrWH2bE/mzfOkSpWHfPbZSa5di+Tateefm9GeYyFExjDfZz6jt4zmqv9VCmUvRBG3ImkdUoqYPxCO+VA4UCkVM4JGCCGEEMIiFTwq8G2Tb+lXpR9O9vEv+KC1jne7ECLlkpQUVUo5YCRE52utl5s331ZK5Tf3Es0P3InvXK31dGA6QPXq1XXDhg0tqnP79u1Yemx6IPHalsT7fI8fQ79+sHAh9O0Lv/6aE0fHehafn9GeYyFE+jffZz79VvYjPCocgGsB1xi8ZjBKKXpU6JHG0aVcnBE0dYG3lFK9gIMYvUkfpmF4QgghhEhnLj28hEJRLGcx3q39boLHXd9/nU0jNlFoZKFUjE6IzMPipKgyuoTOBE5rrSfG2rUK6A18Y35cadUIhRAWu3sXOnSAvXvh669h1CiwsDO3EELYzIiNI54kRGOERIQwesvoDJ8UjWcEzS/AF4A2P34P9IvnPBlBkw5ltHgh48Us8QohMru7wXdp8UcLHOwcOD7kOHYmu3iPu7r7KvNbzSdb3mxEh0WncpRCZA5J6SlaF3gD8FFKHTVv+wgjGbpEKdUfuAp0sWqEQgiLnDljrDDv5wdLlkAX+U8UQqQDx24d43bw7Xj3XfV/ZiHPDCW+ETRa69ux9s8A1sR3roygSZ8yWryQ8WKWeIUQmVlweDBtFrbhWsA1Nr+xOcGE6OVtl1nYdiHZC2Wn15ZeHD5/OJUjFSJzSMrq87u11kprXVFrXdn8tU5rfV9r3VhrXcr8+MCWAQshnrV1K9SuDUFBsG2bJESFEOmD7yNfWs5viZ2K/4Y/I88rmtAIGvNUQjE6AidSOzYhhBBCpD+R0ZG8/ufrHPQ7yMLOC6lbpG68x13/5zoLWi0gR9Ec9Nneh+wFs6dypBnTqFGj8pUsWbKcl5dXWW9v77Jbt27NZsv6atSoUXrnzp3Olh4/ePDgQsWKFSvn5eVVtmnTpiXu3bsX/w2ySFWytJkQGdysWdC8ORQoAPv3Q61aaR2REEIYrjy6gr3JnnGNx+Hs8PQ9o7ODM+Maj0ujyKwiZgRNI6XUUfNXK+BbpZSPUuo48AqQ8ERhQgghhMg0vtvzHWvPr+WnVj/RwbtDgsflrZCXSn0q0Xt7b1zyuaRegBnY5s2bs23cuDGHj4/PqXPnzp3atm3bueLFi4c//8zU07x584Bz586dPHfu3KmSJUs+/uSTT/KldUwiGavPCyHSh+hoGD0avvkGmjaFpUvBzS2toxJCCGOVVKUUDTwbcP7t8zjZO1Eoe6Enq88XcSvCuMbjMvR8olrr3UB8szavS+1YhBBCCJH+vV3zbQplL8Qbld6Id/+lzZcoWKMgTtmdaPNLm1SOLmO7ceOGg7u7e2TWrFk1QP78+SNj9o0cOTL/hg0bcoSFhZmqV68eNH/+fF+TyUSNGjVKV6hQIeTYsWPODx48sJ89e/blcePG5T979mzW9u3bP5g8ebLf2bNnHVu0aFGqSpUqwSdOnHAuXrz446VLl15xdXV9apLX5cuXZ//8888LhIeHq6JFi4YtWrToipub21PHdOrUKSDm+9q1awf/+eefOW39vIjnk56iQqRHl+fDCk9YYDIeL89/andoKLz+upEQHTQI1q6VhKgQIn2IjI6k05JOTD0wFQAneycAelTowZXhV4geE82V4VcydEJUCCGEEMJS68+vJyg8CBdHlwQToicWn+CPFn+w9eOtqRydbdSYUaN03K9vdn+TByAwLNAU3/7J+yfnArgZeNM+7r7n1dehQ4cAPz8/R09Pz/I9e/Yssnbt2iddbN9///07J06cOH3+/PmToaGhpkWLFj155+zo6Bh98ODBs3379r3bpUuXkjNmzLh65syZk4sXL85969YtO4ArV65kGTJkyN1z586dcnV1jf7uu+/yxK775s2b9l999VX+nTt3njt16tTpqlWrhnzxxRceicU7Z86c3C1atPBP2rMqbEGSokKkN5fnw4FBEOILaOPxwKAnidHbt6FhQ1i2DCZMgF9/BQeHNI1YCCEAo4fo/639P1acWYGKtxOlEEIIIUTmsebcGtosbMOYbWMSPObYvGMs776cwnUK02hco1SM7sXh5uYWfeLEiVNTp071zZMnT2Tv3r1LTJ5sJFnXr1/vWrFiRW8vL6+ye/fudT1x4kTWmPM6duz4CKBSpUqhJUuWDC1atGhE1qxZdeHChcMuXbrkCJAvX77wZs2aBQO88cYb9/fu3fvUnAbbt2/PdvHixSw1atTw9vb2Lrto0aJcV69edUwo1lGjRuWzs7PTQ4YMkfV40gEZPi9EenNsNESFPL0tKgSOjeZkSA9at4Y7d2D5cujQIU0iFEKIeH2+43OmH57OR/U+4v9q/F9ahyOEEEIIkWb+uf4Pry19jar5q/LZK5/Fe8zhmYdZPXA1xV4pRtdVXXHMlmAuLUM5MPDA2YT2uTq5Rie2P79r/sjE9ifE3t6eNm3aBLZp0yawYsWKofPmzcs1YMCAByNGjCi6f//+UyVLlox47733Cjx+/PhJ58AsWbJoAJPJhJOTk47ZbjKZiIyMVADG2pr/ifuz1pp69eoFrF69+vLzYpwyZUqujRs35ti1a9c5k0n6KKYH8lsQIr0JuRrv5k3/lKZOHQgLg507JSEqhEhfZhyawdgdY+lTuQ9fNvoyrcMRQgghhEgz5+6fo82CNhRwLcDa7mtxcXx2waTw4HB2fLaDks1L0m1NtxcmIZoWjh075uTj4+MU8/ORI0eyFipUKDwkJMQEkC9fvkh/f3/T6tWrkzyP582bNx03b96cDWDBggXuderUCYq9v2HDhsEHDx50OXHihBNAYGCg6fjx405xy/nzzz+zT5o0Kd+6desuxJ2TVKQd6SkqRHrjXMQ8dP4/07YM4v/m/ES58rBmDRQunEaxCSFEAoIjgmldqjXT20x/5hN0IYQQQojMQmtNnxV9MCkTG3puIG+2vPEe45jNkb67+uKSzwV7J0nNpERAQIDdsGHDigQEBNjZ2dlpT0/PsN9//903d+7cUT169LhbtmzZcoUKFQqvVKlScFLLLl68+ONZs2blGjp0aNFixYqFjRw58m7s/QUKFIicNm3ala5duxYPDw9XAGPGjLlRsWLFsNjHvffee0XCw8NNjRo18gKoWrVq0IIFC+LvESVSjfznCZHeVBpnzCEaFUJUtIlRC8fz/bqRtGxwg8WrC+LqmtYBCiHEfyKiInCwc2B4reEMqzkMk5JBKEIIIYTIvJRSzO80nwehDyjpXvKZ/bu/2U3AjQBaTm5JjqI5Uj/AF1D9+vVDjhw5cia+fZMnT/abPHmyX9ztBw78N0Q/Zth93H1nz551NJlMxJe8jH1+u3btAtu1a3c6sRivXr16wrKrEalJ3rkIkd4U6wE1phNs8ubVH//k+3UjeavXWVZtloSoECJ9OXPvDKWnlman704ASYgKIYQQItMKjwrnt8O/Ea2jKZazGNUKVHtqv9aa7Z9tZ8v/tvD4wWN0tE6gJCFEapF3L0KkQ35OPWgw4TSrDnfkxx9hyu+lsZd+3UKIdMQv0I8Wf7QgOCKYQtkLpXU4QgghhBBpRmtN/1X9Gbh6ILt8d8W7f+vorewYu4PKfSrTYW4HTHYWpmMmTybX7t1WjlhYonTp0uHnz58/mdZxCNuRpKgQ6cyxY1CzJpw5AytXwrBhaR2REEI8bcbhGXhO8sTX3xeTMrHv+r60DkkIIazq7um7REfKOhhCCMv8b8v/+OP4H3z5ypc08GzwzP4tH21h99e7qTa4Gu1mtrM8ITp+PLzzDnm3bbNyxEIIkKSoEOnKunVQrx5oDbt3Q5s2aR2REEI8bc7ROQxZM4SI6AgAbgXdYtDqQcz3mZ/GkQkhhHWcXX2WGdVnsP2z7WkdihAiA5iyfwrj94xnSLUhfFT/o3iPKVynMLXerUXrX1qjTBYsSKk1fPYZfPghdOvGmY/iL1cIkTKSFBUinZg6Fdq2hVKlYP9+qFw5lQO48BtcXZrKlQohMpox28YQrZ/uPRUSEcLoLaPTKCIhhLCeAz8dYHGHxeQpl4cab9VI63CEEOmcX6AfH2z+gA7eHZjaaipK/Zfw1NGaa3uvAVC6bWmaT2z+1P4EaQ0ffQRjx0KfPjBvHtrOzjYXIEQmJ0lRIdJYVJQxRP7tt42eoTt3QsGCqRzEvQNwYCD4Lk7lioUQGYXWmqDwIK4FXIt3/1X/ZxblFEKIZPOZ78Mkz0l8ZvqMSZ6T8JnvY9P6dLRm44iNrH9rPV5tvei9rTcuHi42rVMIkfEVcC3Att7bWNBpAXam/xKX0VHRrOy7ktn1Z3Pb57blBWoN774L33wDgwfDzJkgCVEhbEaSokKkocBAaN8epkwxXvuWLweX1Lz/jnpsPOauAQ3XQV1Jigoh4vf9vu+pOq0qBV3j/9SmiFuRVI5ICPGi8pnvw+pBq/H39QcN/r7+rB602qaJ0QcXHnDo10PUGFaD15a9hmM2R5vVJYTI+E7eOcmiE4sAqFWoFlkdsj7ZFxURxV89/+LY3GM0GNsAjwoelhUaHQ1Dh8KPP8I778Avv4BJUjaWGjVqVL6SJUuW8/LyKuvt7V1269at2WxZX40aNUrv3LnT2dLj33nnnQIxsdWtW7fUlStXHGwZn7CM/IcJkUauX4f69WHDBvj5Z5g4MZU/BLy5CVaVMHqJAhRoCSb5FFII8az5x+fz/t/vUyV/Fb5q8hXODk/f/zk7ODOu8bg0ik4I8aLZMnoLESERT22LCIlgy+gtVq8rpp5cXrl40+dNWv7Y0vIFUIQQmdL1gOu0mN+CEZtGEBQe9NS+qPAolnVdxolFJ2gyvgkNPnl20aV4RUXBgAHw668wahT88ANYMtReALB58+ZsGzduzOHj43Pq3Llzp7Zt23auePHi4WkdV2xjxoy5de7cuVNnzpw51bJlS/+PPvoof1rHJCQpKkSaOHQIatSAS5dgzRp4881UrFxHw4lxsK0FOLqDY85UrFwIkdFsvrSZviv70tCzIXM7zOWNim8wve10iroVRaEo6laU6W2n06NCj7QOVQjxgvC/6p+k7cl1//x9fqn4CwenHQQgZ3G5JxJCJO7R40e0nN8S/8f+rOu+DhfHp4f5nfrzFKeXn6b5pObU/aCuZYVGRkKvXjB7tjGP6NdfS0I0iW7cuOHg7u4emTVrVg2QP3/+SE9PzwiAkSNH5i9fvnyZUqVKlevWrVvR6GhjbvwaNWqU7t+/f+Hq1auXLl68eLkdO3Y4N2vWrETRokXLDxs2rADA2bNnHYsVK1auU6dOnl5eXmVbtGhRPDAw8Jk82vLly7NXrlzZu2zZsmVatmxZ3N/f/5lj3N3dn0zKHxwcbLJofllhc/ZpHYAQmc3KldC9O+TODXv2QIUKqVh5uD/80xuur4Si3aDmDLC36agCIUQGduzWMTou7oh3bm9WvL4CJ3snAHpU6CFJUCGEzbgVcTOGzsez3Vqu7rnKovaLUErhUdHCoa1CiEztceRjOizqwNl7Z9nQcwOV8lV65pjy3cqTs3hOCtUqZFmh4eHGm8Nly4xk6IcfWjnqtDGjxozScbeV6VTmQb0P690NCwwzzW08t1Tc/RV7VrxXc1jN+4E3A+0XtV9UIva+gQcGnk2svg4dOgR8/fXXBTw9PcvXq1cvoFu3bg9at24dBPD+++/fmTBhwk3zccUWLVrk1r17d38AR0fH6IMHD5794osv8nbp0qXkv//+ezpv3ryRnp6eFT766KPbAFeuXMkybdq0K82aNQvu0qWL53fffZfn888/fzJR7M2bN+2/+uqr/Dt37jyXPXv26NGjR+f74osvPGLqjO3tt98uuHTp0lyurq5RO3bsSPSaROqQnqJCpBKtjVEQHTtCuXLGCvOpmhAFuPgb3FgL1X6EOvMlISqESFQB1wI0K9GM9T3W45bFeskIIYRITONxjXFwfnqqNQdnBxqPa2yV8k8uPcncxnPJ6p6V/vv6U7h2YauUK4R4sa04s4Idvjv4vcPvNCrW6Mn28OBwlnZZym2f2yilLE+IPn4MnTsbCdEffnhhEqJpwc3NLfrEiROnpk6d6psnT57I3r17l5g8eXIugPXr17tWrFjR28vLq+zevXtdT5w48WQC2I4dOz4CqFSpUmjJkiVDixYtGpE1a1ZduHDhsEuXLjkC5MuXL7xZs2bBAG+88cb9vXv3PtU9ePv27dkuXryYpUaNGt7e3t5lFy1alOvq1avxTkw9ZcqUG7du3Tr+6quv3v/uu+/y2ujpEEkgPUWFSAWRkcbq8r/+arzuzZ0LzhZPyWwFYffBKReUHg75GkPOyqlYuRAio3kY+hAXRxfyZMvDsteWpWrd4eHwv/9BjRpOqVqvECL9qNDD+NR4y+gt+F/1x62IG43HNX6yPSXunb3Hsq7LKFS7EF1XdMU5d2rekAkhMrKu5bvindubyvkqP9kWFhDGgtYLuLb3GmW7lLV8UaWQEKO3zKZNxoJKQ4YkeOjateDr60rDhimLPzUl1rPTydUpOrH9rvldI5/XMzQ+9vb2tGnTJrBNmzaBFStWDJ03b16uAQMGPBgxYkTR/fv3nypZsmTEe++9V+Dx48dPOgdmyZJFA5hMJpycnHTMdpPJRGRkpAKIO8w97s9aa+rVqxewevXqy5bG2rdv3wetW7cu9cMPP/gl9TqFdUlPUSFsLCAA2rT5b87sJUtSMSEaHQGH3oW15SH0lrGQkiRERQY232c+npM8MX1mwnOSJ/N95qd1SC+c4PBgWsxvwWt/vobW+vknWFFMezlxIuzfnytV6xZCpC8VelRg+JXhjIkew/Arw62SEAXIXTo3ry17jV6be0lCVAhhkZ///ZlDfocAnkqIPn70mHnN5nH9n+t0XtSZcq+Vs6zAoCBo3Rr+/htmzUo0ITpjBrRrB3PneqbgCl58x44dc/Lx8XnyifqRI0eyFipUKDwkJMQEkC9fvkh/f3/T6tWrkzx59M2bNx03b96cDWDBggXuderUeWp1rYYNGwYfPHjQ5cSJE04AgYGBpuPHjz/z6X7s+JYuXZqjRIkSoUmNRVif9BQVwoZu3XKibl04c8Z4QRswIBUrD70Fu1+Du7vAa5jRU1SIDGy+z3wGrR5ESEQIAL7+vgxaPQhA5re0koioCF778zUO+h1k+WvLn/kk3Jb8/KBVKzhxwnh/UKyYH+CVavULIV5c4UHhrOi9ghrDauDZwBPvDt5pHZIQIoP44/gf/N+6/6Nv5b7Maj/ryfbQh6HMazKP2z636fJnF7zbW9iu+PsbNzz798MffxjzicZDaxgzBr74Alq2hLffPgXUt8IVvZgCAgLshg0bViQgIMDOzs5Oe3p6hv3+++++uXPnjurRo8fdsmXLlitUqFB4pUqVgpNadvHixR/PmjUr19ChQ4sWK1YsbOTIkXdj7y9QoEDktGnTrnTt2rV4eHi4AhgzZsyNihUrhsU+buTIkYUuXbqURSmlCxUqFD5z5kzflF21sAZJigphIwcOwNCh1YiOhvXroUmTVKz87h7Y3cVYWKnOfPCM/8VWiIxk9JbRTxKiMUIiQhi9ZbQkRa1Aa82QNUNYd34dv7b+lfbe7VOt7pMnjRv+hw+NIWLNm8P27alWvRDiBRZ4M5CFbRZy6+gtSrUuhWcDz7QOSQiRQfx98W/6ruxLQ8+G/NL6l6f2OWR1IHuh7Lzy5SuUavnMmkHxe/DAuMk5ehQWLzbmVYtHRAQMGgRz5kC/fsaIwz17olJ2MS+4+vXrhxw5cuRMfPsmT57sN3ny5GeGqR84cODJEP2YYfdx9509e9bRZDKxYMGCq4md365du8B27dqdTizGjRs3XrTsakRqkqSoEDawbBn07Ak5c0axZQuUKZPKAZyZCHbO0Hwj5Ejt1ZyEsI2r/s/ciyS6XSTNlzu/ZNbRWXzy8icMrj441erdsQM6dIAsWWDnTqhSJdWqFkK84O6cvMOCVgsIuR9Ct9XdKNXKwsSFECLTO3LzCJ2WdKJM7jKseH0FTvbGyOegW0HYOdmRNWdWXl/xuuWjau7ehaZN4fRpWL4c2raN97DAQOjSBTZuhLFj4dNPIRUH7giR6UhSVAgr0hq++86YO7R2bXj//cOUKVM3dSqPDIaIAMiaH2rOAjQ45kiduoVIBUXciuDr/+wokyJuRdIgmhdP29JtCQoP4rOGn6VanYsXQ69eUKKE0aO+aNFUq1oI8YK7f/4+s+rOwiGrA3139iV/1fxpHZIQIgOZcmAKObPkZH2P9bhlcQMg4HoAvzf6neyFstNrSy/LE6K3bkHjxnDpEqxeDc2axXvYzZvGVKPHj8Nvv0H//ta6GpFcpUuXDj9//vzJtI5D2I4stCSElUREwMCBRkL09ddh61bImTMidSoPvACbasPOjqCjwdFNEqLihTOu8TicHZ5eFMPZwZlxjcelUUQvhosPjJE8lfNVZnzT8VadRzShhbG0hu+/h65doWZN2L1bEqJCCOtyL+FO9Ter0/+f/pIQFUIk2fS209ndbzcFsxcE4NGVR8x+eTZBt4J45YtXLL9fun4dGjQAX1/jE+AEEqJnzhidas6ehVWrJCEqRGqRpKgQVvDwIbRoATNnwscfw4IFxlDQJLs8H1Z4wgKT8XjZgpW1b6yBDdUh5AZU+AzUi/1vrZQqrJTappQ6rZQ6qZR6x7zdXSn1t1LqvPkxySsLivStR4UeTG87naJuRVEoiroVZXrb6TKfaArsvrqbcj+X46cDP1m97JiFsXz9fdHoJwtjzTu6gOHDYeRIY3jYpk3g7m716oUQmZDWmr0T9vLoyiOUSdHk6ybkKJojrcOyKbkvEsJ6QiJCGLx6MLeCbmFvsn8yGunBhQfMaTCHxw8f02tzL4rUtXCU0pUr8PLLRk/RTZugYcN4D9uzB+rWhdBQY1qhVq2scz1CiOeT4fNCpNClS8Ywh4sXjcmwe/dOZkGX58OBQRBlXkgmxNf4GaBYPEmf6Cg48Rmc+AJyVoX6y8DFM5mVZyiRwAit9WGllCtwSCn1N9AH2KK1/kYp9SHwITAqDeMUNtCjQg9JglrJqbunaLuwLUVzFOX18q9bvfx4F8YKiWZI75yEHIf33jOmGzG92J/jCCFSSVREFGsGr+Ho7KOEBYTxyuevpHVIqUXui4SwgsjoSLr+2ZU159bQtnRb2ni1AYwPW1b0WUF4cDi9tvYifxULe56fP28MmQ8Kgs2b4aWX4j1s+XJjAfoiRWDDBihe3FpXJISwhCRFhUiBvXuNBUIiI+Hvv42REcl2bPR/CdEYUSHG9niToo/h6p9QvC9U/wnss6ag8oxDa30TuGn+PlApdRooCLQHGpoP+x3Yjtz8CxGv6wHXafFHC7LYZ2Fjz43kds5t9TqeWQArxB0WriLkWm1++AGGD7d6lUKITOqx/2OWvrqUS5sv0WBMAxqMSckNWcYi90VCpJzWmqFrh7L63Gqmtpz6JCEKoJSi47yOhAeF41HBw7ICT582EqIREcacapUrx3vYlCnwzjtQq5YxZD639W/HhBDPIf0zhEimRYugUSNwc4N//klhQhQgJIEVtONuf3gcIkPAPhs02ws1Z2aahGhcSilPoAqwH/AwvzGIeYOQNw1DEyLdioyOpPWC1jx6/Ij1PdbjmcPTJvU8tQDWg2Iwcy/4VSN37/+ThKgQwmoC/QKZXW82V7Zfof2c9jQc29CqcyNnJHJfJETyfLHzC2YcnsH/6v2P/6vxfwDcOnaLTSM3oaM1OYvltDwhevy48cZQa9i+Pd6EaHQ0fPABDBsG7dsbHUklIWodc+fOzaGUqnbkyJHkTGaX6VWpUsXbGuV07tzZc/bs2TkBXn/99aKHDh1Kt78P6SkqRBJpDePGwSefQP36xpAHq7yIORcxhszHtz3GpTnw75tQcghU+yFTL6aklHIBlgHDtdYBlr4BUkoNAgYBeHh4sH37dovOCwoKsvjY9EDita2MFi88HXMH9w5k98jOozOP2H5mu03qm1h6Ir7+vvhezMPMOR2JijLR/+OVvFKzqUXPXUZ8joUQqc8puxPOeZzpMakHxRtn3nGncl+UuIwWL2S8mDNqvI+jHjPz8EyaeTSjqcm4Rwk8G8jx949jl9UO6oCju6NFZbqcPUulDz4g2tGRo99+S+jdu0ZiNJbwcMX48d5s3epB+/Y3eOut8xw4YHm8InGLFi1yr1q1atC8efPcq1Sp4pfS8iIjI7G3t33aLKX1RERE4ODgkOI4jhw5cibFhcSxePHieJIc6YckRYVIgrAwGDQI5s6Fnj3ht9/AyclKhVca9/ScogB2zsb2qDA49A5cmAYejaDcR1aqNGNSSjlg3PjP11ovN2++rZTKr7W+qZTKD9yJ71yt9XRgOkD16tV1wwQmPI9r+/btWHpseiDx2lZGixdgy7YtZC+dnar5q9LwyYhK23r/521M/rwmOusdCrzdn1qd+9GpgmXzl2bE51gIkXqu7LhCgWoFcHRxpNeWXlbvHRocDAMGQPnyuRJaGyXdkPui58to8ULGizkjx3ukzhFcHV1xsHPg2r5rzP9gPi65Xei9tTc5PHNYVuC+fTBqFOTMCVu3UjOeyUEfPYJOnWDbNvjmG/jgg4IoVTDJ8Yr4+fv7mw4ePOiyefPms+3bty85ceJEvyVLlmSfM2dO7nXr1l0CWLNmjevEiRM9tm7demH58uXZP//88wLh4eGqaNGiYYsWLbri5uYWXbBgwQrdunW7t23btuyDBw++ExgYaDd79uw8ERERytPTM+zPP/+87OrqGn3y5Emn7t27F4uKilJNmjTxnz59ukdISMgRgE8++cTjr7/+cg8PD1etW7d+9MMPPzyToHV2dq4yaNCg21u3bs3+3XffXb948aLjL7/84hEREaGqVq0aPHfuXF97e3t++OGH3D/++GO+vHnzRhQvXvyxo6Ojnjt37tXOnTt75syZM9LHx8e5YsWKIcOHD787ZMiQIg8ePLDPkiVL9G+//eZbpUqVx7Nmzcr59ddfFzCZTNrV1TXq4MGDZw8ePJilb9++xSIiIlR0dDTLli27WKFChTBnZ+cqISEhR6Kjo3nzzTcLbd261U0ppd9///2bAwcOfLhmzRrXzz//vIC7u3vE2bNns1aoUCFkxYoVl02JLBJQo0aN0hMmTLj28ssvhzg7O1fp37//nU2bNrllyZIles2aNRcKFy4c6efnZ9+3b9+iN27ccASYOHHi1WbNmgXb6E/lKZIUFcJC9+8bL2I7d8Jnnxk9Ra16/x0zb+ix0caQeeciRkLUowFsbgD390PZUVDxSzBl3n9dZbzrmQmc1lpPjLVrFdAb+Mb8uDINwhMiXdJa89OFn1i9ezU+b/rgndsqI2MSNWMG/DDsFapUgrVrPcmXb4vN6xRCZA6Hph9i7dC11HynJs2/b271hOiFC9CxI5w6Bblzp9sRf4DcFwmRXKcDTjNv5Tx+bv0z7lndAfDd6cuC1gtwye9Cry29cCvsZllhO3caK+/mywdbthirJsVx7ZqxqvzZszBvntHB5oXVr19hTpxwtmqZ5cuHMGvWtcQOmT9/fo6GDRv6V6xYMSxHjhxRu3fvdu7YsWPAO++8UzQgIMCUPXv26IULF+Z89dVXH9y8edP+q6++yr9z585z2bNnjx49enS+L774wmPChAk3AbJkyRJ96NChswC3bt2yGzFixD2AYcOGFZg8eXLu0aNH33nrrbcKDx069M7gwYMffPvtt3li4li+fHn2CxcuZDl+/PhprTVNmjQpuX79epeWLVsGxY43NDTUVL58+dBJkyb5HT58OMv48ePzHTx48IyTk5Pu2bNnkV9//TVXmzZtAiZMmJD/8OHDp3LkyBFdp04dr3LlyoXGlHHx4sUse/bsOWdvb0/t2rW9pk+f7luhQoWwrVu3ZnvzzTeL/PPPP+e++eab/Js2bTpXrFixiHv37tkBTJkyJc/QoUNvv/nmmw8eP36sIiMjn3ou586dm8PHxyfr6dOnT968edO+Ro0aZZo1axYEcPr06axHjx695OnpGVGtWjXvv//+26V58+ZPXVtCQkNDTbVr1w6aMmXKjSFDhhSaMmVKnm+//fbm4MGDC7/33nu3mzdvHnT+/HnH5s2bl7p06dJJS8pMqcybWREiCc6fN17nfH1h/nxjhUCbKNbj2UWVgi5B6E1jdfnCnWxUcYZSF3gD8FFKHTVv+wjjpn+JUqo/cBXokjbhCZH+jN8znr/8/mJE7RE2T4hqDWPGwBdfQIsWsHQpuLjYtEohRCahozVbRm9hzzd7KNmyJA3HNrR6HevWQY8eYDIZK0E7ONwASlm9HiuS+yIhkujc/XP878T/yOWSi4CwAPLYG/msyLBI3Eu5031td1zzu1pW2ObN0K4dFC1qJEQLFHjmEB8faNkSAgNh/XpjDSZhfUuWLHF/55137gB07tz5wbx589zr1asX0rBhw4BFixa59e3b9+HWrVvdpk6den3Dhg2uFy9ezFKjRg1vgIiICFWtWrUnib1evXo9jPn+0KFDWT/99NOCgYGBdsHBwXYNGjTwBzhy5IjLpk2bLgAMGDDg/tixYwsBbNiwIfvOnTuzly1btixASEiI6cyZM1niJkXt7Ozo06fPQ/M5ridOnHCuVKlSGYDHjx+b8ubNG7lr165sNWvWDPTw8IgC6Nix48Nz5849+bSuU6dOD+3t7fH39zcdOXLEpUuXLiVi9oWHhyuA6tWrB/Xo0cOzc+fOD3v06PEQoHbt2sETJkzIf/36dceuXbs+rFChQljs2Hbt2uX62muvPbC3t6dw4cKRNWvWDNq9e7ezm5tbdIUKFYJLlCgRAVCuXLmQixcvWja/BODg4KC7du3qD1CtWrXgzZs3ZwfYs2dP9vPnzz9ZKCUoKMju4cOHppw5c0ZbWnZySVJUiOfYtctYYd5kMhYPrFs3FSrVGq6vgEIdwKU4tD0Pdha3NS80rfVuIKEuIXKLIUQcc4/N5X9b/kfjvI35tum3Nq0rIgIGDoTff4f+/eGXX8AK0xsJIQSRYZGs7LOSE4tOUG1wNVpNbYXJ3nprxkZHG3PGjxkDlSoZc8YXK/bMdIDpjtwXCZE0t4Nu0+KPFgBs6LGBPNnyEOgXiGsBV0o0LUHxxsVRJgt7n69bZwwl9PIykqN5n13PbNs2472ki4vxvrJiRSteTHr1nB6dtnDr1i27f/75J/u5c+eyvvXWW0RFRSmllP7ll1+ud+3a9cFPP/2UN3fu3FEVK1YMyZkzZ7TWmnr16gWsXr36cnzlubq6PknGDRo0qNiff/55oXbt2qGTJ0/OtWPHjkQz5lprhg8ffvP999+/l9hxjo6O0THziGqtVZcuXe7/9NNPN2IfM3fu3ByJleHi4hINEBUVhaura+SZM2dOxT1mwYIFV7du3Zpt1apVbpUrVy539OjRk0OGDHlQv3794L/++sutZcuWXj///POVdu3aBca+hoQ4OTk92WlnZ0dkZKTFwzXs7e11zFB7e3v7J+dqrTl48OBpFxeXhCu2EVl9XohEzJtnfJKXJ4+xwnyqJEQjAmF3F9jVCa6bRzpJQlQIkQzHbh2j/6r+NC7WmFGlR2FStnvZDwgwetT//rsxxciMGZIQFUJYT/DtYC5vu0zjbxrT+pfWVk2I+vsbw+U//dToJbpnj5EQFUK8WALDAmm1oBW3g2/zdfmvKZWrFGdXnWVyicmcWWGsL2NxQnTFCiPbWa6ckfmMJyG6cCE0bw6FChlTjmaKhGgamTdvXs5OnTrd9/Pz87lx44bPrVu3jhcqVCh806ZNLq1btw48efKk84wZM3J36dLlAUDDhg2DDx486HLixAkngMDAQNPx48fjXS0kJCTEVKRIkYiwsDC1aNEi95jtlStXDpozZ05OgFmzZj3Z3rJly4B58+bl9vf3NwFcvnzZ4caNG4l2SGzRokXAmjVrcsYcd/v2bbtz58451q9fP3j//v2ud+/etYuIiGDlypU54zvf3d09ulChQuGzZs3KCRAdHc2+ffuyApw8edKpUaNGwZMmTfLLmTNn5KVLlxxPnTrlWKZMmbCPP/74TrNmzR4dPXo0a+zyGjRoEPjnn3+6R0ZG4ufnZ3/gwAGX+vXr22yOz3r16gWMHz/+yT/R3r17syZ2vDVJUlSIeGht3Bj36gX16hkvYiVKPP+8FPM/DRtrGL1Eq0yAQu1ToVIhxIuqokdFJjabyPLXl+Ngsl2G0s8PGjQwetPPmmW0n1ae4k8IkUkF3gxER2vcirjx1pm3qDeqnlXnED19GmrUMDp8TZ5sLKbpbN2Z8IQQ6cT5B+fxfeTL0i5LKZO9DKf+PMWSzkvwqOhB0QZFLS9o8WJ49VWoVs0YMp8r11O7tYbvvjOmXKtTB3bvjneaUWFFS5cuzdWpU6eHsbe1b9/+4bx589zt7e1p3Lix/44dO9xef/11f4ACBQpETps27UrXrl2Le3l5la1WrZq3j49PvJNIf/jhh341atQoU79+fa9SpUo9jtk+ZcqUa1OmTPGoUKFCmZs3bzq4uLhEAXTq1CmgS5cuD1566SVvLy+vsh07dizx6NEju8Tir1at2uOPP/74RuPGjb28vLzKNmrUyOvatWsOxYoVi3j33XdvvvTSS2Xq1q1b2svLK9TNzS0qvjIWLlx4afbs2blLly5dtlSpUuWWLVuWA+Ddd98t5OXlVbZUqVLlatWqFVirVq3QefPmuXt5eZXz9vYue/78+SyDBw++H7usN95441G5cuVCy5QpU65hw4Zen3322fUiRYpExlevNUyfPv3a4cOHs3l5eZUtUaJEualTp+Z5/lnWIcPnhYjj8WPo18/4ZK9vX/j1V3BMjY6a11fC3p5g7wyNNoNHw1SoVAjxIrr44CIaTUn3krxd822b1nXqlDFP1oMHsHat0SMiM1BKFQbmAvmAaGC61vpHpZQ7sBjwBK4Ar2mtHyZUjhAiYdf3X2dh24XUeKsGDT5tQJYc1l30aPly6N3bSIJu2QIvv2zV4oUQ6UzV/FW5/M5lXJ1cWfz7YnZ+vZNCtQvRY10PnLLH20nwWXPnGm8S69Y1bnxcnx5JHRUF774LU6bAa68ZhztZWLRIvgMHDpyNu+3jjz++E/P93Llzr86dO/dq7P3t2rULbNeu3em45924ccMn9s+jRo26O2rUqLtxj/P09Iw4evToGZPJxPTp03NWqFDhSU/KTz755M4nn3xyJ+45scWsVB9j4MCBDwcOHPjMPePAgQMfjBw58l5ERATNmzcv2bx583sAy5YtuxL7OG9v7/Bdu3adj3v+pk2bLsbd9vXXX9/6+uuvbyUUk8lkYtq0adeB67H3t2nTJrBNmzZPhtnHfU5jxI4t9u8m9jX37dv3Yd++fR8C5M+fP3Lt2rWX4ivL1izuKaqUmqWUuqOUOhFr21il1A2l1FHzVyvbhClE6rh7F5o0MRKiX30FM2emUkIUwN4FclaGFockISqESLbbQbdp/kdz2i9qT1R0vB8kW83OncZ7gvBw2LEj8yREzSKBEVrrMkAt4P+UUmWBD4EtWutSwBbzz0KIJDr912l+f+V3nFydKPd6OauWHRUFH30EnTsbI18PHZKEqBAvstFbRjN+93i01rg6uXLnxB3OfHWGoi8XpeeGnpYnRKdPhz59oFEjY8WkOAnR0FAjETplCrz3nvGeUhKiL649e/Y4lylTpqyXl1fZ6dOn5/3xxx+vP/+spHv//fcLeHt7l/Xy8ipXpEiRsJ49ez6yRT2ZVVJ6is4BpmL0iojtB631BKtFJEQaOXPGmA/Pzw+WLIEuqbFG5+M7cPNvY8X5fI3Bo5GMORVCJFtQeBCtF7TGL9CPbb23YWdKdKROiixebEwxUry48b7A09NmVaVLWuubwE3z94FKqdNAQaA90NB82O/AdmBUGoQoRIb1z6R/2PjeRgrWKEi3Vd3Iljeb1cp+8MAY0rpxo7Ew3JQpkrQQ4kX204Gf+Gr3VwyuNvjJtrzl8+L9P286je6Eg7OF0wtNmQLDhkGrVrBsGWR5uuf6/fvGIvT79sEPP8Dw4Va8CJEutWjRIujs2bPPLGxkbdOnT7dJslUYLO4pqrXeCTywYSxCpJmtW6F2bQgKMubJTpWE6L1/YH1VODAIQs091yUhKoRIpoioCF5d8ipHbx1lSZcl1CxU0yb1aA3ffw9duxrz8O3Zk/kSonEppTyBKsB+wMOcMI1JnD678oIQIkEPLjzg7w/+xruDN7239rZqQvTYMahe3bjXmz7d+JKEqBAvruWnl/P2+rdpV7odU1tN5eCvB/E75AeAR1MPyxOi331nJEQ7dDDm3YiTEL182Rg5c+iQ8aFxJk2IRkdHR8ubWZHumP8uoxPab405Rd9SSvUCDmIMI5N5s0SGMns2DBoEXl7GtDA2f3OvNVz4FQ69A1kLQbM9kDWfjSsVQrzovt3zLRsvbmRG2xm08WpjkzqioozhYJMnG+sLzJv3zPuCTEcp5QIsA4ZrrQMsXQBGKTUIGATg4eHB9u3bLTovKCjI4mPTA4nX9jJazAnFq6M0ys74/6k0uRKupVzZc2CP1erdvDkvEyaUxtU1kh9+OEGpUoFY8rRltOdXCGHY5buL7su6U6tQLRZ2Xsj+7/ez+YPNVO5bmfazkrCY7RdfGCtIvv66cePj8HQi9fBho/NoeDj8/TfUr2/lC8k4Tty9e7dsnjx5/E0mk07rYIQAIyF69+5dN+BEQsekNCn6C/AFoM2P3wP94jtQbv7Tp8wcb3Q0zJxZjAULilK9+gPGjDnFlSuRXLlileKB+OP1ejSBAiFrue9Uk9OuHxF57BHG6Mr0IaP9TQghDMNrDaeke0leL/+6TcoPDYWePY0OEu++CxMmgMni8SYvJqWUA0ZCdL7Werl5822lVH6t9U2lVH4g3kn2tdbTgekA1atX1w0bNrSozu3bt2PpsemBxGt7GS3m+OINvhPMovaLqPlOTcp3Lf/fBBRWEBEBH3wAkyYZyYqlS+3w8KiWoniFEOnfufvnKOFegtXdVnNw/EG2fbKNcq+Xo800Cz841ho++QTGjTPmC5o1C+yenpZo40bjQ2J3d6MHepkyNriQDCIyMnLArVu3frt161Z5kjAiWQgbiwZOREZGDkjogBQlRbXWt2O+V0rNANYkcqzc/KdDmTXe0FBjtdGlS41eolOnuuPgUC/lAcYRb7xnfSCsGrkqjKGeSn+vFxntb0KIzG7FmRU0KtaI1edWM3rLaLot60YRtyKMazyOHhV6WKUOmSfrWcroEjoTOK21nhhr1yqgN/CN+XFlGoQnRIZx7+w9FrRaQODNQOyzWGMQ23/u3DEWPdmxwxj5OmHCM528hBAvGK01Sin6V+1Pz4o92fPZHnZ9uYuKb1Sk/az2mOwteP+lNYwcCRMnGpMP//rrM58Ez5kDAwZA+fKwbh0UKGCb68koqlWrdgdol9ZxCJFUKbrziOkJYf6xI4l0SRUivbh9G9q3hwMHjJvj995Lhak8/dZDdCQUagul37ZxZUKIzOLPU3/y2tLXaFWqFduubCMkIgQAX39fBq0eBJDixOjly9CiBfj6GovQvfpqisN+UdQF3gB8lFJHzds+wkiGLlFK9QeuAqkxS7UQGZLvLl8Wd1iMyd5En+19KFijoNXK/vdf6NQJ7t0zRrz27Gm1ooUQ6dSjx49oOb8ln778KS1LtcQBB24fvU2V/lVoM60NJjsLEqLR0fD22/Dzz8bjjz8+9WZRa/jyS2NEfdOm8OefkD27DS9KCGFTFidFlVILMQaz5FZKXQfGAA2VUpUxhs9fAQYndL4Q6cHJk8YK83fuGENAO3SwcYU6Gnw+B5+xkKceFGwjiykJIaxix5Ud9Fjeg9qFa3P89vEnCdEYIREhjN4yOkVJ0YMHjTYzIgI2b4Z61u9Qn2FprXcDCTXojVMzFiEyogcXHzCvyTxyFMtBj3U9yFk8p9XKnjULhg6FfPlg716oUsVqRQsh0qmwyDA6Lu7IQb+D2JvsCQsIwym7E68tew2TvQllsuA9WFQUDB4MM2fC++/D+PFPvXeLjDTalhkzjBH1M2aAo6MNL0oIYXMWJ0W11t3i2TzTirEIYVObNhmryjs7w86dxuqjNhX+kAoPRsPNf8CzJ9SYJglRIYRV+Nz2of2i9hTPWZzV3VaT+9vc8R531f9qsutYt84Ydpo7tzH01Ns72UUJIcQz3Eu403JKS8q+Wpas7lmtUmZYGLzzDkybBk2awKJFkCuXVYoWQqRj0TqaXit6sf3Kdua1n0fYhDBm75tNv939cHSxMGsZGQl9+8IffxhziX722VPv3YKDjbWW1q6Fjz4yeovKWzshMr70N6GhEDYwbZqxKqCnpzFs3uYJ0bAHsKE6OcP+hepTofZcsHe2caVCiMxAa82A1QPI5piNDT024J7VnSJuReI9NqHtz/Pbb8YcoqVLwz//SEJUCGEd0ZHRXJhyAb9DfgBUG1TNaglRPz9o2NC45xs1CjZskISoEJmB1poRG0ew5OQSxr8yHtfJrhz69RAlW5bEIZuFkwhHRED37kZCdNw4+PzzpzKed+4Y7cv69fDLL8YhkhAV4sUgSVHxQouKMubIHjIEmjWD3buhcOFUqNgxJxTpwtHck8Dr/+RVUwhhNUoplry6hI09N1I0R1EAxjUeh7PD0x+8ODs4M67xuCSVrTWMGWOsKdC0KWzfbgw/FUKIlAoLDGNh24XcWH6DS5svWbXs3buhalXw8TEW0fzmm2cWiRZCvKA0muCIYIZVG0bJ6SU5OvsoDcY0oPFXjVGWvAcLCzMmTF+6FL7/3ugGGsv581C7tjEN24oVxvvKVBV4EW5uSuVKhcg8JCkqXljBwcbr2/ffw//9H6xaBa6uNqwwKhwOj4BHJ4wkaOVvCHAsb8MKhRDPM99nPp6TPDF9ZsJzkifzfeandUjJFhoRypT9U4jW0RTNUZTyef9rX3pU6MH0ttMp6lYUhaKoW1Gmt52epPlEIyKgXz+jc0S/fqnQZgohMo1Av0DmvDyHi39fpNR7pag3yjoTFGsNP/0Er7xiLHSyf78sBidEZhIZHYlJmZjWZhqttrXCZ74Pjb5qRMOxDS1LiIaGGotMrFoFU6caK/DGsn8/1KkDAQGwbRu0bWub60jQrc2w8SXYPxClI1K5ciEyhxStPi9EeuXnZwz9PHLEWDBw2DAbVxjiB7u7wL29kCUf5JBkqBBpbb7PfAatHmSTFdlTW1R0FN2Xd2flmZVUzV+VukXqPnNMjwo9kn1dAQHGnMubNsHYscaKqtLBXQhhDY98HzG73mweP3pM9zXduZ7lulXKDQ2FN9+E33+HNm2MFeZz5LBK0UKIDGDLpS0MXTeUtd3XUtK9JLXfrU1u79xUG1jNovNNoaHGapLbtxvzBvXv/9T+Vauga1coUMAYNl+qlA0uIiFaw9kf4cgIyF4GXl6JPnQtFQMQIvOQnqLihXPsGNSsCWfOwMqVqZAQvbMTNlSFR8eg7iIo+76NKxRCWGL0ltEJrsiekWiteWvdW6w4s4JJLSbFmxBNCT8/aNAAtmwxFlsdM0YSokII68leMDvFmxan766+lGxR0ipl+vpCvXpGQnTMGON+TxKiQmQeR28dpePijmSJysLVGVeJjoome6HsFidECQig4qhRxkqSc+c+kxD99Vfo2BHKl4e9e1M5IRodBf/0hcPvQsH20GwfuJZIxQCEyFwkKSpeKOvWGTfJWhvzS7VpY+MKb2+DLY3AwQ2a7Yeir9u4QiGEpRJaeT0lK7KnhXG7xvHroV/5oM4HDKtp3U95Tp0y5sk6fx7WrDGGzQshhDX4LPQh6FYQJnsT7We1J19l60xQvGULVKsGFy7A6tVG73aTvKMRItO48ugKLee3JJfKxVt/vcWu/+3i6q4k3Ns9fAhNm5L91ClYtAh69nyyS2sYPdrohd6ypTFkPm9eG1xEYpQJ7LJAhbFQ/09wkLmMhLAluYXIyC7PhxWesMBkPF7OuHPlWcPUqcY8L6VKGfO/VK6cCpXmrgtlP4TmByBHuVSoUAhhKWuvyJ4WrvpfZdyucbxR8Q2+bvK1VcveuRPq1oXwcOP7Fi2sWrwQIpPSWrPt020s776c3eN3W7FcmDDBWDjTwwMOHkyFD7+FEOnK/ZD7tPijBVHBUYxcNZKbu27SYU4HPBt6WlbAvXvQuDEcPcrJzz4z5g4yCw+HPn3gq6+MBSdXrIBs2WxxFQnF9g888jGG67z0C1QYYyRIhRA2Jf9lGdXl+XBgEIT4Atp4PDAoUyZGo6LgnXfg7beNm+OdO6FgQRtWGHAOtreBsPtg5wiVvgRHNxtWKIRIDmutyJ6WirgVYW+/vfzW7jdMVrwxXrLEWF0+Xz7Yt89YtVkIIVIqKjyKFb1XsPOLnVTuW5mm3za1SrnBwdCtG7z/PnTqZHz4narDWYUQ6YJSCk8HT/638n/cP3CfTvM7UalXJctOvn3bWJXt9GlYuZL7df+bjiggwJhedO5cY8HJadPAPjVXX7k4GzY3gMPmhZ5kHiMhUo0kRTOqY6Mh6um58ogKMbZnIoGB0L49TJ4M774Ly5eDi4sNK7y+0lgB8P4/EHTJhhUJIVIquSuyp4cV6w/cOMC8Y/MAqJK/Co52jlYpV2uYOBFefx1q1IA9e8DT0ypFCyEyucePHvNHiz84Pu84r3zxCu1mtsPOwS7F5V64ALVqwdKl8M03xoc6Nr3XE0KkO1HRUYRFhuGe1Z0ZlWYQdjGMLku6UL6rhYvb3rhhTKB+6RKsXfvU8Bg/P3j5ZWO9pdmz4ZNPUjEnGR0Jh4bD/n6Q92WouziVKhZCxJDV5zOqkATmTUlo+wvo+nWjZ+iJE/Dzz8bcLzYTHQXHP4FTX4N7dai/DLJlnCG4QmRWSV2RPT2sWH/u/jlaL2iNm5Mbr5Z9lawOWa1SblSU8eHRjz/Cq68aKzVnyWKVooUQguioaELuhdBxXkcq9qxolTLXrYMePYw5QzdsMHq4CyEyl5gFJ8/eOsuGvhsoXKsww68MJ0sOC29ifH2hUSO4exc2bjQWoDA7dcqYO/TBA2Nu9ebNbXQR8Qn3h12d4PZWKP0uVPkWTJKeESK1SU/RjMo5gYRcQttfMIcPGyvMX7pkvIDZNCEK/yVESwyEprskISrECyqtV6y/FXSL5n80R6FY32O91RKioaHw+efl+PFHIzG6eLEkRIUQ1nHn5B0iwyJxzuXM4MODrZIQjY6GL74wPvz29DTmD5WEqBCZ01e7vuKP7X9Qf1x9fGb5AFieEL140egG+uABbN78VEL0+HG3J3Or79iRyglRALusoOyg1hyoNlESokKkEUmKZlSVxoHd03PlYedsbH/BrVwJ9esb87zs2WPjxUG0Nh69h0PtuVBzurEaoBDihZSWK9YHhAXQan4r7gTfYW33tZTKlbQJ8xIa9n//vpFM2LUrNxMnGsPnZaVmIYQ1nFtzjt9q/MaW/20BwGSf8sbF39+YN/TTT41eonv2QLFiKS5WCJEBzT4ym/ErxzNs0TCc7jjhXsLd8pPPnDESosHBsGWLMW+Q2Z9/wsiRlfDwSIO51a+vhsf3jLUpXtkIxXunYuVCiLjkbVFGVawH1JgOzkUBZTzWmG5sf0FpDUuXFqJjRyhXzphkv0IFG1Z4cSZsb2XM9ZIlLxR7w4aVCSHSg7RcsX7lmZX43PFh2WvLeKngS0k6N2bYv6+/Lxr9ZNj/D+tXULeu0cvq009P8e67NgpeCJHp/PvLvyxqv4jcZXJT94O6zz/BAqdPG3mLNWuMqT7mzgVn5+efJ4R48aw/v54R80Yw9I+huAS40HNjT4o1svATkhMnjDlEIyONyUJjZT0nTYLXXgMvr8DUnVtdR8PxMbCzHZz80tgmCyoJkeakj3ZGVqzHC50EjS0y0lhd/tdfS9K5s41vkqMew8FhcHEG5GsKkcGyurwQmcS4xuOemlMUUm/F+jcqvUGtQrWS3EMUEhj2f6UMI7+pi5s9/P03REXdtVaoQohMTEdr/h71N/sm7MOrjRedF3bG0SXli8EtXw69exv3d1u3Gh28hBCZV367/Az5YwjZw7PT8++eFKpZyLITjxwxhsg4ORk9RL29AWNajvffN0bMdOwIgwcfI1euVGpoIgJh3xvGor3F+0Dlb1KnXiHEc0lPUZHuBQQYc0r9+it063aVJUtsmBANvgp/1zcSouU+gobrJSEqRCaS3BXrU+KLHV+w//p+gGQlRCGe4f3nWsKc7USbgtmzx5hyRAghrMH/qj+HZxym+tDqvP7X6ylOiEZFwUcfQefOxkigQ4ckISpEZvYg9AFaayoXr0z7T9rTa0svyxOi+/cbiyplywY7dz5JiD5+DN26GQnRt9+GpUvBySnahlcRS9AV2FQbbqyBaj9CzVkyHZsQ6Yj0FBXpmq+vkRA9cwZmzICSJS9hMtloGKvWsOtVCDwHL6+AQu1tU48QIl1L6or1KfHDvh/4dPunPHr8iJqFaia7nCJuRfD19zV+ONQf1vwKHscpOGQwZcr8a6VohRCZWXhQOA7ZHMjhmYM3j79J9sLZUSkc+vngAXTvbiwIPXAgTJlidO4SQmROd4Lv0HJcS1rmb8mXb39JzbeTcG+0eze0agV58hjdzYsWBeDhQ+jQwciRfvcdjBiRyqPW7bOBycmYPzRf41SsWAhhCekpKtKtAweMFeavXYP162HAABtVpLUxb6hSUHMGNP9XEqJCCJtbdGIR7216j85lOvNt029TVNa4xuPIau8M28bC6t+g+GayDmrJ+E7DrRKrECJze3DhAdOqTGPfxH0AuBVxS3FC9NgxqF4dtm2D6dONL0mICpF5BYUH0fXbrjSe3JgcP+YgOioJPTm3bjWWjy9QwMh+mhOiV68aC87v2wcLFsDIkamUENUariyC6AjIkgdaHJSEqBDplCRFRbq0bBk0bGgMk9+3D5o0sVFF4f6wqxMcGm78nLMSZPeyUWVCCGHYenkrvf7qxctFX+aPTn9gZ7JLUXmvefeg+r/HYccYqDKLIm++xYxXJ6Zaj1chxIvr2r5rzKw9k9CHoRSqZeEQ1udYsABq14bwcNixw+glKoTIvCKiIuj9bW9e+u4lcrjkoO+6vpjsLExVbNgArVtD8eJGg1KwIGB88FK7Nty4YfRG79bNhhcQW9Rj+KcP7O0Gl343tsmCSkKkW5IUFemK1vDtt/Dqq1C5MvzzD5QpY6PKHp2EjTXgxmpwLWlULoQQqWD20dmUzl2alV1XksU+ZfNKBQYa04zsWlmCsWMh+lA/fEdckISoECLFTi07xdxGc8mSIwv99/WnSN2UTWEUEQE//VSCHj2MXqKHDkGtWlYKVgiRYb0z8R28vvTCNYcrb+59k1xeuSw7ceVKaN/eeMO4bRt4eADG+kr16xu5yF274JVXbBh8bCE34O+X4fJcqPA5lOiXShULIZJL5hQV6UZEBLz5JsycCa+/DrNnQ9asNqrMdzH80w8cXKHxNsgrq5AIIVLP7PazeRj6kBxZcqSonJs3jemzfHyMtrOf3HsLIazk0ZVHLOu6jAIvFaDbqm44507ZKpd37sBrr8GOHYUZNgwmTAAHBysFK4TI0MrsK8OD3A94e+/buBWxcJHbpUuNSYmrVjV6i+bMCcD8+dC3L5QubUzBVsg6Hdyf794B2NkeIoOg/l9QuEMqVSyESAnpKSrShUePoGVL4039xx8bw6pslhANvQ37+4N7FWhxWBKiQohUcT/kPq8tfQ2/QD/sTfbkyZYnReWdPm30sDp/HtaskYSoEMK6cnjmoOuqrvTa0ivFCdF//4Vq1YyFoT/66DQ//igJUSEEXH14FYChi4cy4tAIyxOif/wBXbsaC1D8/TfkzInW8M030LMn1K1r9BBNtYQogJ0TZMkLzfZJQlSIDESSoiJ+l+fDCk9YYDIeL8+3WVWXLhnzvezcCXPmwBdfgMkWf5nh/sYQ+awe0Hg7NNoKzgVsUJEQQjwtJCKENgvbsOrsKi4/vJzi8nbtgjp1ICzMaDtbtLBCkEKITC88OJzFnRZzfv15AEq1LIVD1pRlL2fNMoax2tnBnj3QtOltfOb7MMlzEp+ZPmOS5yR85vtYI3whRAYyd8Zcvir/Fav3r8bOwQ4XDxfLTpw5E3r1ggYNjB6i2bMTFQX/93/wv/8ZudINGyBHDpuGb4iOgKtLje9zVoKWRyBH+VSoWAhhLZIUFc+6PB8ODIIQX0AbjwcG2SQxunev0dPp9m3YtAl697Z6FYa7e2FtWbj4m/Fzrupg52ijyoQQ4j+R0ZF0/bMr+6/vZ0HnBdQtUjdF5S1daiw+5+FhzLtctaqVAhVCZGpBt4L4veHvnF15Fv+r/ikuLywMhgyB/v2NpOihQ0Z7FfoglNWDVuPv6w8a/H39WT1otSRGhchEVsxewfk3z5PNlI1ahZIwsfDPP8OAAcZK82vXgosLISHQuTP88gt88IExfN7JyXaxP/H4HmxrDrtfg7v7jG1K0itCZDTyXyuedWw0RIU8vS0qxNhuRYsWQaNG4OZmvLFv2NCqxRu0hrNTYXMDsMsKuWraoBIhhIif1pqha4ey+txqpraaSqcynVJQFkycaMzJ99JLxodKnp7Wi1UIkXndPX2X32r9xt1Td3l9xetUH1w9ReX5+RkLm0ybBqNGGb22cpnXTQm8EUhESMRTx0eERLBl9JYU1SmEyBg2zd7E4YGH8S/oz7v73iVPQQunE5o40egO2q4drFgBWbNy7x40bgyrVsGUKTB+vI1GHMb18DhsfMnoeFPrd8hTOxUqFULYgiy0JJ4VcjVp25NIaxg3Dj75xOg5sHw55M5tlaKfFhkCBwbDlT+gQBuoMw8cc9igIiGEiJ9/mD97r+3lo3ofMfSlockuJyoKRoyAH380ekP88QdkSdmi9UIIARgLKs2qMws7Jzv67OhDgeopm1po927o0gUCA2HJEuP72KLCo+I9zxq9U4UQ6duhPw+xZ8Ae7ha6y/Cdwylk6aSfX30Fo0cbDcr8+eDgwKVLxvRB167Bn39Cp+R/7pw01/6CvT2N95VNdkLuGqlUsRDCFiQpKp7lXMQ8dD6e7SkUFgaDBsHcucYk2L/9ZsPhDXd3g+8CqPgFlPtIhjMIIVJdjiw52Nd/Hy6OFs6TFY/QUHjjDVi2DIYPh++/T6VeEEKITMGtqBu13q1FpV6VyOGZI9nlaG2MbB0+3OjF/vffUD6eqfXsHO3ij8PSBVaEEBmWV10vHFo40HdSX0oXLf38E7SGMWOMRSd69oTZs8HenoMHoXVriIyEzZuNhZVSjY6GnJWh/p+QNX8qViyEsAV5WyWeVWkc2MVZZdTO2dieAg8eQLNmRkL0s8+MR5skRIPNPVrzN4M2Z6H8x5IQFUKkqlVnV9H1z648jnyMq5MrSqlklXP/PjRtavSonzgRfvhBEqJCiJTTWrPnuz3cO3MPpRQNPm2QooRoaCj07QtvvWX03Pr33/gTogCuBV1xcH568SYHZwcaj2uc7PqFEOnbmQ1nOH/nPK75Xfl47cfUKGVB70qtjfk3vvjCmJx4zhywt2f9emPaNWdnY/G2VEmIRgSA3wbj+yKdoekuSYgK8YKQt1biWcV6QI3p4FwUUMZjjenG9mQ6f95YUOmff4wRD59+CsnMESQsOgqOj4HVpeDefmOba0krVyKEEInbe20vr//5OpceXiIyOjLZ5Vy+bNzoHzwIixfDu+9aMUghRKYVFRHF6oGr2fzBZo7MPpLi8nx9oV49+P13o0PXypWJr/qc1T0rbae3xa2oGyijp2rb6W2p0KNCimMRQqQ/B346wOKWi3mz75vcD7lv2UnR0fDOO/DddzB0KEyfDnZ2zJwJbduClxfs2wfe3raNHYDAC7CpNuzqBKG3jW3S4UaIF4YMnxfxK9YjRUnQ2Hbtgg4djCTo1q02+jQv7AHs7QE3N0DxPpCjog0qEemBUmoW0Aa4o7Uub942FhgI3DUf9pHWel3aRCgyszP3ztB2YVsKZS/E2u5rkz1s/tAhY1hYeLgxBLV+fSsHKoTIlMICwljaZSkXN12k/sf1eeXzV1JU3tatxuJvERGwejW0aWPZeRV6VJAkqBXJvZFIr/b9sI9N723iTOkzNB3ZlFzOuZ5/UnQ0DBkCM2bAe+/BhAloFJ+NNUYbNm8OS5eCq6vNwwe/jbCnK5jsoOFayOqRCpUKIVKTfMQhbOqPP4wVAfPkgf37bZQQfXAENlSH21vgpV+g5iywz2qDikQ6MQdoEc/2H7TWlc1fctMvUp1foB/N/2iOg8mBjT03kiebhaupxrF+PTRoYCyktGePJESFENYRdDuI2fVnc3nrZdrNbEejLxole2oPrWHCBGN6Dw8PY7i8pQlRYRNzkHsjkc7s/mY3m97bxMmyJ8nzbR4+aPjB80+KjDTm4pgxAz76CCZMICJSMWCAkRDt29f4ACZVEqKnJ8KOVpCtCDT/FzxS9iGSECJ9kqSosImYObHfeMMYUrVvH5QoYaPKbq6H6HBj9b9SQ2wwLl+kJ1rrncCDtI5DiLhuBNxAoVjXYx3FcxZPVhlxh4WVKWPlIIUQmVYWtyxkL5Sd7mu7U6VflWSXExwM3brB++8bqz3/84/RZom0I/dGIr0JuB7Ati+3cbzCcfQnmh/a/PD8D2EiIozFlObONeYRHTeOoGBFu3Ywa5Yx/drMmeDgkHgxVhMRAIU6QtM94FIslSoVQqQ2GT4vrO7xY+jXDxYuND7N+/VXcHS0ciVRYcb8LjnKQdkPoeRgcLJgOIZ4kb2llOoFHARGaK0fpnVAInOI1tGYlImXCr7EubfP4WiX9AZPaxg7Fj7/PJWHhQkhXniXt10mf5X8ZMmRhe5ru6eorAsXoGNHOHUKvvkGPvhAPotO5+TeSKSJ7IWy03dfX2bencmol0dhZ7JL/ISwMOjaFVasgG+/hfff5/ZtYyqho0eNKUUHDkyFwEOuQ8gNyF0TKnwKKGnkhHjBSVJUWNXdu8bN8p498NVX8OGHNngdCbkOu16FoIvQ9gI4uklCVPwCfAFo8+P3QL/4DlRKDQIGAXh4eLB9+3aLKggKCrL42PRA4rWtmHijdTRfnv6S4tmK07Noz2SVFRmp+P57LzZsyE+LFjcZMeIchw5pK0eccZ9jIUTyHf7tMGuGrKHa4Gq0/ql1ispatw569ACTCTZsMIbOi3TNonsjuS9KvzJazIGBgcx8bSbBOYIp1qUYrg6uNDA14J/d/yR6nik8nHKffkqu/fs5//bb3HjpJa7O3c+HH1bk4UNHvvjiJKVKPcDaT0Xc5zd7mA/lH44hSmXlQN65aPWcRG4qy2h/D0JkFJIUFVZz5ozxaZ6fHyxZAl26WL+OHGFHYP1rEBUKteYYCVGR6Wmtb8d8r5SaAaxJ5NjpwHSA6tWr64YNG1pUx/bt27H02PRA4rWt7du306BBA97b+B7b7m6jZaWWNKzbMMnlBAYabeXGjcaUI2PG5Eep/NYPmIz5HGekeIVIT7TWbPtkG7vG7aJki5I0+aZJssuKjoZx44w2qlIlWL4cislI0nTP0nsjuS9KvzJSzDpa81vn3/Bb4YdPPR/W3V7Hhp4bnn9icLCxIu+BAzBtGqUGDeLePmN9JZMJdu6El16yzQK6Tz2/F36DgyPAuSg0WEkDt7I2qTMlMtLfgxAZiSRFhVVs3QqdOxvD5Ldtg1q1rFyB1nDmeyrdHwXZvaD+cnCTyfaEQSmVX2t90/xjR+BEWsYjMofv933PpP2TeKfmO4ysMzLJ59+8aXyQdPw4/PYb9O9vgyCFTcmKzyI9igyLZFW/Vfgs8KHqwKq0+qkVdg7J6/Hk7w+9e8PKlcZUf9OmgbOzlQMWNiH3RiK16GjN6sGr8Vvhx+kmp9ncaDO7m+1+/omBgcaN0J49MGcO9OrFihXGnMWFChk90m22JkWM6Eg4NBzO/wT5mkG9ReCY08aVCiHSE0mKihSbPRsGDTIm2V+7Fjw9bVTRvf3cy1KPPM3XgINMtpdZKaUWAg2B3Eqp68AYoKFSqjLGELErwOC0ik9kDn/f/puvznzFa+VeY2LziUlewfn0aWjRAu7fN1ZRbdnSRoEKW5sDTAXmxtn+g9Z6QuqHIwQ8fviYq7uv0uirRtT7sF6yV5g/fdrowHXxIvz4I7z9tkytl17JvZFIK1prVvZbybHfj3G66Wn+qv8Xm7ptonze8omf+OiRcfPz77+wYAG8/jo//QTDhsFLLxn3RnnypMIFKBM8vgllRkKlr8Ek6REhMhv5rxfJFh0NH38MX39tzCu1ZAnkyGHlSvzPgJ0juBSHOvM4uXMfDSUhmqlprbvFs3lmqgciMrWI6AiaFm/K3A5zMSlTks7dtQvatQMnJ9ixA6pVs1GQwua01juVUp5pHYcQAAE3AnDJ54JLPhfePPEmTq5OyS5r+XKjh6izszEa6OWXrRiosDq5NxJpRSlFgeoF2BO1hyUll7C402IaeDZI/KT796FZM/DxgaVLiW7fkY8+hPHjoW1bWLQoFXqkPzxKlshbRlK07hJ43kJQQogXVtLeyQlhFhpqLBD49ddGL9G1a22QEL26DDa+BAfMH2zbZZEuCkKINBUeFQ5Aq/yt2NBzA072SUs6LF0KTZqAhwfs2ycJ0RfYW0qp40qpWUopGYcnnuIz34dJnpP4zPQZkzwn4TPfJ8Vl3vj3BtOrTmfr6K0AyU6IRkXBRx8ZUyKVLQuHDklCVAjxrKjwKG4duwVAjbdq8O7P7/I/7//RpdxzFpW4cwdeeQVOnoQVKwhv3ZFevYyE6JAhxgcyNk+IXl0Km+pSyn+S8bMkRIXI1CzuKZrAvFnuwGLAE2NYxmta64fWD1OkJ7dvQ/v2xnzYEyYYE2FbNVcZHQnHPoLT30GuGlBzlhULF0KI5Ln08BKN5zbm51Y/k5WsSe4h+sMPRntZty6sWgXu7jYKVKQ1WfE5Fon3aaEPQvG/44/H2x544AHAyTsnub78OlndsyarzOubr7Nrwi4cczoSXjY82fEHBNjz5Zdl+fdfd1q39mPYsPNcuKC5cCFZxSVI/iaEyNgiH0ey5NUl+O7wpdymcrSq2YoCrgVo6tE08RP9/KBxY/D1hTVr8H+pCZ1aGr3Rv/oKPvzQxv1fdDQc/xROjoPcdThrN4I6NqxOCJExJGX4/ByenTfrQ2CL1vobpdSH5p9HWS88kd6cPGnMh33nDixbBh07WrmCsAewuwvc3golh0C1SWCX/OFfQghhDXeD79L8j+YEhAVQLGcxbt24ZfG5UVEwYoQxJ1/nzvDHH5Aliw2DFWlKVnx+msT7tEmek/D39X9mu1tRN4ZfGZ7k8vZP2c/Fry5SoHoBuq3uhouHS7LiOnYM+vWDGzdg+nQYOLAAUCBZZT2P/E0IkXFFhESwuONiLm66iPtH7rTf1J5JahLv1Hon8ROvXoVGjYzeNRs2cKPEy7R6GU6dgrlz4Y03bB14AOztCTdWQ4n+UP0nwnfts3GlQoiMwOKkaALzZrXHmNQb4HdgO5IUfWH9/Te8+qoxpGHnTqhe3QaV2GWByBCoNRuK97FBBUIIkTRB4UG0XtCa6wHX2dJrC965vbmFZUnR0FDjRn/ZMhg+HL7/Hkwycc0LTVZ8zpx85vuwZfQW/K/641bEjcbjGlOhR4VnjvO/+mxCNLHtifG/6s/mUZvJVScXvTf2xjGbY5LLAGONkwEDjN7rO3ZArVrJKkYI8YILDw5nYduFXNl+heJfF6dveF+aFGvCmy+9mfiJly8bCdGHD+HvvznpWosWtcDfH9atM9amsD0ThNyA6lOh1FCZkk0I8URKF1ryiLnx11rfVErltUJMIh2aPh2GDoVy5WDNGihc2IqFaw1XFkChdsaq8s32GJNeCyFEGouIiuC1pa9x6OYh/nr9L+oUtnyg1f37xlQje/fCxInw7rs2DFSkCVnxWYCREF09aDURIREA+Pv6s3rQaoBnEqNuRdzi7ylaxM3i+qIjozHZm3Ar4kb/vf05ff90shKikZHwwQfG1B716xtzHnt4JLkYIUQmsX/yfnx3+FLpx0r0DOxJBY8KLHttGY52ibQ/584ZCdHQUNiyhR1B1Wjf4r9ONpUr2zjo29vBvTo4uEDz/bK6vBDiGanWKsjcWenT8+KNioLp00uwZElhata8z6efnuLixSguXrRO/SYdRqlHk8gfuoFLrgO56to9RfE+I/yB8algdDiYHMG5IDim3kR+Ge3vATJmzELYikmZKJ6zOL+2/pV2pdtZfN7ly9CyJVy5AosXQ5fnrDsgMiZZ8VkAbBm95UlCNEZESARbRm95JinaeFzjpxKoAA7ODjQe19iiuoLvBLOo/SKq9K9C1QFVyVc5H2e2n0lyzHfuwOuvw/btMGyYMUe8g0OSi7EqS3vbCiHSRt3361KwbkEaH2lMnmx5WN9jPdmdsid8wsmTxhyi0dGwbRuLT1ekVy8oUQLWr4eiRW0YrNZwegIc+xC8R0KV8ZIQFULEK6Utw+2YYWJKqfzAnYQOlLmz0qfE4g0Ohp49YcUK+L//g0mTcmFvX996lQddgV2dIfQwlP+E4uXHUPw5q/8l6fm9PB8ODIKokP+2hTlDjelQrEeyw06KjPb3ABkzZiFsITAsEFcnV6a2mpqk8w4dMuZeDg83ph2pb8VmUwiR/iRlSHxMki85yb/75+4zv+V8Av0CyZoreYsyAfz7L3TqBPfupdJcfhZISm9bIUTqCbkfwrqh62j+Q3NcC7hS/OXiLCq+iBxZcpDPJV/CJx49aoyLd3BAb93GxPVlGDnSuCdascLGi01GhsL+AeC7AIp0gQqf2rAyIURGl9Kk6CqgN/CN+XFliiMS6YKfH7RrB0eOGIuDDBtm5Qru7Iad7UFHQYPVULCNlSsAjo1+OiEKxs/HRqdaUlQIkTH9/O/PfLP7G3b3200RtyIWn7d+vdErNHdu2LYNypSxYZBCiHQhqUPiK/SokORE39XdV1nUfhHKTtF7e28K1SyUrFhnzTKmQ8qXD/bsgapVk1WM1SWlt60QInUE3wlmXtN53Dt7j7L9ynLq0SleLfsqNQvVTPzEf/+F5s3BxYWov7cy4peS/PijsTbFvHk2Xmwy5Drs7AAPDkOlr6CsrZe0F0JkdBZP3GieN2sfUFopdV0p1R8jGdpUKXUeaGr+WWRwx45BzZpw5gysXGmDhChAtiKQszK0OGibhChAyNWkbRdCCGD56eW8te4tKuerTAFXy1dfnjkT2rYFLy/Yt08SokJkFo3HNcbB+emx50kZEv88/tf8mdd0Hs65nem/r3+yEqJhYTBkCPTvb/TUOnQo/SREwboLUAkhUi7wZiBzGs7h/vn7vLbqNUbeG0nXP7ty9t7ZxE/csweaNIEcOQj7eyevjzYSosOHG9MJ2TQhChAdCeEPocEqKPc/SYgKIZ7L4qSo1rqb1jq/1tpBa11Iaz1Ta31fa91Ya13K/PjAlsEK21u3DurVM6Zh2bUL2sTOV16eDys8YYHJeLw8P2mFhz+Ck9+AjjaSoo23gGvJ5AVqSSzOCfTuSmi7ECLT2+W7i+7LulOzUE0WvboIewvmn9IaxowxVm9u0sRYvTl//lQIVgiRLlToUYG209viVtQNFLgVdaPt9LZW6+HoVtiNNtPa0G9vP9xLJH3M6Zapp/F282PaNGiU/V++6+VDrlxWCc1qEupVm5QFqIQQ1hFwPYA5DeYQcC2AHut7MD50POsvrOfn1j9TOnfpBM/LcfSo0UPUw4OHK3fSZIAny5YZi03+8AP/3959x1VZv38cf90gDhy498BZWea2LDfuvcqBOdKobNgeX1pWtIdtI3eiprk1R2K49yRTc4J7iyIg49zfP241EVDGORwOvJ+Px+8B3PM6/Pp+vLnuz+e6cHNkH93jS6y/MQt4Q+c9jpt0IyLZjlp8yw0//GDNcqpeHTZsgLp1b9p5vT5nVBhgWl83+qU+MXoxFBY3hJ1vw7nNGQs0tbHUDgB3z8Tb3D2t7SKSaYJCg/Ae5Y3bSDe8R3kTFJrGFyqZZPeZ3XSd1pVKhSsxv998PD0873hOXJw18+r992HIEJg/HwoWzIRgRSRLqeVbixcOv8C7tnd54fALGU6I2uJtLBqxiPDV1uqW2gNr41nszmPSrSa+c4Duz1Xg2NXiPMIMml36gz+emk9oUGiG4rM3R8+2FZHUy5U3F/lL5mfA0gGMs41j3PZxvNPsHfzq+6V80tKl1Hr9dahUiaNBK3i4T3k2brRmh774ogODTYiFTcMhpD0cnmJtc3Ny1zgRcSlKigoJCTBiBDz7rNUcZOVKKFfuloNuV5/zTg5PgSUPQMIVaB0CxRtlLODUxlLZ12qq5FkJMKyvmdhkSUSshKjffD/CIsIwMQmLCMNvvl+WTIyWKViGdlXbsWTAEop7Fr/j8ZcvWy+Sxo+3ZoqOHev87s0i4vpiI2OZ1n0aG7/dyOEVh9N1DdO0XnY//oE3ubnKMMZwL/8A/9XqzEocPdtWRO4sIjyChNgEPIt7MmTVEM5VPscHKz9gaN2hvNfivZRPXLAAunQhukIFQr8LoWHXMpw4AUuXwqOPOjDgmNPwVxvY9xPc8xpU6ufAm4lIdpXRRkvi4qKj3ene3fq37MUX4fPPwT25BvDprc8ZOhJC34MSTaHJdMh3my6FqZWWWCr7Kgkq4kT+wf5ExSV+iREVF4V/sD++tbLG/zYjYiLI7Z6bwnkLM633tFSdc+5cbpo3h507YcwYa7aoiEhGXT5xmamdp3Jy+0k6je5EgycbpPka0dHw9NMwcSLUYD89mE0+riY6JivW6kxPAyoRsY+ze84yyWcSVdtXpdvYbhiGQZ3SdVgyYAmtKrfCSKk258yZ0Lcv1KnD+M5f8r9uJShSBJYtg3vvdWDAF7bDim5w9TQ8FATe/R14MxHJzpQUzcGOHoXnn6/DoUPw44/WA3SKPCteW66ezPbbKdUK4i5BnU/st5QhvbGISKYLj0j+JUZK2zNbTHwMXad1xd1wJ3hgcMoP/TfZvRueeaYekZHWcvkOHTIhUBHJ9i4du8S4h8YRdS6KfvP7Ub1j9TRfIywMevaErVutGeyFxi/icvjVJMepVqeIXHf679NM8pkEBjR+sTFrj6wlwZZA00pNaVu1bconTpkCAwfCAw8wZcAfvPhcQe691+pRkWTVob3FRoDhDm1WQ9H6Dr6ZiGRnWj6fQ23danWYP348HwsW3CEhCmmrz3l6NfzzufV9yaZQ70v71nZRrVARl1HRK/mXFSltz0wJtgQGzBrAyrCV+NX3S1VCdNUqePhhiI11Y8UKJURFxH4KlilI9c7VGbJySLoSosuXQ4MGsH8/zJsH770HbT5SrU4RSdmJbSeY0GIChrvB4JDBnC99ni5Tu/DMH8+QYEtI+cTx42HAAMymTfnMZwm+w72oXTsi+TJs9mJLgJPXSn+Uam41VFJCVEQySEnRHGjuXGjaFHLlgu++20b79qk4KTX1OU0T9n4LwS3hwBiIv+KYD6BaoSIuI8AnIEnDIk8PTwJ8nPsSwzRNRiwewczdM/mq7Vf0va/vHc+ZMQPatIGSJeGHH7ZSX8/hImIHoVNDiQiPwHAz6PRDJ8rUK5Om800Tvvjiv/Fp0yar3jGoVqeIpCwhLoHpvabj4enBkJVDiC0XS/vJ7cnllos5fefg7pZcTTVg9Gh4/HFsrdvwfJWFvP5BAQYMgE8+2YmXoyahx0bAyq6wvDWc32ptc8/toJuJSE6i5fM5iGnCqFHw8svWTIJ582DPnjQkLm9XnzP+Cmx4AsKmQvlu8OBEyJXfLnGnORYRyTKu1w31D/YnPCKcil4VCfAJcHo90a/Xf80Pm37g5cYv82LjO7dF/fpra+x86CHrxVJoaEwmRCki2Zlpmqx4fwUr3ltBg6cb0OnHTmm+xpUr8MEHNfnrL+jdG8aNg4IFEx+jWp0ikhx3D3d6/9ab/CXy41bGjY7jO3Iu+hwhg0KoUqRK8ieNGgUvvkh8h870MWYwa1xe3ngDPvoIVqwwHRPopb2wshtcPgANf4Ki9RxzHxHJkZQUzSHi4+H55+Gnn6BXL5g0CTw9Yc8eO1zclgDLmsOFbVD7I6j5OhiahCwiFt9avk5Pgt6qU/VOHL98nM/afHbb42w2Kxk6apQ1dv76K+TLlzkxikj2lRCbwIInF7B9wnZqD6pN+1GpWbaT2P790KMH/PNPCT75BF57DVJRBUREcrjDKw5zfNNxHnrlIco1tNa6f7L6E3ad2cXC/gupXzaFpTCffAJvvsnVzr1odXIK67fm5ocfYPhwBwZ77A9Y2w/ccoNPMJRs5sCbiUhOpKRoDnDpEjz6KCxZYj0wf/wxuNkzZ+nmDjWeh3xloEwbO15YRMS+9p3bR7Wi1bir+F180faL2x4bHQ2PPWY1Vh0xAr78EtxTWEkmIpJaMRExTO81nUPBh2j+XnOav9M8VTWNb7ZoEfTvbz3PffrpTl55pbaDohWR7OTgsoNM7TqVwt6FaTi84Y2aw689/BqtKreiUblGSU8yTRg5EkaO5HLX/jTcNZGwY7mYNQu6dXNwwFFHoEAVaDYH8ldy8M1EJCfSdL5sLizMagoSHAyBgfDpp3ZKiNoSYMfbcHia9XOVgUqIikiWtunYJur+XJdPVn9yx2PPnbPq882cCV99Zc0UVUJUROzBMAyuRlyl24RutHi3RZoSojYbfPABdOoE3t6weTM0aHDBccGKSLaxb9E+pnSeQtFqRRkcMhgPTw++WvcVYRfDcDPcUk6IvvkmjBzJmU6Dqb52Emcv5mL5cgcmROOj4Mw66/vqT0Lb9UqIiojDKCmajW3aZHWYP3LEmlHwxBN2uvDVcxDSEXZ9CGfX2umiTnQoCOZ4wxQ36+uhIGdHJCJ2tv/8fjpN6USJ/CUYUnfIbY89dMh6mbRpE/z2G7x455KjIiJ3dCr0FHFRceQplIeh64dSZ1CdNJ0fEQE9e8I774CvL6xZA5UrOyZWEcle9s7by2/df6PkvSUZ9Ncg8pfMz6j1o3h56cuM2Tom+ZNM03oI+vRTDnd4isrLx+JZ0J21a6FxYwcFeiUc/mwCf7Wz/uYEcM/joJuJiGj5fLY1c6a17LNUKVi+HGrWtNOFz2+BVb0g+gQ0+gWqDbPThZ3kUBBs9IOEKOvnqDDrZ1AjJ5Fs4lTkKdpNboeJyZIBSyhdoHSKx27ZYs3AunoV/vwTmql0lYhkQGhQKMH+wUSERYABlVtVZuCygbi5p21ewu7d0L07HDgA33wDzz2n+qEiknpXzlyhTL0y+C7yJW/hvEzfNZ2XlrxEz3t68l6L95KeYLPBM8/A6NGEthpBncVfU7eewcKF1t+XDnF6lfV3pu0qPDwV8hRz0I1ERP6jmaLZjGnCZ59ZHUhr14YNG+yYEI08CEsftm7SZrXrJ0QBdvj/lxC9LiHK2i4iLs9m2ug2rRsnI0+yoN8CahSrkeKxixZB8+aQNy+sXauEqIhkTGhQKPP95lsJUQATjqw9QmhQaJquM2sWNGoEFy9a5ZCef14JURFJnSunrwBQb2g9hqwaQt7CeQk5HMJjsx/j4YoPM7nHZNzdbqkPlJAAQ4fC6NGsfOgN7l/+Ne07GISEODAhuu9nCG4FuYtA2w1QrpODbiQikpiSotlIXBz4+cHrr0OfPtYM0ZIl7XBh07S+FqgC9b+G9lugWEM7XDgLiApP23YRcSluhhvvNH+H6b2n80D5B1I8buxY6NIFatSAdevgnnsyMUgRyZaW/W8ZcVFxibbFR8cT7B+cqvMTEsDfH3r1sl5wb9livbgREUmNbeO38U2Vbzi28RgAbrncME2T91e8T7Wi1ZjXdx75PPIlPik+3lpuOGECs2u/R/O1HzF0qMHcuVCggAODvbgTSreBdhvA624H3khEJDEtn88mLl60ZocGB8Nbb1kNAu3SUOnKEVg3AOp9DUXrQfWn7XDRLMSzorVkPrntIuKyTNNk8/HNNCzXkI7VO97muBsNVWnXDmbMgIIFMzFQEcm2LoVfSnZ7RHjEHc89f97qLr9kCQwbBt9/D3lUVk9EUmnzz5tZ+NRCqratSsn7/pslYxgGc/rO4fLVyxTJVyTxSbGx0K8fzJrF2OqfMGzH67z3nlXH2CGz02NOW3VDve6B+qMAN7h11qqIiINppmg2cOgQPPQQrFwJEyZYXUntkhA9GQyL68H5bRBzyg4XzIJqB4C7Z+Jt7p7WdhFxWW8Gv8mDYx9ky/EtKR4TF2etDhs5EoYMgfnzlRAVkYy7eukqpmniVckr2f1eFZPfft2OHdCgAfz1FwQGwi+/KCEqIqm34dsNLHxqIdU7Vafv3L54eHpwIfoCLyx+gSuxVyiUpxDlCpVLfFJMjNXJbdYsPi83iicPvs7YsfDuuw5KiJ7fCosbXKshmgBuHkqIiohTKCnq4tatszrMnzwJS5fCoEF2uKhpwj+fwl9tIW9JaL8Zynaww4WzoMq+0CgQPCsBhvW1UaCaLIm4sG83fMunaz7Fr54f9crUS/aYy5et5fLjx1sP/GPHgodHJgcqItnOhYMX+KXhL6x4fwU+AT54eCYeWDw8PfAJ8Enx/ClTrK7OV6/CihXwxBOOjlhEspP9S/azeMRi7u5xN31m9SFX3lzExMfQbVo3ftr8E6Gnk6lpHBUFXbvCwoX4F/2JkRdHMH8+PP64g4I8PNXqMA/w0GQlQ0XEqbR83oX99puVBK1QARYutGrh2cWhSbD9DajYBx4YAx6OLCCTBVT2VRJUJJuYvms6Lyx+ge53d+f7jt9jJDO94cQJq8P8zp0wZow1W1REcpYbXeHDI/Cq6IVPgA+1fGtl6JpHNxxlapepmAkmVXyqULGJVYonNfeJj4fXXoOvv4amTWH6dChdOkPhiEgOVLVNVTqN7kTdx+vi7uFOgi0B31m+rApfxW+9f+PB8g8mPiEyEjp3xly5kmc9x/N7rsGELLFmq9udLQF2+luTb0o0gaYzrQk4IiJOpKSoCzJNCAiAt9+GJk1g9mwoXtwOF7bFg1su8PYFtzxQqY/am4qIy9h3bh+PzX6Mhyo8xJSeU5J2UwV274YOHeDsWWu5fIdsOgleRFJ2vSv89SZIEWERzPebb+0sd5sTb2P37N3M8p1FwTIF8V3kS7EaxQCo5VvrjsnW06etBpkhIfDcc/Dll5q5LiKpZ5om679eT83eNfGq6EWDJxvc2D5i8Qhm7Z7F1+2+5tF7H018YkQEdOiAbcNGhrhPZl25/qxbDFWqOCpSG5zdANWehPrfgntuR91IRCTVtHzexcTGWrXv3n4bBgyAZcvslBANnwF/1LIKXrvlAu++SoiKiEupVrQa33X4jnn9kummCqxaBQ8/bJXNWrFCCVGRnCrYPzhJV/i4qLhUd4W/1eXjl5nZbyala5dm6PqhNxKiqbFpE9SvD+vXw6RJ8O23SoiKSOqZpsmy15ex9OWlbB2zNdG+E5EnmL5rOq80foUXHnwh8Ynnz0Pr1iRs3Myjtt/Y17A/a9c6KCF6aS/EnLHqhrb4AxqNVkJURLIMJUVdyPnz0LYtTJxoNQaZNCnjhfcNMwG2vgKrH4XcRcBMsE+wIiK3ERQahPcob9xGuuE9ypvz0efTfa3wiHBCT4ViGAZ+9f0omq9okmNmzIA2baBkSasWc/36GYleRFxZSt3fU9MV/mamaQJQsGxBfP/wZeDygeQvkT/V548bZy2Vd3eHNWvgscfSdHsRyeFM02TxC4tZ+/laGgxvQIv3WiTaX7ZgWbY/tZ1P23ya+MQzZzBbtSJ+2066JcwioXsvgoPtNNHmVscWwpJGsOlp6+dcSV9ai4g4k5KiLmLfPnjwQeuP+aAgeOcdO0zkjD5F7XMvw54vofoz4BMC+crYIVoRkZQFhQbhN9+PsIgwTEzCIsIIiwgjKDQozdc6H32e9pPb02VqF2ITYpM95uuvraWpDRpYiYfKlTP6CUTElaXU/f1OXeFvFhcVx/Re0/nn938AqNyqMh75UjfFMzYWnn7aqmfctCls3gz1ku8JJyKSLNNmsvDphWz8diMPvvggHb/viOFm/XG4ZP8S3l7+NqZpUrZgWdyMm/7kP3ECW/MWxP79Lx0T5uP9TGd+/x3y2TtXaZqw62NY0QUKVIN6X9n5BiIi9qGkqAtYtcpKiJ4/D8uXQ//+drrw9tcpGLcHGk+Cht9rGYOIZAr/YH+i4qISbbOZNvyD/dN0nei4aLpM7cKBCweY2H0iuW8Zw2w2ePFFeOkl6NkT/vwTiqV+VauIZFPp6Qp/s8hTkUxoMYE9c/Zw5fSVNN37+HFo0QJGj7YaKy1a5KDZWSKSrcVeieX4puM0ebMJbb9se6Ox5JbjW+g1vRfz/p2X5FmLo0dJaNqcq3vDaJfwBz6ftOW776zZ6nYVfwXW9IMd/4NKfaHNKshf0c43ERGxDzVayuImT7ZmElSubHWYr1o1gxc0TesfKo8CUO9LtkY2oWHlNK7XOhQEO/whKhw8K0LtAHVvF5FUC48IT9P25MTb4uk3sx/rjqxj+iPTae7dPNH+mBhrKervv8OIEVbjErs/9IuIS7re+Ci5rvAhISG3PffsnrMEdQwi8mQkfWb34e5ud6f6vqtXwyOPwOXLVnf5Rx7JyKcQkZzIFm/DFm8jT8E8DFk1hFz5ct1IiB68cJCOUzpS3LM4i3wXkT/3TeU8Dh8mvlkroo+do5OxlCcnP4Svo/58i4+G85uhzqdwz6vqUyEiWZqSolmUacJ778H770PLljBzJhQpksGLxkfBxqcgcr+1VD5PMa54VEvbNQ4FwUY/SLj25jEqzPoZlBgVkVSp6FWRsIiwZLdfFxQahH+wP+ER4VT0qkiATwC+tf4bY37Y+ANz987l2/bf0rtm70TXOX8eunWzEhBffWXNFhURuVlqusLf6vLxy4x9aCzuHu4MXjGYcg1T16reNOHHH+GFF8Db25q1ft99aY9ZRHK2hLgEZvWfReyVWPrN75doxvuZK2doN7kd8bZ4Fg9YTNmCZf87cd8+Ypv5EHUqku6ewbw7twE+qZsYnyYFY/dCwkOQtzh0DFX9UBFxCVo+nwXFxFid5d9/3+o0v3ixHRKilw/A0ofg8GQo097qMJ8eO/z/S4helxBlbRcRSYUAnwA8PTwTbXMz3AjwCQCSrznqN98vUc3Rpxo8xbRe03jugecSXefwYavD/MaN8NtvSoiKiP0ULFuQpv9rytD1Q1OdEI2Otp7lnn0W2rWzus0rISoiaRV/NZ4ZvWfwz+//UKV1FdzcE/8Zv/HYRk5fOc38fvO5u/hNM9j/+YerjZtz6VQ0jxT/i2/XOiAhapqw7yfqnn0G/vnY2qaEqIi4CM0UzWLOnIEePaxmIB99BG+8YYcVB8f+gLXXZli1WAhlO6T/WlEpLG9NabuIyC2uz/i8eSZoJa9K9KzV88b2W+tgRcVF4R/sTwGPAjSp2IRinsXoc1+fRMds3QqdOlkvlv78E5o1y5zPIyLZl2marP1iLVXbVKV0ndI89MpDqT43LAx69YItW+Ddd60mmW6ajiAiaRQXbTV2279oPx2+70CjZxolOaZTjU4cGnGIovmK/rdx505imrbmwiV3nqy6gnF/1aRCBTsHlxALW56D/YFcyPMgxe56wc43EBFxLD2aZSF79lgNlbZssWpNvfmmHRKitjjY9hLkrwQdtmQsIQpWDdG0bBcRSYZvLV8Ov3AY27s2Dr9wONFDfEq1RcMiwug1vRdvLX8ryb7Fi60kaO7c1kslJURFJKMS4hKY7zefZa8tY/vE7Wk6d/lyaNAA9u2DefOskkhKiIpIeswdMpf9i/fTObBzooSoaZo8s/AZpu+aDpDoWcrcvIXoxi05cykPrzZcwaTNDkiIRp+C5a1gfyDUfJPQoh9Cbi8730RExLH0eJZFLF8OjRtDZCT89Zcdiu/HXoCEGHDzgBaLoO1aKFAl44HWDgD3xMtecfe0touI2MHNtUVvZmBQp3QdPmvzWaLt48ZB585QvTqsWwc1azo2vqDQIEJPh+I20g3vUd6JlvWLSPZw9fJVpnaZyrYx22jq35R2X7VL1XmmCV98AW3aQMmS1nL5Ll0cHKyIZGtN3mhCj197UP+J+om2vxfyHj9u/pG/T/+daHvC6nXEPNyKk1GF+KzTSsauqkHhwg4I7OoZuLwPHp4GdT4CQx0tRcT1KCmaBYwfb9WZKlsW1q+3ZotmyIXtsKg+bBlh/VygMuTyvO0pqVbZFxoFgmclwLC+NgpUkyXJNIZhjDMM47RhGH/ftK2oYRh/Goax79rXjFbhFSdKruYoQIn8JVjYfyEF8xQE/mtIN3Qo+PjAypXWOOpI1+udxibEpljvVERc25UzVxjfdDwHlx2kyy9daPVhqxvdnW973hXo1w9efdUqhbR+PdSokQkBi0i2ExMRw4kFJwAoXac09/ven2h/4JZA3l/5Po/XeZyRLUbe2H71z5XEtmzL0diSBD2xgm/mVSZPHjsHd3aj9bXwfdD1EFTqc/vjRUSyMCVFnchmg//9Dx5/3Oowv2YNVK6cwYse+hWWNgbbVag82B5hJlXZF7ofhv4266sSopK5JgDtb9n2BhBsmmZ1IPjaz+KifGv5EtglkEpelTAwyOuel0J5CrHm8TWUKlAKgLg4Kxk6ciQMHgwLFkDBgo6P7Xb1TiXn0Uua7Clv4bwUrVaU/gv6U29YvVSds3+/9VJ7xgz4+GPra2aMSSKgsSi7iT4fza+tf2XfN/s4u/dskv3z9s7j6YVP07F6R0Z3Hn3jpc2lWcsw27fncHx5VoxcwVuBFe1btsOWANteg6UPQPhMa5u9Jt6IiDiJkqJOEh0NfftaD85+frBwIRlb1pAQC5uegXUDodiD0H4rlGhsr3BFsgzTNFcC52/Z3A2YeO37iUD3zIxJ7O/WmqMrBq+gWtFqAFy+bC1HHT/ealwybhx4eGROXCnVO01pu2R7E9BLmmzj0F+HiL0Qi7uHO4/+/ijV2ldL1XmLFkHDhnD8uPX99SaZoUGhjPIexUi3kYzyHkVoUKiDP4HkYBPQWJQtXDlzhUk+kzi18xT3vn8vxe8qnuSYjcc2Ur9Mfab3no6Hu/UAdHLcH+Tp3Zl9ZjX2j1nBsHfsvHQm9gKs6Ay7P4fqw6F8V/teX0TESZQUdYJTp6yZob//btWdGj3aDn/QRx+Fw5Ph7peh1Z+Qr5RdYhVxEaVM0zwBcO1rSSfHIxkUmxDLV+u+It4WT6kCpahTug4AJ05A8+awbBn88os1UzTDDenSIKV6pyltl+xNL2myj23jtjG57WQOBR5K9Tk2G3zwAXTqBN7esHkztG1r7QsNCmW+33wiwiLAhIiwCOb7zVdiVBxCY1H2EHkykoktJ3J2z1n6ze9HscbFEu03TROAD1t9yIrBK8ifOz8AB76YTdGh3fnH7T4i5/1Fl6F2fgyO2A1LHoBTwVbZtIY/WH0rRESygVzODiCn2bXLaghy6hTMnGnVnMqQi7vAq6bVRKnzXshX2i5ximRXhmH4AX4ApUqVIiQkJFXnRUZGpvrYrMCV47WZNgL2BLD89HISTiTQsGhDAMLCPHn99fuJiPAgIGAX1aqdJ7M/4ld3fUVYRBhlc5flixpfAOBmuFHJq1KW/3278n8TLibRSxrDMPSSJgszTZO/3vmLVR+uokqbKpR5tkyqzouIgEGDYO5cGDAAfv4ZPG9aRRrsH0xcVFyic+Ki4gj2D6aWby17fgSRlGgscjFH1x8lIjyC/gv7U7lVZY6EHLmx72TkSXpN78UPHX+gTuk65PPIB8D2N3/jvk982Zm7IflXLqLuA4XtH9ilvRB3GXz+ghIP2//6IiJOpKRoJvrzT+jd23poXrkSGjTIwMVME/Z8Bdtfh0a/QNUhSohKTnbKMIwy1x76ywCnUzrQNM1AIBCgQYMGZosWLVJ1g5CQEFJ7bFbgyvG+svQVlp9ezsc+H/Nqk1cBWL0aXnwRcue2vq9f//7bXM2xgkKDOL37NK/++yoVvSoS4BNAz1o9nRZParnyfxPZkSu9oIk+H83lY5dJiE3APbc7BcsVJF/RfKk6Nysnt22xNvZ+sZfTf56mdIfSlHupHFExUXeMNyzMk7ffvo9jx/Lx7LP76dnzGBs3Jj6m1HOlKEXyq3bs/fvIyr/j5CjerMWVxqKMyMrx2uJtuOVyg8LQ4NcGhLmFERYSdiPmK/FXeHHHixyJOsKGTRu4WPAiAKc+X0/vP/zZkrcxJ355F6/o7ZwIsVNQpkmBuH+JzH0XUBj3wuNI2BUHpHyDrPw7To7iFRFQUjTTBAbC8OFQs6bVEKRiRlZaxkXChqEQPh0q9ISKvewWp4iLmgcMAj659nWuc8OR9Pp63dd8ue5Lnm34LK8//DpglRoZMMBanrpokR0a0mWQby1fQs6FYHvU5txAJKtK1UsaV3lBc30Z+M2zHj08PegS2CVVMx6zcnI76lwUuw7vouUHLWnq3xTDMO4Y7+zZ8Oyz1gvu5cuhefPqQPUkx40aPMpaOn8Lr0pe9Dvcz46fImv/jpOjeDNNthqLMiqrxnvh4AWCOgTR/pv2SeoYh4SE8FDTh+g0pROHog4xv9982ldrj2nCwm6BPPLH/9he1Ie7d82lUWk7NjyKvwLrh8DJ2dBhOxS+N1WnZdXfcUoUr4iAaoo6nM0Gr74KTz5p1ZlavTqDCdFLe2FJIzjyO9T5BJr8Dh6F7BavSFZnGMZUYB1wl2EYRw3DGIqVDG1jGMY+oM21n8XFnLlyhndD3qV3zd6Maj8KwzAYNQoefRTq14c1a5yfEBVJhesvaSAbvKS53TJwV3Xp6CUSYhPwLObJk9uepNlbzW50b05JQgL4+0PPntYL7i1brPrGKfEJ8MHDM3HNPQ9PD3wCfOzxEURSI1uNRdnRuX/PMb7ZeKLORuFZImlS02baGDpvKMsOLmNMlzG0r9ae+HiY9vB3dJ7/JDvLdaDW4fkUsmdCNPIwLH0Ywn+H2h9ZZdpERLIxzRR1oCtXrNlNc+bAM8/AqFGQK6O/8chDEHsOWi6F0nqwlpzHNM2UptjofxAurkT+EqwdupZqRath4M5LL8HXX1tJiMmTIV/qVuuKZJprL2laAMUNwzgKvIv1Umb6tRc24cAjzosw4yLCk852vN32rO745uNM6TyFmr1r0vH7juTOn/uO55w/D/37w5IlMGwYfP895Mlz+3Ouz6IN9g8mIjwCr4pe+AT4qJ6oOEROGIuymzP/nGGSzyRsCTYGLh9I6dpJy6DF2eI4c+UMAa0CGFRnEFeuwG8NPufxPa+x664e1N4xDSPPncewVDsVAqt7gy0eWvwBZdvb79oiIlmUXZKihmEcBi4DCUC8aZoZqZbpPIeCYIc/RIWDZ0WoHQCVfdN1qePHoWtX2LoVvvkGnn8+A3HZ4uHMGijV3PrHqetByJU/AxcUEck6tp/czrzj82hBC+4reR8xMdB3IMyYYY2dX30F7u7OjlIkqZzwksarolfyy8Arejkhmoz5d8G//N7ndzxLeNJweMNUnbNjh9UU8+hRq5mSn1/q71fLt5aSoJIpcsJYlJ1EHIlgQosJuLm7MThkMCVqlkhyTIItgTzueVjQfwHuhjunT5nMqvchTx1/h/0N+nDv2l/Bw84d4M+shjwloNlcKFTDvtcWEcmi7Ll8vqVpmnVcOiG60Q+iwgDT+rrRz9qeRjt3wgMPwJ49VlfSDCVEY87AX+1heSuI2GNtU0JURLKJwxcP0yGoA0HhQVy6eonz56FNGysh+uWX1gx7JURFnCe7LAPf9OMmpnWbRvF7ijNs/bBkkxC3mjIFGjeGq1etBplpSYiKiKSkUPlC1HuiHoNXJJ8QnbFrBk3GNyEiLoJcbrnYvw9+v/stnjr+DkdaDqTa+iD7JUQTrsLFXdb39/4P2m1SQlREchQtn79uhz8kRCXelhBlbU/DbNH164sSEABeXrBqFdStm4GYzm2CVb0g5jQ0GgNed2fgYiIiWcvZqLO0m9yOq/FX+arWV5w/UYgOHeDgQZg2Dfr0cXaEIuKqy8BDg0JvxFywXEGiz0ZTvVN1ek3tdccl8/Hx8NprVvmOpk1h+nQonXRlq4hImhzbeIx8xfJRtGrRFF8srTi8ggGzB9CgbAPyuuVl/TqTra1eYXjMV5zu9gQVZo0GNzvNa4o+af2teflf6LIfcnuBRwH7XFtExEXYKylqAksNwzCBn691MXQtUeFp256MH34Af/9a1K4N8+dDuXIZiOfAWNg0HPKVgbZroGj9DFxMRCRriYqLosvULoRHhPPnY3/yz+K8NB4GMTHw55/QrJmzIxSR61xtGXhoUCjz/ebfaBB1+ehlcuXNxb2P3HvHhOiFCx60aQMhIfDcc9aMdXuvUBWRnCd8dThBHYIo16gcA4MHJnvM36f/ptu0blQpUoX5/ebz0xdHKD7yWYYn/MjFx56j5MRv4A5N4VLt3CZY2QNiL0DjCVZCVEQkB7JXUvRh0zSPG4ZREvjTMIw9pmmuvPkAwzD8AD+AUqVKERISkqoLR0ZGpvrYdIs9D3k/T36fW27ryfg2EhLgxx+rMWtWeRo1OsV77+1j374E9u1Lf0gVIjdRxON+/in4FvE7LwO3jyG9MuX3a0eK1/FcMWZxPUsPLGXTsU3MeGQGkf80YcSIBEqWhOBgq7OziEh6BfsH30iIXhcfE8/yt5dz/2P3p3jepk3w5JP1uXwZJk2Cxx5zdKQikhMc+usQUztPpVCFQnSf1D3ZY45EHKH95PZ4eniy2Hcx08d5UfqdVxnKOK488yqFv/vUfgnRQ7/ChicgX2louxaK1LbPdUVEXJBdkqKmaR6/9vW0YRizgUbAyluOCQQCARo0aGC2aNEiVdcOCQkhtcemy/VaorcunQdw94RGgVA55ftHRkK/frBgAbz4InTqtAcfn5SPv20c216HmGPgWQnu/xC8f6CJm2OL6Tn892tnitfxXDFmcT3d7+7O3mf3smJOVR7xg8qVo1ixoiBlyzo7MhFxdck1hgKICE9+O8C4cTB8OBQuDGvWQL16DgpORHKUA0sPMK3bNIpULcLA4IEUKJX88vQ4WxylC5RmTJex/PJJOe7+dBADCCL2jXfI/9F79kuImiYcmw/FG0OT6ZD3zvWVRUSyswwXJDEMI79hGAWvfw+0Bf7O6HUzTXK1RAEM92sJ0ZTriR49atWaWrQIfvwxAx2SDwXBhqFWQhSsJk+bnoSwaem4mIhI1vXJ6k/469BfmCZM/q4qQ4eCjw988812JURFJMOOrD2C4ZZ88sCrYtLlobGx8PTTMHSo9Uz3889blBAVEbswTZPVH6+m+N3FGRwyONmEaGxCLKZpUqVIFdYM2sQ3r9ak9qf9GEAQ+x8fRu6PR9onIRp7Aa6EW9d6cAK0WqqEqIgI9uk+XwpYbRjGDmAjsNA0zcV2uG7mSKlmqGm7bUJ061arw/yBA9Ys0aefTuf9TRtsfhZsVxNvv97kSUQkm/h588+8GfwmU0N/Y9gweO89GDzYGkM9PROcHZ6IuLjIk5H82uZXPEt4kitv4sVQHp4eSRqbHD8OLVrA6NFWY6VFi8DLK/GyexGR9DBNE8Mw6DOnDwODB+JZ3DPJMQm2BPrP7M/guYOJiDDp0TGW7kG9eYTfMb/8iqOPpb7Z721F/AOLG1lNlUwTcnmCm4oli4iAHZKipmkeNE2z9rX/u9c0zQB7BJZpPCumbTswb541myBXLmuJVfv26bx3wlVY1RPiLia/Pw1NnkREsrK5e+Yy/I/htK3ckbDR3zFuHLzzjrVkVU1MRLKP0KBQRnmPYqTbSEZ5jyL6fHSm3btA6QJ0HdeV4X8Pp+uYrnhV8gIDvCp50SWwS6JmUatXQ/36sHOn1V3+00+t5zoRkYz6e9rfBLUPIi46jrxeeclXNF+SY0zT5IXFLzBz90y889ambdMYRvzVjW7Mgx9+wHjpRfsEc3QeLHkA4i9DfTs2ahIRySb0+Fc7IGlNUXdPa/stTBNGjYKXX4YGDazkaOnSGbi3W27IXQw8ikDchaT7b5OYFRFxFWvC19B3Zl9ql2jAqe+n8/dWD375BYYNc3ZkImJPt3Z9jwiLICIsgtCgUId1r7fF21jy8hJqdKpB1bZVua/PfQDU8q2V7D1NE376CUaMAG9v+PNPuO8+h4QmIjnQjkk7mDtkLhUeroAt3pbicZ+v/ZzvN33PoBov8dswP34+2YlmhMCYMVY9j4wybfB3AIS+A0UbQLPZ4Fk+49cVEclm7LF83vUcCoI53jDFzVqiXnmQ1dwIw/qaTC3R+Hh45hl46SXo2dNqSJ/uhGjYbxCxx3pT98AYaPCdlYi9WQqJWRERVzP176mUyluBs98sYN+u/Mybp4SoSHaUXNd302YS7B/skPvFXonltx6/sfHbjRxZe+SOx0dHw+OPW89z7dpZ3eaVEBURe9k6ZitzBs/Bu4U3vot8yVMwT7LHTd45mdeXvU6rkn0IfvptJp1uTzNzBcakSfZJiIK1IvHITPAeAK1XKiEqIpKCnDdT9NZu81FhcGjibZsqXboEjz4KS5ZYNac+/hjc0pNOtsXBttdg7yio8jg8ONZKjF6/7w5/a8m8Z0UrIXqbmqYiIq7i0YLfMvmrc+SJL8GKFdZMexHJflLq7n67ru/pdfnEZaZ2mcrJbSfp+ENHGg5veNvjw8KgVy/YsgXefdcq35GuZzkRkWRsG7eN+U/Mp1r7ajw661E88qVcG6hswbI0KNiN0JdG8SftuN/cijFtGjzySMYDiTwMeYqDRwFoHQIeXloyLyJyGzkvKZpct/nrTY2SSUKGhUHnzrBnDwQGwhNPpPO+0Sdh9aNwZhXcNQLqfp54f2VfJUFFJNu4GHORYfOG0TL+c15+vDKVKpVg0SKoUsXZkYmIo3hV9CIiLGkCNLmu7xkReSqSsQ+OJepcFH3n9aVGpxq3PX75cujTx+o0P28edOli13BERCj/YHnqDKlDp586kStP8n9iX7p6iUJ5CrFzbisOv3w/a/K3oXrcPxgzZ0LXrhkP4uRyWPMolO0MjSdA7sIZv6aISDaX896Rp9S8KJntmzZZHeaPHLE6kqY7IRqxBxbXg/Nb4KEpUH+UOv6JSLZ1Nf4qPX7rwZzd83j27YPUrw9r1yohKpLd+QT44OGZ+PnGcDOSdH3PqPwl81PzkZoMXjH4tglR04QvvoA2baBECeu5TglREbGnQ8sPYZomJWqWoNu4bikmRA9dOMTd399Nm9fH8PGLp9hSqAXVE/ZgzJ2b8YSoacLe7+CvtpCnJNzrn7HriYjkIDkvKZrKbvMzZ0Lz5pAvn/XHfOvWGbhnAW8o2RzarQfvfhm4kIhI1mYzbQyY9Rghh0NImDmBnnV8WLYMihVzdmQi4mi1fGvRJbBLoq7vXpW87NZkKXRqKOf2ncMwDNp+0Zay9cumeOyVK9CvH7z6KvToARs2QI3bTygVEUk10zQJeS+EST6T+Of3f2577Nmos7Sb3J5zETH880s1dhZpToX4QxgLF0L79hkLJOEqbBgGW56Hsh2tvzcLVc/YNUVEcpCclxStHXDbpkamCZ99Br17Q+3a1kN0zZrpuE/8Fdj2KsReBPe88PBUKOyYzqsiIlmBaZo8t/BFft89A5Z+zvMt+zN9uvVySURyhlq+tXjh8Au8a3uXFw6/QL6iGR8ATNNkxQcrmNV/Fqs/WX3H4w8cgMaNYcYMqw78jBlQsGCGwxARAawxKfh/wawYuYI6g+twT897Ujw2Ki6KDr924cCZcEqP+YVdxlBKxh/HWLIEWrXKeDBXz8DxBXDf29BsDngUyvg1RURykJxXU/Q2TY3i4mD4cBgzxqo9NX58Ov+Yv7wfVvWEi39DsUZQ0Q5Fs0VEsrijp6OYtHwt/PMCX/R8mZdeUm1/EcmYhLgEFjy1gO3jtnP/Y/fT+afOtz1+0SLo399qorRoEbRtm0mBikiOYJomS19eyvqv11P/yfp0+rEThlvyDzs200a3X/uy+fhGakz9nq1xL5HfdgmWLYNGjTIWSMQeKFTD6irfeQ/kLpKx64mI5FA5LykKyTY1unjRmh0aHAz+/vD+++nrSlosZi0s/gwMd2i5GMroaVxEsr/Dh6FDh/xcDV/BlLF56ddX2VARyZirl64yvfd0Dv55kGbvNKPFey0wUnjTYrNBQIDVWf7++2H2bKhcOZMDFpFs7+S2k2z4dgONnm9E+1HtUxyTAEJ3urFxWmvuP1+PjRc+JA9Xrc5vdetmLIhDv8KGJ6D2h3DPK0qIiohkQM5Mit7i0CHo1An274cJE2DQoHRe6MB4ap33h6L1ocnvVi1REZFs7sclS3lp2vfkPTeFZYsK0KyZsyMSkezALZcb8THxdBvfjTqD66R43KVLMHAgzJ0Lvr4QGAienikeLiKSbmXqleGJTU9Quk7p2yZEZ/xxiqF9S/GAZ0sWxbUmVy4gOATuuy/9N7fFw/bXYc9XUKolVB6c/muJiAiQE2uK3mLdOqvD/MmTsHRpBhKiAGXbcyT/I9BmtRKiIpIjfD9rK8+s7IWtUBhL/kxQQlREMuxU6CliImLw8PRgcMjg2yZEd++2VqEuWACjRsGvvyohKiL2ZYu3MXfoXPbM2QNAmbplbpsQHfbjGB5dXY2WVaex+GoLcuXNBStWZCwhevU8hHS0EqI1noOWSyBv8fRfT0REgJySFD0UBHO8YYqb9fVQEAC//QYtW4KXF6xfDy1apOPa57fC+qFgS4B8ZTjgNdxqrCQiks19GniA59Z1wCOuGOufXcR+twUU/6w4xkgDY6RB8c+KExQa5OwwRcSF7F+8n3EPjWPx84sBUqzVB9YS+UaN4MIFq/zRiBGqYywi9pUQl8CsAbPYPm47Z/ecve2xpgmDAhYw9tRTtDlwH7MPPY17oQKwciXcfXfGArm0F86ugwfGQoNvwc0jY9cTEREgJyRFDwXBRj+ICgNMiArD3OBHwCvb6dsXGja0ZovWqJGOax+cAH8+DCeXQtQROwcuIpI1mSa8OvI0b/zdHo888awdvpjdMX/x+NzHORd97sZx56LPMWTOECVGRSRVtvyyhSmdp1C0WlF8PvZJ8biEBKv+e8+eULMmbNkCzZtnYqAikiMkxCbwe5/f2fXbLtp83oYmbzRJ+dgE6D1iA5OiH6XDgWosXrQLt+LFrIRo1arpD+LSXutricbQ7TBUfTz91xIRkSSyf1J0hz8kRN34MTbegyE//sBbX9ZhwACr+V/xtK48SLgKG5+C9UOg+EPQfmvWXS6fwixZEZH0iIuDYcPgix9PU6CQjeChC2jgfTf+wf7EJsQmPd4Wh3+wvxMiFRFXYdpMgv8XzAK/BVRtU5XBKwdTsGzBZI89f96qA//RR9ZYtHIllC+fyQGLSLaXEJfAbz1/Y8/sPbT/pj0PvfJQisdGRUGHvmHMytuZLuGFWTA7HLeyZa0l85UqpS8A00alyxNhwT1w3Jo5T55i6buWiIikKPs3WooKv/Ht+cgi9Bw1ixW7WzCy17u8PWlk+pZZrfWFIzOh5utw/4fglkV/jddnyV5PCkeFWT8DVPZ1Xlwi4pIiI6H3IzaWLHbj7bfv46139pA7l7V8KzwiPMXzbrdPRCTqXBQ7Ju6gnl89Ov3QCbdcyb+z37EDevSAo0fh55/Bzy+TAxWRHMMtlxvFahSjRucaNHiqQYrHnT0LXbrA+k1leXVgEz6ZsQi3atWtmTelSqXv5nGRsH4QlS/PAu/HoFSL9F1HRETuKItm8+zIsyJEhbH/ZFU6fv4HYWcrETS8P/3brAVjZPquec9r4N0fKvS0b6z2dsssWcD6eYe/kqIikiYnT0LHTibbKw6l7efFGfnyZxjGf/WsKnpVJCwiLNlzK3pVzKwwRcSFxETEkLtAbvKXyI/fFj/yl8qfYvOSqVNh6FAoUsSaHfrgg5kcrIjkCLGRsUSeiqRo1aK0+6rdbY89cADadbnM0VNRrHt1PQ9+9Qfce6/VvTfNSxGviTwIK7tDxC72FxpOtcbfq1iyiIgDZf/l87UDWPVvax54dwPnI4sS/D8f+jebC7UDUn8N04R/Podtr1o/F2+U9ROikGiWbKq2i4gkY88eaNwYQku8hVlnAg81KJAkcRHgE0Bu99xJzvVw8yDAJw3jrYjkCBcOXmDMA2NY9voyAAqUTjquAMTHw0svQf/+0KCBVT9UCVERcYSrl64yuf1kJracSFx03G2P3bQJGjeJJaxxL4Z0rMsDX/SGunWtrm/pTYgCnFoBUUehxWKOFnhECVEREQfL9knRyWt8af3xYkp4XWTD+w/SpO5RaBSY+pmScZdgdW/Y/hpcCbO6zLsKzxRmZ6W0XUTkFqtXw0MPwdkqPxDf+COeqPcE7zR/J8lxvrV8GddtHMXy/Vfvqli+YozvPh7fWpqZLiL/ObbxGGMbj+XK6Svc1fWuFI87fRratIGvv4bnnrNyDaVLZ2KgIpJjRF+I5tc2v3JswzHaftkWj3wpd3f/4w9o3sIkqs1Q+lz4kx+mnMR48EFrhmiRImm/uWnCpX3W91WHQOe9UKZNOj+JiIikRbZdPm+aMHKk9X8tWrgza1ZVihTZn7aLROyGVT3h8j6o+wXc/ZJrva2rHZC4piiAu2faZsmKSI41cyb4+kLRJjO52PQ5ut7VlR87/Zji8lbfWr5KgIrIbe2Zs4eZ/WdSoHQBBi8aTPG7kp9RtWmT1V3+7FmYOBEGDszkQEUkx4g6F8WvbX7l9N+neeT3R7i7290pHjt2LDz5JBTv+yadL07mlwUGRsuWMG8e5M+f9psnxMCmpyFsOnTcAQWrQd4SGfg0IiKSFtlypmhMDAwYYCVEBw+GJUvS8dIu/gosaw6x56HVMrjnZddKiII1G7ZRIHhWAgzra1pmyYpIjvXNN/DII1C/PnwYYKOFdwum9ppKrqzaWE5Esrwrp68wy3cWpWqVYtj6YSkmRMeNg6ZNwd0d1qxRQlREHGu5/3LO/HOGvnP7ppgQNU147z0YNgzu6TeRXhc+Zcx8oF07WLAgfQnRqOOwrAUcnAD3vAIFqmTgU4iISHpku79uz5yxOpOuWQMffQRvvJHGXKZpA8MNcuWHB8dDkdrgWd5h8TpcZV8lQUUk1Ww2ePVV+Oor6NrzKtMm5yFfvkcY0qh3ijNERURuxzRNDMMgf8n8DFgygDL1yuDhmXRpamwsjBgBo0dD69ZWc6WMlOYTEUmNNp+3ofag2lRoXCHZ/XFx8NRT1gubIUNgVNVwCr0FZpcuGDNmQJ48ab/p2Q2wqodVqq3pTNfoVyEikg1lq5mie/daxfe3bIHp0+HNN9OYEI05DcE+cHCi9XO5Tq6dEBURSYOYGOjXz0qIDh5xhL+b1WThod8BlBAVkXRJiElgRu8ZbJ+wHYCKTSommxA9fhxatLASoq+9BosWKSEqIo5z6egl5gyaQ2xkLHkK5kkxIRoZCV27WgnRp975m8DK71PorXfgkUcwZs5MX0IUIGwauOWFtuuUEBURcaJsM1P0r7+s2lO5c1vfp7kz6dn1sKo3xJ6DqkMdEqOISFZ1/jx07w6rVsH7n19gmmd7zl46S/Wi1Z0dmojcIjQolGD/YCLCI/Cq6IVPgA+1fGs5O6wkrpy+wo6XdnB5z2UqtaiU4nGrV1vlOi5fht9+g0cfzcQgRSTHuXj4IhNbTST6XDQPvvggpesk38Ht5Eno1Al27ID3fvgbz5kNyLX8qlWnbfx4yJXGP6Vt8RB9DPJXgrqfwX1vQ56idvhEIiKSXtlipuj48dC2LZQtC+vXpzEhapqw7ydY1gzccltv6yoPcFisIiJZzeHD8PDDsGEDTAyK4c9i3dh/fj9z+syhdunazg5PRG4SfT6a+X7ziQiLABMiwiKY7zef0KBQZ4eWyLl/z1kd5g9eoc+sPjzw3ANJjjFN+PFHaNkSChSwnuGUEBURRzq//zzjm40n5mIMA4MHppgQ3bsXGjeGPXtg3IwjlJrRmFeXX+XywD4wYULaE6JXz8Ff7eHPZhAXCW4eSoiKiGQBLp0Utdngf/+Dxx+3HqjXrIHKldN4kXMbYdNwKNUa2m+GInUcEaqISJa0bZv10H/yJCxaksDcXL6sCl/FpO6TaFm5pbPDE5FbXD52mbiouETb4qLiCPYPTvb40KBQRnmPYqTbSEZ5j8qU5OmVM1cY23gsVy9fpfZXtbm7e9LGJdHR1vPbM89YfUo2bYL77nN4aCKSg53dc5YJzScQHx3PoOWDKNugbLLHrV0LDz0EV67A/CXnyfVNHZ4KieTMkD4UHD/F6gKXFhf/hiWN4MwqqPUeeBTI+IcRERG7cNmkaHQ09O0LH38Mfn6wcCEULpyGC8RHW1+LPwAtFkOLBXpbJyI5ypIl0KwZeHhYy1dbNnfjrmJ38XW7r+lzXx9nhyciyUiITUh2e0R4RJJtoUGhTplVmr9EflqMbMGw9cMoVLNQkv1hYVZ3+QkT4N13Yd68ND7DiYikg+FukL9Ufgb9NSjFGaKzZ4OPDxQrBuvW2Ih/tx79V5wnbOgjlBg7FdzS+Ofzkdmw9EFIiIbWK6DqEDt8EhERsReXTIqeOmXNDP39d/j8c6sov0fSmv0pO74I5lWxuv4BlG1ndZwXEckhxo+36mRVrWotWS1fNQLDMPjI5yNeePAFZ4cnIilwz538DCWvil5JtgX7B6dpVmlGmKbJ2i/WcmTdEQAaPduIIlWKJDlu+XJo0AD27YO5c+G999KeYxARSYuI8AhM06RY9WL4bfGj5H0lkz3uhx+gVy+oXRvWrIin6geDabs8jN1+vaj0y29p7ODLtTJtP4LXfdBuMxRPa9MLERFxNJd7DN21y6oZunMnzJwJr7yShn+fTBuEvg8hnSBvKcijtqYikrOYJrz/vrVstVUrWLkSlp6eQI3va/DvuX+dHZ5ItmEYxmHDMEINw9huGMZme123YLmCSbq3e3h64BPgk+TY5GaP3m57etnibSx8eiF/vvonOyfvTPYY04Qvv4Q2baBECdi40eronBXcXGLgdOjpLFefVUTS79imY4yuPZrwyeEAGMn84WizwRtvwLPPQpcuELw4FtsTbeDXX+GDD7jn59/TlhCNuwwxZ61zmkyH1iHgmfxSfRERcS6XSor++adV3yUmxvpDvkePNJwcexFWdIPQd8HdEy7ugGAfOBTkqHBFRLKUuDh44glrueqgQVbZkdWn/mDYvGHULlUb78Lezg5RJLtpaZpmHdM0G9jrgvmK5qNLYBe8KnmBAV6VvOgS2CXZ7vPJzR693fb0uHr5KlO7TmXLz1t4+I2H6fhdxyTHXLkC/ftbL7J79LCaut11l91CyJBbSwwkxCZkycZVIpJ2R9YeYZLPJPIWyUupNqWSPebqVXjsMfj0U3jqKZg55SrHu9aj1MIQ/n51ELz1VtpuevkALG0Mqx+x3gblLgLuee3waURExBHS2DbPeX75BZ5+GmrWhAULoGLFNF7gwBg4sQgMD0i4Ym2LCoONftb3lX3tGq+ISFYSGWl1dV60CN5+G0aOhE3HN/LIjEeoXbo2Mx+dSW733M4OU0RSoZZvrWSToLfyCfBhvt/8REvoU5pVmh7R56OZ1HoSp3aeovPPnanvVz/JMceO5eX5562VPh9/DK+/nvYVqI50uxIDqfkdi0jWdHjFYaZ0mkLBsgUZtHwQW/dvTXJMRIT1ouavv66NT89Hc7xdY6qv3sW4x+sy+NNxabvpyWWw+lHr+/qjstZgJyIiycryM0VtNnj1VauZUtu2VjOQNCVEY85aX+96EfKUBDPxgy8JUbDD327xiohkNSdPQvPmsHQpBAZay+cPXTxIpymdKJW/FAv7L6RgnoLODlMkuzGBpYZhbDEMw88ZAdTyrZXqWaXpkccrDyXvLUm/+f2STYguWgRPPVWfo0et7994I+vlCDKrxICIZJ6YizFM6zYNr4peDF4xmELlkzZ8O3rUavi2ahVMmgRvPHeF820epsyaHXwxuAa+P6/DLbU9J0wT9nwNf7WDfGWh3SYo3drOn0pERBwhS88UjYqC9967l1Wr4JlnYNQoyJXaiBNiYdvLED4DOmyHfKUh5mQKNwq3U8Qi4myGYRwGLgMJQLw9l626or17oX17OH3aamrSqZO1vVT+UnSo1oG3m71N6QLJd2AVkQx52DTN44ZhlAT+NAxjj2maK6/vvJYo9QMoVaoUISEhqbpoZGRkqo8FoBzUmVDnxo/nOJe285NxYdsFPMt7kqdEHooMLcIxjnEs5NiN/TYbBAVVYvx4b7y9owgI2E3u3DFk8LYOcc8395AQm3Dj5zzl81Djixq453bP8O8ps6T5vwknU7ziaHkL56X3b70pU7cM+UvmT7L/77+hQwdrpuiiRdD6gcvEtWtH4XXbePux8rz60wby5MqT+hvGR8K/30O5btB4InjoRbOIiKvIsklRm80qxr9uXXG++Qaefz4NJ0cdt+q4nF0Ld78EeYpZ2z0rWkvmb+WZ1rX4IpLFtTRN86yzg3C2NWusRia5csGKFVbH58tXL2NiUihPISb1mOTsEEWyLdM0j1/7etowjNlAI2DlTfsDgUCABg0amC1atEjVdUNCQkjtsY6wfeJ2Vr22ipq9a9Juarsk+y9dgoEDrZcwvr4wYMAO2rdv5oRIUyf0WGiiEgM1vqjBoXcOWTNqW7jG8nln/zeRVoo3c+Wkl8V75u4hPjqe+/reR7V21ZI9JiQEuncHT0+rR0Ud74vQtgMemzax+ctXGD70BQrnLZy6G0afgNzFrCRom9VWI9/Uzi4VEZEsIcuO2m5uVg3RDz/8O20J0dMrYXE9q5HSw79BvS/B7VqX1rJJi//fdruIiItasaI4Pj5QrBisW2clRGMTYuk9ozetJ7UmwZZw54uISLoYhpHfMIyC178H2gJ/OzeqjDFNk5D3Qpg7eC7eLbzpNLpTkmN274ZGjaza76NGWY2b8+a1ZX6waXBriQH33O52LTEgkkXYvelbVrNrxi5m9J7Bxu83YtrMZI+ZNg3atYOyZWH9eqhT4RzxLZtj27IZfv+dBi9+TrlC5VJ3wzPrYFE92PaK9XO+MkqIioi4oCw7UxRgwAAICTmXtpP2fgseXtAqGArfm3jf8T+SPyel7SLiiq7X8TOBn6/NxspRvvkGRo68lwcfhHnzoHhxsJk2hs4bytIDSxnXdRzubu7ODlMkOysFzDasApq5gCmmaS52bkjplxCbwPwn5rNj0g7qDK5D558745478Rgye7Y1QzRfPggOtuoYu4qbG1eFhIS4zAxREbHsDNrJnIFzqPBQBfov7I/hlrh4sWnC9Onl+eknq47o3LlQJPYUthY+JOz5hz6+eQhs25Riqb3hgfGw6SnwLA/VnFIyWkRE7CRLJ0VTLS4S4i6BZ1l4YKy1LbdX0uNSqh2qmqIi2UnWqOPnBDYbjB5dlRkzKtC48UnefXcff/9tzdL6+eDPTDsyjce9H6dyROUs91lc4fd7M1eLF1wvZleL92amaR4Eajs7DnuJj4nnxLYTtHi/Bc3eaoZxU7ekhAR45x346CNrlujMmVC+vBODFZFbZeuXxdvGb2Pe0Hl4t/Cm37x+5C6QO9H+hAR4+WX46adqPPKI1VQp7/njmD4+xB3cR6f+JsNfD6KYZypSorY42PoK/Put1Ujp4d8gT1EHfTIREckMrp8UvfQvrOoJufJD23XJJ0OvU01RkWwvu9bxu5OYGBg0CGbMgGefhe7d9+Lj0wKAwC2BTDsyjacbPM0PHX9IlNDIKrL67/dWrhYvuF7MrhZvdnTp6CXyFctHnkJ5GLZhGB75PBLtP38e+veHJUtg2DD47jvIm9dJwYpISrL1y+KDyw5SpH4Ryr9WnrWb1ybad/WqGx99dA8rV5aga9eDPPVUONvmnqL2Sy/BuVO0759A3dbPU/RUUUJOhdzxXvnij1L/zC+cyN+bg8ZTmOt2OuhTWbLK7zi1FK9juVq8Iq7CtZOiR+fCuoHglhsennrnOi61A2CjHyRE/bfN3dPaLiIu71rtPjfTNC/fVMfvfSeH5XDnz1tNA1atgs8/t2ZErFjx3/52Vdvx0oMv8Vmbz7JkQlREsp4TW08wpdMUqrWvRrfx3ZIkRHfsgJ494cgR+Pln8NMKUpEsKbu+LI4+H02+ovlo3rw5tngb7h6JS3qcP281m1y7Fr76CurWDadFxYrw+GDiLkfQdEACrfq9yUc+H935ZleOWEvlDQOiWlDBszwVHPS5bubs33FaKV7HcrV4RVyFXapBG4bR3jCMvYZh7DcM4w17XPO2bAmw/X+wsjsUrAHtt1hLGO6ksi80CgTPSoBhfW0UaG0XkeygFLDaMIwdwEZgoSvX8UuNsDBo0gQ2bICpU+GVV6xndoB/z/2LzbRRqXAlvmz3peqIikiq7PtjH+Objcc9tzuNX2mcZP/UqdC4sTVDfeVKJURFsqrs2PQNYM3na/j+7u+5cOgChmEkSYgePgwPPwybNsFvv8GLL0K+I0egWTO4fJlcy0N4/eVZBLRKxcSY8Jmw4G44MMb62VP1QUREspMMzxQ1DMMd+AFoAxwFNhmGMc80zX8yeu0U2WLg2Fyo+gQ0+Bbc07BWq7KvkqAi2VR2q+N3J9u2QceOVmJi6dLEjU0ORB6g2y/dGN5gOB+3/th5QYqIS9k8ejN/PPMHpeuUpt+CfhQsU/DGvvh4eO01+Ppr62XMjBlQurQTgxWRO8lWTd8AVnywgpB3Qriv730UKl8oyf6bn43+/NPKg7JrF3VHjCDWsHF89iS8GzSgBw1ufyPTBqHvwd8fQLEHoVxnh3weERFxLnssn28E7L+WjMAwjGlAN8D+SdEL26Fgdat+aJu1t68fKiKSjS1dCr16QZEisGwZ3Hvvf/vCI8J5I/QNCuYpyPCGw50XpIi4lKhzUSz3X061DtXoPa13ooYlp09Dnz4QEmLVLf7yS8idO+VriYjzZaeXxaZp8tfbf7EqYBW1B9am67iuuLknXvSY7LPR9u3Qpg1x2Gj62FVKhv/IYrre/mZxl2DtY3BsHlQZAg1/Avc8DvtsIiLiPPZYPl8OOHLTz0evbbOv/WNgyQOw4y3rZyVERSSHmjABOnWCqlVh/frECdFzUedoN7kd0QnRLB6wmApemVH1SkRcWUJsAqZp4lnMk6HrhtJ3Tt9ECdFNm6BBA2u8mTjRaqikhKiIZKZt47axKmAVdYfVpdv4bkkSohMnWs9GVarc9Gy0aRO0bElcHg+aDEngYuUyTOw+8c43O7seTiyC+t/CA2OVEBURycbsMVM0ua4dZpKD0tnZMOryeY7P6UzZqIWcz9OA3RdbEJeFu665Wlc4xetYrhYvuGbMOYVpwocfwjvvQOvWMHMmFCp0836TR39/lEMXDvHJfZ9wX8n7kr1OUGgQ/sH+hEeEU9GrIgE+AfjWUlkRkZwo6lwU07pNo2rbqjR/pznFahRLtH/cOBg+3Fomv2YN1KvnpEBFJEer1a8W8dHxNBzeEMPtvz8/TRM++gjeegt8fGDWrGvPRmvWQIcOxBcrgs9Ak0N53Nk0YAmlCpRK+SZRx8CzHJRpC132Q/6Kjv9gIiLiVPZIih6FRA34ygPHbz0oXZ0Nr4Rz6Y+nKBS3F+79H0Vrvc/DWbxRSEhICC0qHYMd/hAVDp4Vre72WbSOqat1sVO8jueKMecEcXFWYmLMGBg4EH75JelMLcMweKfZO5yPPk+RU0WSvU5QaBB+8/2IiosCICwiDL/5VpcUJUZFcpbzB84T1CGIiPAIHnj+gUT7YmNhxAgYPdpKNEybBsWLOylQEcmRTJvJ2i/WUv/J+uT1ykujZxsl2h8fb5Xz+PlnGDAAxo699mwUEgKdO0O5crz9ZiO2HJ/FF/d9QfVi1VO4kQl7voYd/4NWy6BkEyVERURyCHskRTcB1Q3DqAwcA/oC/e1wXTAT8LBFQLM5UL6bXS7pcLHnYaMfJFgJB6LCrJ8hyyZGRSRri4yERx+FRYusmRDvv/9fh3mwZoiuP7qexhUa09zb6rYUciok2Wv5B/vfSIheFxUXhX+wv5KiIjnI0fVHmdplKqZpMjB4IBUf/i8BcPw49O4N69bBq69as7By2eOJUUQklWwJNuYPm8/2CdvJ45WHBk8mbox05Qr07QsLFsCbb0JAwLVnoyVLoHt3ax19cDDvFPOi+6lnid4fnfyN4qNh45Nw+Feo0AuK1HH0RxMRkSwkwzVFTdOMB54FlgC7gemmae7K6HUBKFCZjSV/dZ2EKFjLLhISJxxIiLJmjoqIpNHJk1ZX+SVLrJkQH3yQOCEK8MHKD3ho3EOsOLzijtcLjwhP03YRyX6izkXxa9tfyeOVh6HrhiZKiK5ZA/Xrw86d8Ntv8NlnSoiKSOayxduYM3AO2ydsp/l7zanvVz/R/tOnoVUr+OMP+PFH68WNYQDz50PXrph33cUPnz1CROF85PPIxwPlH0j+RlFHYVkzKyFa631oMh08Cjj+A4qISJZhl8dc0zT/AP6wx7WSXNtwsSdxW2zy26OUcBCRtNm7F9q3tx7+5861VoLdaszWMbwb8i6Dag+iWaVmd7xmRa+KhEWEJbtdRHIGz2Ke9Pi1BxUeqkD+EvkBa/XoTz9ZS+a9veHPP+G+5MsSi4g4TEJcArP6z+Kf3//B52MfmrzRJNH+/futZ6Pjx636od2uz52ZOdOaOlq3LgFvNuHtzSMxSpZkeMPhKd8sbDpc2uNaqxJFRMSu7NF9PnMcCoI53jDFzfp6KMjZESXPLYV2rJ5KOIhI6q1ZAw89BFFR/5XGutWCfxfw1IKnaF+tPb90+QXj1imkyQjwCcDTwzPRNk8PTwJ8AuwUuYhkRbYEG4tfWMzu2bsBuLvb3TcSotHR8Pjj8Mwz0Lat1bBZCVERcYYrp69wbOMx2n7VNklCdONG69no4kVYvvymhOiUKdCnDzRqxJhP+/D2zq95ot4TPN3g6eRvEn3C+nr3i9DpbyVERURyMNdIih4KsupyRoUB5n91OrNiYtSzHLgnTjjg7mk1WxIRSYWZM63GJsWKWTX9GjZMeszRS0d5dMaj1C1TlxmPzMDD3SNV1/at5Utgl0AqeVXCwKCSVyUCuwSqnqhINhZ7JZbpPaez4ZsNHN+UuBdmWBg0bQoTJsA771irTwsXdkqYIpKDxV+Nx7SZFCpXiKf/fprGLzZOtH/BAmjRAgoUgLVr4cEHr+0YP97qstS0KfO+eQa/la/SpUYXfuz0Y9KXxbY42PwcLLwProRba+7zV8qUzyciIlmTa6xN3+Gfcp3OrNa8KHdRaBToMt3nRSRr+fZbeOEF62F/3ryUuz2XL1Se0Z1H075aewrkTlv9K99avkqCiuQQkacimdplKie2nKDDdx0SdW9evtyaXBUba5Xo6NrViYGKSI4VeyWWad2mUeyuYnT6oRN5CuZJtD8wEJ5+GurVs5KjpUpd2zF6tLWjbVvifp/OKxMa0qhcI6b1nkYut8R/5nokRMDytnA6BO5+GfKVzZwPJyIiWZprJEVTqseZVet0VvZVElRE0sRmg9degy+/hB49ICgI8uVLetyJyyc4eukoDcs1ZGDtgZkfqIi4jOjz0Yx9cCyRpyLpM7sPd3W9C7Dqh371lTXm3HUXzJ5tfRURyWxXL19lauephK8Op/bA2on2maY1g/3DD6FjR6v5W4Hr74FHjYIXX4QuXWD6dDzy5mX5oOXkzZU3SZkgLuyg3tmnwLwAjSdB5ccy5bOJiEjW5xrL51Oqx6k6nSKSDcTEQL9+VkL02WdhxozkE6IRMRF0COpAl6ldiIqLSnqAiMhN8hbJy/2P3c/gFYNvJESvXIH+/eGVV6wXMBs2KCEqIs4RExHD5HaTCV8TTs8pPRMlRePiYMgQKyE6bJg1m/1GQvSTT6yEaK9eHBv3De+u+5gEWwLlC5WnuGcyS2z2foObGQ9tVikhKiIiibhGUrR2gOp0iki2dOECtGsH06fD559by+fd3ZMedzX+Kj2n92TXmV1M6jEp6SwIEZFr/p72N6dCT2EYBi3fb0m5huUAOHAAGje2Zlt9/LH1AqZgQScHKyI5kmmaTO08leObj/PIjEe4r89/3d0uX4ZOnWDiRBg50lo+nysX1tTR996DN9+E/v2JmPAzHWZ04+v1X3PwwsFbbmCDmDPW9w2+Z0uJn6FYMkXaRUQkR3ON5fPXl6KrTqeIZCNhYdChg5WomDoV+vZN/jibaWPw3MEsP7ScSd0n0bZq28wNVERcgmmarP54Ncv9l1Orfy16BvW8sW/RImuGqGHA4sVWl3kREWcxDIMmbzbBtJnU6FzjxvYTJ6yl8qGhMG6cNVsUsBKib74Jn34KQ4Zw9afv6T6tE7vP7maR7yKqF6v+38XjLsHaARB5ENptglyexLoXzdwPKCIiLsE1kqKgOp0ikq1s32499EdFwZIlVkfVlEzYPoFpf0/jE59PeKz2YwSFBuEf7E94RDgVvSoS4BOgxkkiOVxCXAILhy9k25ht1PKtRdexVtckmw0++siqy3f//Vb90MqVnRysiORYkaciCV8dTs1eNanesXqifbt3Wy+Lz561Giq1b39th2laXSi//Raeegrb998xaPYAQg6HMLnHZFpXaf3fRS7tg5Xd4PK/UG8UuOfNrI8mIiIuyHWSoiIi2cTSpdCrFxQpAmvWwL333v74gbUHkt8jP4/e+yhBoUH4zfe7UVM0LCIMv/l+AEqMiuRQsZGxTO89nQNLDtD0raa0fL8lhmFw6RIMHGjV4vP1tZageqryhog4yaVjl5jkM4nIE5F4N/fGs/h/A9Lq1dC1K+TODStWQP3613bYbDB8OPz8s5UY/eor/j4dyty9c/ms9Wf43n/Ts8/xJbCmL7i5Q6s/oVTLTP18IiLielyjpqiISDYxYYJVJ6tKFVi37vYJ0QX/LuDE5RPkcstFn/v6YBgG/sH+SZosRcVF4R/s79jARSTLcs/tDiZ0GdOFVh+0wjAMdu+GRo2s2VajRsGvvyohKiLOExEewYTmE7h8/DL9/+ifKCE6cya0bg0lSljPRjcSogkJMHSolRB94w346iswDO4vdT+7hu/ilYde+e8Gpg12vg35K1pL5pUQFRGRVFBSVEQkE5gmfPCBVRurRQtYtQrKlUv5+GUHl9Hzt568tuy1RNvDI8KTPT6l7SKSfZ0KPUXU2Sjcc7vju9iXekPrAdYS+UaN4Px5WLYMRoywaomKiDjDhYMXGN9sPFFno3jsz8eo+HDFG/u+/RYeeQTq1bNWz9wo7xEXB489Zr1NHjkSPvqIabt+Y+zWsQBUKVIFwzAgPhriLoPhBs3nQtu1UEA1QkREJHWUFBURcbD4ePDzs2r6DRwICxdCoUIpH7/txDZ6/NaDu4vfzXcdvku0r6JXxWTPSWm7iGRPB5YeYNzD41j49ELAalqSkAD+/tCzJ9SsCVu33r5esYhIZtg7by+xl2MZtHwQ5R8oD1ir4l95xXpp0707BAdD8eLXToiNtbpPTp0Kn3wC77zD8sN/MXD2QH7d+SsJtgTruKijsKwprBtovX3OVwZy5XfKZxQREdekpKiIiANFRkK3bjBmDLz1ljXhIXfulI8/dOEQHad0pEjeIizyXUThvIUT7Q/wCcDTI/EaWE8PTwJ8AuwfvIhkSdvGbSOoYxBFKheh3dftAGtWaOfOVlOlYcOsmnzlyzs5UBHJ0WwJNgAeGPEAw3cNp0y9MgBcvWrVOf7yS3j2WZgxA/Llu3ZSTIz1ZmfWLKv2x+uvs+PkDnr81oO7it/FnL5zcHdzhzNrYHEDuPQvVBmi6fAiIpIuSoqKiDjIqVPWLK3Fi61yWB98cOdn9peWvsTV+KssHrCYcoWSrq/3reVLYJdAKnlVwsCgklclArsEqsmSSA5gmiaHxh5i3tB5VPGpwpBVQyhUvhA7dkDDhtZMq59/hl9+gbxquCwiTnRq5yl+vPdHTm4/iWEYFChdAICLF6FdO5g2DT791Fo+7+5+7aSoKKvb0sKFMHo0jBhB2MUwOgR1oFCeQv+9LN7/CwS3hFwFod0GKN/VWR9TRERcnLrPi4g4wN690KGDlRidO9eawZUaY7uO5dCFQ9QsUTPFY3xr+SoJKpIDXY24yunlp6k7rC6dfuyEu4c7U6dafUiKFLFmhzZu7OwoRSSnO77lOJPbTiZXvlx4eHrc2H7kiPVs9O+/EBQE/fvfdNLly9Cli1V0ffx4GDwYgEX7FxEdH83qIaspX6g8xF6EnW9BqVbw8FTIXSRTP5uIiGQvSoqKiNjZ2rXWc727O4SEWDO4bifeFs/X677muQeeo2i+ohTNVzRT4hQR15K3cF7q/ViP1l1bk5Bg8NJL8PXX0KSJtfy0dGlnRygiOd3R9UeZ3H4yeQvnZdDyQRSpYiUtQ0OthOjly9YKmlatbjopIsLauXEjTJ4M/frd2PVUg6foeU9PSubKZXWYz10Y2qyB/JXBzR0REZGM0PJ5ERE7mjULfHygWDFYt+7OCVHTNHly/pO8tuw1Fu1blDlB3kZQaBDeo7xxG+mG9yhvgkKDMnSciNiXh5cHZ84YtGljJUSffdZaNq+EqIg426mdp/i1za94FvdkyMohNxKiy5dbL2/AmgiaKCF6/jy0bg2bN8P06dCvHwm2BB6f+zhrj6wFoGTscVhcD0Lfs84pWE0JURERsQvNFBURsZNvv4UXXoAHHoD582/qonob74a8y7jt43ir6Vv0uKeHw2O8naDQIPzm+xEVFwVAWEQYfvP9ABIt10/tcSJif3v2FGTgQDhzBiZOhIEDnR2RiIil2F3FuH/g/TT9X1MKlSsEwJQp1kr4GjVg0SKoUOGmE86csRKie/ZYb5U7d8Y0TZ7941nGbx9PvTL1eMh2FNYPhjzFoJxqh4qIiH1ppqiISAbZbPDKKzBihNVpPjg4dQnRnzf/zAcrP+DxOo/zfsv3HR/oHfgH+99IdF4XFReFf7B/uo4TEfv69Vd4/vm6GAasWaOEqIhkDYdXHCb6fDS58uSi0w+dKFSuEKYJn31mdZl/6CFYvfqWhOiJE1Y3yn37rDfJ14qvf7TqI0ZvGc1rD73Ks3lOwJo+UKQutNsExRo45fOJiEj2paSoiEgGxMRYpa++/BKeeQZ+/x08Pe98XkRMBG/99Radqnfi5y4/Y9ypLX0mCI8IT9X21B4nIvaVLx/cf/9FtmyBevVSd05oUCijvEcx0m0ko7xHERoU6tggRSRH+XfBv0xuO5mlLy+9sS0hAZ57Dl5/Hfr2hSVLoHDhm046cgSaN4ewMGv6aNu2AIzfNp63/nqLAfcP4OMGA2D351B1GPgsh3yqESIiIvan5fMiIul04QJ07w4rV1qzIV55BVKb2/TK63Wjk2out6wxFFf0qkhYRFiy29NznIjYV+/eUKzYTooXb5Gq40ODQpnvN5+4qDgAIsIimO83H4BavrUcFaaI5BC7Z+3m976/U7pOadp+aSU2o6Ot2aGzZ1vPRZ9+Cm43T8M5dMgqKnr+PCxdak0jxaqxvuTAEtp4t2Bs17G4ueeGDjug0N2pf7gSERFJI80UFRFJh7AwePhhWL/eqpf16qupe2b/58w/fLH2C0zT5K7id5E/d37HB5tKAT4BeHoknubq6eFJgE9Auo4TEftLS24g2D/4RkL0urioOIL9g+0clYjkNKeXn2bGozMo17Acj/35GPmK5uPcOavZ5Jw58M038PnntyRE9+2DZs2sbvPBwTcSogCGYRD04ABm591G7mPzrI1e9yghKiIiDqWkqIhIGm3fDo0bw/Hj1pKwfv1Sd97RS0dpP7k9X6z9grNRZx0aY3r41vIlsEsglbwqYWBQyasSgV0CkzRPSu1xIuJcEeERadouIpIa8VfjOTz+MBWbVMR3sS95vfJy6JCV49y6FWbMgOefv+Wkf/6xEqIxMfDXX9DAqg+6//x+fCb6cHTz/3Bf2ZX8Bb2hWMNM/0wiIpIzZY01myIiLmLpUujVC4oUsRqd3Htv6s67GHORDkEduBhzkRWDV1AifwnHBppOvrV8U5XcTO1xIuI8XhW9iAhLmgD1qujlhGhEJLvIlScXtb+qTatOrfDw9GDLFujUCWJjYdkyaNLklhN27IA2bcDdHVasgJo1ATh95TTtJ7fjYuQxrpjLodqj8OA4yJV1VtGIiEj2ppmiIiKpNHGi9dBfpQqsW5f6hGhMfAzdp3Vn79m9zOozi7pl6jo2UBFxKsMw2huGsdcwjP2GYbzhrDh8Anzw8PRItM3D0wOfAB8nRSQi2UWeEnnw8PRg8WKrZ1LevNbL4iQJ0c2boWVLyJPHKsJ+LSEaGRtJpymdOH7pKAtKXeWuhh/Bw9OUEBURkUylmaIiIndgmvDrr5UYNw5at4aZM6FQodSfvzp8NWuOrGFS90m0rtLacYGKiNMZhuEO/AC0AY4CmwzDmGea5j+ZHcv1ZkrB/sFEhEfgVdELnwAfNVkSEbsYNw78/KBWLfjjDyhT5pYD1q2D9u2haFFYvhwqVwYgLiGOR37rztYTW5nTZw4PlqoMhe/L/A8gIiI5npKiIiJ38PzzMG5cZR57DMaMgdy503Z+6yqt+ffZf6lcpLJjAhSRrKQRsN80zYMAhmFMA7oBmZ4UBSsxqiSoiNiTacLEiZWYMAHatoXff4eCBW85aMUKa3lNmTJWQrRChRu7Lu7+luPH/uLnlv50uatLpsYuIiJyMyVFRUTuoEkTuHgxjIkTK6WpCerX676merHqdK7RWQlRkZyjHHDkpp+PAg84KRYREbv77juYMKEygwbBL7+Ah8ctByxbBl27gre31WX++hTShFjMLSMosX80mxq2JfcDL2V26CIiIokoKSoicgd9+kCpUocwjEqpPufXHb/y0tKXGHD/ADrX6OzA6EQki0nu1YmZ5CDD8AP8AEqVKkVISEiqLh4ZGZnqY7MCxet4rhaz4nV9gwfDgQP7GDWqetKXxQsXWh0p77oL/vwTSpa0tsecZvSMh1lyaj9TW7xE3nqfgZt7ZocuIiKSiJKiIiJ2tmT/Eh6f9zitKrdiTJcxzg5HRDLXUaDCTT+XB47fepBpmoFAIECDBg3MFi1apOriISEhpPbYrEDxOp6rxax4XV+hQtCjxzEMo3riHbNnW2+S778fliyBYsVu7JoT8jzPHNxPx/J1yVXvUyVERUQkS1BSVETEjjYf30yv6b24t8S9zO4zmzy58jg7JBHJXJuA6oZhVAaOAX2B/s4NKe1Cg0LVoElEUm/aNBgwABo1srouFS5sbY+NYO2pXfTbMpeGpe9n2mOryOWmP0FFRCRr0L9IIiJ2NHv3bIp7FmeR7yIK5UlDi3oRyRZM04w3DONZYAngDowzTXNXZtzbXonM0KBQ5vvNJy4qDoCIsAjm+80HUGJURJKaOBEef9wqwr5ggdV1yZYAO99iz54JdAm7SoVCFVjwWDD5c+d3drQiIiI3uDk7ABGR7OTDVh+y2W8zZQqWcXYoIuIkpmn+YZpmDdM0q5qmGZAZ97yeyIwIiwDzv0RmaFBomq8V7B98IyF6XVxUHMH+wfYKV0Syi8BAq8hoq1awaJGVEI2NgJVd4Z9PuFS0MWULlmXJgCUU9yzu7GhFREQSUVJURLINwzDaG4ax1zCM/YZhvJFZ942MjaTX9F7sPrMbwzD00C8imc6eicyI8Ig0bReRHOrbb+HJJ6FjR5g/Hzw94dJeWPoA8ceXQMOfaNR2Fjue3knlIpWdHa2IiEgSSoqKSLZgGIY78APQAagJ9DMMo6aj7xuXEEfv6b2Zu2cuBy8cdPTtRESSZc9EpldFrzRtF5Gsy1EvjCtMnQojRkCPHlaDpbx5rR07/sfV6HO0i6rNhyfOAuBm6E9OERHJmvQvlIhkF42A/aZpHjRNMxaYBnSz5w2CQoPwHuWN20g3vEd5M3nnZIbNH8aSA0sY3Xk0nWp0suftRERSzZ6JTJ8AHzw8PRJt8/D0wCfAJ12xiYhzOOyFcWAgVQMDoW9f+O038PCAuMsA2BqOZrCtMcuPbaWSV6UM30pERMSRlBQVkeyiHHDkpp+PXttmF+ejz+M334+wiDBMTMIiwhgydwiTdkxiZIuRDKs3zF63EhFJM3smMmv51qJLYBe8KnmBAV6VvOgS2EVNlkRcj2NeGHfvzuHHHoPJk8GIgzX94K/2kBDLays/Zdqe+Xzi8wmP1X4sw7cSERFxJHWfF5Hswkhmm5nkIMPwA/wASpUqRUhISKouHh8Tz/uV3//vZzOewKOBlMlThqa2pqm+TmaJjIzMcjHdjuJ1PFeL2dXidbbrCUt7dJ+/fj0lQUVcXnIvjB+4+YD0PhdFPvooJ/76nfsuvE2BuP0cLPgEX015gR8P/kSPsj1oFNcoS43hrvhviqvFrHgdy9XiFXEVGUqKGobxHvAEcObapv+ZpvlHRoMSEUmHo0CFm34uDxy/9SDTNAOBQIAGDRqYLVq0SNXFv5z6Ja/8+0qS7QejD9KyZct0hOtYISEhpPazZQWK1/FcLWZXizcrUCJTRG5xxxfG6X0u2rbkG+pGBABXofkCqpbrSMPtE+iT7zxBPYNwd3PPYOj25Yr/prhazIrXsVwtXhFXYY+Zol+bpvmFHa4jIpIRm4DqhmFUBo4BfYH+9rp4bvfcyW5XvSwRERHJolL1wjjNbAnUiPga8hWB5vOIylcBT2BwncEMqj0Iw0guFysiIpL1qKaoiGQLpmnGA88CS4DdwHTTNHfZ6/rlCpYjb668ibZ5engS4BNgr1uIiIiI2NONF8aGYeTGemE8L8NXdXPn76IB0G4DO6JiqPxNZRbvXwyghKiIiLgUeyRFnzUMY6dhGOMMwyhih+vZx6EgmOMNU9ysr4eCnB2RiDiYaZp/mKZZwzTNqqZp2jVbGW/Eky9XPtwNazlYJa9KBHYJxLeWb5quc2sH+6BQjU0i4lpCg0IZ5T2KkW4jGeU9itCgUGeHJCLJcOQL4+hc5QiLiqBDUAc83Dy4t8S99risiIhIprrj8nnDMJYBpZPZ5Q/8BHyAVZvmA+BL4PEUrpO+It7pKSgcex6unAbzOcgL2IDtp2HfLMhdNG3XSiNXK4CseB3L1eIF14zZ0S5EX+C10NdIMBPY+uRW7i91f7quExQahN98P6LiogAIiwjDb74fQJqTqyIizhAaFMp8v/nERcUBEBEWwXy/+QCqZyqSBV3r92D3ng+X4i7RIagDUXFRrBqyigpeFe58koiISBZzx6SoaZqtU3MhwzB+ARbc5jrpKuKdroLCc7whOiyZICtB28Npu1YauVoBZMXrWK4WL7hmzI52LvocNtPGnD5z0p0QBfAP9r+REL0uKi4K/2B/JUVFxCUE+wffSIheFxcVR7B/sJKiIjlETHwM/n/7c+DKAZYMWEKtUvrfvoiIuKYMLZ83DKPMTT/2AP7OWDh2EhWetu0iIrdRrWg1xjccT8vKGesyHx6R/BiU0nYRkawmIjwiTdtFJPvJ7Z6buwveza89fqWFdwtnhyMiIpJuGa0p+plhGKGGYewEWgIv2iGmjPOsmLbtIiJ3cL2WaEZU9Ep+DEppu4hIVuNV0StN20Uk+3Ez3Him2jM8eu+jzg5FREQkQzKUFDVN8zHTNGuZpnm/aZpdTdM8Ya/AMqR2ALh7Jt7m7mltFxFxkgCfADw9Eo9N6mAvIq7EJ8AHD0+PRNs8PD3wCfBxUkQiIiIiIuljj+7zWU9lX2gUCJ6VAMP62ijQ2i4i4iS+tXwJ7BJIJa9KGBjp7mAvIuIstXxr0SWwC16VvMAAr0pedAnsonqiIiIiIuJy7thoyWVV9lUSVESyHN9avkqCiohLq+VbS0lQEREREXF52XOmqIiIiIiIiIiIiEgKlBQVERERERERERGRHEVJUREREREREREREclRlBQVERERERERERGRHEVJUREREREREREREclRlBQVERERERERERGRHEVJUREREREREREREclRlBQVERERERERERGRHMUwTTPzb2oYZ4CwVB5eHDjrwHDsTfE6luJ1vLTEXMk0zRKODMaRNBZlKYrX8VwtZo1FycvO/3/MClwtXnC9mLNzvBqLsi5XixdcL2bF61g5ZiwSyUxOSYqmhWEYm03TbODsOFJL8TqW4nU8V4w5M7ja70XxOparxQuuF7OrxZtZXO33ongdz9ViVrzZg6v9XlwtXnC9mBWvY7lavCKuQsvnRUREREREREREJEdRUlRERERERERERERyFFdIigY6O4A0UryOpXgdzxVjzgyu9ntRvI7lavGC68XsavFmFlf7vShex3O1mBVv9uBqvxdXixdcL2bF61iuFq+IS8jyNUVFRERERERERERE7MkVZoqKiIiIiIiIiIiI2E2WTYoahtHeMIy9hmHsNwzjDWfHcyeGYVQwDOMvwzB2G4axyzCMEc6O6U4Mw3A3DGObYRgLnB1LahiGUdgwjN8Nw9hz7ffc2Nkx3Y5hGC9e+2/hb8MwphqGkdfZMd3MMIxxhmGcNgzj75u2FTUM40/DMPZd+1rEmTFmFa40HrniWASuNR5pLLIvjUWpp7HI8TQWOU5WH4tA41FqaSxyPI1FjqOxSERuliWTooZhuAM/AB2AmkA/wzBqOjeqO4oHXjZN8x7gQeAZF4h5BLDb2UGkwTfAYtM07wZqk4VjNwyjHPA80MA0zfsAd6Cvc6NKYgLQ/pZtbwDBpmlWB4Kv/ZyjueB45IpjEbjWeKSxyL4moLHojjQWZRqNRQ7gImMRaDy6I41FmUZjkQNoLBKRW2XJpCjQCNhvmuZB0zRjgWlANyfHdFumaZ4wTXPrte8vY/1jUM65UaXMMIzyQCdgjLNjSQ3DMAoBzYCxAKZpxpqmedGpQd1ZLiCfYRi5AE/guJPjScQ0zZXA+Vs2dwMmXvt+ItA9M2PKolxqPHK1sQhcazzSWGR/GotSTWORg2kscrgsPRaBxqNU0ljkYBqLHE5jkYjckFWTouWAIzf9fJQs/o/XzQzD8AbqAhucHMrtjAJeA2xOjiO1qgBngPHXlpKMMQwjv7ODSolpmseAL4Bw4AQQYZrmUudGlSqlTNM8AdZDJFDSyfFkBS47HrnIWASuNR5pLMocGouS0ljkeKPQWOQQLjwWgcajW2kscrxRaCxyCI1FInKrrJoUNZLZZmZ6FOlgGEYBYCbwgmmal5wdT3IMw+gMnDZNc4uzY0mDXEA94CfTNOsCV8jCSwau1XjpBlQGygL5DcMY4NyoJJ1ccjxyhbEIXHI80lgkzqKxyIE0FjmWxqJsRWORA2ksciyNRSJyq6yaFD0KVLjp5/JkwWnttzIMwwPrH9sg0zRnOTue23gY6GoYxmGsJS+tDMOY7NyQ7ugocNQ0zetvdn/H+gc4q2oNHDJN84xpmnHALOAhJ8eUGqcMwygDcO3raSfHkxW43HjkQmMRuN54pLEoc2gsSkpjkWNpLHIsVx2LQOPRrTQWOZbGIsfSWCQiiWTVpOgmoLphGJUNw8iNVfx4npNjui3DMAysWiq7TdP8ytnx3I5pmm+aplneNE1vrN/tctM0s/QbMtM0TwJHDMO469omH+AfJ4Z0J+HAg4ZheF77b8OHLFx0/CbzgEHXvh8EzHViLFmFS41HrjQWgeuNRxqLMo3GoqQ0FjmQxiKHc9WxCDQe3UpjkQNpLHI4jUUikkguZweQHNM04w3DeBZYgtURbpxpmrucHNadPAw8BoQahrH92rb/mab5h/NCynaeA4KuPYAdBIY4OZ4Umaa5wTCM34GtWF0vtwGBzo0qMcMwpgItgOKGYRwF3gU+AaYbhjEU66HhEedFmDW44HikscjxNBbZkcai1NFYJMnQWGRnGo/uTGORJENjkZ1pLBLJPIZpZvkSMCIiIiIiIiIiIiJ2k1WXz4uIiIiIiIiIiIg4hJKiIiIiIiIiIiIikqMoKSoiIiIiIiIiIiI5ipKiIiIiIiIiIiIikqMoKSoiIiIiIiIiIiI5ipKiIiIiIiIiIiIikqMoKSoiIiIiIiIiIiI5ipKiIiIiIiIiIiIikqP8H4XexkXs7QqsAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# True population parameters for the linear relationship\n", "true_slope = 2.0\n", "true_intercept = 1.0\n", "sigma2 = 4\n", "\n", "# Generate data points from the population\n", "np.random.seed(42)\n", "population_x = np.linspace(0, 10, 1000)\n", "population_y = true_slope * population_x + true_intercept\n", "\n", "# Create a figure with the population regression line\n", "plt.figure(figsize=(20, 5))\n", "\n", "\n", "# Simulate different random samples from the population\n", "num_samples = 3\n", "sample_size = 20\n", "\n", "plt.suptitle(\"Linear Regression and Sampling\")\n", "\n", "colors = ['orange','green','purple','red','brown','pink','gray']\n", "\n", "slopes = []\n", "intercepts = []\n", "\n", "for i in range(num_samples):\n", " plt.subplot(1,num_samples+1,i+1)\n", " plt.plot(population_x, population_y, label=\"Population Regression Line\", color=\"blue\")\n", " sample_x = np.random.choice(population_x, sample_size)\n", " sample_y = true_intercept + true_slope*sample_x + np.random.normal(0,sigma2,sample_size)\n", " \n", " # Fit a linear regression model to the sample\n", " slope, intercept = np.polyfit(sample_x, sample_y, 1)\n", " sample_regression_y = slope * population_x + intercept\n", "\n", " slopes.append(slope)\n", " intercepts.append(intercept)\n", "\n", " plt.title(f\"$\\\\hat \\\\beta_0={intercept:.2f}$, $\\\\hat \\\\beta_1={slope:.2f}$\")\n", "\n", " # Plot the regression line for the current sample\n", " plt.plot(population_x, sample_regression_y, linestyle='--', label=f\"Sample {i + 1}\", color=colors[i])\n", " plt.scatter(sample_x, sample_y, color=colors[i])\n", " plt.grid()\n", "\n", "\n", "plt.subplot(1,num_samples+1,num_samples+1)\n", "plt.plot(population_x, population_y, label=\"Population regression Line\", color=\"blue\")\n", "for i in range(num_samples):\n", " sample_regression_y = slopes[i] * population_x + intercepts[i]\n", "\n", " # Plot the regression line for the current sample\n", " plt.plot(population_x, sample_regression_y, linestyle='--', label=f\"Sample {i + 1}\", color=colors[i])\n", "\n", "avg_slope = np.mean(slopes)\n", "avg_intercept = np.mean(intercepts)\n", "\n", "sample_regression_y = avg_slope * population_x + avg_intercept\n", "plt.plot(population_x, sample_regression_y, linestyle='-', label=f\"Average regression line\", color=colors[i+1])\n", "plt.title(f\"$\\\\overline\\u007b\\\\beta\\u007d_0={avg_intercept:.2f}$, $\\\\overline\\u007b\\\\beta\\u007d_1={avg_slope:.2f}$\")\n", "plt.grid()\n", "plt.legend(bbox_to_anchor=(1.1, 1.05))\n", "\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Each of the first three subplots shows a different sample drawn from the population, with its corresponding estimated regression line, along with the true population regression line. The last subplot compares the different estimated lines with the population regression line and the average regression line (in red). Coefficient estimates are shown in the subplot titles.\n", "\n", "As can be noted, each estimate can be inaccurate, while the average regression line is very close to the population regression line. This is due to the fact that our estimators for the parameters of the regression coefficients **have non-zero variance**. In practice, in can be shown that these estimators are **unbiased** (hence the average regression line is close to the population line).\n", "\n", "#### Standard Errors of the Regression Coefficients\n", "A natural question is hence **\"how do we assess how good our estimates of the regression coefficients are\"**. We resort here to **statistical inference**. It can be shown that the squared standard errors associated to the coefficient estimates are:\n", "\n", "$$SE(\\hat \\beta_0)^2 = \\sigma^2 \\left[\\frac{1}{n} + \\frac{\\overline x^2}{\\sum_{i=1}^{n}(x_i-\\overline x)^2}\\right], SE(\\hat \\beta_1)^2 = \\frac{\\sigma^2}{\\sum_{i=1}^{n}(x_i-\\overline x)^2}$$\n", "\n", "Where:\n", "\n", "$$\\sigma^2 = Var(\\epsilon)$$\n", "\n", "Note that $\\sigma^2$ is generally unknown, but it can be estimated as the **residual standard error**:\n", "\n", "$$RSE = \\sqrt{\\frac{RSS}{n-2}}$$\n", "\n", "In the formulas above, we see that:\n", "\n", "* The standard errors are proportional to $\\sigma^2$. This is expected, as we will have more uncertainty when the variance of the error term is high, hence when the points are more **scattered around the population regression line**.\n", "* The standard errors depend inversely on $n\\sigma_x^2 = \\sum_{i=1}^n(x_i-\\overline x)$ (the variance of $x$ multiplied by the sample size). This means that we will have more uncertainty in the estimates if $x$ concentrate in a narrow range.\n", "\n", "The plot below shows some examples of fit for different values of $RSE$ and $n\\sigma_x^2$:" ] }, { "cell_type": "code", "execution_count": 120, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABI8AAAKGCAYAAADDKrvwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3gU1dvG8e9JAxJ6S2ghIAgImKCI/SeKFXsvKHbsHWv0tQGiIoKoFEVBjb2jYkNj7xrAQodQQ6SFhFBSzvvHWWII2WSTbEtyf65rL7IzOzPPnJ3dPTxzirHWIiIiIiIiIiIiUp6IUAcgIiIiIiIiIiLhS8kjERERERERERHxSskjERERERERERHxSskjERERERERERHxSskjERERERERERHxSskjERERERERERHxSskjERERERERERHxSskjERERERERERHxSskjERE/Msb8ZYwZGOo46oLaUJbGmGnGmBGhjqMyxphlxpgjPX8HrFyNMQ8ZY24MxL6rGEfJ+VZj27C/7oIlUGURrOtR6i5jzM/GmN6hjkNEpD5R8khEpBq8/efUWtvbWpsegpB244lxqzEmzxiT5Ul0NA51XL4Kp7KsDmPMIcaY740xOcaYDcaY74wx+4U6rkCVqzGmDTAUmFxqWelrcK0x5vlwugbL+xzX9uvOn4JRFsEub2NMF2PMTGPMRmPMKmPMxQE81rXGmF+NMduNMdMqeW1LY8w7xpgtxphMY8x5VVlfyb6Dcs7GmAbGmKme+HKNMX8YY46r4PU1OecxwAOBOA8RESmfkkciIrWcMSaqgtUnWmsbAylAP+DOIB+/XjLGNAU+ACYALYEOwP3A9lDGFWAXAR9Za7eWWb7zGtwH2A+4O9iBhRt/f2b0GaySN4HPgNbA5QT2elwNjACe8+G1TwE7gHhgCDCxTMuaytZXJFjnHAWsAA4DmgH3AK8bY5K8vL4m5/w+cLgxpp2/T0JERMqn5JGIiB+VbcngeT7cGDPH0wLlNWNMQ8+69saYt4wx/xpjlhpjri+zrzuMMYs9d3D/NsacWma/txtj5gBbKvvPo7U2C/gEl0TauQ+vxzfG7OO5a5xrjHnDE/eIUut3O34l+7vdc8c71xgz3xgzqLJ1ZteuLb2MMenGmE3GdXM5yZcy9vIeVVauXvdljOlnjPnds+1rgLfj7Okp91estUXW2q3W2k+ttXOqEMetnji2eO7mxxvXeiDXGPO5MaZFmdff6dnPRuNa+JQbW5lyrex8K7wOyjgO+MpbuVtrVwEzgT6efVf2nno9H2OMNcZ0K/Xca/dBb+VsjHkRSARmGNcy6rZyysdrjL6UXzmv9fkz49nGa/lXdX8mgJ/BqpZFOdv55TvTh2PtDbSy1o611hZ5Fv9blX1UhbX2bWvtu8D6SuKKA04H7rHW5llrv8UlRy7wZX0l+w7aOVtrt1hr77PWLrPWFltrPwCWAvuWE1eNztlauw34DTg6EOciIiK7U/JIRCTwzgKOBboAewMXGWMigBnAbFyrlEHAjcaYY0pttxg4FHcH937gJbPrXdZzgeOB5tbawooCMMZ0xP3nfpHnudfjG2NigHeAabhWM68Ap5az25LjA8UV7K8HcC2wn7W2CXAMsMwTh9d1pWKP9uz7U6AtcB2Q5tl2p93KuILiqKxcy92Xp1zeBV70lMsbuP/clGcBUGSMmW6MOc6USvRUIY7TgaNwiagTcYmXu3CtByKAsv9xHoIrvz082/jauqCi8/XlOtipLzDf20pjTCdgMPCHj+9pdc+nrHLL2Vp7AbAcT8soa+0jZeL1JUao2rXn02fGc3xfyj+cPoNVLYuKVOs70xjztDHm6Qr2ezDwrTEmwhizLzAWmOhLQMaYDzyJs/IeH1TrLP+zJ1BkrV1QatlsoLeP6ysSsnM2xsR7Yv+rnNX+OOd/gGRfzkVERGpOySMRkcB7wlq72lq7AfefnxRc95021toHrLU7rLVLgGeAc3ZuZK19w7NdsbX2NWAhMKDMfleU002otHeNMbm4rgTZwL2e5RUd/wBc94MnrLUF1tq3gZ+9nNfO41e0vyKgAbCXMSbac1d6sWcfFa3b6QCgMTDas+8vcF3Czq2kjMvlY7mWt68DgGhgnKdc3gR+8XKMzcAhgPWUw7/GmPc9/5nyNY4J1tq1nhY73wA/WWv/sNZuxyUV+pU57JOe92MDMLJM+VSkovP15TrYqTmQW87yd40xm4BvcS2TRuHbe1rd89mFD+XsjS8xQhWuPXz/zOw8fmXlH06fwaqWRUWq+515tbX26gr2mwL8Cnzp+TcfeBvAGDPSGPONMeZNY0xs2Q2ttSdYa5t7eZxQzfPcqTGQU2ZZDtDEx/UVSaGcczbGNDNu0Ok8Y0yf8jasyTl7Eo5pwHRr7bxyXuKPc87Ffe+IiEgQKHkkIhJ4WaX+zsdVijsD7UvfycW1KilJLhhjhhpjMkqt74NrdbLTCh+OfYqnNcFAoGep7Ss6fntglbXWVnKs0su87s9auwi4EbgPyDbGvGqMaQ9Q0bpS2gMrrLXFpZZl4lof7FReGZfLh3L1tq/yyiXT23Gstf9Yay+y1nb0HKM9MK4Kcawt9ffWcp6XPcfS70em53i+qMr5VnTNbaT8/8ye4vnPZmfPf+634tt7Wt3z2YUP5eyNLzFCFa49fPzMlDp+ZeUfTp9BqFpZVKRa35k+SMElfA8HugEbgEc8yZM9rLWHAp8Dl1Qz7urKA5qWWdaU/5Kxla2vSArlnDOuXI/HjYfkV55WYi/ixiu61svL/HHOTYBNNYlVRER8p+SRiEhorACWlrmT28RaOxjAGNMZd1f9Wtx4Fc2BPwFTah+27E69sdZ+hev+MsaH468BOhhjSh+rU3m79fV8rLUvW2sPwf0H0AIPl4rN6zqP1UAnz39IdkoEVvl6/jv5WK7elFcuib4c13PnfRr/jfdTkzi8Kf0eJeLKrSZ8vQ52moNnrCcf+PKeVnQ++UDp1iEJ5R3Eh3Ku6DPkt+uuFJ8/M/hW/rXuM1gDlZVXhYwxkUAv4A9PK7TFwHee1YfiuoXi+feQcraf6WmlU95jZtnXV9ECIMoY073UsmT+6+5V2fpyVXTOntZsFY59VJ1z9lyvU3FJvdOttQUBPOdeuK5sIiISBEoeiYhUX7QxpmGpR1VmPPoZ2GzcQLWNjDGRxpg+5r+p3ONw/4n7F8C4qZXL7VpQBeOAo4wxKZUc/wdcV5ZrjRuE92Qq7+bjdX/GmB7GmCOMMQ2AbbhWM0We8/K6rpSfgC3AbcaYaGPMQNwYQK9WowxqUq4/AIXA9Z5yOQ0v5WKM6WmMucW4saZ2jvdzLvCjH+Lw5hpjTEdjTEtci4zXari/ql4HH+FmWfKFL+9pReeTAZznuc6OreC4lZXzWqBrDWKsicq+A6pa/rXlM1hdlZVXZXrgEo7HebZNAS4FpgMt+K+LVA5ujKldWGuPs25srPIe5U5H73nfGgKRQKS33wlr7RZc97kHjDFxxpiDgZNxrXcqXW/cgPHTqnjOlarOOePGU+qFG0vMa5dqP5xzA9xA3J/5ci4iIlJzSh6JiFTfR7j/aO183OfrhtbNenMirkvBUmAd8CxuUF+stX8Dj+H+A7kWNxjxd+XtqwrH/Bd4ATd7jdfjW2t3AKfh/pOxCTgfN76J12nmKzmfBsBoz7Is3IC7d3k2rWjdzn3vAE7CDfi9DngaGOplHI3KyqDa5VqqXC7CddE6G894KeXIBfYHfjLGbMEljf4EbqlpHBV4GTeg8RLPw9usaD6pxnXwAjDYGNPIx31X9p5WdD434K63TbiBtd/1cpzKyvkh4G7jukENr0aM1ebDd0CVyr+2fAarq7LyAjDGTDLGTPKyi37AzuthE64l4PXW2h9xn+ed+2mG69rlD3fjfhvuwL1/Wz3LdrbqKV3OVwONcGPTvQJcZa39y8f1nSj/+6Oic/Y741r6XYF7j7JKtVIa4lnvz3M+CUi31ta0haWIiPjI7NqVXkREZHfGmJ+ASdba50Mdi+zOGLMMuMxa+3mAj1PhdWCMGQVkW2vH1fA4ywjC+dQ2+hxWnzHmUWCDtfahctb1Be601p5njBkGNLDWTgh6kNVg3Kx8s4G9y3YRq+icS71mGjDGWvtnQAP1M89n4dLaFreISG1WlS4WIiJSTxhjDsNNu74O17Jjb+DjkAYlQVfV68Bae5e3dVJ1+hz6VT/gyfJWWGvnGmMyjTHf4Fq5DA1qZDXgaRXWy8tqr+cMYIz5CNdKqIcxZrK1dprfAwwQa+3+oY5BRKS+UfJIRETK0wN4HTfL0WLgDGvtmtCGJCGg6yC0VP7+kwx47WZnrb0ziLEES2Xn7NNg4yIiIqBuayIiIiIiIiIiUgENmC0iIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peSQiIiIiIiIiIl4peVRFxpjBxpjBoY4jFOrzuYuEG30eA0PlKhIY9fWzVV/PWyTc6LNYf+i9DhxjrQ11DLWGMaY18Knn6VHW2vWhjCeY6vO5i4QbfR4DQ+UqEhj19bNVX89bJNzos1h/6L0OLCWPqsAY8xTwDhAJnGStvSbEIQVNfT53kXCjz2NgqFxFAqO+frbq63mLhBt9FusPvdeBpeSRiASUMeZAYCywA1gNDLXWFoQ2qvpN74n/qUxFRMQf9HsSXvR+1B96ryunMY9EJNAygSOstYcBS4CTQxyP6D0JBJWpiIj4g35Pwovej/pD73UllDwSkYCy1q621m71PC0EikMZT21jjHnIGHNjDffxszGm987n9f09UZmKiEi40u9J9fnj992zn5LfeL0f4Ul1udBQ8qgKjDFdjDEzjTEbjTGrjDEXB+g4DYwxU40xmcaYXGPMH8aY4yp4fUtjzDvGmC2ebc6rynof4gnKeXuOda0x5ldjzHZjzDQftznHGPOP5/wWG2MO9SxPMsZ85Ik7yxjzpDEmqgqxLDPGbDXG5Hm2n2aMaVxq/SHGmO+NMTnGmA3GmO+MMft52X7n48kqHL9K14FnG6/vdZk48owxRcaYCb7GU1PGmC7AccAHftqf12ulqudqjEk3xmwr9fr5vhynCrEOMcb8ZozZ5LlW0o0xHYwxLYwxtpx4b/Bs1wYYCkwus7+qfibHAA+UE5df3pNqXqu9jDFfeD4/i4wxp1bxmOWWqWed13KtLWXq2VeVy9WzXXfP9fxSTWMQ8YdqfL5qerxy6wVlXlPh74SpeR0iaOdc0W9/Oa+t8Lxq8ptnKqk3eV7jte5kalhvKnUMr7/p5by23Ougut+//uTP3xPP/sp9b6t6rj5cQzX9f0eof9+hnN/4YL0fNX2tP1X2XtY0rjB4rwNel/Psz+ffE1PD+nHAWWv18PEB/AbcjBuAazCwOEDHiQPuA5JwCb4TgFwgycvrXwFeAxoDhwA5QG9f14fLeXuOdRpwCjARmObD64/CNTE8wFNWHYAOnnUfAdOAhkACMBe4vgqxLAOO9PydAMwGRnqeNwU2Aed6yqURcDSwd3nbB+M6qMp77dl3HvC/QL2XZY7XFPga6BHsa8WXcwXSgcv8cU2Ws/1FwCJgX8AArYHLgFjgcGB9BdveCjxTzvIqfSY9n4ENQLtAvCdVvVaBKGBBqXM4AtgC7FnTMvWs91qutaVMq1Oupbb7FPgGeMkfceihR00fVf181fBYXusFFWyz2+8ENa9DBPOcfa7nVXZe1OA3jwrqTZ5lFdadqGG9qdRx0vHym+7rdVDd718/vqdBqzdV9Vx9uIaq/f8OwuD33bPNLr/xwXw/avraKhz/PuC+Sl5T2f8xa/J9EfL3uuz7HMD32qffE2pYPw7GI+QB1JYHsDewrNTzwcCPQTz+HOD0cpbH4Qb12rPUsheB0b6sD9fzBkb48iUEfA9c6mXdP8DgUs8fBSZXIYZllKrEAI8AH3r+7g9sqsr2gbwOqvpeAxfi+vKaKhz7SuBD4ClgHW4guaM866KBkZ5zLgCs5zHb80X4Ia4PcdCvFV/OFR8qmr5ek+Vs9w1wq5d1NwHfVLDtF8D5ZZZV6zMJfAZc6Pk7oO+JD9dqH1wF3ZRa9inwYE3LtLJyrc1lWlm5etafA7yOqxQqeaRHyB/V/XzV4Hhe6wUVbLPb7wQ1qEME85ypYj3P1/Oqzm8eFdSbPM8rrDuV3b4GZVLpb7qv10GZ9RV+/5Z5rdc6k2d92NabKjvXiq6hql6P5ew7LH7fPa/9zHNNhPz98OW1wOXA37gEz0ygbSX7uo8KkkdVeS+r+X0RFu81QajLVfSZKfO6GtWPg/FQtzXfHQx8a4yJMMbsixuJfaIvGxpjPvA0xyvvUWlzOGNMPLAn8Fc5q/cEiqy1C0otmw309nF9Zap93p7Ya3Tulew7ElcRaeNp1rfS0wywkecl44FzjDGxniaQxwEfV/NYHT3bL/IsWgAUGWOmG2OOM8a0qOL+qlwulVwHULX3+kLgBev5VvLR3sCBwPtAW1xT0ds960YAg4BDgebALNw0mafi7jDuD/yfpznq2eWcW8CuE3w/14eMMeuMa0I/sIbHLG0rcIkx5ixjTOsy6/rhfui96QuUbW5f3c/kP0Cy5++Avic+XKvGy7I+PpwHVFymUHG51soy9WxfYbkaY5riml/f4kPsIsEStPqTD/UCb8r7nahJHSKYdaeq1vP8Vjeq5BzK1psguHWn6vyme60v+PC7VlZFdSYI43qTD+da0TVU0/93hMvvO/z3Gx/qemyljDF34RKWJwFtgFW4a6wmavpeViZc3utg1OV8/d6taf048EKdvaotD9yX/o3AV7g7A78DTTzrRuKyp2/iaWrnx+NGA5/j5W4X7kcnq8yyy4F0X9bX8LybAT/jMqR9/HzevtwVae+J6VegHa6543f817WsF675YqHnddOoWkubZZ5zy/VsPwtoXmp9L88+V3qO8T4QX872m0o9Lg/EdVCV9xpIBIqALlWM4VvgtlLPz/TE1AT3A9C91LqrfL3GAnmt+HquuB+KJkADXOUxF9ijqtekl30nAOOA5Z5YZuC5G4S7s5df5hoZW2rbAqBnmf1V67vIs+65ILwfvlyr0bi7u7d5/j4ad3frk5qWaWXlWo0y9fo9F6wyrUK5jgdu9/x9H2p5pEcYPKr7nVXNY1VYL/CyTbm/E9SgDlHd75RqnnOV6nm+nhfVb3nktd5U6vjTKKfuhJ/qTfjwm+7rdeBZV+n3bznblFtn8vwdzvUmX35rvF5DVb0ey9l30H7fPevDod5Uo5ZHuORkPru2EDoQ+KOSfd1HxS2PfH4vq3IOoXivCXFdrqLPTJnX1ah+HIyHWh75LgX4Bdf/shuuf+Qjxpg+uB+kQ3Fftpf464DGmAhc88AdwLVeXpaH65tZWlPcD6Uv6yuTQjnn7VmXDxyP+8INhZ2j4U+w1q6x1q7DZZkHe8ruE+BtXLPL1kAL4OEqHuMUa20TYCDQ07MfAKy1/1hrL7LWdsRlhNvjvgTLbt+81OOZKh7f1+sAfH+vhwLfWmuXVjGUvrgv9p364O4I/A9YYq1dWGpdCyCrivsPBJ/O1Vr7k7U211q73Vo7HfefjcH+CMBam2WtvdFamwgMwN2NvN0Y0wD3Y/K/MtfIzaU234irZJaWQvW+i5rgfngDxtdr1VpbgOsjfzzuOrkF19VqpS/H8VamnhgqK1efy9SzrqLvuYCXKfhWrsaYFOBI4PFAxyNSRSkEr/7ktV5QwTa7/U74oQ6RQvDqTj7X8/xYN6qI13oT+FR3qnG9qZq/6eXWF6pQByvLW50JwrTe5ONvTWXXUI3+3xHM3/dwqDf5ySAgBvh5ZwsYXKuWnLIvLN1qBrgDuKOCVjM1/T9khepLXa4q37s1rR8Hg5JHPvA0g+6Fy+AWW2sX436IwGVlZ3r+nokbTKzs9jPN7iPF73zMLPt6zzYGmArE4/ocF3gJbwEQZYzpXmpZMv81Na1sfXXPG2ttgbX230r2UeVz95W1diPuw2TLWd0S6AQ86ak8rAeep5oJAWvtV7gs8Rgv6+d51vvUrNDXcqnCdQC+v9dDgem+xFkqji64fsClm4j2AzJwzWM3lon5VKowQ0EAr5Mqn6uHpfymozVirf0NN0heHO5asZ7n3szBNRsGavxd1AvX3NgnVX1PqnitYq2dY609zFrbylp7DNAVd1eoSsqUKVRerlUp08q+5wJapp5tfC3XgbjBTpcbY7KA4cDpxpjffY1PxN+CXX+qpF7gTXm/E9WuQ4Sg7lSVep5f60YVqaze5HlNQOpO5R2Kyn/Td7sOqvq7Vmq7iupMEIb1piqca2XXULX/31FWoH/f8WO9KZD/3/FBS+CdMkmWZtbagWVfaK09YedrgNG48Yt2bnNCmZf77b2sTB2vy1Xpe9df9eOAsWHQ/CncH8BeuGZmp+NGPk/BVU4OAO7C3SUB12f5Uz8dcxLwI9DYh9e+ihsNPw7X37PsSPhe1+N+tKdV9bzLvG4afuq2hvuxbQg8hLv70RCIquD1D+CyzG1xWdxv8Awqhmv2d4dnn81xfcnTysRd7rl71i9j14Ef2+BGvE/B3U27BejoWdcJ9yX1jLftA30d+HgtHOQ5hyblbFvRtXAyZQadA1bgZkjoj8vop+BmThmN+5KL9rwuBvjJs+4kYFIwrpWKzrXMfpoDx+zcHhji2a6Hj8epqNzu8LwPDTyPi3B3cvbHzSjxRyWx3QxM8eUzSQXfRZ5jbwDa+6Ps/XSt7u0py1hcomMp0KAmZepZX2G5VqVMy/l89Cn1POBlWpVy9ZRjQqnHGNwdtjaBjE8PPSp6VPc7q4bH9FovKOe1Ff0mVqsOUd3vlBqec4W//VU8r5r85i3DS73J87zCulPZ7atZFs2p4De9KtdBZd+/FVwDXutMnr/Drt5U2blW8RqqrC7qrdyC+vtO6OtNPv+fp5L37kDcoOz7eJ439VyDFXazxbfZ1ip7LyuKq9z3ORTvdZlrLxR1uQo/M2Ve67V+HA6PkAdQGx64H545uB+1XNydg9M8667ivxHaOwOv+uF4nXHZ1m2eD9LOxxDP+pnAXaVe3xJ4F/fDtxw4r8z+vK7H9Ucvtz95Redd5nW7fBBreO738d+MEzsf95VaX/bco4Gncc0Ns4AngIaedSm4GTc24r5U32DXvrRez92zfhllKjG4gdfewk39+zpuQLotnn8nA03LbL+1zHv4jr+ug2peC5OBF70cr6Jr4R5KVV6AVrj+xjv/s5+Km0lkjed6aF1m+8uAKbgvS6/JQD9fKxWda0m54Sq3v3iu8U24ytNRVThOReU2CnfnJg9Y6znuzh/GJ3E/dKXf21ygWantW+N+/BpV9pmkgu8i3FgLb/uj3P14rT6K+2zmedZ1q2mZ+lKuVSnTMsedxq4VjoCWqS/lWrZMy/l8aMwjPUL6qO53Vg2PWVG9oOz3UEW/EylUow5R3e+UGp5zZb/9pX/zKjuv+6j+b94yvNSbPH9XWHeihvUmzz4q/E339TrAt981b9dAhXUmz7KwqTf5eK5VuYYqux69lVtQf98JYb2pss9aOdeo19d61l+PSzLkecpgoo/Hv6+S11T2XlZ0DqrL/XecFLx8Zsp5r73Wj8PhsXNwM6mAMeZRYIO19qFy1vUF7rTWnmeMGYb7YZgQ9CCrwRgTg2umt7ctp3lqRedd5nXTgDHW2j8DEmgAVHbu9U2gy8MYsxeu6WmitXaVv/cfKsG4jowxo4Bsa+246n4XGWN+wk1dHfaf0XAq0zLbTKPU91xtKlORUKmP9SfVneoH1ZuqJwjl5vPve12pN4Uj1eXqLiWPfGCM+RzXT/FdL+sfwvWTzQaGWmu3BDG8gKnsvD2v+QiXTc3EzcwwLSjBSa1hjGkFvIYbjLDYWvtIJZuIF/X1uyiQ9D0nEjj18TtL3ylSU6o3+YePn8U69x1UH+l7N3iUPPKBMeZf4FDrBvarN+rreYv/GDdbwtu4fr7/4MY2GGStzQtpYLWUPpP+pzIVCZz6+Pmqj+cs/qN6k//os1h/6L0OHiWPRERERERERETEq4hQByAiIiIiIiIiIuErKtQBlKd169Y2KSkpIPvesmULcXFxAdm37E7lHVwq7+BSeQefyjy4Alnev/322zprbZuA7FyqRfWvukVlHlwq7+BSeQeXyjv4wrEOFpbJo6SkJH799deA7Ds9PZ2BAwcGZN+yO5V3cKm8g0vlHXwq8+AKZHkbYzIDsmOpNtW/6haVeXCpvINL5R1cKu/gC8c6mLqtiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIiIiIiIiIV0oeiYiIyC6shVmzYPny2FCHIiIiIlJvbN8O06dDQYEJdSi7UfJIREREAJc0+ugjOOggOPJIeOONjqEOSURERKTOy8mBRx6BLl3goovghx9ahTqk3USFOgAREREJreJieO89GDECfv8dOneGiROha9eFQPtQhyciIiJSJ61eDePHw6RJsHkzHHUUvPgiRESsC3Vou1HLIxERkXqqqAheew2Sk+G001yl5bnnYOFCuPJKiImxoQ5RREREpM6ZNw8uu8y1NBozBgYPht9+g08/hUGDwIRfrzW1PBIREalvCgvh5Zdh1CiYPx969YKXXoKzz4Yo1QxEREREAuKHH1z3tPfegwYN4PLL4eaboWvXUEdWOVURRURE6okdO9wgjKNHw5IlrsXRG2+4VkcRaossIiIi4nfFxW5MyUcegW++gZYt4Z574NproU2bUEfnOyWPRERE6rht22DqVHj4YVixAvbbD8aNgxNOCM9m0SIiIiK13Y4d8Mor8Oij8NdfkJjoxje65BJo3DjU0VWdkkciIiJ11JYtMHmyq7RkZcHBB8Mzz8DRRytpJCIiIhIIubnw7LMwdiysXAl9+7rhAc46C6KjQx1d9Sl5JCIiUsds3gxPPeUqLevWwRFHuDtfhx2mpJGIiIhIIKxdCxMmuDrYpk0wcCBMmQLHHls36l8a4UBERKSO2LgR7r8fkpLgrrtc97TvvoNZs1wFpi5UXGRXxphOxpgvjTH/GGP+Msbc4Fne0hjzmTFmoeffFqGOVUTqr7S5aSSNSyLi/giSxiWRNjct1CGJ+M2iRXDVVdC5s5uMZNAg+PFH+PJLOO64ulP/qjR5VNNKiTHmWGPMfGPMImPMHf4+ARERkfru339dsqhzZ7jvPtfC6Jdf3OCMBx0U6ugkwAqBW6y1vYADgGuMMXsBdwCzrLXdgVme5yIiQZc2N41hM4aRmZOJxZKZk8mwGcOUQJJa79dfXVe0Hj3guefgwgth3jx4803Yf/9QR+d/vrQ8qnalxBgTCTwFHAfsBZzr2VZERERqaM0aGD7ctTQaPdrd3Zo9G955B/r3D3V0EgzW2jXW2t89f+cC/wAdgJOB6Z6XTQdOCUmAIlLvpc5KJb8gf5dl+QX5pM5KDVFEItVnLXz6qWtdtN9+7u/bb4fMTDfO5J57hjrCwKl0zCNr7RpgjefvXGNM6UrJQM/LpgPpwO1lNh8ALLLWLgEwxrzq2e5vP8QuIiJSL61Y4aZ7feYZKCyE886DO++EXr1CHZmEkjEmCegH/ATEe+pwWGvXGGPaetlmGDAMID4+nvT09IDElpeXF7B9S/lU5sGl8vbuuvjrIL78ddUtM5V3cKm8oajIkJ7ehldf7cSiRU1o3Xo7V121guOPX0NcXBHz5rlWR/4SjmVurLW+v9hVSr4G+gDLrbXNS63baK1tUeb1ZwDHWmsv8zy/ANjfWnttOfsuXXnZ99VXX63yyfgiLy+PxrVxXrxaSuUdXCrv4FJ5B199L/PVqxvy8suJfPJJAtbCMces5bzzMunQYVtAjhfI8j788MN/s9aqfZSfGGMaA18BI621bxtjNlVWTyurf//+9tdffw1IfOnp6QwcODAg+5byqcyDS+XtXdK4JDJzMndb3rlZZ5bduKxa+1R5B1d9Lu/8fNcl7bHHYNky6NkTbrsNhgyBmJjAHTeQZW6MqVYdzOfZ1jyVkreAG621m41voz6V96Jys1XW2inAFHCVl0AVVH2+8ENB5R1cKu/gUnkHX30t8/nz4aGH3DSvkZEwbJiruHTu3A5oF7Dj1tfyrm2MMdG4OlqatfZtz+K1xph2nlZH7YDs0EUoIvXZyEEjGTZj2C5d12KjYxk5aGQIoxKp2Lp1bta0CRNg/Xo3huT48XDCCRBRT6cd8+m0K6qUeNZ7q5SsBDqVet4RWF39cEVEROqPP/+Ec8+FvfaC11+H666DpUtdZaZz51BHJ+HAuLt5U4F/rLVjS616H7jQ8/eFwHvBjk1EBGBI3yFMOXEKnZt1xmDo3KwzU06cwpC+Q0Idmshuli2D66//bxKSgw6Cb791s9eedFL9TRyBDy2PfKiUjMZ7peQXoLsxpguwCjgHOK+mQYuIiNRlf/wBDz7oBr5u3BhuvRVuvhnaljtqjdRzBwMXAHONMRmeZXfh6mevG2MuBZYDZ4YmPBERl0BSskjC2ezZbjzJ115zCaIhQ1z9ay9N91XCl25rVaqUGGPaA89aawdbawuNMdcCnwCRwHPW2r/8fA4iIiJ1wk8/uaTRhx9Cs2bwf//n7n61ahXqyCRcWWu/pfxhAgAGBTMWERGR2sRaSE+Hhx+GTz5xN+xuvNE9OnYMcXBhyJfZ1qpUKbHWrgYGl3r+EfBRdQMUERGp677+2iWNPv/cJYpGjIBrr3UJJBERERHxn6Ii17r7kUfgl18gPh5GjYKrroLmzUMdXfjyecBsERER8R9rYdYslzT6+mtXcXn0UbjySnfnS0RERET8Z9s2mD4dxoyBRYugWzeYPBmGDoWGDUMdXfhT8khERCSIrIWPPnJJo59+gg4d3Owdl18OjRqFOjoRERGRumXjRpg40dW3srNhv/3gzTfhlFPcLLbiGyWPREREgqC4GN5913VJ++MPSEqCSZPgoougQYMQByciIiJSx6xcCY8/DlOmQF4eHHss3H47HHYYGG8D84hXSh6JiIgEUFERvPEGjBwJf/4J3bvD88+7WTyio0MdnYiIiEjd8vffbjyjtDTX4vucc+C222DvvUMdWe2m5JGIiEgAFBTAyy+7ARgXLHBTvaalwVlnQZR+fUVERET86ttv3cxpH3wAsbFw9dVw883QuXOoI6sbVH0VERHxo+3b3WCMo0fD0qWQkuL61Z96KkREhDo6ERERkbqjuBhmzHAtjb7/Hlq3hvvvh2uucTPYiv8oeSQiIuIHW7fC1KnujtfKlTBgADzxBBx/fC3rV79tHSx5Hrb/CwwOdTQiIiIiu9m+3bXofvRRmDfPjSX55JNw8cWu1ZH4n5JHIiIiNbBlixv4eswYyMqCQw5xSaSjjqpFSSNrYd0PsHAiLH8DirdD/CCIODbUkYmIiIiU2LwZJk+GceNg9WrXwvuVV+CMMzQsQKCpeEVERKph82Z46ikYOxbWrYNBg+DVV90MHrXO4qnw8+UQ1QT2uAy6XwnN+0B6eqgjExEREWHNGhg/HiZOdHWwQYNg2jQ48shadLOullPySEREpAo2bnSVl/HjYdMmGDwY7r4bDjww1JFVwcY5sGgSxB8OiWdCx1OAYuh8HkQ3DnV0IiIiIoCbdGTMGDeeZGGha2F0222w776hjqz+UfJIRETEB//+61oZPfUU5ObCKae4pFGtqbwUbYPlb7quaeu+h4gGENvJrWvYGroNC218IiIiVZA2N43UWaksz1lOYrNERg4ayZC+Q0IdlvjJTz+5QbDfeQcaNIBLL4VbboE99gh1ZPWXkkciIiIVWLPG3fGaNMkNin3WWXDXXbD33qGOrIrSB8PaL6FJd+j3GHS9EBpoGhIREal9NmzdwLAZw8gvyAcgMyeTYTPcTRAlkGova2HmTJc0+uoraNECUlPhuuugbdtQRyeaNFhERKQcK1bAtddCly6ui9rpp8Pff7txjcI+cVRcCCvfg69PgYLNbtled8ARn8EJ86DXzUociYjUQmlz00gal0TE/REkjUsibW5aqEMKiVW5q0oSRzvlF+STOis1RBFJTRQUwIsvuvrV8cfDkiXw+OOwfDk8+KASR+FCLY9ERERKWbIEHnrI9a0HuPBCuOOOWtJMeusaWPQsLJ4C+SuhUQfYvABa9Yd2R4c6OhERqYG0uWlqbeOxo2hHucuX5ywPciRSE3l58OyzbliAFSugTx944QU45xyIjg51dFKWkkciIiLA/PkwahSkpbmpXocNcwMyJiaGOjIfbVkB73cFWwgJR8O+T0CHEyFCP/UiInVB6qxUr61t6lvyKCYyptzlic1qy492/ZadDU8+6R4bN8L//ueGBzjuOM2cFs5UoxQRkXrtzz9hxAh4/XVo2BCuvx6GD4f27UMdWSV2bIQl02H7OkgeAXGdYJ/HoN1x0LR7qKMTERE/89aqpj62tunQpAOx0bG7JNNio2MZOWhkCKOSyixZAo89Bs89B9u3u8lHbrsNDjgg1JGJLzTmkYiI1Eu//w6nnQZ9+8KHH8Ltt8OyZa7pdFgnjtb/Aj9eDO+0h99vcjOn2WK3rsf1ShyJiNRR3lrV1MfWNi0btWTKiVPo3KwzBkPnZp2ZcuKUetcCq7b4/XfXFa17d9dN7fzz4Z9/4O23lTiqTdTySERE6pUff3SDL370ETRrBv/3f3DDDdCyZagj88E/Y+GPWyAqDrpcCN2vghbJoY5KRESCYOSgkbuMeQT1u7XNkL5DlCwKY9bC55+7mdM+/xyaNoVbb3UtvMP6Jp14peSRiIjUC1995ZJGs2ZBq1YwciRcc41LIIWtnL9h4STodCrEHw6dToHIhtDlfIhuGuroREQkiHYmSlJnpbI8ZzmJzRIZOWikEigSVgoL4c03XdLojz+gXTv397BhYV7nkkpVmjwyxjwHnABkW2v7eJa9BvTwvKQ5sMlam1LOtsuAXKAIKLTW9vdL1CIiIj7YedfrwQfhm28gPh7GjIErroDGjUMdnRdFO2DF27BoEmR/BREx0LirSx417gp7Xh3qCEVEJETU2kbCVX4+TJvmxjRasgR69ICpU2HIEGjQINTRiT/40vJoGvAk8MLOBdbas3f+bYx5DMipYPvDrbXrqhugiIhIVVnrxjEaMQJ++gk6dIAnnoDLLoNGjUIdXSU+Owg2/AZxXSBlNHS9BBq2CXVUIiIiIrtZvx6eftrVs9atc2MYPfYYnHQSRGiE5Tql0uSRtfZrY0xSeeuMMQY4CzjCz3GJiIhUWXExvPOOSxplZEBSEkyeDBdeGKZ3vYqLYM3HkPkqHPAcRERDr1tdl7R2x4BRrUtERETCT2YmPP44PPOMa3V0wglu5rRDDgFjQh2dBEJNxzw6FFhrrV3oZb0FPjXGWGCytXaKtx0ZY4YBwwDi4+NJT0+vYWjly8vLC9i+ZXcq7+BSeQeXyjv4vJV5URGkp7flpZc6s2xZHB075nP77ZkceWQ2UVGWH34IfqwViS7aQLv8mbTPn0HDorXsiGhBxpY08qOTgHj3ogVfhzJEQNe4iIiEXtrctN3GeepAh1CHVW/NmQOPPgqvvOKSREOGwPDh0KdPqCOTQKtp8uhc4JUK1h9srV1tjGkLfGaMmWetLbc27EksTQHo37+/HThwYA1DK196ejqB2rfsTuUdXCrv4FJ5B1/ZMi8ogLQ0GDUKFi6E3r3h5ZfhrLNiiYzsBfQKWaxebZoLHx8NxQVuHKNuTxDT8RQGRMaEOrLd6BoXEZFQSpubtssMc5k5mQybMYwX+70Y4sjqF2vdxCMPPwwzZ7pxI2+4AW68ETp1CnV0EizVTh4ZY6KA04B9vb3GWrva82+2MeYdYAAQ+lupIiJSq23f7gZlHD0ali2DlBR46y045ZQw7F+/IweWvgi2EHreCM16Q+9USDwbmvUMdXQiIiJhK3VWakniaKf8gnxW5a4KUUT1S1ERvPcepKbuw7x50Latm632qqugRYtQRyfBVpOWR0cC86y1K8tbaYyJAyKstbmev48GHqjB8UREpJ7bvj2CCRPclK8rV8KAATBhAhx/fBj2r9/wOyycCMtehqJ8N4ZRzxvdOEZ97w11dCIiImFvec7ycpfvKNoR5Ejql23b4MUX3Qy1CxZA+/bRTJzoxpAM+4lHJGAqTR4ZY14BBgKtjTErgXuttVOBcyjTZc0Y0x541lo7GDdowztuTG2igJettR/7N3wREakP8vJg0iQYNeoANm6EQw+F556DI48Mw6QRwNz7Ye59ENkIks6DbldCq/6hjkpERKRWSWyWSGZO5m7LY8Kwq3ddsGmTq2+NHw9ZWbDvvvD669Cy5U8MGjQw1OFJiPky29q5XpZfVM6y1cBgz99LgOQaxiciIvVYTg489RSMHeumgt133zwee6wlhx0W6sjK2LwAFk6CrhdCi2TocBLEtIAuQyGmeaijExERqZVGDhq5y5hHALHRsXRoogGz/WnVKhg3zs1Qm5sLxxzjxpQ8/HB3k05zZwjUfMBsERERv9uwwd31euIJdxfs+OMhNRW2b5/DYYcNDHV4TnEBrHzfdU1bOwtMlBvDqEUytOznHiIiIlJtQ/oOAdhttrWW61uGOLK64Z9/3MxpL70ExcVw9tlw661uLEmRspQ8EhGRsJGdDY8/Dk8+6bqqnXoq3H037LOPWx82d75sMXy0N2yeB7GJsPcI2ONSaJQQ6shERCTMlTf1/M4kiexuSN8hu5VPethUCGqn7793M6e9/74bw+iKK+Dmm6FLl1BHJuFMySMREQm5NWvcna9Jk9wgjWefDXfdBX37hjoyD1sMWZ/Dqg9g3/Fu0OseN0Kj9tB+MEREhjpCERGpBbxNPQ8ogSQBVVwMH37okkbffQctW8K998K110Lr1qGOTmoDJY9ERCRkli93lZipU6GwEIYMcUmjHj1CHZnHtnWwdJobzyhvMTRoA72GQ1widL8i1NGJiEgt423q+dRZqUoeSUDs2AEvv+xu0v39N3Tu7IYFuOQSiIsLdXRSmyh5JCIiQbdkCTz0EEyf7p5fdBHccQd07RrSsHb17/cw6wgo3g5tDoW9H4ROp0Fkg1BHJiIitZS3qee9LReprs2b4Zln3HAAq1ZBcrIbBPvMMyE6OtTRSW2k5JGIiATNvHkwapS7AxYVBcOGwW23QWJiqCMDCnJhWRpExUGXC6DlvrDntdD1ImjeJ9TRiYhIHeBt6vnEZuHwQyh1QVaWa1n09NNu1trDD3ctvI8+2s2cJlJdEaEOQERE6r65c904RnvtBW+9BTfcAEuXuoGxQ5442jgHfrka3mkPv1wFK952yyMbwD5jlDgSERG/GTloJLHRsbssi42OZeSgkSGKSOqKhQvdwNdJSTB6NBx1FPz8M3zxBRxzjBJHUnNqeSQiIgHz228wYgS8+y40aeK6pt10E7RpE+rIPP64Ff4ZAxENoPPZ0P0qaLV/qKMSEZE6ytvU8xrvSKrrl1/c+JFvvw0xMW4ogOHDoVu3UEcmdY2SRyIi4nc//AAPPggzZ0Lz5m42j+uvdzN7hFTuYlg02XVHi0uEdsdBwwTXNa1BqxAHJyIi9UF5U8+LVIW18MknLmmUnu7qWnfeCdddBwkJoY5O6iolj0RExC+sha++ci2NZs1y076OGgXXXANNm4YwsOJCWPUBLJoEaz4BEwnNk6HLEEg4wj1EREREwlxBAbz+OjzyCMyZAx06wGOPweWXuxbeIoGk5JGIiNSItfDZZ66l0bffQnw8jBkDV14ZBlPAFm2HD3rBlqXQqD30vQ/2uAxiO4Q4MBERERHfbNniBr0eOxYyM90YktOmwbnnuq5qIsGg5JGIiFSLtfDBB66l0c8/Q8eOMGECXHopNGoUwqDWfgn/fgN973WDXne7DJr2gg4nQoR+9kRERKR2WLfO1a2efBI2bIBDDnF/Dx4MEZr6SoJMtWgREamS4mI3KOOIETB7NnTpAlOmwNCh0KBBiILasRGWTIOFkyB3gRu/aM/roEFL6H1XiIISERERqbqlS113tOeeg61b4eST4bbb4KCDQh2Z1GdKHomIiE+KiuC112DkSPj7b9hzT9dk+rzzIDo6hIGt/gS+OQWKtkGrA+CA6ZB4JkSFqvmTiIiISNX98Qc8+qgb1ygiAi64wM2c1qtXqCMTUfJIREQqUVAAL70EDz0ECxdC797wyitw5pkQGRmCgAq3wLJXoFECdDgBWg+ArhdDt2HQIiUEAYmIiIhUj7XwxRduEOxPP3UDX998M9xwgxsQWyRcqKekiIiUa/t2mDzZtTC65BJo3BjeesvN7nHOOSFIHOX8TbecJ+CdDvDz5ZD5qlse0wL2e1qJI6m3jDHPGWOyjTF/llp2nzFmlTEmw/MYHMoYRURkV0VFroXRfvvBkUe6+tXo0bB8uUskKXEk4UYtj0REZBdbt8Izz7iKy6pVsP/+/w3OaEyIgvrlalg4kfZEQ+czYc+robU6/ot4TAOeBF4os/xxa+2Y4IcjIiLebN3quv2PGQNLlribdM88A+efDw0bhjo6Ee+UPBIREQDy8mDSJFeZWbsW/vc/V7kZNCgESaMtmbDoWeh1C8Q0h/gjIK4zP6zpwcEHnxLkYETCm7X2a2NMUqjjEBER7zZsgIkT4YknIDvb3ZwbMwZOOilEwwCIVJGSRyIi9VxOjmtZ9PjjsH49HHUU3H23Sx4FVXERrPkEFk6E1R+6jFWr/aDjSZB4BgAF2elBDkqkVrvWGDMU+BW4xVq7sewLjDHDgGEA8fHxpKenBySQvLy8gO1byqcyDy6Vd3DVpvLOzm7AG2905IMP2rNtWyT777+eu+5azt5752AMfPNNqCOsXG0q77oiHMu80uSRMeY54AQg21rbx7PsPuBy4F/Py+6y1n5UzrbHAuOBSOBZa+1oP8UtIiI1tGEDjBvn7oDl5MDxx7uk0QEHhCCYHTkwsx9sWQoNE6B3KnS7HOISQxCMSJ0wEXgQsJ5/HwMuKfsia+0UYApA//797cCBAwMSTHp6OoHat5RPZR5cKu/gqg3l/eefbua0l192z889F269Ffr2bQW0CmlsVVUbyru2y92eS5MGTQDYvH0zv//we9iVuS8tj6ZRjX70xphI4CngKGAl8Isx5n1r7d/VjFVExHdL02B2KuQvh9hESB4JXYaEOqqwkJ0NY8fCU0+5rmqnneaSRv36BTEIa+Hfb2DjHOhxLcQ0g06nQusDoOMpEBEdxGBE6h5r7dqdfxtjngE+CGE4IiL1grWuJdEjj8CHH0JcHFx7Ldx0EyTqfph4ZG/J5seVP5KRlVHyWLZpGRtv30izhs3YXrg91CGWq9LkUQ360Q8AFllrlwAYY14FTgaUPBKRwFqaBj8Pg6J89zw/0z2Hep1AWr3a3QGbPBm2bYOzz4bUVOjTJ4hB7MiBpS/CokmQ8xc0bAvdLoPIhrDPY0EMRKRuM8a0s9au8Tw9FfizoteLiEj1FRfDe++5pNGPP0KbNvDgg3D11dCyZaijk1DZUbSDv//9uyRBdOMBN5LUPIm3/n6Lqz+6GoNhz1Z7MqDDAC7f53KKbTEAbeLahDjy8tVkzKPK+tF3AFaUer4S2N/bztTnvm5SeQeXyttj0waIfgDKNl6ZvQEy0/12mNpS3llZDXjllURmzmxHUZHhqKPWct55mSQmbmXdOgjWKbTe+jW9Nj1EpN3G5ugerG5+K9kNj6D4mx993kdtKfO6QuVdOxhjXgEGAq2NMSuBe4GBxpgUXLe1ZcAVoYpPRKSu2r4dXnzR3ZxbsAC6doWnn4aLLoJGjUIdnQTThq0biDARNG/YnN/X/M7F713MP//+Q0FxAQCx0bEM7j6YpOZJnNLzFPq160fftn2Ji4kLceS+q27yyJd+9OXNzWO97VB97usmlXdwqbw9Xj6C8r9uDJxS7LfDhHt5L14MDz0E06e7sacvvhhuvx26dk0AEgIfQOFWWP4aNOkObQ6GvM7wZyZ0v4qmrfrTFOhZxV2Ge5nXNSrv2sFae245i6cGPRARkXoiJ8e15B43DtascV3/X30VTj8dojQlVZ23rXAbHy38iIysDGavnU1GVgbLc5bz+DGPc+MBN9Imtg3tm7RncLfBpCSkkJKQQreW3YiMcNPqtWvSjnZN2oX4LKquWpe2j/3oVwKdSj3vCKyuzvFERKokNtF1VStveT0wbx6MHOkGaIyOhiuvhNtug06dKt/WLzYvgIWTYOk02LERul3hkkeNu8AB+v+siIiI1E6rV8P48TBpEmze7GaofeEFGDTI3aiTumVb4Tb+yv6rJEHUu01vruh/BcW2mDPfOBOAHq16cHCng7lmv2s4ossRAHRq1omZQ2aGMvSAqFbyyMd+9L8A3Y0xXYBVwDnAedWKUkSkKpJH7jrmEUBkrFteh82Z45JGb7zhmkrfdBPccgu0C+aNjR8vhiXTwERBp9Og+1XQ9rAgBiAiIiLiX/PmwZgxrotaYSGcdZabOW2ffUIdmfjLuvx1ZG/JZq82ewEwcNpAvl3+LUW2CIDGMY25rN9lgOuC9vuw3+neqjux0bEhiznYKk0eVaUfvTGmPfCstXawtbbQGHMt8AkQCTxnrf0rECchIrKLnYNi15PZ1n77zQ3K+N570KQJ3HGHSxy1CcZYe/krYcl06HUrRMZAqwOgcTfY41JoFISucSIiIiIB8sMPbhDs996DBg3g8svh5pvd2EZSu32+5HPSl6WXDGa9KncVfdv2Zc5VcwA4uNPBHJJ4SEm3s64tuhJhIkq2T05IDlXoIePLbGs+96O31q4GBpd6/hHwUbWjExGpri5D6myyaKfvv4cRI2DmTGjeHO67D66/Hlq0CPCBbTGs+QwWTYRVM9y8tG0OhviB0F1j8oqIiEjtVVwMH33kkkbffONmS7vnHrj22iDdmBO/yS/I58/sP5md5bqdLdm0hI/O+whjDNNnT+eVua/Qq00vDu9yOCnxKezT7r+mZCMH1e0eC9Wh4bxERGoRa93saCNGwBdfQOvWblDsq6+Gpk2DEED+Kvj8MMhbDA3auBZH3YZBY92CExERkdprxw436PUjj8Bff0FiohsQ+9JLoXHjUEcnlVmbt5bZa2fzv87/o2FUQx757hHunHUnxdZNltMkpgkpCSnk7cijSYMmjD16LM+c+AwNoxqGOPLaQ8kjEZFawFr49FPXPe277yAhAR57DK64AuICOcOntbDuB8hbAl3Oh0btofVBsPeDbkyjyAYBPLiIiIhIYOXmwrPPwtixsHIl9O3rxjY6+2w38YiEp/nr5jMtYxoZa123s6y8LAB+vuxn9uuwH/t32J+7D72blIQUkhOSSWqetEu3szZxakZWVUoeiYiEMWthxgzX0uiXX9yMaU8+6e6CNQzkjZKCXFiWBgsnwqY5ENsJOp8LEZFw0AsBPLCIiIhI4K1dCxMmwFNPwaZNMHAgTJkCxx6rmdPCxZYdW5ibPbdkXKKMrAzuPexejut+HGvy1jDmhzH0btObY/Y4huT4ZFISUkoGvD4s6TAOS9KkLf6k5JGISBgqLoa333ZJo9mzoUsXV6G58EKIiQnwwZe+BL9cBYV50CIFBkyGzue5xJGIiIhILbZokWu9/fzzrqvaaae5mdP23z/UkdVf1lqy8rLIyMogvnE8+7TbhyUbl9DtiW5YLADNGzYnOT4Z48nsHdzpYPLuzKNBlFrBB4uSRyIiYaSwEF57DUaOhH/+gR49YPp0OO88iArUN3bRdlj+JrRIhuZ9oFkv1yWt+1XQan/dfhMREZESaXPTuGHmDazfuh6AVo1aMf648QzpG94Tlfz2Gzz8MLz1lqtTXXQR3HIL7LlnqCOrn4ptMXfNuos/sv4gIyuD7C3ZAFyx7xVMOmESnZt15v6B97N3/N6kJKSQ2CyxJHEEEB2pPoXBpuSRiPhmaRrMToX85RCbCMkj6/xsZsFUUAAvvQSjRrk7Yn36uEEbzzgDIgPV4CdvCSycDEueg+3roNdt0O9haLkvHDg9QAcVERGR2iptbhqXvHcJO4p2lCxbv3U9F797MUDYJZCshc8+c0mjL76AZs3gttvghhvc+JESWLnbc3frdta1RVdePeNVIkwE781/j9joWE7ofkLJ2ETJ8ckAREZEcs9h94T4DKQ0JY9EpHJL0+DnYVCU757nZ7rnoARSDW3f7ppNjx4NmZmwzz6uu9rJJ0NEROXbV9t350Lmq2AioePJrpVR/BEBPKCIiIjUdqmzUndJHO1UUFxA6qzUsEkeFRbCG2+4mdMyMqB9e3j0URg2LEiz09Yz1lpW5a4qGbj6sn0uA+DYtGP5fsX3ALRs1NIliDzJIYC/rv5rl0GsJbwpeSQilZud+l/iaKeifLdcyaNqyc+HZ55xlZrVq+GAA+Dpp+G44wLUS2zrGlj+Bux5nTtAsz7Q9z7Y4zKI7RCAA4qIiEhdszxnebXWBUt+Pjz3nBvTaNky6NnTPR8yJAhjRtYThcWFREW4NMKLs19k+uzpZGRllHRjbBTViItTLiYyIpK7D72bIltESkIKHZp02KXbGaDEUS2j5JGIVC7fS2XA23LxKi8PJk6EMWMgOxsOOwxeeAGOOCIASSNrYe2Xbsa0le+CLYQ2h0LLftAn1c8HExERkbousVkimTmZXteFyrp1bta0CRNg/Xo46CAYPx5OOCHALbnruNztufyR9QdvrXyLF997kYy1GfyZ/Serbl5F69jWrN2ylpztOZza81RSElJISUihb3xfIj2TrBzX/bgQn4H4k5JHIlK52ETXVa285eKTnBxXoXn8cdiwAY46Cu65Bw49NEAH3LwQvjoBchdATEvocQN0uwKadg/QAUVERKSuGzlo5G5jHgFER0QzctDIoMezbBmMHQtTp7pWRyeeCLffDgcfHPRQajVrLSs2rygZl+iCvS+gS4suvPH3G1z6/qUAtI5tTb+Eftyw/w0UFRcBMPyg4Qw/aHgoQ5cgUvJIRCqXPHLXMY8AImPd8rokAIOCr18P48a5xFFOjrsDdvfdAZgO1lpY/wtsz4YOJ0BcZ2jSHXqnQuKZENXIzwcUERGR+mbnmEahnm1t0aI4nnnGzVAbEeG6pd16K+y1V9BCqLV2FO1gR9EOGsc0Zt66eVz14VVkZGWwadsmAAyGPm370KVFF47tdiwfnvch+UvyOf3o03frdib1i5JHIlK5nQmUujzbmp8HBc/Odv3tn37adVU7/XRITYV+/fwYM0DhFlj2iuuatvF3aLYXtD8eImNg4Ad+PpiIiIjUd0P6DgnJwNjWQnq6mzntk0/2o3FjuPFG9+jYMejh1AqFxYV8u/zbkhZFs9fO5q/sv3jw8Ae5/ZDbad6wOVsLtnJ277P/63bWti9xMXEAtG/SnvZN2pO+Kl2JI1HySER81GVI3UoWleWnQcFXrXKzeUyZ4mZSO/tslzTq3dvP8QIsehb+GA4FOW4A7P5PQZfzAzTitoiIiEjwFRXBO++4SUZ++QXi4+Gyy5bwyCNdadEi1NGFB2styzYtK0kQdWraiUv3uZRiW8zRLx5NQXEBCY0TSElI4dg9juV/nf8HQELjBH687McQRy+1hZJHIiJQ40HBMzPdnbCpU10l54IL4M47Yc89/Rhj0Q5Y+Q60PhDiEiG2k2tl1P0qaHOwkkYiIiJSZ2zbBtOnu0lGFi2Cbt1g8mQYOhR+/HE5LVp0DXWIIbGtcBtrctfQpUUXAM564yw+XfwpOdtzADeD2ZC+Q7h0n0uJiYzhywu/pFvLbsQ3jg9l2FIHKHkkIgLVHhR80SJ46CE3Y5oxcPHFcMcd0KWLH2PbkgmLpsDiZ2Fbtusy2PsuaH+Me4iIiIjUERs3uplpx493wwDstx+8+SaccgpERoY6uuD7edXPfJP5DRlrXdezf/79h64turLgugUAdG7WmSF9h5CckExKQgp92vYhNjq2ZPuDEzV6uPiHkkciIlDlQcH/+QdGjuzFF19ATAxcdRXcdpuf+9xbC9+eCSvedpmp9idA9yuhnRJGIiIiUresXOlmpZ0yxY0Xeeyxbua0ww6r+42ri20xSzYuKRmb6J91//DGmW8QYSKY/Otknst4jg5NOpCckMxJe55Ev3b/DaL56NGPhjByqU+UPBIRAZ8HBZ89G0aOdHfAGjRozc03wy23QEKCn+LYlg2rZ0LXC11NqVEHN2Nat8tdVzURERGROuTvv914Rmlp7r7ZOee4mdOSk0MdWWBsLdjKn9l/0qdtHxpFN2LKb1O45dNbyNuRB0CkiaRn656sz19Pm7g23H/4/Yw+cjRt4tqEOHKp75Q8EhHZqYJBwX/9FR58EN5/H5o0ceMZDRjwIyef7IemwNbCv9+4GdNWvAXFBdD2f9C4C/QfX/P9i4iIiISZb79140V+8AHExsLVV8NNN0FSUqgj86/lOct57c/XSrqdzVs3j2JbzDcXf8MhiYfQo1UPLkq+iJSEFJITkundpjeNohuVbN+xqaaSk/Cg5JGISAW++w5GjICPP4YWLeD+++G669zf6ekFNT/Axjnw/XmQ8xdEN4fuV0O3K13iSERERPwibW4aqbNSWZ6znMRmiYwcNDIk083XBTUpy+JimDHDtTT6/nto3drVra65Blq1CnDgAVRUXMTijYtLup1lZGVwzX7XcPyex7Ny80pu+/w2EpslkpKQwum9TiclIYW92uwFwGFJh3FY0mEhPgORylWaPDLGPAecAGRba/t4lj0KnAjsABYDF1trN5Wz7TIgFygCCq21/f0WuYhIgFgL6emupdGXX0KbNjB6tBvXqGlTPxxgwx9QmAdtD4W4ztCgFew/FTqfA1GxlW8vIiIiPkubm8awGcPIL3DjGmbmZDJsxjAAJZCqqLpluX2765b26KMwb55rXfTkk26ikdhaVvXZsmMLc7PnEhcdR9/4vqzJXUP3Cd3ZUrAFgKiIKHq36c3Wwq0A9G/fn/W3radlo5ahDFukxnxpeTQNeBJ4odSyz4A7rbWFxpiHgTuB271sf7i1dl2NohQR8aelaeWObWQtfPKJa2n03XfQrh2MHQvDhkFcXA2PWbgVlr8GCyfB+p+g9UFw9HcQ0wyO/MovpyUiIiK7S52VWpLs2Cm/IJ/UWalKHlVRVcty82aYPBnGjYPVqyElBV55Bc44A6JqUR+YR797lN/W/EZGVgYL1i/AYrko5SKeP/l5EhoncFX/q+jdtjcpCSn0at2LBlENSraNiYxR4kjqhEo/stbar40xSWWWfVrq6Y/AGX6OS0QkMJam7TqrWn4m9qdhzPi8Aw9OGcivv0KnTvDUU3DJJdCwoR+OueApmHMP7NgITXvCvuOhy1A/7FhEREQqszxneZWWi3e+luWaNfDEEzBxIuTkwKBB8PzzcNRR4TlzWmFxIQvWL2B21mzX7WxtBq1jW5N2WhoAz2U8x7bCbaQkpHBun3NJSUhh3/b7AmCM0YxnUi/4I997CfCal3UW+NQYY4HJ1top3nZijBkGDAOIj48nPT3dD6HtLi8vL2D7lt2pvINL5e2DTRsg+gGIdv3uv/5xT158c3+WZLalffutDB++nKOPziI62vLjjxXvylt5G1tIq23fs6lBCoURTYnPX02riGRWtzqZTTHJsMbAmoyAnF5dp2s8uFTeIlIXJDZLJDMns9zlUjWVleWCBTBmDEyfDoWFroXRrbdC/zAavCR3ey5zs+eSuSmTc/ueC8DxLx/Pp4td+4joiGj6tO1D37Z9S7b544o/aBjljzuKIrVXjZJHxphUoBBI8/KSg621q40xbYHPjDHzrLVfl/dCT2JpCkD//v3twIEDaxKaV+np6QRq37I7lXdwqbx98PIRFBZF8OoP5zDqvbv4Z/Ve9Gg3jxeuHM65E14gKqoH0MOnXe1W3vkrYdEzsPhZ2Loa9nsaup8EuNe09fe51EO6xoNL5S0idcHIQSN3GacHIDY6lpGDRoYwqtrJW1le3GYSp58O77wDDRrApZfCzTdDt26hi9VaC7iWQe/Ne4+X5r5ERlYGizcsxmKJiojitF6n0SCqAVf3v5ohfYeQkpBCz9Y9iYmM2WVfShyJ1CB5ZIy5EDeQ9iC785NZhrV2teffbGPMO8AAoNzkkYhIoO3YAS99fwuj3ryCxWu70bfTHF677ixOH/AWkY07Vf8bsWgHfHcOrHofbDG0Oxb2mwTtB/s1fhEREam6nWPxaLa1mitdlpmbltN29VBa/vEw9/0aT4sWkJrqZqVtG+Q7ZgVFBcxfP3+X2c5mr53N7Ctn075JexZtWMQfa/4gJSGFoXsPJSUhhZSElJIk0ck9Tw5uwCK1ULX+q2SMORY3QPZh1tp8L6+JAyKstbmev48GHqh2pCIi1bRtm+tnP3o0LF/+KPt0+YN3bjqFk/Z5n4gIC5GxbtDsqti+nlZbvwUGQmQMRMRAr+HQ7Qpo3CUQpyEiIiLVNKTvECWL/OSsnkMozhjCI1Phzz+hQSd4/HG47DJo3Djwx9+8fTNzNs3hz5//ZHD3wXRt0ZXX/3qd8985H4AGkQ3oG9+XU3qcQkFRAQA3H3gztxx0S+CDE6nDKk0eGWNewfW5aG2MWQnci5tdrQGuKxrAj9baK40x7YFnrbWDgXjgHc/6KOBla+3HATkLEZFy5OfDlCluWtjVq+HAA2HSJDi2x9+YORmQD8R2LpltrVLWwrofYOFEWP4GvYsLYduV0LA1HPJqYE7Cy8xwIiIiIsGUlwdTp7qZaJcvh9693dhG554L0dH+P561loLiAmIiY8jclMnNn95MRlYGSzYucS+YDY1jGtO1RVcO73I4aaelkRyfTI/WPYiK2PW/uSYcR+kWqWV8mW3t3HIWT/Xy2tXAYM/fS4DkGkUnIlINubludo/HHoPsbBg4EF58EQ4/fOcMH0OgaxUTMOt+hp8vh01zIKoJ7HEZv23al/0atg7AGXiUMzMcPw9zfyuBJCIiIkGQnQ1PPukeGzfC//4HTz8Ngwf7b+a0YlvM3LVz/+t2ttb9e/MBN3PPYffQOKYxc9fOZd92+3Jpv0uJyI5g6NFDade4HQDtm7TnvL7n+ScYESmXP2ZbExEJC5s2wYQJMG4cbNgARx8N99wDhxxSzR1unAMUQ4sUaJQAEdEwYDJ0Pg+iG7Ml0LNQzU79L3G0U1G+W67kkYiIiATQkiXuRtxzz8H27XDKKXDbbXDAATXb78atG5m9djYZWRm0bNSSoclDsdZy4NQD2Vq4lUZRjegb35ez9jqLAR0GANAqthULrltQso/09HTaN2lfs0BEpEqUPBKRWm/9epcweuIJ2LwZTjwR7r4bBgyoxs6KtsHyN13XtHXfQ/sTYOAMiEuEY3/1d+gVy19eteUiIiIiNfT77/DII/DGGxAVBUOHwvDh0MO3yWhLWGtZl7+ONnFtALjqg6uYuWgmmTmZJa85rttxDE0eSmREJO+c/Q6dm3eme8vuREZE+vOURMQPlDwSkVpr7Vp3R+zpp2HLFjj9dJc0Skkp9aKqjBk073H4axRsXweNu0G/MdD1oiCciRexia6rWnnLRURERPzEWvj8c5c0+vxzaNoUbr0Vrr8e2vvYwGf+uvl8v+L7km5ns7Nm07xhc5bduAyAmMgYDux0IFf1v4rkhGRSElJIaJxQsv0x3Y4JwJmJiL8oeSQitUOpJNCqrfvxyLfTmfJqT3bsgHPOgbvucgM37rZNRWMGFRfC6o+g3TEQ2cDVnNr+D7pfBfFHgIkI6inuJnnkrvFD9WaGExERESlHYSG8+aZLGv3xB7RrBw8/DFdcAc2alb/N+vz1Jd3O5mbP5ZkTnyEqIorxP41n4q8TiYuOIzkhmfP6nkdKQgrWWowxjD9ufHBPTkT8SskjEQl/niTQsqw2PDzjKZ776hKKbQQXnLqYO0ftQffuXrbzNmZQxu2QtwQWT4H8lXDQK5B0DvS6Gbg50Gfju50tpDTbmoiIiPhRfj5Mm+ZacC9Z4rqkPfssnH8+NGjgXlNsi1m6cSntm7SnUXQjXv3zVW777DZWbF5Rsp/2TdqzJncNnZp1YvhBw7npgJvYo+UeRIT6BpyI+J2SRyIS9hZ9PIVRr03gxW8vIMIUc/H/nueOk0aT1Bnovsz7ht7GBtq6Cub+HyQcBfs+AR1ODETY/tFliJJFIiIi4hfr17vu/k88AevWucGvH3sMTjoJ1m3N5oU/3ytpVTRn7Rxyd+Ty+QWfM6jrINo1bsf/Ov+PlIQUUhJSSI5PLhnPCKBri64hPDMRCTQlj0QkbP39N4waBa+8/AUxUTu4+sinufX4R+nYapV7QX4l88N6GzMoqqkb/LqptyZLIVaVcZpEREREKpGZCY8/Ds88A/kmm/1Pns2Zx2WQ0yiD6L3OIyLieFbkrGDYB8NoEtOE5IRkLky+kOSEZHq16QXAYUmHcVjSYSE+ExEJFSWPRCTszJ4NI0bAW29BbCzccvIz3HzUfSQ0X7vrCysaOHr9L26GtLLJo4hGsN/T4Z04qmicJhEREREfFNtiPvh+Ec9OtXz0Qg9otJGYm3tD1Bp+An5aDJ2aduKILkcAsHf83iy6bhFdWnRRtzMR2Y2SRyISNn75xSWN3n/fzfJx111w443QOrcJ/JwLRaVe7G3g6Oxv4fcbYcNvEBXnBr7O+Qe2ZdWOVjzexmmanRrecYuIiEjIPffHc/y86he+XTibeRvnUBS5hcgt53H99WnceGNzHppzMt1bdS/pdtYqtlXJttGR0ezRcg8A0uamkTorleU5y0lslsjIQSMZ0lf1EJH6TMkjEQm5b791SaNPPoEWLeCBB+C666B5c88LWlcycHTOPxARDU26uYRR0Xbo/xR0OR+im4bilKrP2zhN3paLiIhIvZKVl0VGVgazs2aTsTaDRlGNeO7k5ygqggc/fYIVucsoWpVCo5xLObZfCreO3J8DuwEYJiZOrHT/aXPTGDZjGPkF7mZWZk4mw2a4VtBKIInUX0oeiUhIWAtffgkPPgjp6dCmDYweDVdfDU2alLNB2YGji3ZA5muwcCJkfwVdL4IDnoeW/WDwHDCVjIcUrryN01RRFz0RERGpc4qKi1iwfgGLNizixB5uco9z3jyH1/56reQ1Sc2TOKTjYTzzDIwZA8tWfEHX9i24dbjhwguhUaOqHzd1VmpJ4min/IJ8UmelKnkkUo8peSQi/lXJYM/Wwscfu5ZG338P7dq5ARyHDXPjG/nk70dg3ljYthbiukDKaOh6yX/ra2viCFx5lR7zCLx30RMREZE65culX/Lqn6+SsTaDuWvnsrVwKwZD7p25xMXEccZeZ3BgxwNJSUghqVEyrzzfnPHXwktZsO++8Pr0lpx2GkRGVj+G5Tnlt3b2tlxE6gclj0TEfyoY7Lm48xBmzHBJo19/hcREN1XsxRdDw4aV7Le4CNZ+AQmDwETA9nXQagB0vwraHeOW1RVdKumiJyIiIrWWtZbVuavJyMpwj7Wu+9kn539ClxZdmJs9lzf+foOUhBSu7H8lKQkppCSk0DDKVZbO2OsMVq2CceNg8mTIzYVjjoG0NDj8cP/cP0tslkhmzu6toBOb+b8VtMZWEqk9lDwSEf8pZ7DnooJtvPX094z8dAhz5kDXrvDss3DBBRATU8n+tmXD4qmwaApsWQZHfAYJR0LKw7W7dVFlynbRExGpgDHmOeAEINta28ezrCXwGpAELAPOstZuDFWMIvVRQVEB89fPJyMrg4M6HUTXFl15Z947nP766SWv6dqiKykJKWwv2g7AVf2v4roB12HKqef88w88+ii89BIUFcHZZ8Ntt0FKin/jHjlo5C5jHgHERscycpB/W0FrbCWR2kXJIxHxn1KDOhcWRfLK9+cy6v27mLe6Fz17wosvwjnnQFRl3zzb1sFv18GKt6C4AOIPh36PQNvD3Pq6nDgSEam6acCTwAullt0BzLLWjjbG3OF5fnsIYhOpF6y1AKzNW0vqF6lkZGXwZ/afJUmhJ497kmsGXMMBHQ9gwnETSElIYe/4vWnaYNeJPaIjo3fb9/ffw8MPu9loGzWCK66Am2+GLl0Ccy47EzeBbhGksZVEahclj0TEf2IT2bF5NS9+ewEPvX8ni9d2Y+/E2bw+/GpOG/10xf3vd+TA5vnQegDENINNc6D71dDtSmjWM2inICJS21hrvzbGJJVZfDIw0PP3dCAdJY9Easxay8rNK3fpdpaRlcHBTQ7mcA4nNjqW9+e/T3JCMoO6DuKnlT+xfut6HvnuEZo3as6QvkO4dsC1lR6nuBg+/NAljb77Dlq2hHvvhWuvhdatA3+eQ/oOCXgCR2MridQuSh6JiF9s2wbPzXmdhycksHxdIvt2+ZV3bzqZE/ebRcQeQ2FGUvlj+Gz43c2YtuxliGkBJy+DiGgY/KdaGImIVF+8tXYNgLV2jTGmbXkvMsYMA4YBxMfHk56eHpBg8vLyArZvKZ/KvOYKiwvJzM9kUd4ioiOiOaLtERTbYk767iS2FG3BYOjYqCNdG3elfVT7kvJ+rf9rbNy2kcycTI7odETJ/rL/yubtlW/TslFLr8csKDDMmhXPq692IjMzjvj4bVx65Tx6HvgDJjqfV76IoUOTDhXuo7YY32s8O4p27LY8JjKm0mtX13dwqbyDLxzLXMkjEamR/HyYMsX1wV+9egAH7fsvk6+6kGN6vIiJS4T2Q2Hp9N0H0c75C9bOgvU/Q2QjSDrPtTKK8HwtKXEkIhJw1topwBSA/v3724EDBwbkOOnp6QRq31I+lXnVbC3YSqNoN6/9PV/cw4cLP+Svf/8qSW4c0PEAHjjrAQBeSHiBdo3b0Te+L41jGgO7l3fSuKRyB53u3Kwzy25cttvyzZvhmWfcDLSrVkFyMowaBQU93+bqjy8nf+mu4w9NOXFKre/atWruqnLHVppy4hQG9h1Y4ba6voNL5R184VjmSh6JSLXk5rrZ0h57DP79FwYOdGMaHX54G4yZjuslAbybtNsg2hTlu4GwG7SEfcdDl6EQ0zy4JyAiUretNca087Q6agdkhzogkXCxavMqfln9S0nXs9lrZ7O9cDurb1kNwIatG2gb15aj9zialIQUkuOT6d6qe8n2p/U6rdJj+Nola+1aGD/e1alyctyMaVOnwtFHu/toSePuqrPjAgVrbCUR8Y9Kk0c1mcHDGHMsMB6IBJ611o72W+QiEhKbNsETT7gpYjdudNPD3n03HHKIlw3yd7/rBsD2bDgtSy2MREQC433gQmC059/3QhuOSPBtL9zO3//+XZIkeuSoR2gQ1YAx349h3E/jMBh6tO7BAR0PICU+haLiIiIjInnq+KdqfOzKprtfuBCuuGshX76bCIXRxCbP5P7bI/i/c4/b5fV1fVygYIytJCL+4UvLo2lUYwYPY0wk8BRwFLAS+MUY87619m9/BC4iwbVunUsYTZjgmlafdBKkpsKAARVs9NdDYCLBFu2+LrazEkciIn5gjHkFNzh2a2PMSuBeXNLodWPMpcBy4MzQRSgSeOvz1xMbHUuj6EZ8uOBD7px1J/+s+4fC4kLAdYe6ZsA17NlqT67sfyXn9DmHPm37EBcTF5B4vE13f0n8RM44A95+22IjO0Hy83DQY+S3WsTDS2PZY+6u3dEqS0KJiARLpcmjGszgMQBYZK1dAmCMedWznZJHIrVIVpbrmjZxohvf6PTTXdIoJaWcF9tiWPcTtDnQPd88D5r1gc3/QHGpAREjY92g2SIiUmPW2nO9rBoU1EBEgiRnWw6fL/m8pMtZRlYGKzav4MPzPmRw98E0bdCUjk07csKeJ5CSkEJKQgp7tNiDyAg37WuP1j0CHmPpLlmZm5bTds0FtPrjYe79JYHmzaHJoKfYnDwCmqwt2aa87mjeklAjB6keJSLBVd0xj3yZwaMDsKLU85XA/t52qNk+6iaVd3D5s7z//bcBr77aiQ8+aEdhYQRHHJHNkCGZJCXls2kTlD5MdFEOCVs/pv2W92lUtJpf2jzDluhuYIdCbCREbYD8VS6BFBEDsR0gsyVk+ifWUNH1HXwq8+BSeYtIKG0r3Maf2X8yO8sliI7tdizH73k8Kzav4Iw3ziDCRNCzdU8O7XwoKfEp9GzdE4BDOx/KoZ0PDXH0cFbPITBnCI88D3PmQHQHd0Pu8suh2djrAbvbNmW7o2lcIBEJF4EcMLu8/ii7f0PuXKHZPuoklXdw+aO8ly2D0aPh+eehuBiGDoU77oDu3eOB+F1fnL8aMm6H5W9A8XZocyh0H8N+nU6DyAY1iqM20PUdfCrz4FJ5i0iw/LvlX7YUbCGpeRL5BfkMeGYA89bNo8jT9b1JTBO6tOjC8RxPz9Y9+fmyn+nTtk/JDGnhZMsWN+j12LGQmQl77QXTpsG550JMjHtNVbqjaVwgEQkH1U0e+TKDx0qgU6nnHYHV1TyeiATYwoXw0ENuxrSICLjkErj9dkhKKvPCglzIXwHN9oLoxrD2S9jjMuh+JTTvE4rQRUREpJZ5b957/LzqZzLWusGsV+eu5vRep/PmWW8SGx1L//b9ObXnqSXdzrq06EKEiQAgKiKK/TrsF+Iz2N26dW5syCefhA0b3GQiEybA8ce7ulVp6o4mIrVNdZNHvszg8QvQ3RjTBVgFnAOcV83jiUiA/PUXjBoFr77q7oZdcw3ceit06FDmhZvmwsKJsPQlaJwEx82G6KZw8jKIKPVVsjQNZqdC/nKITXRjG3XR3TIREZH6Jr8gn7lr55bMdmaxTDphEgAjvxnJH1l/0Kt1LwZ1GURKQgoHdjywZNtpp0wLUdRVt3QpjB/fnU8+ga1b4eST4bbb4KCDvG/jr+5oaXPT1KVNRIKi0uRRVWbwMMa0B5611g621hYaY64FPgEigeestX8F5jRE6rmdCZvi6+Ddi3xK2GRkwIgR8NZbEBcHt9ziHvFleqax5jP483749zuIaACdz4buV/23vmzi6OdhUOS5i5af6Z6DEkgiIiJ1WFZeFv/8+w+HdzkcgGs+vIZJv02i2BYD0LRBUw5JPKTk9W+f/TZtYtvQIKr2dnP/4w949FF4/XUwph1Dh8Lw4dCrl2/b17Q7WtrctF1aL2XmZDJsxrCSfYuI+JMvs635PIOHtXY1MLjU84+Aj6odnYhUrnTCpiGVJmx+/tkljWbMgKZN4e674cYboVWrUi/KWwIxLdxjWxZsXQv9xkDXi6BBq932WWJ26n+Jo52K8t1yJY9ERETqjF9W/cJb/7xV0qpo7RY3a9jG2zfSvGFzDu18KG3i2pAcn0xKQgpJzZMw5r8hUTs27Riq0GvEWvjiC3jkEfj0U2jSBG6+Gfbb70fOPLOCpkYBkDordZdub1D+jG0iIv4QyAGzReqHUHfT8jFh8+238OCDrqLTsqX7+9proXlzzwuKC2H1h7BwEqz5BPo9Ar2GQ+dzIWkImDKd9cuTv7xqy0VERCRs5e3I26XbWcbaDF445QV6tO7B72t+Z+wPY+ndtjfHdju2ZGyi2OhYAM7pc06Io/evoiLXWvuRR+C331xL7YcegiuvdHWp9PQdQY+p7MxslS0XEakJJY9EaiIcumlVkLDZeXfswQfhq6+gbVt4+GG46ip3pwxwt9D+GgWLJkH+SmjUHvr8n0sawa7d0ioTm+jKoLzlIiIiEpastazJW0NGVga9WveiS4sufLb4M4556RisZ7LkFg1bkJKQUtLSZWjyUC7udzExkTGhDD3gtm51M6WNGQNLlkD37jBlClxwATRsGNrYqjJjm4hITSl5JFIT4dBNq5yEjbUwc95QRhwMP/wA7dvDuHFw+eUQG+t5wca50GJvMAayv4amPWHf8dDhRIiIrl4sySN3TaYBRMa65SIiIhI2Nm7dyEPfPlTSqujf/H8BGHv0WG468Cb6xvfl/oH3l7Qo6ti04y7dzhpFNwpV6EGxYQNMnAhPPAHZ2TBggBvf6OSTITIy1NE5mrFNRIJJySORmgiHblqlEjbFxfDurycz4r3/47cl+9C5s6v4XHSR5+7Yjo0wb5rrmpa3CE7OhNiOcNgM8Medw50JM822JiIiEnK523OZs3bOLt3Ojt3jWB484kEaRjXkqV+eolfrXpzU4yRSElJIjk8mOSEZgITGCdxz2D0hPoPgW7ECHn/ctS7asgUGD3Yzp/3vf+5+Wzjx14xtIiK+UPJIpCbCoZtWlyEUFRnenPQ9d70xlCXLb2GPzrlMneqaVEdHA1uWw4/3QuarULQNWh0A+z8PDVq7ffiSOPr5alg8BWwRmEjYYxgMeLrceJQsEhERCR5rLSs3ryQjK4PC4kJO7XUqAN0mdCN7SzYArRq1ol+7fiVdmhpFN2LzHZuJjAiTZjQh9uefrmXRyy+75+eeC7feCn37hjauytR0xjYREV8peSRSEyHuplVY6Co5o0adx/z559G58xZeegnOPrsJUWyBbf9CdJJL9qx4F7pcCN2vhBYpVTvQz1fDoon/PbdF/z0vL4EkIiIiAVFsi4nwTGIx9oexfLDgA2avnc2GrRsA6NO2T0ny6LGjHysZq6h9k/a7dDsD6n3iyFr45hs3CPaHH0JcnJtM5KabIFHDBomI7ELJI5GaCFE3rR074IUX3CwfS5bA3nvD669Dq1a/cMS+bSFjEix9AVrtB0d8BrEd4LQsiGxQvQMunuJ9uZJHIiIiAZGzLYeMrAxmr51d0vUsKy+LVTevwhjD/HXzyduRx+m9Ti8Zm6hv2/+aypy/9/khjD58FRfDe++5pNGPP0Lr1vDAA3DNNW5GWhER2Z2SRyI1Vd1uWkvTqpx02rYNpk51M6atWAH9+7t++SecABFZH7Pp+zvgw9kQEQOdzoDuV/23cXUTR+BaGlVluYiIiPjMWktmTiazs1ySaPhBw4mLiWPUN6N45PtHAGgT24Z+7fpxVNej2FG0gwZRDZh84uQQR167bN8OL73kuqfNnw9dusBTT7mxIWNjQx2diEh4U/JIJBSWpu3a3S0/0z2HchNIW7a4gRsffRTWrIGDDnLPjzkkE9OwLUQ0gpy/aFCUDSmjoesl0LCN/+I1keUnikz9bu4uIiJSVTuKdgAQExnDV8u+4t70e5m9djabtm0CwGA4uefJpCSkMDR5KAOTBpKSkEJC44Tdup2Jb3JyYPJkN/PsmjXQrx+8+iqcfjpE6X9DIiI+0delSCjMTt11nCRwz2en7pI8ys11d8TGjoV//4XDD4e0l4oYuOfHmEUT4f2P4IDnoeuFsOe1/JTVj4F7HeH/ePcYtuuYR6WXi4iISLm2Fmzlx5U/lsx0NjtrNn//+zevn/k6p/Q8hejIaLYXbeec3ueUdDvr07YPcTFxAPRu25vebXuH+Cxqr9WrYfx4mDQJNm+Go45y3f4HDQq/mdNERMKdkkcioZC/vMLlGzfChAnuDtnGjXDssXBPagEHtRgDi6bA18ugYQL0ToV4T7IosgF4BtD0u53jGvky25qIiEg9U2yLWbZpWcm4RAd2PJDjuh/His0rOOIF9zvdrnE7UhJSGNx9MN1adgPgoE4H8cOlP4Qy9Dpp3jwYMwZefNFNLnLWWW7mtH32CXVkIiK1l5JHIqEQm+i6qpWxrjCZx1PhySfdHbKTT7Y8cOsS9j54D7BR8PHr0LgL9HsEOp4CEdHBi3nA00oWiYhIvbetcBubtm0ioXEChcWFHDH9CDKyMsjdkQtAhIkg9dBUjut+HN1aduOT8z8hJSGFtnFtQxx53ffDD24Q7PfegwYN4LLL4JZboGvXUEcmIlL7KXkkEgrJI3cZ8yhrUzxjPrqTiV9cw9ZtcME5OYy87EU6bp0Eq5ZBwWqIbgpHfQtRcaGNXUREpB75OvNrfl71c0mronnr5nFc9+OYce4MoiKiSGicwNDkoSTHJ5d0O2sU3QhwiaSj9zg6xGdQtxUXw8yZbjKRb76BFi3g7rvhuuugjR+HfxQRqe+UPBIJBc+4RitmPcmjb5zHM+mXs6MwhhsuXcY9p4+mRc7LkLUFWvaHfZ9ws6eBEkciIiIBUGyLWbxhcUmCKG9HHuOPGw9A6hepfLv8Wzo27UhyfDKn9DyFgzsdXLLt62e+Hqqw67UdO9yg1488An/9BYmJrrv/pZdC48ahjk5EpO5R8kgkBJYuhdGjh/D880NoELWVKy/ZxDW3JNCt9Rb45CXofC50vwpa9Q91qCIiInVKfkE+//z7D/u23xeAu7+4m3E/jmNLwRYAIk0k/dr1w1qLMYapJ02lZaOWtI5tHcqwxSM3F5591k0msnIl9O3rxjY6+2yIDmJvfhGR+kbJI5EgWrAAHnrIVXJ6tl/AzJGTGNh5GpEdjoNuaUBfOG0tRDcJdagiIiJ1wj///sOMBTNKWhXNXz+fYlvM2uFraRvXll6te3Fpv0tJTnDdzvZqsxcNoxqWbL9nqz1DGL3stHatm0zkqadg0yYYOBCmTHGTimjmNBGRwFPySCQI/voLRo6E116Dk/p/xN8TxrJns1lgoqD9adCt1JT3ShyJiIhUSVFxEYs2LCpJEGWszeCxox9jrzZ78ePKH7n989vp3KwzKQkpnNX7LJLjk4mLdl3Bh+w9hCF7DwnxGYg3ixbBY4/B88+7rmqnngq33Qb77x/qyERE6hclj0QC6I8/YMQI+PHLVeQWtmP48Aj+76SviPt3AXQbAXtcCo0SQh1m7bQ0DWanQv5yN3td8siSsaRERKTuytuRx9y1c2nfpD2dm3fmhxU/cOSLR5Jf4CahiI6IZq82e7Fh6wYAztjrDE7peQotGrUIZdhSRb/95gbBfustiIqCCy+E4cNhTzUEExEJCSWPRALgp59g5Ihitmd+xnXHTuL102awZd8PaNrzWCi4ByJHQURkqMOsvZam7TJbHfmZ7jkogSQiUsfk7cjjiZ+eYPba2WRkZbBw/UIslocGPcQdh9xBt5bdGLbPMFISUkhJSKFXm17ERMaUbN+kgVr01hbWwmefuaTRF19As2auldH110O7dqGOTkSkfqt28sgY0wN4rdSirsD/WWvHlXrNQOA9YKln0dvW2geqe0yRcPfNNzB61Db2ipzAuKMm07XNYopjWhPRbThNO/V2L4rWFCA1Njv1v8TRTkX5brmSRyIitU5hcSHz180vSRBlZGVwYMcDuf/w+4mJjOGBrx6gfZP2pCSkMKTvEFISUhjQYQAAbeLa8Pixj4f4DKQmCgvhjTfczGkZGdC+PTz6KAwbBk2bhjo6ERGBGiSPrLXzgRQAY0wksAp4p5yXfmOtPaG6xxEJd9bCrM8tT49dwzsft6ddQhSvPDyBuLZJ0PNBIjqdBpENQh1m1YR7l7D85VVbLiIiYSN3ey5z1s5h8/bNHNf9OAB6PtmTxRsXAxATGUOftn2Ii4kreb7utnU0jtHNl7omPx+ee86NabRsGfTs6Z4PGQIxMZVuLiIiQeSvbmuDgMXW2kw/7U8k7FkLn3yYy5z30jim60QmnpzNEcct55LLoomNmg0xtXRshdrQJSw20cVV3nIREQk7H2d9zJOvP0lGVkZJkqhby24s7L4QgDsOuYMGkQ1ISUihZ+ueREfuOue6Ekd1y7p1bta0CRNg/Xo46CAYPx5OOAEiIkIdnYiIlMdfyaNzgFe8rDvQGDMbWA0Mt9b+Vd6LjDHDgGEA8fHxpKen+ym0XeXl5QVs37K7uljexcXw90/5tMh+mxP7vM6xh+eyMr8X69oOoW+TL/n559DdKvNLeW/aANEPQHSZ5bM3QGYN9+0vsWPBZoIt/m+ZiYDYzhDE660uXt/hTmUeXCpv8Zc/N//Jgu0L6NeuHxenXExKQgrJCckl6y/b57IQRifBsmwZjB0LU6e6Vkcnngi33w4HHxzqyEREpDI1Th4ZY2KAk4A7y1n9O9DZWptnjBkMvAt0L28/1topwBSA/v3724EDB9Y0tHKlp6cTqH3L7upSeRft2M67b23lvlHNaWtn8eGtaayIOJvYI66kY/z+dDQm1CH6p7xfPgKw5awwcEpxOctDpNyudacFNYS6dH3XFirz4FJ5i7/c3P1mjjj8iFCHISEye7Ybz+i111zLoiFD4NZbYa+9Qh2ZiIj4yh8tj44DfrfWri27wlq7udTfHxljnjbGtLbWrvPDcUWConDTYuZ9MJn2W59n+dfnU1z8OJemHkHUyavoHtcy1OH5X23pEtZlSPh0oxMRkQpFGPVFqm+sdY2BH34YPvkEGjeGG290j44dQxyciIhUmT+SR+fipcuaMSYBWGuttcaYAUAEsN4PxxQJuILMmWR99QSdoj6mp40kfeXJ9DvxFOZOh4gIA9TBxBG4FjylxzwCiIx1y0VEREQqUFQE77zjWhr98gvEx8OoUXDlldCilg4HKSIiNUweGWNigaOAK0otuxLAWjsJOAO4yhhTCGwFzrHWltcfRiQ8bPuXbbRh6lRos/h1Du46hynz76PLkZdx5H0dCIOeaYG3szVPOM+2JiIiImFl2zaYPh3GjIFFi6BbN5g8GYYOhYYNQx2diIjUVI2SR9bafKBVmWWTSv39JPBkTY4hEnDWwtovKZw3EbPqXU56/Cc++20fjj3iMZof3ZTLr4mqH0mj0tQlTERERHywcSNMnOhmS8vOhv794Y034NRTITIy1NGJiIi/+Gu2NZHap3ALLHqGovmTiNwyn81bWvJc+g20aNeWL7+Eww5rWf+SRiIiIiI+WLkSHn8cpkyBvDw49li47TYYOBDVn0RE6iAlj6T+2b4BGrRk40ZLo1/uZe7yvZjw8XQ2Nz+T2+5sxPCDQh2giIiISHj6+283nlFammu8fc45bua05ORQRyYiIoGk5JHUD4VbIPNVWDiRwu35/N9Pf/Hkk42Ji5zHAQPbkfq4a2ZdZ5Q7jb26oYmIiEj1fPutmzntgw8gNhauvhpuugmSkkIdmYiIBIOSR1K3bV4ICybA0hegIIesrb15+O1rePKTIk47PYrU1HbsvXeog/SzpWm7zpaWn+megxJIIiIi4rPiYpgxw7U0+v57aNUK7r8frrnG/S0iIvWHkkdS9xTtAFsAUXGw4Vfswsn8mn0Gdzx7JV/9cwjnnWeYMxd69Qp1oAEyO/W/xNFORfluuZJHIiIiUont2123tEcfhXnzXOuiCRPgkktcqyMREal/lDySumNLJiyaAoufhR43saTRHTz68Om8/+Ygsje35cILYcq7sMceoQ40wPKXV225iIiICLB5sxsA+/HHYfVqSEmBl1+GM8+EKP2vQUSkXtPPgNR+q2fCgqdh9YdgDHlNj2fCswdyzwSIjIzhssvacvvtkJgY6kCDJDbRdVUrb7mIiIhIGWvWwBNPwMSJkJMDgwbB88/DUUdp5jQREXGUPJLaqWAzRDd1f8+fABv/ILttKg+8fDkTpyfSoAFcfz0MHw7t24c21KBLHrnrmEcAkbFuuYiIiIjHggUwZgxMnw6FhXDGGW7mtDo1iYiIiPhFRKgDEPGZtZD9NXx3Lrwd77qpAXPipnJm2nLij3qQ6W8kcuutsGwZjB1bDxNH4MY1GjAFYjsDxv07YIrGOxIREREAfvoJTj8devaEF15wYxnNnw+vvabEUV2UNjeNpHFJRNwfQdK4JNLmpoU6JBGphdTySMJfQR4smQaLJkHOXxDdHLpdwW9/RHPvaPjww3Y0awb/93+utZFm/8AlipQsEhEREQ9rYeZMN3PaV19B8+Zw111w3XUQHx/q6CRQ0uamMWzGMPILXIv0zJxMhs1ws/AO6au6ooj4TskjCV8FeRDdGArz4PeboEU/2P85vl1xNvffEcvnn7tE0YgRcO210KxZqAMWEREJL8aYZUAuUAQUWmvVrqSeKSiAV191SaM//4SOHV3r7MsugyZNQh2dBFrqrNSSxNFO+QX5pM5KVfJIRKpEySMJL4VbYfnrsHAiRDaCI7+ERgnYExbw+Y9dePBi+OYbd4fs0UfhyiuhceNQBy0iIhLWDrfWrgt1EBJcW7dGMn68SxQtXw69e7uxjc49F6KjQx2dBMvynPJn2/W2XETEGyWPJDzkLoaFT8OS52HHRmjaE5LOwxZbPpppePDBLvz0E3To4GYDuewyaNQo1EGLiIiIhJfsbHjySRg37gByc+F//4Onn4bBgzVzWn2U2CyRzJzdZ+FNbKZZeEWkapQ8ktApLnAd8CNjYNUHMP8J6HQadL+K4taH8e57hhHnwh9/QFISTJoEF10EDRqEOnAREZFawwKfGmMsMNlaO6X0SmPMMGAYQHx8POnp6QEJIi8vL2D7Fmf16oa8/nonZs5MoKAgggMOWMf5569hr702A26cIwmccL3Gx/YYS2ZOJsW2uGRZhImgc7POYRmvr8K1vOsqlXfwhWOZK3kkwZe/EhY9A4ufhb0fhD0ucY/OZ1MUk8Abb8DIka5ffvfu8PzzMGSImliLiIhUw8HW2tXGmLbAZ8aYedbar3eu9CSTpgD079/fDhw4MCBBpKenE6h913e//+7GM3rjDYiKggsugFtvhTVr5qvMgyicr/G0uWmkzkplec5yEpslMnLQSE7re1qow6qRcC7vukjlHXzhWOZKHklwWAtZn7mxjFbNAFsM7Y6FJt0AKKAJL7/ehFGjYMEC2GsvSEuDs8+GyMgQxy4iIlJLWWtXe/7NNsa8AwwAvq54Kwl31sLnn7uk0eefQ9OmMHw43HADtG/vXrNmTWhjlPAxpO8QDY4tIjWm5JEEVITd4f4wBmbfBVsyoddw6HYFNO7C9u0wfQqMHg1Ll0JKCrz5Jpx6KkREhDR0ERGRWs0YEwdEWGtzPX8fDTwQ4rCkBgoL4a23XNLo99+hXTt4+GG44grNOisiIoGl5JH4n7Ww7gdYOIkDs96FHZkQ0wIOeR0adYDIBmzdClOfdBWelSthwAA3EPbxx2swRxERET+JB94x7oc1CnjZWvtxaEOS6sjPh2nT4LHHYMkS6NEDnn0Wzj9fY0HWd+V1SVMrIxEJBCWPxH8K8mDZS65r2qY5ENWE7EZH0KHI0/qocVe2bHEDX48ZA1lZcMghMHUqHHVUmCaNlqbB7FTIXw6xiZA8ErroB1lERMKftXYJkBzqOKT61q93M6U98QSsWwcHHOASSCedVL9baCth4qTNTWPYjGHkF+QDkJmTybAZwwDqZXmISGDV6GfHGLPMGDPXGJNhjPm1nPXGGPOEMWaRMWaOMWafmhxPwlTRdvdv/nL45SrAwH6T4NTVLGx+IzSKZ/NmeOghN2va8OHQuzekp8M338DRR4dx4ujnYZCfCVj378/D3HIRERGRAMnMhBtvhMRE+L//g/33h6+/hu+/h1NOUeJo2IxhZOZkYrElCZO0ufWvfpY6K7UkcbRTfkE+qbNSQxSRiNRl/mh5dLi1dp2XdccB3T2P/YGJnn+ltivaBsvfgkUTXVe0Q16DZnvB4DnQrE9JNig3N4r77oPx42HTJhg8GO6+Gw48MKTR+2Z2KhTt+oNMUb5brtZHIiIi4mdz57rxjF55xVWlzjvPzZzWp0+oIwsfFSVM6ltrm+U5y6u0XESkJgLdbe1k4AVrrQV+NMY0N8a0s9Zq/ofaKm8JLJwES56H7eugcTdIPOu/9c37AvDvvzB2LDzxxAHk57u7ZHffDfvuG5qwqyXfyw+vt+UiIiIiVWSta1X08MMwcybExcH118NNN0GnTqGOLvwoYfKfxGaJZOZklrtcRMTfapo8ssCnxhgLTLbWTimzvgOwotTzlZ5luyWPjDHDgGEA8fHxpKen1zC08uXl5QVs33WVsUVYABNJl83Pkpj3CusaHszqViezMaYfrImANekArF8fw2uvdWLGjPZs3x7BIYes5aKLVtO16xZyc11XtVojdjwU79h9eURM2J6Iru/gUnkHn8o8uFTeIoFTVATvveeSRj//DG3awIgRcPXV0KJFqKMLX0qY/GfkoJG7jHkEEBsdy8hBI0MYlYjUVTVNHh1srV1tjGkLfGaMmWet/brU+vJGsrHl7ciTeJoC0L9/fztw4MAahla+9PR0ArXvOmfrGlj0LCyeAvtNhA4nwLbeUPwwbWI70KbUS1escJWfZ59108gOGQJ33glZWQtrb3kvXeXGOCrddS0yFgZMgS4DQxVVhXR9B5fKO/hU5sGl8hbxv23b4MUX3eQhCxbAHnvAxIlw4YXQqFGoowt/Spj8Z2c3PQ0eLiLBUKPkkbV2teffbGPMO8AAoHTyaCVQusFtR2B1TY4pAWYtrP3SzZi28l2whZBwFMR4boE1bLPLy5cscQNhT5/unl94Idxxh6sIgZtRrdbaOa6RZlsTERGRGtq0yc04O368qx/tuy+8/jqcdhpERoY6utpDCZNdDek7pN6eu4gEV7WTR8aYOCDCWpvr+fto4IEyL3sfuNYY8ypuoOwcjXcUpooLISIKbDH8dAkU5EKPG6DbFdC0+24vnz8fRo2CtDSIioJhw+C229ysIHVKlyFKFomIiEi1rVoF48bB5MmQm+tmmU1Lg8MPD9PZZmsBJUxERIKvJi2P4oF3jPvViwJettZ+bIy5EsBaOwn4CBgMLALygYtrFq743fpfYOHTsDYdTpgPkTFw2AfQeA+I2r3t9Ny5MHKku1PWsKEb0HH4cGjfPvihi4iIiISrf/6BRx+Fl15y4xudfba70ZaSEurIREREqq7aySNr7RIguZzlk0r9bYFrqnsMCZDCLZD5quuatuE3iIqDpPOhMA8iW0Lz3eeD/f13ePBBePddaNwYbr/dzQLStm3wwxcREREJV99/78aBfP99N4bRFVfAzTdDly6hjkxERKT6ajpgttQmxUUQEQnrf4WfLoNmfaD/U9DlfIhuWu4mP/7okkYffQTNm8O997rWRi1bBjd0ERERkXBVXAwffuiSRt995+pJ994L114LrVuHOjoREZGaU/KorivaASvfca2Mmu8N/Z+Atv+Do3+EVgO8drb/6iuXNJo1C1q1cl3VrrkGmjULcvwiIiIiYWrHDnj5Zdc97e+/oXNneOIJuOQSiIsLdXQiIiL+o+RRXbUlExZNgcVTYdtaiOsCnc5w64yB1vvvtom18PnnLmn0zTcQH++mkb3iCtdVTURERERg82Z45hl4/HE3IPbee7tBsM88E6KjQx2diIiI/0WEOgDxI1vsMkAAf46Av0e71kUDP4KTFkGPa8vfzMIHH8CBB7oZQJYscXfNli6FW25R4khEREQEYO1auOsuN7vs8OGw554wcyZkZMB55ylxJBJIaXPTSBqXRMT9EczNnkva3LRQhyRSr6jlUV2wLRsWPweLJsPBr0HrAdDnbuhzD8Qlet2suBjeeQdGjHCVnqQkN43shRdCgwZBi15EREQkrC1c6FpjT5/uuqqdfrqbOW2//UIdmUj9kDY3jWEzhpFfkA/AjqIdDJsxDIAhfYeEMjSRekMtj2orayH7a/juXHi3I8y+E+KSAE/Lo7jOXhNHRUXwyiuuifUZZ8CWLTBtGixYAMOGKXEkIiIiAvDLL66u1KOHSxxddBHMnw9vvKHEkUgwpc5KLUkc7ZRfkE/qrNQQRSRS/6jlUW1ji8FEQNE2+OpkwEK3q6D7ldCsV4WbFhS4/vijRrk7aL17u0EezzoLIiODE76IiIhIOLMWPvnEzZyWnu5mm73zTrjuOkhICHV0IvXT8pzlVVouIv6n5FFtseH/2bvv8Ciqt43j35MQSmiC9BISigiKoCBFpdvAAqgoGBRs2Lu+gMFuEDsqimABxICioqIiFjSAHUGaglITehEIJbQk5/3jLPxCSE92Z5Pcn+vKlezM7MyzZ2Z3T545ZYGbMW3HfLhwPpQqB11nwgktoFR4tk89eNC1LBo5EtauhdNPh48/ht69IURtz0REREQ4fBimToVnn4XFi6FuXddVbfBgqFjR6+hESraIyhEkJCVkulxEAkOpg2CWsh9WT4Cv28HM1rA2DqqcDil73fpq7bJNHO3fD6++Co0bwy23uNnTvvgC5s+Hyy5T4khERERk3z43UUiTJjBgAKSkwPjxbgKR++9X4kgkGMR2jyU87Nj/e8LDwontHutRRCIlj1oeBSNrwRjY+CX8eh1UOhnOGAUNr4XSVXJ8+t698MYb7m7Zli3QsSO88w6ce67brYiIiEhJt327u8k2ejTs2AHnnOMeX3SRbrCJBJsjg2LHzIohMSmR0qGlGXfJOA2WLRJASh4Fi7TDsH6665pWs4ubLa1eL+geDzU65Srrk5QEr70GL74I//3nkkVTp0KnTv4OXkRERKRoWLMGXnjB3Vjbvx969XIzp511lteRiUh2oltEH00WxcfH06VFF28DEilhlDzyWvJ6WPkmrHoT9m+C8AiIuMKtCwmDmp1z3MWOHfDyy67J9a5d7o5ZTAx06ODf0EVERESKij//hOeeczfWQkJcF7UHH4Rm2c83IiIiIih55I0j3dIA/rjDtTiqfSGcORbq9ISQ3E19tnWra2X02muuq1qfPjB8OJxxhh9jFxERESkirIXvv3eDYH/zjRu/6N574Z573IDYIiIikjtKHgXSwf9g9XjX0qjrV1ChIbR8Gs54CSpE5Xo3mza5O2dvvAEHDsBVV8FDD0GLFn6MXURERKSISE11M8s++6ybKKRmTXj6aTeByAkneB2diIhI0aPkkb9ZC9t/dWMZJU6FtINQvSMcSnLrK+e+rXRiIjzzDLz9tpsJZMAAGDYMmjb1U+wiIiIiRcj+/TBxops0ZNUqN4PauHFwzTVQtqzX0YmIiBRdSh75y5GuaYd2wKwuEFIGGt0ATW6FE07N065WrYKRI11lCGDQIBg6FBo2LPSoRURERIqcHTtgzBg3/uPWrdC2rWt11KsXhOZuNAARERHJhpJHhW3XEtfKaF8CdPkSypwIXWbAie0grEKedrV8OYwYAZMnQ6lScPPNbmDHiAg/xS4iIiJShKxbBy+95FoX7dsHPXrAkCFuptlcTFQrIiIiuaTkUWFIPQiJH8HKMbDtJ9fKqMFVkHoIQktDre552t2SJfDUU/Dhh1CuHNx9NzzwANSu7af4RURERIqQpUvd+I+TJ7vG3v37uxtsp53mdWQiIiLFk5JHhWH1eJh3K1RoDKc/Dw0HuRZHeTR/vksaffqpmw1k6FA3I0j16oUesYiIiEiRYi3Mneu6o335JYSHw+23u7pSgwZeRyciIlK85Tt5ZIypD7wL1ALSgHHW2pczbNMF+AxY41s0zVr7RH6PGRTSUmHjl65rWv3LofGN0KA/VGjkWhiZkDzv8pdf4Mkn4auv3Awgjz4Kd90FVasWfvgiIiIiRUlaGnz2mUsa/forVKsGTzwBt90GJ+b9Xp2IiIjkQ0FaHqUA91trFxhjKgLzjTHfWmv/zrDdXGvtxQU4TnDYvwlWvgWr3oTkdVCuDkRc4daVrgy1z8vT7qyF2bNd0uj7711FaMQIdwetUiU/xC8iIiJShBw8CO+957qn/fMPREXBa6+5iUPCw72OTkREpGTJd/LIWrsJ2OT7e48xZhlQF8iYPCoefrwStv0Itc6D1i9D3YshJCzPu7EWvv3WJY1+/BFq1nTTyd5yC5Qv74e4RURERIqQpCQYOxZGjYJNm+D00+H99+Hyy90EIiIiIhJ4hfIVbIyJBE4HfstkdQdjzCJgI/CAtfavLPYxGBgMULNmTeLj4wsjtOPs3bs3x32XSttDreSvqZU8k4XVXiAlpDIVbTQpNW5mf0g9WAWs+ilPx7UWfvnlRCZNasDy5ZWoXv0Ad921jp49N1GmTBrz5uX/NQWz3JS3FB6Vd2CpvANPZR5YKm8JpI0b4eWX4Y03YPduOPdcePdd6N5dM6eJiIh4rcDJI2NMBeBj4B5r7e4MqxcADay1e40xPYFPgSaZ7cdaOw4YB9CmTRvbpUuXgoaWqfj4eDLdt7Xw3zw3Y1rC+5B6AE5szzlnNIYTTgHyF09aGkyb5gbCXrTINbkeNw4GDixL6dJNyKI4io0sy1v8QuUdWCrvwFOZB5bKWwJh+XLXCnvSJEhJgb594f/+D844w+vIRERE5IgCJY+MMWG4xFGctXZaxvXpk0nW2hnGmNeNMdWstdsLcly/2LcWvmkHpcpD1EBocgtUaZXv3aWmwgcfQGws/P03nHQSTJgAV18NYXnv7SYiIiJSrPzyixsE+7PPoEwZuPFGuP9+aNjQ68hEREQko4LMtmaAt4Fl1toXs9imFrDFWmuNMW2BEOC//B6zUCX9DSvegJR90P5tqBAFHae5GdPC8j9i9eHDbnDHp5+GFSvglFNgyhR3Fy00tBDjFxERESli0tLc7LLPPANz50KVKjB8ONx5J1Sv7nV0IiIikpWCtDw6G7gGWGKMWehb9hAQAWCtfQO4ArjVGJMC7Af6WWttAY5ZMKmHqL7/e/juMdg6G0JKQ4P+rsuaMVC/T753ffCga1k0ciSsXesGd5w2DXr1gpCQwnoBIiIiIkXP4cOGd991LY3++gsiItyA2DfcABUqeB2diIiI5KQgs639CGQ7fKG1djQwOr/HKHTLnuOUnU9C+ShoNRIaXg9lC3aba/9+ePNNVxnasAHatYPRo6FnTw3uKCIiIjJ9Otx4Yzu2bYMWLdzYRlddpW78IiIiRUnJmvC04XUsXl+K0y54EEzBmgPt3QtjxsALL8CWLdCpk2t5pBlBRERERP6nalWoU+cAEyeW5cILVU8SEREpikpWh6rwOuwo265AiaOkJDcIdmSkmwnktNNg9mz3c+65qhCJiIiIpHfOOTBq1EJ69FA9SUREpKgqWS2PCmDHDtc3/5VXXALp4oshJgbat/c6MhERERERERER/1HyKAdbt8KLL8Jrr7muapdd5mYFOf10ryMTEREREREREfE/JY+ysHEjPPccjB3rZlK76ip46CE49VSvIxMRERERERERCRwljzJISIBnnoG334bUVBgwwCWNTjrJ68hERERERERERAJPySOflSth5EiYONEN5njddTBkCDRs6HVkIiIiIiIiIiLeKfHJo2XLYMQImDwZwsLgllvcLGr163sdmYiIiIiIiIiI9/I/Z30Rt3gxXHklnHIKTJsG994La9bAq68qcSQiIiLFgzHmQmPMP8aYlcaYoV7HIyJSUHFL4liydQkhj4cQOSqSuCVxXockUiKUuOTRP/9UpHdvaNkSZs6EYcNg7Vp4/nmoXdvr6EREREQKhzEmFHgN6AE0B/obY5p7G5WISP7FLYlj8OeDOZR6CIslISmBwZ8PVgJJJABKTPIoIQF69IBbbmnN7Nnw2GNuWWwsVK/udXQiIiIiha4tsNJau9paewh4H+jlcUwiIvkWMyuG5MPJxyxLPpxMzKwYjyISKTlKzJhHJ5wAq1bBTTet5vnnG1KpktcRiYiIiPhVXWBdusfrgXbpNzDGDAYGA9SsWZP4+Hi/BLJ3716/7VsypzIPLJV3YNxZ806oCfXK1OP5k54/Zp3K3390fQdeMJZ5iUkeVa4My5fDnDmJVKqkKdRERESk2DOZLLPHPLB2HDAOoE2bNrZLly5+CSQ+Ph5/7VsypzIPLJV3YAwaNYiEpASeP+l5Hvj3gaPLG1RuwNr+a70LrJjT9R14wVjmJabbGkBIiXq1IiIiUsKtB9JPA1IP2OhRLCIiBRbbPZbwsPBjloWHhRPbPdajiERKjhLT8khERESkhJkHNDHGRAEbgH7A1d6GJCKSf9EtogHYsWwHBkNE5Qhiu8ceXS4i/qPkkYiIiEgxZK1NMcbcAXwNhALvWGv/8jgsEZECiW4RTfx/8aRdmeZ1KCIlipJHIiIiIsWUtXYGMMPrOERERKRo0yhAIiIiIiIiIiKSJSWPREREREREREQkSwVKHhljLjTG/GOMWWmMGZrJemOMecW3frEx5oyCHE9ERERERERERAIr38kjY0wo8BrQA2gO9DfGNM+wWQ+gie9nMDAmv8cTEREREREREZHAK0jLo7bASmvtamvtIeB9oFeGbXoB71rnV+AEY0ztAhxTREREREREREQCqCCzrdUF1qV7vB5ol4tt6gKbMu7MGDMY1zoJYK8x5p8CxJadasB2P+1bjqfyDiyVd2CpvANPZR5Y/izvBn7ar+TT/PnztxtjEvy0e713A09lHlgq78BSeQeWyjvwgq4OVpDkkclkmc3HNm6hteOAcQWIJ1eMMX9Ya9v4+zjiqLwDS+UdWCrvwFOZB5bKu2Sx1lb31751LQWeyjywVN6BpfIOLJV34AVjmRek29p6oH66x/WAjfnYRkREREREREREglRBkkfzgCbGmChjTGmgHzA9wzbTgWt9s661B5Kstcd1WRMRERERERERkeCU725r1toUY8wdwNdAKPCOtfYvY8wtvvVvADOAnsBKIBm4ruAhF5jfu8bJMVTegaXyDiyVd+CpzANL5S2FRddS4KnMA0vlHVgq78BSeQde0JW5sTbTIYhEREREREREREQK1G1NRERERERERESKOSWPREREREREREQkSyUmeWSMudAY848xZqUxZqjX8RRnxpj6xpgfjDHLjDF/GWPu9jqmksAYE2qM+dMY84XXsZQExpgTjDEfGWOW+671Dl7HVJwZY+71fZ4sNcZMMcaU9Tqm4sYY844xZqsxZmm6ZVWNMd8aY1b4flfxMkYpmlQHCxzVwbyhOlhgqQ4WWKqD+VdRqn+ViOSRMSYUeA3oATQH+htjmnsbVbGWAtxvrW0GtAduV3kHxN3AMq+DKEFeBmZaa08GWqKy9xtjTF3gLqCNtfZU3CQN/byNqliaAFyYYdlQYJa1tgkwy/dYJNdUBws41cG8oTpYYKkOFiCqgwXEBIpI/atEJI+AtsBKa+1qa+0h4H2gl8cxFVvW2k3W2gW+v/fgPtDrehtV8WaMqQdcBLzldSwlgTGmEtAJeBvAWnvIWrvL06CKv1JAOWNMKSAc2OhxPMWOtXYOsCPD4l7ARN/fE4HegYxJigXVwQJIdbDAUx0ssFQH84TqYH5UlOpfJSV5VBdYl+7xevRFGhDGmEjgdOA3j0Mp7kYB/wekeRxHSdEQ2AaM9zVTf8sYU97roIora+0G4HkgEdgEJFlrv/E2qhKjprV2E7h/SoEaHscjRY/qYB5RHSxgRqE6WCCpDhZAqoN5JijrXyUleWQyWWYDHkUJY4ypAHwM3GOt3e11PMWVMeZiYKu1dr7XsZQgpYAzgDHW2tOBfQRJc9LiyNfPuxcQBdQByhtjBngblYjkkupgHlAdLDBUB/OE6mABpDqYpFdSkkfrgfrpHtdDze38yhgThqu0xFlrp3kdTzF3NnCpMWYtrjtAN2PMe96GVOytB9Zba4/czf0IV5ER/zgXWGOt3WatPQxMA87yOKaSYosxpjaA7/dWj+ORokd1sABTHSygVAcLPNXBAkt1MG8EZf2rpCSP5gFNjDFRxpjSuEG+pnscU7FljDG4fsjLrLUveh1PcWetHWatrWetjcRd299ba3VHwI+stZuBdcaYpr5F3YG/PQypuEsE2htjwn2fL93R4JiBMh0Y6Pt7IPCZh7FI0aQ6WACpDhZYqoMFnupgAac6mDeCsv5VyusAAsFam2KMuQP4GjdC/DvW2r88Dqs4Oxu4BlhijFnoW/aQtXaGdyGJFLo7gTjfP0Orges8jqfYstb+Zoz5CFiAm0noT2Cct1EVP8aYKUAXoJoxZj3wKDASmGqMuQFXgezrXYRSFKkOFnCqg0lJoDpYgKgO5n9Fqf5lrFW3cxERERERERERyVxJ6bYmIiIiIiIiIiL5oOSRiIiIiIiIiIhkSckjERERERERERHJkpJHIiIiIiIiIiKSJSWPREREREREREQkS0oeiYiIiIiIiIhIlpQ8EhERERERERGRLCl5JCIiIiIiIiIiWVLySEREREREREREsqTkkYiIiIiIiIiIZEnJIxERERERERERyZKSRyIiIiIiIiIikqUilTwyxvQ0xvT0Og4vlOTXLuIFvedKBp1nKcl0/WdO5SJSNOi9WnLoXAcHY631OoZcMcZUA77xPTzPWvufl/EEUkl+7SJe0HuuZNB5lpJM13/mVC4iRYPeqyWHznXwKErJo9eAT4BQ4FJr7e0ehxQwJfm1i3hB77mSQedZSjJd/5lTuYgUDXqvlhw618GjyCSPRCTvjDEdgBeBQ8BG4Fpr7WFvoyreVOYlh861iIgUBn2fBJbKu+TQuS5cRWrMIxHJswSgm7W2M7Aa6OVxPCWByrzk0LkWEZHCoO+TwFJ5lxw614VIySORYsxau9Fau9/3MAVI8zKeYGOMedoYc08B9/G7MeaUI49V5sFJ51pERIKVvk+yVhjf3779HP0OV3kHJ9XVigBrbZH4AaKAr4CdwAbgOj8dpwzwNi5LuQf4E+iRw3P6AcuAfcAqoGNe1gfD6/Yd6w7gD+AgMCGXz8n0tQHNgO+BJGAl0CePsawF9gN7gc3ABKBCuvXnAD/79r8D+Ak4M4vnH/kZ7efrIMvyA6ri+uru8+3zan+dx2yuo9+B0oW0v1y/HuA9YBOwG/gXuDG311EuY4kG5gO7fNdCPFDXt64KYDNcB3uBu4HqvvdUuUzKKtfvOeBK4OMAlHl+3p9NgAPAewG6zrK8LvLznsrtuc7uPPueV2TOdW7Pc2GUZ7CeZ/0E5iev138BjpPtNUEuviMy7C/L+kV264KtXPxZpplsH+/7Ljjy2fhPunUZPzdTgVdzGcdaPKyrZRJPrr7zyKbOkV1ZBejcFub3SV7qapHADN91vxkYDZQqjOvE93xP62q+5xz3HV6Y5e3bX67rauTxs68QrzFP6mqBOteZnWc/vLfyVCfP6/b+PtcFOc8BCbyQXvx84D7cQFk9gVV+Ok554DHch2gIcLGvUCOz2P48X8G3921f98gbJDfrg+V1+451GdAbGJPLN0Kmrw0o5fsQPBJ3N99Fe1IeYlkLnOv7uxawCIj1Pa7k+0Dq79t/OeB84LTMnh+I6yCn8gOmAB8AFXCVqSTgFH++Z9IduxIwB2haiPvM9esBTgHK+P4+GVcpaV0Y7xFgEO4fhNaAAaoBNwLhvvVdgf+yeO6DwJuZLM/Tew4oi/tyrO3nMs/T+9P3nG+AuRRC8sj3fngsv9dFft5TuT3X2Z3nonauc3ueC1qewXqe9RO4n7xe/wU4TrbXBDl8R2TYV5b1i+zWBWO5+LNMM9k+nlz8Y+rb716gUy7jWIuHdbVM4snxO4+c6+25Kis/ndfC/j7JS11tBi75V9Z3LpcAdxXSdTIIj+tqvucc8x1e2OXt22eu62rk4bMvD8d/jCCtqwXqXGc8z/4413k5z/nZvjDOc3bnuiDnuVDeKP7+AU4D1qZ73BP4NYDHXwxcnsW6n4EbsnlutuuD8XUDT+XyjZDpawNOxX2pmHTLvgGezEMMa0lXoQCeBb70/d0G2JWX5/v7Osiu/Hxv0EOkq8ACk4CReTj2LcCXwGvAdtyAb+f51oUBsb7XfBiX0be4Slwp3/O6FWI55Pv1AE1xd1muzOk6ymUsc4EHs1l/LzA3i3XfAwMyLMvXew74Fhjo+7vQyzy76yub7foBU3FfDsdVpIGbgL9xXyRfATVy2N9jZPNFlZ/rIrfvqZzOdXbnuaie69ye55zKs6idZ/0E5ie/138hHj/TayKz74gM67OsX2S3rqiUiz/K1LcuntwljwbixgQxuTzmWoKkrkYO33nptsup3p6rssriuVnW1XzrA1Zfy+tnNa4lVs90j58DxhbSdRIUdTXftt/64g+Kulq67TP97KOIfYcHy7kmSOtq2W2fl3Od03nOz7nO7XkuKmMenQ38aIwJMca0xo2YPiY3TzTGfGGM2ZXFzxe5eH5N3B2tvzJZF4r7cqxujFlpjFlvjBltjCmXm/X+fN2+4xfoteew7+xem8nsKbiKXX6OVQ/ogctkg7uzmGqMmWiM6WGMqZLH/eW5XLK7DnLhJCDVWvtvumWLcJnf3DoN6ABMB2oAY4EhvnVPAd2BjsAJwCxcE8U+uDt+7YBHjDHxxpirMu44H+WR59djjHndGJMMLMd9Oc7wLS/oe2Q/cL0x5kpjTLVM1p+O+yDOTAvgnwzL8vueWwa09P3tjzLPE2NMJeAJ4P4s1j+Eq+Reyv+aCT9VwMPm6brIx3squ3Od3XmGYnyu0x3nuPIsoudZAiOo6lVZfUdk9vQslp2aw7rcCtp6Vw7Hzc377GljzHZjzE/GmC5ZbDMQeNf6/pPIYwyFWlfz7TNX5ZnTd1667XJb58hNWWUmu7oaBLa+lte62stAP2NMuDGmLu5czsxi27xeJ8FSV4P/fYcHxfd3dp99RfQ7PFjOdVDW1bLi9bnO03ku7AycP35wH773ALNxGfoFQEXfulhclvMjfE3iCvG4YcB3ZJ15r+OL5w+gNq5p3k/8r8lutusL+Lor4/pt7gVOLeTXnWMWNbvX5iu31cD/+f4+H5f5/DoPMaz1vbY9vuPMAk5It74ZrnntetzgZ9OBmpk8f1e6n5v8cR3kVH64SsLmDNvcBMTnIYYfgf9L97ivL6aKuA/qJunW3ZqXfeejPPL1enDNTc8BhgNhhfQeqQWMAhJx/e8/J12mHpdFT85wHbzoW3cYODnD/rJ8z/nWZ/p541v+jr/KPLvrK4ttXgaG+P5+jHR3YXEV2mSOvRPRAfgzh30+RvZ3s3J9XeT1PZXTuc7uPOf1XJPDZ2ugznVuznN25VlUz7N+AvOT3WddVp9zhXTcLK8JMvmOyOL5mdYvsltX0HLJ6XPB43OZ4/sM949TRdw4FwNxdatGGbaJ8H22RuXh2GsJgroa2XznZdguxzpHbsoqmzgyrav5/g5ofY081tV852q+7zxZ33k7rmVRPq+ToKirpVsXbN/hmdWPi+R3eCDPNdl8Lgfjec5q+/yc65zOc17OdV7Pc1FpedQKmIfrJ9kY14/xWWPMqbgP9I64F319YR3QGBOCa9p1CDfIVWaOjNz+qrV2k7V2Oy4j2jOX63PSikxet29dMnAR7oPRC1m+NmvtYVy/zotw/XfvxzUlXp/HY/S21lYEuuD6Ah/NYFtrl1lrB1lr6+HuKtbBfVhlfP4J6X7ezOPxc3sd5GQvrq9tepVwFZLcaoH7AD7iVFzmvhOw2lq7It26Krhy95d8vR5rbaq19kegHq7CBAV8j1hrN1tr77HWRgBtcXf9hgAYY8rgKkOdMlwH9/mevhNXmUuvFVm853L4vKmI+wL0nDGmFXAu8FIWm3QHSgO/H7mrgru7mJTJvr5It81QYGg2d2JydV3k9z2V1bnOxXmGvJ3rnD5bg+ZcQ7blWSTPswRMK4KsXpXFd0TGbbKsXxRS3aMV+ftcKBDf3XCbxc+P2TwvV+8za+1v1to91tqD1tqJuIRJxu/Za4EfrbVr8hi+p3W1XHznpZdjnSOXZZWVrOpqEPj6Wq7rar7r6GtgGq6rSzVfbM9kst88XydBVFeDIPsOhyw/+4rkd3ggzzXZfy4H3XnORq7OdR7PM+TiXOfnPAd98sjXxLQZLvuWZq1dhfsgB5dR+8r391e4rG3G539ljNmbxc9XGbf3PcfgRiCviev7dziz7ay1O3GVEpuf9dnJ4XVjrT1srd2Wwz7y/NpzKxevfbG1trO19kRr7QVAQ1x2OD/Hmo27A/J8FuuX+9bnqml6bsslt9dBLvwLlDLGNEm3rCW5bAJqjInC9ddN35TzdGAhrmnjzgwx9wFy3cQyH9dJgV6P77U0goK9RzKy1s7HDfBY3rfoVN9+l2TxlMW4JppAzu85sv+8aYZrCpor/nxv4irwkUCiMWYz8ABwuTFmgW99VeCTDF/cla21XTLuyFp78ZFtgJG4ftJHnnNxhs1zvC4K6z2V4VzndJ4hD+c6F5+tQXOucyjPIn+exT+CuV7lc/Q7IjPZ1S8KUvco4OfCkX3k6/1ure1irTVZ/Bx3DnzHKsj7zHJ8N79rgYl52MexOyzkuhrkujy7kP13XvoY8lPnyKysMos1u7oaBL6+lpe6WlWgPm6mu4PW2v+A8WSeNCvodeJlXQ3y8B3u57paZtJ/9hX573B/n+scPpeDpq6WC7k613k8z5DDuc73ebZ+bs5V0B+gOa4J5eW4Zn2tcB/87YGHcHcswPUd/qaQjvkG8CvpphvNZtsncBnRGrgs/VzSDc6Y3Xrcl+iEvL7uDNtNoJCaUOM+tMoCT+OykGVJN01nXl47LtNcFjcT0gPAGnwzCuT02n3r13LsIIzVcbOmtMLd2bofqOdbVx/3YfJmVs/393WQU/kB7+NGvC+P6797zIwXOVwLvcgwOBywDjeTQRtc5r0VbiaTkbiK8pFmr6WB33zrLgXeKKRrJdvXk267GrhBLCv4ruMLfOexVyG8R4b6jl3G9zMIl2Vv51t/I9k3+bwPGJfb9xxZfN74jr0DqFMYZVvQ9yfuPVcr3c/zuLsy1X3rO+AG8jzD97iS7xrLduBLctdENqfrPMv3VH7PdU7nOT/nOl08GZtB+/1c5/Y856I8g/I868f7n+yu/6w+5wrhmJleE+TiOyKTfWVZv8hunW99dp8z+fpc8PA85up95juPFxz5LMFNo72PdLMOAWf5llXM8Nwsy8u3fi3e19Wy/c7LZPvs6hzZllUO10+WdTXf31nW1/C4rubbdjXuu7aUrxw+AeIybJPpdZJd2RAkdTXf46D5DieHzz6C9Ds8h/dAQM91hphOTfc4aM5zbrbPz7nOzXnO6Vxnd56z3ae/CrUQT040LhO5FtfMaiFwmW/drfxvJPUGwPuFcLwGuKzoAd8Ff+Qn2rf+K+ChdNuHAa/jmsZtBl4ByuZmPa5veKZ9u7N73Rm2O+YNU8DX/hj/m/nhyM9j6dbn+rXjZmnY6Su7r4DGGY6V5Wv3rV9LhgoFboC0j3HTqk7FDSa2z/d7LFApw/P3ZziHnxTWdZBFeWRZfris8qe+eBOBq3NbHsDDpKtIACfi+gUfqSzH4Gb02OS7HqpleP6NwDhcRSDLD7Y8XitZvp705YKrSM72XSO7cXcbbsqwr/y+R0bgsup7gS2+47ZLt3407ksn/fnbA1T2ra+G+xIql5v3HFl83uDGNJhWGOWa3/dnxmsxk+e9l2HZXbh/qvb6ymBMLo//WA7bZHdd5PTZmq9zndN5zs+59m0zgeOTR34/19md5/TnOqfyDNbzrB/vf7K7/glwvYrcfUdk/K7Nsn6R3Trf+gLVuzL7XPDoHOa6ruor43m+17QL98/CeRn2NxaYlMlxgrqulkVMj3HsOH95qbtmW1Y5XD/Z1tV8y7KsrxHgulom10kr3ExzO3H/yH5IhtmesrpOsisbgqSu5nvs6Xc4ea8fB913eA7vgYCe63T7ncCxyaOgqavlYfs8nevcnOfsznVO5zm7H+PbQdAyxjwH7LDWPp3JuhbAMGvt1caYwbgP6FcDHmQ+GGNK45rTnWYzaSaW3evOsN0E4Hlr7VK/BOoHOb32ksbf5WGMaY77Uoqw1m4o7P37SyCuE2PMCGCrtXZUTu+5rD5vjDG/4ab9LTLvwWATbOfat/0EMny26lxLcVBc61U5KYx6V1Gsc+WX6mrHUl0tawEomwLX1Xzr9B1eAMFYV/M9ZwLpPpd1nv2rKCSPvsP1wf00i/VP4/qzbgWutdbuC2B4fpPT6/ZtMwN3pyABN0L6hIAEJ0WGMeZE4APcoIFp1tpnc3hKiZXL91yx/LwpaXLxvaLPVim2Smq9Kif6XBCvqK6We6qrlRz6Xzg4FYXk0Tago3UD7ZUYJfV1S+ExblaDabg+yMtwYw10t9bu9TSwIKX3XMmhcy0lma7/zKlcxAuqq+WN3qclh851cAr65JGIiIiIiIiIiHgnxOsAREREREREREQkeCl5JCIiIlJEGWPqG2N+MMYsM8b8ZYy527f8MWPMBmPMQt9PT69jFRERkaIrKLutVatWzUZGRvpl3/v27aN8+fJ+2bccT+UdWCrvwFJ5B57KPLD8Wd7z58/fbq2t7pedlyDGmNpAbWvtAmNMRWA+0Bu4EthrrX0+t/tS/at4UZkHlso7sFTegaXyDrxgrIOV8kcwBRUZGckff/zhl33Hx8fTpUsXv+xbjqfyDiyVd2CpvANPZR5Y/ixvY0yCX3ZcwlhrNwGbfH/vMcYsA+rmZ1+qfxUvKvPAUnkHlso7sFTegReMdbCgTB6JiIiISN4YYyKB04HfgLOBO4wx1wJ/APdba3dm8pzBwGCAmjVrEh8f75fY9u7d67d9S+ZU5oGl8g4slXdgqbwDLxjLXMkjERERkSLOGFMB+Bi4x1q72xgzBngSsL7fLwDXZ3yetXYcMA6gTZs21l93OXXXOvBU5oGl8g4slXdgqbwDLxjLXANmi4iIiBRhxpgwXOIozlo7DcBau8Vam2qtTQPeBNp6GaOIiIgUbUoeiYiIiBRRxhgDvA0ss9a+mG557XSb9QGWBjo2ERERKT7UbU1ERESk6DobuAZYYoxZ6Fv2ENDfGNMK121tLXCzF8GJiIhI8aDkkYiIiEgRZa39ETCZrJoR6FhERESk+FK3NRERERERERERyZKSRyIiIpKptDSvIxARERGRYKDkkYiIiBxlLXz7LXTqBJ9/XsfrcKSY+H7r97y/9H1S01K9DkVERETyQckjERERwVr44gvo0AHOPx9Wr4bwcP2jL4Xjq81f0f/j/pzy+im8u+hdUtJSvA5JRERE8kDJIxERkRIsLQ2mTYPWreGSS2DLFhg7FlatgvPO2+J1eFJMPNPiGaZeMZUypcow8NOBnPTqSXzx7xdehyUiIiK5pOSRiIhICZSaClOmwGmnweWXw969MH48/PsvDB4MZcp4HaEUJyEmhL6n9OXPm//ks36fcWL4iYSaUAB2H9zNgZQDHkcoIiIi2VHySEREpAQ5fBgmTIBmzeDqq113tcmTYdkyGDQIwsK8jlCKsxATwqVNL+X3G3/nwsYXAjBi7giiXo7ixV9eZN+hfR5HKCIiIplR8khERKQEOHgQxo2Dpk3huuugfHn46CNYsgT694fQUK8jlJLEGIMxBoCeTXrSrFoz7v/mfqJejmLkjyPZc3CPxxGKiIhIekoeiYiIFGP798Orr0LjxnDzzVC9Onz+OSxY4LqrhagmIB7r1KAT3w/8nh+v+5HWdVozbNYw7vjqDq/DEhERkXRKeR2AiIiIFL69e93A188/D5s3Q8eO8M47cO654GvwIRJUzo44m6+iv2LehnlUKlMJgGXbljFp8STu63Af1cKreRyhiIhIyaX7jSIiIsXI7t0wYgRERsIDD8App0B8PMyZA+edp8SRBL8z655J02pNAZi1ZhYjfxxJg1ENeOCbB9i8d7PH0YmIiJRMOSaPjDH1jTE/GGOWGWP+Msbc7Vte1RjzrTFmhe93lSyef6Ex5h9jzEpjzNDCfgEiIiICO3bAY49BgwYQEwPt2sHPP8N330Hnzl5HJ5I/d7S9g6W3LeWyZpfx0q8vETkqkiHfDvE6LBERkRInNy2PUoD7rbXNgPbA7caY5sBQYJa1tgkwy/f4GMaYUOA1oAfQHOjve66IiIgUgq1bYdgw19Lo8ceha1f44w/48kvo0MHr6EQKrnn15kzqM4l/7viH6BbRpNk0AKy1rN+93uPoRERESoYck0fW2k3W2gW+v/cAy4C6QC9gom+ziUDvTJ7eFlhprV1trT0EvO97noiIiBTApk1w330uafTMM9CzJyxeDNOmQevWXkcnUvgaV23M273e5tnzngXgh7U/EDkqkkGfDuLf//71ODoREZHiLU8DZhtjIoHTgd+AmtbaTeASTMaYGpk8pS6wLt3j9UC7LPY9GBgMULNmTeLj4/MSWq7t3bvXb/uW46m8A0vlHVgq78BTmcOWLWV4//0IvvyyNqmphnPP3UJ0dAIREfv57z83vlFhUXlLMDK+gbuaVWvGnW3vZOz8sUxaPIkrT7mSmI4xnFrjVI8jFBERKX5ynTwyxlQAPgbusdbuNrkbcTOzjWxmG1prxwHjANq0aWO7dOmS29DyJD4+Hn/tW46n8g4slXdgqbwDrySX+erV8PTTMNHX5nfgQBg6FBo1qgXU8ssxS3J5S/CrXbE2L134EkPPGcqLv7zI63+8TvzaeBLvSSQsNMzr8ERERIqVXM22ZowJwyWO4qy103yLtxhjavvW1wa2ZvLU9UD9dI/rARvzH66IiEjJsny5SxSddBJMmgSDB8PKlfDmm9CokdfRiXivZoWaPHPeM6y9ey0f9v2QsNAwUtJSuGn6Tfy2/jevwxMRESkWcjPbmgHeBpZZa19Mt2o6MND390Dgs0yePg9oYoyJMsaUBvr5niciIiLZWLIE+vWD5s3ho4/g7rthzRoYPRoiIryOTiT4nBh+IudEnAPA8u3L+WT5J7R/uz3nTzqfOQlzPI5ORESkaMtNy6OzgWuAbsaYhb6fnsBI4DxjzArgPN9jjDF1jDEzAKy1KcAdwNe4gbanWmv/8sPrEBERKRbmz4c+feC009yMaUOGwNq18MILULt2AAPxzWglUhSdWuNU1t6zlufOe47FWxbTeUJnOk/ozNZ9mTWUFxERkZzkOOaRtfZHMh+7CKB7JttvBHqmezwDmJHfAEVEREqCX36Bp56CGTPghBPg0UfhrrugatUABmEtbPkBVowBEwLcGsCDixSuCqUr8MBZD3D7mbfz5oI3+XLFl1QLrwbAqh2raFilIbkcw1NERKTEy9WYRyIiIuIfs2fDuefCWWfB77/DiBGupdFjjwUwcXRoJywfBV82g++7w5bvoUKUSyaJFHHlwspxV7u7+HrA14SYEHYf3M2Zb55J63GtmbZsGmlqZSciIpIjJY9EREQCzFr45hvo1Am6dIGlS+H5513SaNgwqFw5gIEA/PMKLLgXwqpA+4nQez20GglqlSHFULlS5Xjh/BfYc2gPl0+9nJZvtOT9pe+TmpbqdWgiIiJBS8kjERGRALEWvvgC2reHCy5wA2C/+qr7ff/9UL58AIJISYZV78DMM2H9p25Z41vgwgVwwS/Q8FooVS4AgYh4Iyw0jOtOv45lty/jvT7vkZqWSv+P+7Ng0wKvQxMREQlaOY55JCIiIgWTlgaffOLGNFq4ECIjYexYGDgQypQJUBBJy91YRmsmwuEkqNwcjK8aUK6m+xEpQUqFlCL6tGj6t+jP7LWzObPumQA8Hv84dSrWYWCrgZQOLe1xlCIiIsFBLY9ERET8JDUVJk+GFi3giisgORkmTIB//4XBgwOQODrSLc1amHMprBwDdXrAubOh51Kod4mfAxAJfiEmhK5RXQFITUvl29XfMviLwTR+pTGv/f4aB1IOeByhiIiI95Q8EhERKWSHD7skUbNmEB3thg6aMgX+/tu1NgoL83MA+9bBoodhxmmQesAF0GES9FoHZ0+BGp00npFIJkJDQpl73VxmRs8konIEd3x1B1EvR/Htqm+9Dk1ERMRT6rYmIiJSSA4edEmjkSPd4Nennw4ffwy9e0OIv2/X2DTY9I3rmrbxC9faqE5POLgdwutBtXZ+DkCkeDDGcEHjCzi/0fnMTpjNiLkjaFS1EQCJSYmcUPYEKpWp5HGUIiIigaXkkYiISAHt3w9vvQXPPgvr10O7djB6NPTsGcAGPv/Ng/geULYGNBsCjQdDhcgAHVyk+DHG0CWyC10iuxxddtuXt/Hzup+5u93d3NXuLqqUq+JdgCIiIgGkbmsiIiL5tHcvPP88REXBXXe53998A7/8Ahdd5MfEkbWw7Wf4+RqYf49bdmJb6DTddU1rNUKJIxE/eKzLY3SO7Mxjsx+jwagGPDTrIbbt2+Z1WCIiUgzs3Qvjx0PnzrB5c6BmVMk9tTwSERHJo6Qk17LopZfgv//g3HNh6lTo1MnPBz68B9bGua5puxZDqYpw0m1unTEaAFvEz9rUacMnV33C4i2LiZ0by8gfR1K2VFke6fyI16GJiEgRZC3MneuSRh9+CPv2QZMmsG1bWa9DO46SRyIiIrm0Ywe8/DK88grs2uVaFw0fDu3bByiARTHw76tQpRW0HQsNroawCgE6uIgccVrN0/jgig94vMvj1KpQC4Dp/0znm1XfMOTsIdSvXN/jCEVEJJitWwcTJ7qxMletggoVoF8/uO46OOssmD07yesQj6PkkYiISA62boUXX4TXXnNNivv0cUmjM87w40FTD8K6j10ro1YjofrZcPI9EHk1nNhOs6WJBIGTq5189O+/t/3NuPnjGDd/HINaDWLoOUNpWKWhh9GJiEgw2b8fPv3UtTL67jvX6qhLF3jkEbj8cihf3usIs6cxj0RERLKwcSPcdx9ERrrBsC++GJYsgWnT/Jg42rsGFg6FT+vDz9GwfxMc8t19qtAQqrVX4kgkCA09Zygr71rJTWfcxLuL3uWkV08iZlaM12GJiIiHrIXff4dbb4XateHqq+Gff+Dhh12Lox9+gGuvDf7EEajlkYiIyHESE+GZZ+DttyElBQYMgGHDoGlTPx84LQW+aQ8Ht0PdS6HJrVDrXDC61yNSFERUjuC1i14jplMMz//8/NGWScmHk1m9czWn1jjV4whFRCQQNm+G995zrYz+/hvKlnWti667Drp2hZAiWLVT8khERMRn1Sp4+mnXB90YGDQIhg6Fhv7qebJ/M6x6G7bMgm7fQUgp6DAJKjeH8Hp+OqiI+FudinV48YIXjz5+e8Hb3DXzLvqc3IfhnYZzRm1/9nkVEREvHDoEX37pEkYzZkBqqhsXc+xYuOoqqFzZ6wgLpgjmu0RERArX8uWuyXDTpu4u0S23uETSuHF+SBxZC1tmw49Xua5pi4cDBg7+59bXPl+JI8k1Y0x9Y8wPxphlxpi/jDF3+5ZXNcZ8a4xZ4ftdxetYS7Lo06J5pNMjfL/me1qPa81Fky/i1/W/eh2WFHNxS+KIHBVJyOMhRI6KJG5JnNchiRRLixfDvfdC3bpw2WUwbx7cf79rcfTLLzB4cNFPHIGSRyIiUoItWeLuBDVvDh9/DPfcA2vWwKuvQn1/TZa06WuY1QU2fwsn3QkXL4fus6BsdT8dUIq5FOB+a20zoD1wuzGmOTAUmGWtbQLM8j0Wj1QtV5XHuz5Owj0JxHaL5bf1v3Hf1/dhrfU6NCmm4pbEMfjzwSQkJWCxJCQlMPjzwUogiRSSHTtg9Gho3RpatnSTqnTqBF984WZSe+YZaNbM6ygLl5JHIiJS4syfD717w2mnwVdfua5pa9fC88+7wQwL1Y4F8NtN8NdI97jWua5rWu/10PpFqOTvgZSkOLPWbrLWLvD9vQdYBtQFegETfZtNBHp7EqAco3LZyjzU8SHW3rOWSX0mYYxh676tnD/pfL5d9a2SSVJoYmbFkHw4+ZhlyYeTNYi7SAGkprp645VXuvrinXe6ZaNGuUlWPv4YLroIShXTwYGK6csSERE53i+/wJNPui/+E06Axx5zX/xVqxbygVL2Q+IHsGIM/Pc7hJaDpve4dSGlIGpAIR9QBIwxkcDpwG9ATWvtJnAJJmNMjSyeMxgYDFCzZk3i4+P9EtvevXv9tu+ibB3rWJK0hD/X/8n5751Ps4rNuKbBNbSv2h5TwFkVVeaBFWzlfWfNO6Fm5uuCKc78CrbyLu5KenmvW1eOmTNr8c03tdi+vQyVKh3moou20KPHZpo02QvA0qWFe8xgLPMck0fGmHeAi4Gt1tpTfcs+AI7cKj0B2GWtbZXJc9cCe4BUIMVa26ZQohYREckla2H2bJc0+v57qFbNDYp9221QqZKfDvr7YFj7HlQ6GVq/DFHXQukT/HQwETDGVAA+Bu6x1u7ObeLBWjsOGAfQpk0b26VLF7/EFx8fj7/2XdR1oQuDLxrMhIUTGPnTSB5a+hCta7fmx+t/pGypsvner8o8sIKtvAeNGkRCUsJxyxtUbsDa/msDH1AhC7byLu5KYnnv3g1Tp7rBr3/+2c2OduGFbra0Sy4Jo0yZeoD/xqgMxjLPTbe1CcCF6RdYa6+y1rbyJYw+BqZl8/yuvm2VOBIRkYCxFr7+2vU/79rVDVr4wguue9rQoYWYOEpLgXXT4PvzYPc/blmz+6H7D3DR39D0LiWOxK+MMWG4+lictfZInWyLMaa2b31tYKtX8UnOypQqw81tbubfO/5lfK/xdI3sejRx9GPij6SmpXocoRQ1sd1jCQ8LP2ZZeFg4sd1jPYpIJPilpcEPP7hJVGrXhptugv/+g5Ej3ThGX34JV1wBZcp4Hak3cmx5ZK2d42sGfRzjbmtdCXQr5LhERETyxVo3WOFTT8Hvv7uBr0ePhuuvh3LlCvFAyRtg5Zuw6k3YvxHC68O+RDeGUZVWhXggkaz56mJvA8ustS+mWzUdGAiM9P3+zIPwJI/CQsMY1GrQ0cf//vcvncZ3osmJTXjonIe4usXVhIWGeRegFBnRLaIBN/ZRYlIiEZUjiO0ee3S5iPzP2rUwcaL7WbMGKlaE6GhXd2zXDgrYi7jYKOiYRx2BLdbaFVmst8A3xhgLjPU1jc6U+twXTyrvwFJ5B5bKO/CyK/O0NJg7tzqTJjVg1aoK1K69n/vvT+SCCzYTFmb57bfCiyMk7QBnbbmMUHuAHWXOZGPV29hRpj32n1D4J/P4iiJd40XC2cA1wBJjzELfsodwSaOpxpgbgESgrzfhSUE0rtqYD/t+yFNzn2LQZ4N4fPbjDD1nKANbDqRMqRJ661tyLbpFtJJFIllIToZp01y3tO+/d8u6dYMnnoDLLoPw8OyfXxIVNHnUH5iSzfqzrbUbfYM0fmuMWW6tnZPZhupzXzypvANL5R1YKu/Ay6zMU1Lggw8gNhaWLYOTTnJ3jvr3L0dYWFP+N0RfARz8D1ZPgB3z4ezJblnCeDjxTE6s0JATC36EoKRrPPhZa38Esron2j2QsUjhCzEhXN78ci5rdhlfrviSJ+c8yT0z76FX017UrJDFaMgiIpIpa+HXX13C6IMP3LhGkZFuApWBA93fkrV8J4+MMaWAy4DWWW1jrd3o+73VGPMJ0BbINHkkIiKSF4cPw3vvwYgRsHIlnHIKTJkCfftCaGghHMBaN1PaijGQ8D6kHYTqZ8PhPRBWERpcVQgHERHJmTGGi0+6mIuaXMSKHSuoWaEm1lqu+PAKzqp3Fje3uZkKpSt4HaaISFDauBEmTYIJE2D5cjeMwRVXuMGvO3d2g2FLzgpSTOcCy6216zNbaYwpb4ypeORv4HygkCewExGRkubgQXjjDWjSxPVFr1jRNTtevBj69SukxBFA4ofwTXtY9zE0uh56LILzfnSJIxERDxhjOOnEkwDYc2gPSQeSeODbB4gcFcmIuSPYfXC3xxGKiASHgwfho4/goovc+JdDh0LVqvDmm7B5M7z7rptQRYmj3MuxqIwxU4BfgKbGmPW+vvMA/cjQZc0YU8cYM8P3sCbwozFmEfA78KW1dmbhhS4iIiVJcjJ8/HFdGjWCW2+FWrXcwNjz50OfPoXw5Z/0N/xxJ6wa7x7X6QlnjoE+G+HM16HKaQV+DSIihaVSmUp8d+13/Hz9z7Sr146Y72NoMKoBv67/1evQREQ88+efcNddULeua42+cCH83/+5Fkc//QQ33liIM+6WMLmZba1/FssHZbJsI9DT9/dqoGUB4xMRkRJu714YMwaefx62bm1Cp06u2XH37oUw+0XqIVj/ieuatnU2hJSG5kPcurAK0OSWgoYvIuJXHep34Murv2TBpgW88tsrnFbTJbqX7V5G833NqVG+hscRioj41/btEBfnxjJatAhKl4ZevVy3tPPPL8RW6SVcQQfMFhER8YukJBg9Gl56Cf77D847Dy666E/uvvv0wjvIT1fC+s+gfBS0egYaXgdlqxfe/kVEAuSM2mcwofcEAKy1jFg+gvuX3M8tbW7hwbMepHbF2t4GKCJSiFJSYOZMlzD6/HM3FuYZZ8Crr0L//nBicZ3NxEPq4SciIkFlxw545BFo0ACGD4cOHdzMGN98Ay1bJuV/x2mpsGEGzOkNB7a6ZU3vhS4z4NKV0Pz/lDgSkWLBGEPsqbH0PaUvr/z2ClEvR3H7l7ezLmmd16GJiBTI8uUwZIgbx+iSS2DOHLj9dtfiaP58uOMOJY78RS2PREQkKGzdCi+8AK+/7rqqXXaZSx6dXtCGRge2wqp3YOVY2LcWytaE3cuhbA2o2bkwQhcRCToR4RFM7DmRRzo9wsgfR/LmgjfpFtWN+pXrex2aiEieJCXBBx+4Vka//uq6ofXs6bqlXXSR66Ym/qfkkYiIeGrDBjee0dixbmaMq66CmBg45ZRC2PnB/+CzBpB6AGp0cV3T6vWGUNUyRKRkaFS1EW9e+iaPdH6EupXqAjBi7giWb1/OQx0f4uRqJ3scoYjI8dLS4IcfXMLo44/hwAFo3hyeew4GDHATp0hgKXkkIiKeSEiAZ56Bt9+G1FS45hoYNgxOOqkAOz28G9a8B3tXwRkvQJkT4YwXXeKocrPCCl1EpMhJ3+IoJS2Fj/7+iPcWv8eVp1xJTMcYWtRs4WF0IiLOmjVuYpSJE11dsXJlGDTItTI688xCmCxF8k3JIxERCaiVK+Hpp+Hdd10F4LrrYOhQiIoqwE53LnIzpq2Ng5S9UPVMN5NaaGlocmuhxS4iUhw80vkRbmlzCy/98hKj543mg78+YES3EQzrOMzr0ESkBNq3z7UuGj8e4uNd/fDcc119sXdvKFfO6wgFlDwSEZEAWbYMRoyAyZNd3/Rbb4UHH3QDHhbIqrfhtxshtCw06AeNb4UTdWtKRCQ7NcrX4Olzn+bBsx/kld9eoVtUNwASkxLZsHsDHep38DhCESnOrIWff3YJo6lTYc8eaNQInnwSrr0WIiK8jlAyUvJIRET8avFieOop+Ogjd+fovvvg/vsL0Fd9zyo3+HWNTlD3YqjT03VNixoIZaoWauwiIsVd1XJVeazLY0cfv/DzC7zy+yt0j+rOw50epnOkJhYQkcKzYYNrfT5hAvz7L5QvD337upboHTvq3l8wU/JIRET84o8/XNLos8+gYkU3ntG990K1avnYWVoKbPyS0/6Lhc/ngQmFUhVd8qhcbTj53kKPX0SkJIrtHktE5Qie+/k5ukzsQseIjjzS+RHObXiu16GJSBF14ABMn+5aGX3zjRsMu2NHN2xB375QoYLXEUpuKHkkIiKF6uefXZPjmTOhShV4/HG48073d77F94DN31E+pBq0eBwa3QjhdQotZhERcSqUrsD9Z93PbWfextt/vs0zPz3D1L+mHk0eWWsxahogIjmwFhYscAmjyZNh506oV8/dTBw0CBo39jpCySslj0QksNbEwaIYSE6E8AhoGQtR0V5HJQVkrRvg8Mkn3bSq1aq5QQ5vuw0qVcrHzrb8AKsnQNs3oFQ4NLkdmtzGrysr0blFdz+8AhERSa9cWDnuaHsHN51xE8mHkwH4df2v3PrlrQzvOJw+zfoQYkI8jlJEgs22bfDeey5ptGQJlCkDffq4bmndu0NoqNcRSn7pE19EAmdNHPw+GJITAOt+/z7YLZciyVrXwqhjR+jWDZYvhxdfhLVrXVPkPCWODu2E5aPgy2bwfXfY+CUk/eXW1e8N9ftgjWocIiKBVKZUGaqUc01H9x3aR/LhZK748ApajGnB5CWTSU1L9ThCyUzckjgiR0US8ngIkaMiiVuiupb4z+HDrltanz5Qp44b37JsWXj9ddi0CaZMgfPPV+KoqFPySEQCZ1EMpCYfuyw12S2XIsVaV0lo1w569IDERBg9GlavduMalS+fxx3uS4BP6sKCeyGsCrSfCL3Xu1nTREQkKHRv2J2/b/ubyZdNxmCInhbNWe+chbXW69AknbglcQz+fDAJSQlYLAlJCQz+fLASSFLo/voLHnjAdUfr1csNXXD33a7F0e+/u5l1CzRsgQQVdVsTkcBJTszbcgk6aWnw8cduIOzFi6FhQ3jzTTelaunSedhRSjIkvA8Ht0HzIa4LY/OhUPcSqHq63+IXEZGCCQ0JpX+L/lx16lV8uvxTdh3YhTGGNJvGlCVTuKL5FZQpVcbrMEu0mFkxR7saHpF8OJmYWTFEt9BQAVIwO3fC+++7bmnz5kGpUnDxxa5bWo8eEBbmdYTiL0oeiUjghEf4uqxlslyCWkoKfPABxMbCsmXQtKmbZrV/f1dpyLWk5bDyDVg9EQ7vgqpnQrMHwYRAi0f8Fb6IiBSyEBPCZc0uO/p41upZDPhkAEO+G8L/nf1/3HTGTZQLK+dhhCVXYlLmN+WyWi6Sk9RUN0va+PHwySdw8CC0aOGGKoiOhho1vI5QAkHd1kQkcFrGQmj4sctCw91yCUqHD8M770CzZjBggOur/v77rpnyNdfkMXH0zytuPKMVr0OdC+Hc2XDBby5xJCIiRdq5Dc/lmwHf0LBKQ+6eeTdRL0fx3E/PcTDloNehlTgRlTO/KZfVcpGsrFwJw4dD//7tueAC+PpruPFG+OMPWLTIDVWgxFHJoRq7iAROVDS0HQfhDQDjfrcdp9nWgtDBg/DGG9CkCdxwgxv4+pNPXEXhqqtyOeDhvnWw+BHY9ot7XOt8lyjstQ7OngI1OoGmexYRKRaMMZzX6DzmXDeH2YNm06JmC96Y/wahIe4LI82meRxhyRHbPZbwsGNv1oWHhRPbXTfrJGd797oWRp06uXrg009DVNQ+PvgANm50Y1y2bq0qXEmkbmsiElhR0UoWBbHkZDeG0bPPugpC+/ZupowePXJZSbBpsOlbWDkGNnzuRtYuVR6qd4DKJ0Plh/z+GkRExFudGnTi22u+Zcf+HZQKKcX+w/s5fezpXHnKldzT/h6qlqvqdYjF2pFxjWJmxZCYlEhE5Qhiu8dqvCPJkrUwd65LGn34Iezb5xJHI0a4cS1XrFhCly5dvA5TPKbkkYgEtzVxbja25EQ3NlLLWCWf/GDPHhgzBl54AbZuhc6d3ZhG3brl8c7Stx1h+89Qpjo0+z9oPBgqRPktbhERCV5HkkS7DuyiefXmPDnnSV769SVuP/N27utwHzXKq7+Lv0S3iFaySHK0bh1MnAgTJsCqVVChAvTr5wa/Puus/9UBV6zwNEwJEjl2WzPGvGOM2WqMWZpu2WPGmA3GmIW+n55ZPPdCY8w/xpiVxpihhRm4iJQAa+Lg98G+Qbat+/37YLdcCsWuXW7mtMhIGDIEWrWCOXMgPh66d88hcWQtbPsZ/rgb0lLdskbXw1mTofc6aPW0EkciIkLtirWZdtU0Ft+ymItPuphnf3qWyFGRrNqxyuvQREqc/fthyhQ4/3xo0AAefhjq13dJpM2b4a234Oyz1S1NjpeblkcTgNHAuxmWv2StfT6rJxljQoHXgPOA9cA8Y8x0a+3f+YxVREqaRTGQeuxUs6Qmu+VqfVQg//0Ho0bBK6/A7t1wySUQEwPt2uXiyYf3wNo4WPEG7FoEpSq6FkYnnAKNbvB36CIiUkS1qNmCKZdP4bHOj/HBXx/QsEpDAD7++2POrHumBnQW8RNrYd481y1tyhRISoKICJc4GjgQGjb0OkIpCnJMHllr5xhjIvOx77bASmvtagBjzPtAL0DJIxHJneQsppTNarnkaMsW1zXt9dddf/bLL3ezaLRqlcsd7PoLvukAKXugSitoOxYaXA1hFfwYtYiIFCdNqzXlkc6PAJB8OJkbpt/AvsP7GNhyIMPOGUajqo08jlCkeNiyBSZNckmjv/+GsmVd3e+666BrVwjR9FmSBwUZ8+gOY8y1wB/A/dbanRnW1wXWpXu8HsjynrYxZjAwGKBmzZrEx8cXILSs7d2712/7luOpvAOr2JV3+MuQduj45SGlXb8qjxWl8t62rTQffBDBF1/U5vDhELp23Up0dAJRUcns2pV1cRp7iOr75xLCQTaH9wSbSuMy57P1hG7sDmsG6w2s/yNgr6MolXlxoPIWEX8LDwtn8a2LefanZ3lrwVtMWDiBq1tczRNdnyDyhEivwxMpcg4dgi+/dAmjGTMgNdVNgDJ2rJsxt3JlryOUoiq/yaMxwJOA9f1+Abg+wzaZ9ZK0We3QWjsOGAfQpk0b66/R3OPj4zVSfACpvAOr2JX3mg1ujKP0XddCw6HtOIjq4lVURxWF8k5IgJEj4Z13IC0NrrkGhg6Fk06qCdTM+ol718DKsbDqHTi4DaqdxcldnvWt7E69QASfiaJQ5sWJyltEAiGicgSje44mpmMMz//8POMWjGPoOW641JS0FEqFaI4fkZwsXuwSRu+9B9u3Q61acP/9MGgQNGvmdXRSHOSroZq1dou1NtVamwa8ieuiltF6oH66x/WAjfk5noiUUFHRLlEU3gAw7nfbcRrvKBdWroQbboDGjeHtt13z5BUrXBLppJNyePLfz8D0RrDsOah+NnT9Gs6bG5C4RUSk5KpdsTYvXPACm+7fRPPqzQGInhZN7/d7M3/jfI+jk+zELYkjclQkIY+HEDkqkrglmtwkEHbsgNGjoXVraNkSXnsNOnWCL75wM6k984wSR1J48pXGN8bUttZu8j3sAyzNZLN5QBNjTBSwAegHXJ2vKEWk5IqKVrIoD5Ytg9hYNxhi6dJw223w4INQL7umQvu3wKq3oP7lUPlkqN4JTn0YGt8E4V61MRIRkZKqQmk3jp61llOrn8qLv77IZ29+Ro/GPXi408N0qN/B4wglvbglcQz+fDDJh11L8YSkBAZ/PhiA6BaqwxW21FT45hvXyuizz1w3tZYt3UQo0dFQrZrXEUpxlWPLI2PMFOAXoKkxZr0x5gbgWWPMEmPMYqArcK9v2zrGmBkA1toU4A7ga2AZMNVa+5efXoeISIm2aBH07QunnAKffgr33Qdr1sDLL2eROLIWtsyGH/vBZ/Vh8XDY/I1bV70DnPa4EkciIuIpYwwPd36YhHsSGNFtBPM2zuOsd85i7B9jvQ5N0omZFXM0cXRE8uFkYmbFeBRR8fTvvzBsmJslrWdP+P57uOUW+PNPWLgQ7r5biSPxr9zMttY/k8VvZ7HtRqBnusczgBn5jk5ERLI1bx489RRMnw6VKsFDD8E99+RQebBp8HU72PEHhJ0ATW6HJrdApaYBilpERCT3KpWpxLCOw7ir3V2MnT+W3if3BuCXdb+w++Buzm90PsZkNtyqBEJiUuaz4Ga1XHJv926YOtW1Mvr5Zzc7Wo8e8MorcPHFUKaM1xFKSaLR50REiqCffoInn4Svv4YqVeDxx+Guu+CEE7J4wo4FsOELaPEImBCIuAKa3AYNroJS4YEMXUREJF/Kly7PfR3uO/r4+V+eZ9qyaZxZ50yGdxrOJSddoiSSByIqR5CQlJDpcsm7tDSYPdsljD7+GJKToWlTNwHKNddAnTpeRyglVb4GzBYRkcCz1jVR7toVzjkHFixwFYmEBHjkkUwSRyn7YfVE18poZmv4eyTs81Xumg+BRtcpcSQiIkXWlMunMO7icWxP3k6v93tx+tjT+WrFV16HVeLEdo8lPOzY+kR4WDix3WM9iqhoSkiAJ55wk5106+aGIYiOhl9+cWNaDhmixJF4S8kjEZEgZy3MnOkSRt27wz//wEsvuTGNhgyBihUzedL23+HTuvDrIDi8G84YBX02QPkGAY5eRPzNGPOOMWarMWZpumWPGWM2GGMW+n56ZrcPkaKodGhpbmp9E//c8Q8Te09kf8p+VuxYAUBKWgopaSkeR1gyRLeIZtwl42hQuQEGQ4PKDRh3yTgNlp0LyckQFwfnngtRUfDoo+73pEmweTOMGwft24Ma1EkwULc1EZEgZa0by+ipp+CPP6B+fTcF6/XXQ9myGTZOS4EN04EQqN8bTjgV6l4CDQdBjS6qdYgUbxOA0cC7GZa/ZK19PvDhiARWWGgY17a8lugW0aTZNAAmLJzAMz89w7BzhnHNadcQFhrmcZTFW3SLaCWLcsla+PVX1y3tgw/cuEaRkS5xNHCg+1skGCl5JCISZFJTYdo0lzRavBgaNoS33nL93EuXzrBx8gZY+SasehP2b4Sa3V3yqFQ4dJjoRfgiEmDW2jnGmEiv4xDxWmhIKKGEAm68nYqlK3LD9Bt4YvYTDD1nKNe1uo4ypTTCsHhj0yZ4912YMAGWL4dy5eCKK+C666BzZzcYtkgwU/JIRCRIpKTA++9DbKyrVDRt6ioZ/ftDqcw+rZc8AUufcLOn1b4AzhwDddQzRUSOusMYcy3wB3C/tXZnxg2MMYOBwQA1a9YkPj7eL4Hs3bvXb/uWzJX0Mi9NaV446QV+rfYrkxImceuXtzLhlwmMbDHSL8cr6eUdaEWlvA8dMvzySzVmzqzF779XJS3NcMopSTzwwGa6dNlK+fKpAMyZ43GgOSgq5V2cBGOZK3kkIuKxQ4dc3/ann4ZVq6BFC9eM+fLLITQ03YYHd8DqCRDZH8rVhqpnwMn3Q5OboUJDr8IXkeA0BngSsL7fLwDXZ9zIWjsOGAfQpk0b26VLF78EEx8fj7/2LZlTmTtd6cpQO5RZa2YRFhJG58jO7Ny/k3f+fIeb29xMhdIVCuU4Ku/ACvbyXrjQdUuLi4P//nMDXf/f/8GgQdC0aWWgMtDU2yDzINjLuzgKxjJX8khExCMHDriKxciRkJgIrVu7mTUuuSRd02Vr4b/fYcUYSPwAUg9A6crQ6Aaoe7H7ERHJwFq75cjfxpg3gS88DEfEU8YYzm147tHH0/+ZzgPfPsDTPz7Nve3v5Y62d1C5bGUPI5TiYPt2mDzZ1e0WLnRDDfTq5bqlnX9+hhuCIkWQelaKiARYcjKMGgWNGsFtt0HdujBjBsyb5yoZRxNHqYfg67bwTXtY9zFEDYIeC13iSEQkG8aY2uke9gGWZrWtSEkzsNVAfrnhF9rXa8/wH4bTYFQDHv3h0aODbYvkVkoKfPmlG7uoTh24+25Xj3v1VTfG0dSp0KOHEkdSPKjlkYhIgOzZA6+/Di+8ANu2QZcurrta167pJkNL+hu2zoYmt0JoaajRCRpdD5EDIKyil+GLSJAyxkwBugDVjDHrgUeBLsaYVrhua2uBm72KTyQYta/Xni+u/oI/N/3JU3OfYsHmBYQYd/dm36F9lC9d3uMIJZgtX+5aGE2a5JJE1arB7be7VkanneZ1dCL+oeSRiIif7drl7kCNGgU7dsAFF8Dw4XDOOb4NUg/B+k9c17StsyG0LERcCWVOhDNe8DByESkKrLX9M1n8dsADESmCTq99Oh9f+TGHUw8DsHrnak4fezrXt7qeB856gLqV6nocoQSLpCQ3JuX48fDrr641Uc+eLmF00UWZzIgrUsyo25qIeGdNHHwaCZND3O81cV5HVKi2b3dJogYN4JFHXLLot99g5sx0iaOtc+CzCPipH+xLhFbPQK9ElzgSERGRgAgLDXO/Q8K4rNllvPr7qzR8pSG3fXkbCbsSPI5OvJKWBrNmwYABULs23Hwz7N4Nzz0H69fD9OnQp48SR1IyqOWRiHhjTRz8PhhSk93j5AT3GCAq2ru4CsHmza5r2pgxbnyjyy+HmBho1QpIS4UNX0Op8lCzM1Q6Gap1gMaDofYFYJTTFxER8Ur9yvUZ32s8j3R6hJE/juStBW/x7qJ32XDfBg2qXYKsWQMTJsDEiZCQAJUrw8CBrpXRmWemG25ApATRfyki4o1FMf9LHB2RmuyWF1EbNriBEqOi4MUXoXdvWLoUPvwQWp28Df5+Bj5vDLMvgn9eck8qWwM6fQJ1eihxJCIiEiSiqkQx9pKxrLprFW9d+tbRxNHIH0eybNsyj6PLXNySOCJHRRLyeAiRoyKJW1K8WnT727598O67bizKhg3hySfhpJPcDGqbNrmbgm3bKnEkJZf+UxERbyQn5m15EFu7Fm65xVU0Xn8d+vd3Aym+9x40bw4sehg+rQcLh0L5SDj7Azh7qsdRi4iISE7qV65Pv1P7AbB+93qenPMkp7x+Cld+eCWLtyz2OLr/iVsSx+DPB5OQlIDFkpCUwODPB2ebQFKyCayFn36CG2903dIGDoR161ziaO1a+OYbV68rV87rSEW8p25rIuKN8AjXVS2z5UXE+vXluP56N9NGSAhcfz0MGQKRdXfD2jg4fA2EVYAKDaHxzdDkFqjc3OuwRUREJB/qVarH2rvXMurXUbz6+6t8+PeHXNr0Ukb3GO11aMTMiiH58LEtupMPJxMzK4boFscPB3Ak2XTkOUeSTUCm2xc3Gza4VkYTJsC//0L58tC3r+uW1rGjWheJZEYtj0TEGy1jITT82GWh4W55kPv7b4iOhoED2zJlCtx2G6xaBWNGLCJy6y3wSV2Ydxts/NI9odF10OYVJY5ERESKuOrlqxPbPZaEexJ4vMvj/LX1r6Nd2nYd2OVZXIlJmbfczmp5dsmm4urAAZg6FXr0gIgIeOghqFkT3nnHjVc5fjx06qTEkUhW1PJIRLxxZFDsRTGuq1p4hEscBfFg2QsXwlNPwbRpEB4Offuu4+WXI6hZdTf80AO2/wyhZaFBP2h8K5x4ptchi4iIiB9UKVeFRzo/wvBOwwkxIaTZNM5+52xqlq/Jw50epktkF0wAsxARlSNISDq+RXdE5cxbdOc12VRUWQsLFrjE0OTJsHMn1KsHw4bBoEHQuLHXEYoUHWp5JCLeiYqG3mvh6jT3O0gTR7//DpdeCqefDt9+62ZOS/x7FQ8PfIuaNYGwSlC+AZzxIvTeAO3HQzWNqCgiIlLchfgmu0izadx4+o0s376cbu92o+P4jsxcORNrbUDiiO0eS3jYsS26w8PCie3+vxbd6cc4Csliko6skk1FzbZt8NJL0LIltGkDb70FF1wAX3/txjJ66ikljkTyKsfkkTHmHWPMVmPM0nTLnjPGLDfGLDbGfGKMOSGL5641xiwxxiw0xvxRiHGLiPjdjz+6ika7dm4wxSefSGHD75/xZLcLqfpjY5rueh5SfE2+z54MJ98LZap6G7SIiIgEXKmQUtzb4V5W372a0T1Gk5iUSI+4Hkz/Z3pAjh/dIppxl4yjQeUGGAwNKjdg3CXjjo5flHFA7VSbetw+MiabiprDh2H6dOjTB+rUgfvug7Jl3WQmmzbBlClw/vkQGup1pCJFU266rU0ARgPvplv2LTDMWptijHkGGAYMyeL5Xa212wsUpYgUL2vigra7mrXwww9ulo34eKhRA555Bu644lvCF98A89dBubrQ4jF+39qcs0qF57hPERERKRnKlirL7W1v56bWN/HB0g+46KSLAIhbHEfp0NJc3vzyLFv9FFR0i+gsB7vObIwjgFATSppNI6JyBLHdY4vkYNl//eW6pb33HmzZ4upud9/tuqWdeqrX0YkUHzkmj6y1c4wxkRmWfZPu4a/AFYUcl4gUV2vi4PfBkOqrwCQnuMfgaQLJWpg50yWNfvkFate2fDj6By7qU5VydVrB7giodDK0fhnqXgIhpTgUH+9ZvCIiIhK8SoeW5pqW1xx9/OaCN5mdMJtm1ZrxUMeH6HdqP0qFBG742azGMkqzaaQ9mhawOArL3r2lGDPGJY3mzYNSpeDii91saT16QFiY1xGKFD+F8Yl1PfBBFuss8I0xxgJjrbXjstqJMWYwMBigZs2axPvpn7K9e/f6bd9yPJV3YBWJ8t61A8KegIxf6ot2QEJ8wMNJS4Off67GpEkN+PffipwUuYlpT7/K+VFxlE9NZPNv5/FblYfcxiEPwSpg1Y9AESnvYkZlHlgqbxGRwjHr2ll89PdHPDX3Ka755Boen/04r/Z4lQsbXxiQ42c1oHaICSHk8ZAi0fIoNRVmzXIJo48/PovDh6FFC3jxRTcLbo0aXkcoUrwVKHlkjIkBUoC4LDY521q70RhTA/jWGLPcWjsnsw19iaVxAG3atLFdunQpSGhZio+Px1/7luOpvAOrSJT35G64vHJGBnoH7s5Xaip8/LEbMHHJEmjUCBZOHMZpZV7GpO6HE9pBkyepFdGXWqXKZbqPIlHexYzKPLBU3iIihSM0JJSrTr2Kvqf05bPln/HU3KcIC3F30pIOJFG2VFnKlCrjt+PHdo9l8OeDj+u6dmTso4SkBAZ/7lqCB1sCaeVKmDABJk6E9euhShW46KJNDB9elzPO0PwkIoGS7w63xpiBwMVAtM1iGgFr7Ubf763AJ0Db/B5PRIqJ8Cxm8chqeSFLSYFJk1wf+EHXJNPj5Em8NymF5cuhZevKmMgBcOECuOBXaHgtZJE4EhEREcmrEBNCn2Z9+OOmP+gW1Q2AR+MfpeErDXn515czHZeoMGQcUDvUHD9qdPLhZAZ+MpCQx0OIHBVJ3JKs2gf43969roVRp07QpAk8/bSru33wAWzcCHffvYLWrZU4EgmkfCWPjDEX4gbIvtRam+knnDGmvDGm4pG/gfOBpZltKyIlSMtYCM0wyHRouFvuR4cOuWlamzaF2CHLielxD7vG1+WZ3tcS3W0WpUoBpwyFduOg6ul+jUVERERKNmMMxpf56NW0F02qNuGer+8h6uUonv3pWfYc3FPox4xuEc3ae9aS9mgaaTbz1t6pNhWLJSEpgQHTBlDt2WoBSyJZC3PmuHGLatWC66+HzZthxAhITISvvoIrr3QzqIlI4OXYbc0YMwXoAlQzxqwHHsXNrlYG1xUN4Fdr7S3GmDrAW9bankBN4BPf+lLAZGvtTL+8ChEpOo4Mih2g2dYOHIB33nEzpu3ftZUvh/XjzIgfsCFhmPqXQ5NboXpHvxxbREREJCddo7rSNaorcxPm8tTcpxjy3RBW/LeCNy99s1D2H7ckjphZMSQmJR4d2yirMZAy+m//f37vzrZuneuSNmECrFoFFSpAv34uiXTWWWpdJBIscjPbWv9MFr+dxbYbgZ6+v1cDLQsUnYgUT1HRfp9ZLTkZxo6FuHHrqBq2jHr1zufhN6rRJgyoHYtpeAOUq+nXGERERERyq2ODjnzd4Gt+W/8bJ4afCMDiLYv58K8Puaf9PUeX5UXckrhjxjo6MrbRwJYDmbhoYq66ySUfTiZmVkyhJo/274dPP3Vd0777zrU66tIFHnkELr8cypcvtEOJSCEJ3PyQIiIBsGcPvPZaGn/O+Jb+bcbwW8znpJY6kbC+GzGhpYDvvQ5RREREJEvt6rU7+ves1bN4au5TvPTrS9x25m3c3+F+albI/uZX+pZGISbk6KDYRyQfTmbGihmMu2QcMbNictUCKTEpMX8vJh1rYd48lzCaMgWSkiAiAh5+GAYOhIYNC3wIEfGjfA+YLSKSZ2vi4NNImBzifq8pvD70u3bBE0/AjT2/5IrSJ/HBLRfSs+3PhJ76f5S++Ddf4khERESk6Li3w70svXUpvU7uxQu/vEDUy1EM/354ltsfaWmUkJSAxR6XODoiMSnx6BhIhpz7hUVUzv/EJlu2wPPPQ4sW0K6d65528cWuxdGaNfD440ociRQFSh6JSGCsiYPfB0NyAmDd798HFziBtH2b5Y2nfqFz69U8+ihEnVSZmpG14azJlO67Dlo9DRWiCuc1iIiIiATYKTVOIe6yOJbdvoyrTr3q6HJrLet3rz9m25hZMbnqipY+GZRTYig8LJzY7nmb2OTQIfjkE7j0UqhbFx58ECpWdEMKbN4M770H3btDiP4bFSkydCteRAJjUQykZqjMpCa75VHRLomUh0G0t6zfy4/vxdHEjOGWhotoMOhO6lz6Ci1bngPM9e9rEREREQmwk048ifG9xmOtBWDmyplc+v6lXHPaNTzU8SEaV22cq+5lGZNBsd1jjxkXCcBgsFgaVG5AbPfYXI93tHix65YWFwfbtrlZ0+6/HwYNgmbN8vZ6RSS4KHkkIoGRnEVlJjnxf62SjiSXjrRKOiJdUml9jRdZ/vNvtK0yhssj9pCwuyUb671Bj77REOb/lyEiIiLiJd9s1pxW8zS6RXVjwsIJjF84nvJh5alUphJJB5OOe06oCSXNph2dbS19MujI3xlnZMttwmjHDpg82SWNFiyAsDC45BK4/nq44AIopf84RYoFvZVFJDDCqsLh/45fHh6RdaukP+6GtP2QmsyWXTV45O2hjJ99Mc9Hzyb8tN5EnHErDVq11xyuIiIiUuLEJ8TzY+KPWFxLpH2H9wEQFhLG4bTDR7cLDwtn3CXjsk0GRbeIztNsaqmp8M03bvyiTz913dRatoRRoyA6GqpVy88rEpFgpuSRiPjfmjhI3XP8chPmuqf9ck3mzzv8Hzv2nkCp0FBqnrCVpetP5caub3Hp2fOJHPyjf2MWERERCWJZjW9UOrQ0tSvUJnF3IrXK1+L5C57PU2IoO//+6xJGEyfCxo1w4olwyy1w3XXQqlWhHEJEgpSSRyLif4tiIO3Q8cvDKrlxjRbF+AbS/p89+ytQvuw+Kofv5ss/L2LDzjpMvfNK6lbdBLmYFURERESkOMtqfKN9h/cxrOMwXvj5BTbv28ykRZOIrBzJ2RFn5+s4e/bA1KmuW9pPP7lBrnv0gFdecbOmlSlTkFchIkWFxrcXkcKxJg4+jYTJIe53+lnUshrv6NAO97tlLEdy2X+ubUW/VyezZlsUz0wfwjPTh9Cu8W/ceu5YX+II19VNREREpATLbpa0N+e/ydp71vJ096eZv2k+54w/h24Tu/FfciZDCGQiLQ3i42HgQDfo9Y03wvbtMHIkrFsHX3wBl1+uxJFISaKWRyJScNkNeB0V7ZI9GVoWAVCuPmyZDf+OJs2msnlXbc6IWUClcrtpUmsF91z4MidW3HHsc0LDoU5Pl6DK5cxsIiIiIsVNbPdYBkwbkOm6xKREKpWpxNBzhnJn2zsZN38c367+lqrlqgKwascqGlZpeHTw7SMSElyXtAkTYM0aqFjRjWF0/fXQrp2GmRQpydTySEQKLqsBrxfFuL/r9OS4rmYhpYFUmNWFPRuW8vLMu7nspWk8ecXDJLzcgCf7Pvq/xJEJdc8PbwBRA2HNRF8yyv4vUZW+pZOIiIhIMRfdIpoTy52Y6br0rZLKly7PvR3uZUb0DIwx7Ny/k9PHnk7bt9ry2fLP2LfPEhcH554LUVHw6KPu96RJsHkzjBsH7TU/iUiJp+SRiBRcVt3SkhNdUmfNRPDNBAJgrWHx7miWJdThurHv0OL/FpOSWopvh53H8D6xnFA+wxSzNg2uToPea2HjjOwTVSIiIiIlxMs9XiY8LPyYZeFh4cR2j83yOeVLl+fFC15i084d9P6gN5WGtGLAiA9ZuSqNRx91LY5mzYIBAyA8PMvdiEgJo25rIlJwWXVLC4+AhcOOSfb8u6kxA994l19XtqdOHcP//R+8dtvJhKf+k/3+j8guUSUiIiJSghyZRS1mVgyJSYlEVI4gtntslrOrbdoEkyaVZvz4G9jw70DCzphCufNj2X3llXxy00JOr9MykOGLSBGi5JGIFFzL2GPHPAIIKQcntICNXwBu9rSxs24m9rMYKocnMea627huzBg30OKah49//hGh4b4BtX2yS1SJiIiIlDDRLaKzTBYBHDoEn3/uZkubORNSU+Gss+DNsaW48sprKF/hauYmzj2aOHr4+4eJPCGSa1peQ+nQ0oF6GSIS5NRtTUQKLioa2o6Dcr4ETngDaPcmaaHlSNzZiOvHvkWlG3cz9vubeXHAfax4oQm3nPsGZb6KdN3ajjw/vIF7vgn9337ajjt2MOyWsS6hlF7GBJOIiIhICbdwIdx9N9SpA1dcAX/+CQ8+CMuXw08/uRnUKlWC0JBQukR2ASAlLYXv1nzHjZ/fSJNXmzBm3hgOpBzw9HWISHBQyyMRKbjkDbB3JZACQErn75j8eWOeHtGf5f+E0KzuMt67bQBXtf+AUqGp6Z6XYVa23MyYdmSbRTGabU1EREQkne3bYfJk18po4UIoXRp69YLrroPzz4fQ0OyfXyqkFD9f/zMzV87kyTlPctuM23hq7lO81+c9ukZ1DchrEJHgpOSRiOTf3jXw5wOw/jOwqaTVvIDvdr7OHW0jWbESWrYM4cPRc7is2uWEpG7PfB9HBruOinatkHKTFMptoklERESkmEtJga+/dgmj6dPh8GE44wx49VW4+mqoWjVv+zPG0KNJDy5sfCE/rP2BkT+OpHHVxgCs3bWWE8udSMUyFf3wSkQkmCl5JCJ5c3AHHNgMlZtDqYqw/TdSGt/HlD9uJmZoI9atgzZt4LPP4JJT4zDzshjLKL0js7KlH/coY6skERERETlq+XKXMJo0yQ2EXa0a3H67a2V02mkF378xhm5R3egW1e3oshun38ifm//knnb3cGe7Ozmh7AkFP5CIFAka80hEcmYtbP8NfhkEn9aF324EYF9qNV5ak0D9S5/l2tsaERHhBmL8/Xe49FIwi2NyThyBa2W0KJNtj7RKEhGRLBlj3jHGbDXGLE23rKox5ltjzArf7ypexigihSMpCcaNgw4doFkzeOEFd9Nu2jTYsAFeeqlwEkdZGdF9BOdEnMMj8Y/QYFQDhn8/nO3JWbQuF5FiJcfkUUEqJMaYC40x/xhjVhpjhhZm4CISIOs/g5lt4Jv2sO5jiBrE3uZjGDkSIiPhvvtDad4cvv8e5s6FCy4AY3zPTU7Mef9HBrvOatvc7ENEpGSbAFyYYdlQYJa1tgkwy/dYRIqgtDSYNQsGDIDateHmm2H3bnjuOVi/3nVV69PHjW/kb23rtuWzfp/x581/cn6j8xkxdwRvLXjL/wcWEc/lpuXRBPJRITHGhAKvAT2A5kB/Y0zzAkUrIoGR9Dcc3uP+3r8J7GE483V2dtnA41+NIeK0lgwbBmee6WbrmDULunZNlzQ6Ijwi8/2bUMAcO5taVttmtVxERACw1s4BdmRY3AuY6Pt7ItA7kDGJSMGtWQOPPgoNG8K558IXX8DAgfDbb7B0KTzwANSq5U1srWq14sO+H7L0tqXcduZtAHz414fc9dVdrN+93pugRMSvchzzyFo7xxgTmWFxL6CL7++JQDwwJMM2bYGV1trVAMaY933P+zv/4YqI36QegvWfwIoxsHU2tHkNTroNGt3E9hNu5sWXDKNHw549btaO4cNdM+lstYw9dhwjcC2NjiSMcrNty9hCe4kiIiVITWvtJgBr7SZjTI3MNjLGDAYGA9SsWZP4+Hi/BLN3716/7VsypzIPrMIq7/37Q5gzpzozZ9Zi4cIqGGNp3Xon11yzmXPO2U6ZMmkkJ8Ps2QWPubBsZSsAM9bOYFLiJN6Y9wYX1rqQ/vX7U7tcbb8cU9d3YKm8Ay8Yy9xYa3PeyCWPvrDWnup7vMtae0K69TuttVUyPOcK4EJr7Y2+x9cA7ay1d2RxjPSVl9bvv/9+vl5QTvbu3UuFChX8sm85nso7sPJV3jaVqD3jqZ08g9JpO9kfWpuN4ZewObwHW5Jq8MEH9Zk+vQ4HD4bQufM2BgxIoFGjfbnf/6EdkLwB0g5BSGkIrwuls5j2Iy/bBgFd34GnMg8sf5Z3165d51trc0pBSy7lp66WUZs2bewff/zhl/ji4+Pp0qWLX/YtmVOZB1ZBytta+PlnN/j11KnuRl2jRjBoEFx7LUQUoUbYa3etZeSPI3nnz3dIs2kM7zScx7o8VujH0fUdWCrvwPNnmRtj8lUH8+dsaxk7sABkmamy1o4DxoGrvPiroHThB5bKO7ByXd5pqZC0FKq0dI+/fRwqnwNNbqVc7QsovT6E95+FN990071efTU89BA0a1YDyPTmdYmk6zvwVOaBpfIu0rYYY2r7Wh3VBl/TABEJGhs2wLvvwoQJ8O+/UL489O3rZkvr2DGT4QCKgMgTInnj4jcY3mk4z/30HCdXOxmAvYf2kpiUSPPqGsVEpKjKb/IoNxWS9UD9dI/rARvzeTwRKQwHtsHqd2DFWNi/AXqvh7LVofssCAljzRp4+mZXibHW9asfOhQaN/Y6cBERyaPpwEBgpO/3Z96GIyIABw/CZ5+5VkbffOMGw+7Y0dW3+vaF4tK4tl6lerzc4+Wjj8f+MZYHv32Qy5tfTkzHGFrVauVdcCKSL/lNHuWmQjIPaGKMiQI2AP2Aq/N5PBEpiD0rYfGjsO4j1yWsRmdoNRLCKgPw78owRoyA996D0FC48UYYMgQaNPA4bhERyZExZgpuLMpqxpj1wKO4OtpUY8wNQCLQ17sIRUo2a2HBApcwmjwZdu6EevVg2DDXNa0k3KQb2GogOw/s5NXfX+Wjvz/ikpMu4eFOD3Nm3TO9Dk1EcinH5FFeKiTGmDrAW9bantbaFGPMHcDXQCjwjrX2L/+8DBE5zuHdcGgnlG8AGNg4AxrfDE1ugcquyfDSpRAb6/rXlykDd94JDz4Idep4G7qIiOSetbZ/Fqu6BzQQETnGtm3uxtz48bBkiatr9enjuqV17+5u2JUU1cKr8VS3p3jgrAd49bdXeenXl/i/7/6PHwb+4HVoIpJLuZltLdcVEmvtRqBnusczgBn5jk5E8m7nIjdj2to4qNUdOn0KFRvBZZshtAwAf/4JTz0F06a55tEPPgj33Qc1NJyRiIiISL4dPgxffeUSRl98ASkpcOaZ8Prr0K8fVMl22Pri74SyJ/Bw54e5p/09bE/eDsCG3Ru4fvr1/N9Z/0e3qG6YojjYk0gJ4M8Bs0UkkNZ/xunbYuCrvyC0LDToB41v/d/60DL89hs8+SR8+SVUrgwPPwx33w0nnuhd2CIiIiJF3Zo14XzxhWtptGWLuyF3992uW9qpp3odXfCpWKYiFctUBGDljpUs2bKEcyedS4d6HXi408Nc2PhCJZFEgoySRyJF2d7VEF4fQsJg50LC0pLgjBchaiCU+d8U93PmuJZG337rEkVPPQV33OESSAGzJg4WxUByIoRHQMtYiIoOYAAiIiIihWfXLpgyxbUymjevLaVKwcUXu25pPXpAWJjXERYNnSM7s/ru1Yz/czwjfxpJz8k9aVu3LXOvm0vp0NJehyciPiFeByAieZSWAus/gx8uhOmNYP10t7z5EH6vMRFOvhfKVMVa+O476NzZ/SxeDM89B2vXQkyMB4mj3wdDcgJg3e/fB7vlIiIiIkVEaqqbJa1/f6hVC267DQ4cgNtuW8mGDfDJJ3DppUoc5VXZUmW59cxbWXHnCt6+9G26RXY7mjiakzCH1LRUjyMUEbU8EikqUg/Csudg5ThIXgfl6kCLx6D6WW59aFkwIVgLM2a41kW//gp168LLL8NNN0G5ch7FvigGUpOPXZaa7Jar9ZGIiIgEuZUrYcIEePddWLfOjV10442uldEZZ8Ds2eupUaMETJvmZ6VDS3P96dcffbxkyxI6T+jMydVO5qFzHqJ/i/6UCtG/sCJeUMsjkWBmreuaBq5r2ppJUOlk6DgNeiVAi0ehXG0A0tJgzpxqtG7tmkxv2gRvvAGrVsFdd3mYOALXVS0vy0VEREQ8tnev65LWqRM0aQJPPw2nnAIffAAbN8Lo0dC6NWhoHv9pXr05U6+YSunQ0lz76bU0Hd2Utxa8xeG0w16HJlLiKHkkEowO7YLlL8OXzWFmG0jZDyYEeiyAbt9A/T7gu+uSmgrvvw8tW8Kjj57Knj3wzjuwYgXcfLObFtZz4RE5L18TB59GwuQQ91td2kRERCTArHVjRV53neuWdv31sHkzjBgBiYluJrUrr4SyZb2OtGQIDQml7yl9+fPmP/n0qk+pWq4q9359L8kZW7SLiN+pzZ9IMNm9ApY9A2snQ+p+OLEdNB/qEkcApcof3fTwYZg82VVm/v0XmjeHmJi/eeyx5pQKtnd2y1g3xlH6L/rQcLcc/jcm0pH1R8ZEAnVrExEREb9bt851SRs/3rXarlAB+vVzSaSzzlLrIq+FmBB6ndyLS5teysodK9mwZAPWWnq934uukV0Z3How5UuXz3lHIpJvankk4rWUZDiwzf196D9YOwUiB8CFC+CCX6HhQAj9X/OhQ4fgzTehaVM3/Wu5cvDhh7BkCZx77tbgSxyBSwC1HQfhDQDjfrcd97/EUHZjIomIiIj4wf79rvX2BRdAgwYwfDjUrw8TJ7rWRm+9BWefrcRRenFL4ogcFUnI4yFEjookbklgW4obY2hyYhMAdh3Yxd5De7nvm/uIejmKkT+OZM/BPQGNR6QkCcZ/M0VKhqTlsHIsrJ4AEX2h3TjX0uiyTRBW6bjN9++Ht9+GZ56B9evhzDPdQNgXX1xEKjVR0Vm3ItKYSCIiIhIA1sK8ea6F0fvvw65dEBEBDz8MAwdCw4ZeRxi84pbEMfjzwSQfdjf8EpISGPy5ayke3SLwLcWrlKvC9wO/56fEn3hyzpMMmzWMZ396lu+u/Y4zap8R8HhEijslj0QCbf3n8M8o2PK9GwS73mUQda1bZ8xxiaN9+9zA188/7+6CnXOOSyKdd14RSRrlRniE66qW2XIRERGRAtqyBd57zyWN/vrLjVl0+eWuW1rXrhCi/hg5ipkVczRxdETy4WRiZsV4kjw64uyIs5k5YCbzNszj9T9e55TqpwDw6/pfaVy1MdXCq3kWm0hxouSRSCAkb3SzohkDm2bCnpVuvJ+GN0C5mpk+ZfdueO01ePFF2L4duneHKVOgc+dilDQ6IqcxkURERETy6NAhmDHDJYy+/NJNMtK+PYwdC1ddBZUrex1h0ZKYlHmL8KyWB9qZdc9kfN3xAKSmpdLvo35sS97GrW1u5YGzHqBWhVoeRyhStCnHLuIvNg02fg1zesNn9WHbT255q6fh0tVwykOZJo527oTHHnN97x96yHVP+/ln+O476NKlGCaOIOcxkURERERyackSuO8+qFcP+vSB33+H+++Hv/+GX36BwYOVOMqPiMqZtwjParmXQkNCmRE9gz4n9+GlX18i6uUo7vrqLjbs3uB1aCJFlloeiRS2lGT49zU3ntHeVVCmOjT7P6gQ6dZnMp4RwLZtrpXRa6/Bnj3Qu7cbuLF164BF7q3sxkQSERERycaOHa6F9vjxMH8+hIXBJZfA9de7AbGDckKRIia2e+wxYx4BhIeFE9s9OFuKN6/enPcue49HOz/KyB9HMuaPMZzX8DzqVqrrdWgiRZI+RkUKg7VwYKtrSWRCYdmzUOlkOO1JqH/ZMbOlZbRpkxvP6I033KDYfftCTAycdloA4w+0NXFuJrXkRDeuUctYJY5EREQkT1JT4dtvXcLo009dN7WWLWHUKIiOhmoa6qZQHRnXKGZWDIlJiURUjiC2e6yn4x3lRpMTm/B2r7d5rMtj1KtUD4BHf3iUxN2JPHTOQ0dnbxOR7Cl5JFIQh/fC2jhYMQYO74ZLVrhE0UXLoGz2NZZ169zMaW+9BSkpcPXVrpvayScHKHavrIk7dnyj5AT3GJRAEhERkRz9+y9MmADvvgsbNsCJJ8Itt7jBr1u18jq64i26RXTQJ4uyUr9y/aN/p9k03l/6Pu8uepd+p/bjoXMe4pQap3gYnUjw05hHIvmxewXMux0+qQPzbnHLmg8B0tzf2SSOVq92fe0bNYJx4+Caa+Cff1wFqNgnjsC1OEo9dqYOUpPdchEREZFM7NnjZps95xxo2tTdgGvVCj76yCWQXn5ZiSOAuCVxRI6KJOTxECJHRRK3JM7rkILSk92eZO3da7m/w/18tvwzTh1zKs///LzXYYkENbU8Esmt1IOQdgjCKsLuv2HV2xBxJTS5Faq1z3Ek63/+gREjIC7O9bu/6SYYMgQigm+MQf9KzmJGjqyWi4iISImUlgZz5rhuaR99BMnJLnE0cqS7+VanjtcRBpe4JXHHjEmUkJTA4M9d6+6i2lrIn2pWqMmz5z3LkLOHMOrXUXSP6g7Amp1r2Ja8jbZ123ocoUhwUcsjkZzsXQsLh8Gn9eHvZ92yOhdB7/Vw1rtQvUO2iaOlS6F/f2jWDD78EO66y7U+eu21Epg4AjfGUV6Wi4iISImSkABPPAGNG0PXrvDJJ24Mo19+gWXL3M03JY6OFzMr5pjBrAGSDycTM0utu7NzYviJPNntSU6vfToAz/70LO3easf5k85nbsJcj6MTCR5qeSSSlY1fwb+j3W9joO4lUMvdkSCkVI5jGi1YAE895So8FSq4is6990KNGgGIPZi1jD12zCOA0HC3XEREREqk5GRXZxo/Hr7/3s1F0q2bSyJddhmEh3sdYfBLTMq8FXdWyyVzz573LA2rNOT5X56n04ROdG7QmUc7P0rXqK5ehybiKbU8Eknv0K7//b16POz8E04dDpeuhU6fQs0uOe7i11/hoougdWtX+XnkEXcH7emnlTgC3KDYbcdBeAPAuN9tx2mwbBERkRLGWldvuvlmqF0bBgyAVavg0UdhzRqYNcstU+IodyIqZ96KO6vlkrmKZSry4NkPsubuNYy6YBQrdqxg2rJpR9dbaz2MTsQ7+W55ZIxpCnyQblFD4BFr7ah023QBPgPW+BZNs9Y+kd9jiviFtbB1jpsxbf0n0GMRVD4Z2rwGpU+AkLBc7Wb2bNfS6Lvv3KwfsbFw++1QubJ/wy+SoqKVLBIRESmhNm2CSZPcjGnLlkG5cnDFFW62tM6dIUS3t/MltnvsMWMeAYSHhRPbXa278yM8LJy729/NLW1uYX/KfgBmr53Nfd/cx/COw+l1ci9CjC5WKTnynTyy1v4DtAIwxoQCG4BPMtl0rrX24vweR8RvUvbBqvGwcgwk/Q1hJ7jBr8MquPVlq+e4C2tdsujJJ2HuXKhZE557zk0XW6GCf8MXERERKSoOHYLPP3fd0mbOhNRUOOssePNNuPJKqFTJ6wiLviODYsfMiiExKZGIyhHEdo/VYNkFVKZUGcqUKgPAgZQD7D64m8umXsapNU4lpmMMfZv3JTQk1OMoRfyvsMY86g6sstYmFNL+RPzn8B43Y1rqQVj4IFRuAe3egQZXQanctYu2Fr780rU0+u03qFsXXnkFbrzR3T0TEREREVi40CWM4uLgv//cQNcPPgiDBrmZ06RwRbeIVrLIjy5ofAHLbl/GB0s/IHZuLP0/7s/r815n9qDZmBxmXhYp6goredQPmJLFug7GmEXARuABa+1fmW1kjBkMDAaoWbMm8fHxhRTasfbu3eu3fcvxgqW8Q+xBqu//gbr7pgOWBdXHAFDmxAkcLFUT1gHrfs9xP2lp8OOP1XjvvQasWFGRWrX2c999iVxwwWZKl7b89pt/X0dOgqW88+TQDkjeAGmHIKQ0hNeF0lW9jipXimR5F3Eq88BSeYtIfmzfDpMnu6TRwoVQujT06uW6pZ1/PoSqkYYUYaVCShF9WjT9W/Tn478/Zn/KfowxpKalMmXpFK485UpKh5b2OkyRQlfg5JExpjRwKTAsk9ULgAbW2r3GmJ7Ap0CTzPZjrR0HjANo06aN7dKlS0FDy1R8fDz+2rccz/Py3rsa/n0NVk9wSYpKTaHxrXQ5qSPkoXlpaipMnerGMfrrL2jSxFWIoqPLERbWFAiOW2eel3derYk7fua1g+FFZgDtIlfexYDKPLBU3iKSWykp8PXXrn40fTocPgxnnAGvvgpXXw1Vi8Z9IZFcCzEh9D2l79HHX638ims+uYaHZj3EkLOHcMMZN1C2VFkPIxQpXIUxwlcPYIG1dkvGFdba3dbavb6/ZwBhxpjs5zcXKai0FEg94P7ePAv+eQVqdYfu38NFy+Dku3OdODp82A3m2KyZq/hY6+6kLVvmmluH5W4sbcnKophjE0fgHi+K8SYeERERyZPly2HIEIiIgIsvdhOI3H47LFoE8+fDHXcocSQlw0VNLuKr6K+oX7k+d3x1B1EvR/HiLy9yKPWQ16GJFIrCSB71J4sua8aYWsbX+dMY09Z3vP8K4Zgix0veCEseh88awMpxbllkNPROhHOmQs2ukMu+yAcPwrhxri/+dddB+fLw0UewZAn076/m1oUmOTFvy0VERMRzSUmuntShg7vB9sIL0KYNTJsGGzbASy/Baad5HaVIYBljuLDxhfx43Y98f+33NKvWjHHzxxFq3D8OaTbN4whFCqZA3daMMeHAecDN6ZbdAmCtfQO4ArjVGJMC7Af6WWttQY4pcpzNs2DF67D+M7CpUPsCqHyqW1cqPNeDYAPs3w9vvQXPPgvr10Pbtm4g7IsuynXeSfIiPAKSMxlnPzwi8LGIiIhIltLS4IcfXLe0adNcnal5czfL7IABUKuW1xGKBAdjDF2jutI1qis79+8kNCSUvYf2csbYMxhw2gDubHsnVcpV8TpMkTwrUPLIWpsMnJhh2Rvp/h4NjC7IMUQylbIfSvmmNVv6BCT9BSffB41vhoqN8ry7vXvhjTfg+edhyxbo2BHeeQfOPVdJI79qGXv8mEeh4W65iIiIeG7NGteFf+JESEiAypVh4EDXMvvMM1VPEsnOkSRR0oEkmldvzqPxj/LCLy9wx5l3cG+He6kWrhFdpOgorNnWRPzPWvhvnq+V0Sdw8b9QriZ0eBfK1oTQvA9It3s3jB4NL77opo/t3h0++AA6d/ZD/HK8I4NiL4pxXdXCI1ziqAgMli0iIlJc7dsHH3/sWhnFx7sE0bnnwtNPQ+/eUK6c1xGKFC11K9Xl036fsmjzImLnxvL0j08z6rdRLLt9GRGV1eJeigYljyT4pSTD2smwYgzsXAClykPkALApbn35Bnne5Y4d8PLLrkvarl3QsycMH+767kuARUUrWSQiIuIxa+Hnn13CaOpU2LMHGjWCJ5+Ea691A2KLSMG0rNWSqX2nsmzbMj5Z/snRxNHUv6bSoV4H6leu73GEIllT8kiCV+pBCC0DB7a6rk2VT4E2r0HUAAirlK9dbt3qBnF87TVXKerTxyWNzjijkGMXERERKQI2bIB333Vd0/79100S0rev65bWsaO6pZVEcUviiJkVQ2JSIhGVI4jtHkt0C93oK0zNqjejWfVmAOw5uIcbpt/AwZSDDGo1iGHnDCOqSpTHEYocT8kjCS6ph1yXtBVjXIKo83SoEAk9l0Dl5vmuwWza5AZ0fOMNOHAArrwSYmKgRYvCDV9EREQk2B08CJ995loZffONGwy7Y0cYOtQljipU8DpC8UrckjgGfz6Y5MNuPMqEpAQGfz4YQAkkP6lYpiJLb13KMz89w9t/vs07f77DgNMG8ETXJ9SlTYJKiNcBiACwLxEWDYfPIuCnfrAvAap3dG2oAU44JV+Jo8REuOMOiIpyXdT69oVly+D995U4EhERkZLDWpg/39WLateGq66CpUth2DBYsQLmzHGtjZQ4KtliZsUcTRwdkXw4mZhZMR5FVDI0OKEBr1/0OmvuXsOdbe/k42Ufcyj1EAApaSkeRyfiqOWReMemuZpMSCismQR/Pw11LoIm5Im3sgAAJARJREFUt0LtC8DkP7e5erUb1HHiRPd40CB3N61hw8IJXUREpCgwxqwF9gCpQIq1to23EUmgbdsG773nWhktWQJlyrhu+9dd5yYKCQ31OkIJJolJiXlaLoWrTsU6vHThSzzZ7UkqlHaZ3CumXkFoSCjDOw7n9NqnexyhlGRqeSSBd2Ab/P0MTG8M6z5yy5rcCpeudt3U6vTId+Jo+XI3qONJJ8GkSTB4MKxcCePGKXEkIiIlVldrbSsljkqOw4fhp59OpE8fqFMH7rsPypaF1193XfmnTIHzz1fiSI6XVTcpdZ8KrCOJI2stLWu2ZNbqWZwx7gwunnwxv63/zePopKRS8kgCw1rY9hP8FA2f1oOFQ6F8BJSp7taXqZqvWdOOWLIE+vWD5s3d1LJ33w1r1sDo0ZodREREREqGv/6CBx6A+vVh+PAW/PyzqxMtWQK//w633gpVqngdpQSz2O6xhIeFH7MsPCyc2O7/3959h0dV5X8cf58kJEAkIFV6EwFp0nuTooBKEZUVFHE1oriiYkHKD0RAF9EVhZWy0hRBVwRBUXHRKAK6CiKoQQmQUCJVQSJSkpzfHyewiEGRydybzHxez5MnM/cO9344zxBOvnPKOJ8ShTdjDI+2f5SUe1MY234sa3auodkLzZj5xUy/o0kY0rQ1CSpjM/735NPb4JdUuPgOqDbQLYAdoLVrYexYWLzYzdF/+GH36VqJEgFfWkREJBRYYLkxxgLTrLXTTz9pjIkH4gFKlSpFQkJCUEKkpaUF7drhLi0tivffL8nbb1/Epk1xREZm0rz5AW6/PZm2bY8QFWXZvx/U/MEVKu/xspTlxfovsuvwLo5nHCc6MpqyhcpS9EDRXPX3C5X2/jNa0pIGDRuwJHUJxfYXIyEhgQ0HN3A88zgNL2yICeLWiOHY3n7LjW2u4pEEx48bYPPzNN2zENK3QVQstHrN7ZwWFRvw5descUWjZcugSBEYNQruuQeKFg340iIiIqGkpbU21RhTEnjPGLPJWvvRyZNZxaTpAI0aNbLt2rULSoiEhASCde1wlJEBK1bA7NmwaJHbSbZOHXj6aejbN4KSJUuQkPC12txDeo97K5zbuwtdTj1+av5TvPndmzQt25SRbUbStVrXoBSRwrm9/ZIb21zT1iTnZByFbS/B8pbwdj3YNpuDMQ3gxGF3vkitgAtHH34IHTtCixZu+PX48ZCSAqNHq3AkIiJyJmttatb3vcAioIm/iSQQW7bAyJFuF9krroB33oG//hU+/xy+/BLuuw9KlvQ7pfht3sZ5VHqmEhGPRlDpmUrM2zjP70gSJK9d9xrPd3ue3Wm7uWr+VTSa0YjlW5b7HUtClIpHErjMrKlpB7+CNTfBsX1Q/ynosYtNFw6FAhcFdHlrYflyaNMG2rVz28pOnAjJyW572bi4gP8GIiIiIccYE2uMKXTyMdAZ+MrfVPJnpaW5EUZt28LFF7sPzmrVgldegdRUt75jw4YQxBkrkofM2ziP+KXxpBxKwWJJOZRC/NJ4FZBCVExUDAMbDWTz3zYz85qZ/HTsJ7b9uA2AExknyMjM+IMriJw7FY/k/GSmw8434IMr4bM73LFijaDTKrhqE9S83y2CHQBrYelSaNbMfbq2bRs895z7PmQIxAY++01ERCSUlQI+NsZ8CfwXeMta+47PmeQcWAsrV8Ktt8JFF8GAAW6XtPHjYft2ePttuP56t4OayOmGrxjOkRNHfnXsyIkj9F/UXyORQli+yHwMqD+AxEGJ3Fr/VgBmrJtBrX/WYu6Xc0nPTPc5oYQCrXkkf84vu2HLvyBpOhzZAQXKQKnL/3e+RIuAb5GZ6ebvjx0L69dDpUowbRr07w8xMQFfXkREJCxYa7cC9fzOIeduxw6YO9eNNEpKcpuB9OnjikctWmh0kfyx7Ye2Z3s8I2sTm5MjkQD61unrWS7xRlTE/369r1ykMvmj8tN/cX9GJ4zmkVaP0P+y/kRHRvuYUPIyjTySP2at+wL45gnYMBLiakDr16F7Clz6UI7cJiMDXn7ZLfjYuzccOeI6T999B/HxKhyJiIhI6Dl6FBYscKOsK1aEESOgXDmYMwd274Z//QtatlThSM5NhcIV/vA1R04cYfiK4R6kET91qdaFL+74giV9llC8YHHi34znhtdu8DuW5GEaeSRnd/wgbJ0DSVOh8T+hVHuo+QBUGwRx1XLsNidOwLx5bij25s1uHv/8+XDddRAZmWO3EREREckVrHWLXM+a5fo8Bw9ChQpuMez+/aFKFb8TSl41rsM44pfG/2bq2pnONkJJQosxhqurX81Vl1zFe1vfo2C+ggDs+3kfL254kTsa3kFstNYCkXOj4pH81g9rYfPzkPwyZPwCxZoCWR93FSyXY7c5dsyNLHriCbf4df36sHAh9OgBERoTJyIiIiFmzx546SVXNPr6a7dm0bXXumlp7dur/yOBOzkVbfiK4Ww/tJ0IE3FqytrpzmWEkoQOYwydq3Y+9XzxpsUMWT6Exz9+nPub3c+gJoOIi9EuRPL79F+UOCenpWWegIRukDwfKvWDK9fBFZ9AqXY5dqtffoFnn4WqVWHgQChVCt58E9auhV691HESERGR0HHiBCxeDN27Q9my8MADUKiQW89x925XTOrQQf0fyTl96/Ql+d5kMkdlMqfnnFOjTU4qmK8g4zqM8ymd5Aa3N7ydVbeuonGZxgx7fxgVn6nImA/HYE/+TiiSDY08Cnc/fQubp8LeBLjic4jIB20WQ1xNiC6co7dKS4OpU2HiRPfJW5s2buRRhw6axy8iIiKhZeNGN8LopZdg3z63a9qQIXDLLVCzpt/pJFycORKpQuEKjOsw7rwWy563cV6OXEdyhxblW7Cs7zLWpq5l7MqxfLnnS0zWL2U/H/9Z09nkNwIqHhljkoHDQAaQbq1tdMZ5A0wCugJHgFustesCuafkgMwTsHOJm5q2Z4UrGJXrBScOQkwxKN4sR2936BBMngz/+AccOAAdO8Krr7rikYiIiEio+OEHt4bRrFluRHW+fHD11XDrrW5B7Ch9bCs+6Funb8BFnnkb5/1qLSXt2hY6GpZpyKIbFnEi4wQA3+7/lsYzGnN7g9t5oMUDlC5U2ueEklvkxH9h7a21+89yrgtQLeurKfB81nfxg7VuiM/uFfBxbyhYAeqNgyp/hQKlcvx2P/wAs2ZVomdPtxBkt25uB5FmOVubEhEREfFNRga8954rGC1eDMePQ7168Mwz0LcvFC/ud0KRwA1fMfw3i3Cf3LVNxaPQkC8yHwD5o/LTo0YPJn06iSmfTeG2BrfRJkKf+kvwp611B+ZaN3nyE2NMEWNMaWvt90G+r5xkM2H3f9woo8K1od5jcFEnaLcMLuoMETm/ndnevfD00zBlCqSlueLRiBHQoEGO30pERETEF99956bfz50Lu3ZBsWJuLccBA+Cyy/xOJ5KzzrY7m3ZtCz0Vi1Rkbs+5jGo7iic+foJpa6cx28ym2+XdNJUtzAVaPLLAcmOMBaZZa6efcb4ssOO05zuzjv2meGSMiQfiAUqVKkVCQkKA0bKXlpYWtGvnJlGZhyh95B3K/LyEAhmpHI8ozI5DJdnxY0LWKwrAdytz9J7790fzyivlWbq0DMePR9C+/V569dpErVqWn36CMGh234XL+zu3UHt7T23uLbW3yK8dPuym3s+aBatWuUWuu3SBSZPgqqsgJsbvhCLBUaFwBVIOpWR7XEJT1aJVmXHNDEa2HcnM5TNPFY7GfTSO3pf2pnrx6j4nFK8FWjxqaa1NNcaUBN4zxmyy1n502vnslkHOdgn3rMLTdIBGjRrZdu3aBRgtewkJCQTr2rnK6n6wex6UaAXVniS6/LVUjYyhahBulZICEybACy9Aejr06wePPALVq5ciISExPNo7lwib93cuofb2ntrcW2pvEcjMhI8+cgWj116DI0egenV44gm46SYoU8bvhCLBN67DuF+teQTatS1cVChcgXYl2gGQfDCZcSvHMfKDkVxf63qGtx5OnVJ1/A0ongloU1BrbWrW973AIqDJGS/ZCZQ/7Xk5IDWQe0o2TqTB5mnwdn04+LU7VmsEdN0AnVZCpRshMuc/CtuyBW67DS6+GGbMgJtv/t8Q7uoqRIuIiEgelpICY8a4fk779rBokVvDaM0aSEyEhx9W4UjCR986fZl+9XQqFq6IwVCxcEWmXz1d6x2FmUpFKpF8bzIPt3yYtza/Rd2pden5Sk9SD+tX/HBw3iOPjDGxQIS19nDW487AmDNetgS42xizALdQ9iGtd5SDDn7l1jLa9iKkH4Yi9eD4j+5c4RpBu+2mTTB+PLz8sts1ZOBAeOghKF/+j/+siIiISG71yy/w+utulNH777u9Ri6/3BWRevWCggX9Tijin5zYtU3yvpKxJXm84+M82PJBJn0yiflfzadwTGEADh49SJH8RfwNKEETyLS1UsAiY8zJ67xsrX3HGDMQwFo7FVgGdAWSgCPAgMDiyinpP8PyZpB5AipcD9XuguLN3G5qQbJxI4wdC//+NxQoAPfeC0OGQGnt3igiIiJ5lLXw6aeuYLRgAfz0E1SqBKNGQf/+7rGIiPxa0QJFebT9o4xqN4oIE0FGZgZNZjShYpGKjGwzkjYVtUNbqDnv4pG1ditQL5vjU097bIFB53sPOU1aMiRNgx/Xu53SomKh1UIo2hDyB3cP2LVr4bHH4I03oFAhGDoU7rsPSpQI6m1FREREgub77+HFF910+8RE98FY795ut7S2bd1i2CIi8vsijPthmZ6ZTnzDeCaunkjb2W1pXaE1I9uMpGOVjpggDnAQ7+i/xdwsMwN2vQkJ3WBJFUic4NYuSv/ZnS9zRVALR6tXQ9eu0KgRfPghjB7t5v+PH6/CkYiIiOQ9x4/DwoVuZ7Ty5d26RRde6NZu3L0b5s516xupcCQi8ufERMXwQIsH2DZ4G89e+Sxbf9xK55c6807SO35HkxwS6G5rEkwpC2BNP8h/EdQeAVVvh9jgLixkrSsUPfaYm+tfvDg8/jjcdRfExQX11iIiIiJBsX69m5Y2bx4cOOAWun7wQbjlFm3yISKSkwrkK8Dfmv6N+IbxvPr1q3Su2hmAOevnUCimED1q9Dg1WknyFhWPcgtrYd9KtwB2iVZwySAo3xMiX4VyPSAiX9Bvv3y5W9Po44/hoovgqafgjjsgNjaotxYRERHJcQcOuGLRrFmueBQdDd27u2lpnTtDZKTfCUVEQldMVAw31bsJAGst09ZOY83ONdQqUYvhrYdzfa3riYzQD+K8RCU/vx0/BN9OhmV14D9tIfVtSD/izkUVhArXBbVwZC0sXQpNm8KVV7ppaZMnw9atcP/9KhyJiIhI3pGeDm+95dYuKl0aBg92U9Cee86tcfTqq9CliwpHIiJeMsawcsBK5vWah8Vy4+s3UnNKTd7b8p7f0eRP0Mgjv62+EVKXQdFG0PQFqNjHFY2CLDPTbUU7dix8+SVUrgzTp7tdRaKjg357ERERkRyzaZMbYfTii65IVLw4DBrkRhnVret3OhERiYyI5MY6N9Kndh8WJS5i7MqxFMznfu89ePQgBaIKEBMV43NK+T0qHnkp/RfY/m/YMgNavQoFSkOd0VDnUSjWyJsI6fDKKzBunNtZ5JJLYM4cuPFGiNK7QURERPKIQ4dcn2bWLPjkEzeaqGtXVzDq1k0fhomI5EYRJoJrL72WXjV7ndqFbdiKYSz9bikPtXiI2xrcRoF8BXxOKdnRtDUv/LQZ1j0Ai8vBJ/3h2D74ebs7V6yxJ4WjEydc56pmTejXz3WwFiyAb76Bm29W4UhERERyv8xMWLHC9WVKl3ZrM/70Ezz5JOzcCUuWQM+eKhyJiOR2JwtHANfWvJbKRSpzzzv3UHlSZSaunkja8TQf00l2VDIItqP74K1L3eNyPaDanVCqPZz2jyWYjh1zRaMnnnDrGdWv76arde+ubWhFREQkb9i2DWbPdqOlU1KgcGE31X7AAGjc2LNulYiIBEGHKh3oUKUDHyZ/yGMfPcaD7z1I8sFkJned7Hc0OY2KRzntSKqblvZzCjSbCflLQPMXoVRbN03NqxhHYMYMmDABUlOhWTP45z/dIpHqYImIiEhud+QILFwIM2dCQoLrv3TsCI8/Dj16QAHNahARCSltK7WlbaW2rNmxhtKF3O/On6d+ztJvlzK42WCKFijqc8LwpuJRTrCZsOd92Pw87HwDbAaU7gKZJ9xOaZX6eBYlLQ2efx4mToS9e6FNG/cpXYcOKhqJiIhI7mYtrF7tRhm98gocPgxVq8Jjj7lp9hUq+J1QRESCrXn55qcer9i6gjEfjeHpT55mUONB3N/8fkrGlvQxXfjSxKWcsHkqvN8J9n4INe6Hq5Og/TJXOPLIoUNu57SKFeGhh6BePfjwQ/fVsaMKRyIiIpJ7paa6KfY1akCrVjB/Plx7revHbN4MI0aocCQiEo4ebvUwGwZuoFu1bkxYNYFKz1RidMJov2OFJY08+rOshQOfQdLzUKYrVLjOfeWLgwq9ITK/p3EOHIBJk+DZZ10B6aqrXAeraVNPY4iIiIj8KceOuQWuZ82Cd991i2G3bg1Dh8J118EFF/idUEREcoM6peqwoPcCRrcbzfiV44kwbgxMps0k9XAq5eLK+ZwwPKh4dK7Sf4bk+W5q2o/rICoWitR15/KXgMr9PI2zdy889ZRbxygtDXr1ckWj+vU9jSEiIiJyzqyFdetcwejll+HHH6FcOXjkEbjlFrj4Yr8TiohIblWjeA3m9pyLtRaAJd8u4fp/X0//ev15pPUjVLmwis8JQ5uKR+fqgytg3yooXBsaTXHFonxxnsfYtcutZzRtmvvE7oYbYPhwqFXL8ygiIiIi5+TgwXw884xb/HrjRoiJgZ493W5pHTpAZKTfCUVEJK8wWWuyNCzdkNsb3M4LX7zArPWzuLHOjQxrPYwaxWv4nDA0qXiUnYzjsHMxbJ0NrV6BfIWg9iiILAAlWvqygFBKCvz97/DCC5CRATfd5D6lu+QSz6OIiIiInLOZMyE+vjkZGdC4sRs13acPXHih38lERCQvK1+4PFO6TWF4m+FMXD2RqZ9PZdWOVWz+2+ZTU9sk56h4dLqft0PSdNjyLzi6B2IrQdoWuPAyKN3Jl0hJSW5L2rlzXc1qwAC3FkDlyr7EEREREflTmjaFa6/dxciR5ald2+80IiISasoUKsPTVzzN0FZD2fbjNiJMBEfTj3LXW3cxqPEgGpZp6HfEkKDi0Ulp22DpxW4yfpluUO1OKH0FRPgzjjoxEcaPd+sBREfDnXe6XdTKaS0wERERyUNq1YI779xC7drl/Y4iIiIhrGRsSUrGlgRg456NLNq0iFnrZ9G1WldGtB5B8/LNfU6Yt4XvWK6j++Cbv8P6Ye75BZWh4bPQfRu0Wwplu/pSONqwAa6/3nW0Xn8d7r8ftm1zu6mpcCQiIiIiIiLy+xqXbUzy4GTGXT6OT3d+SouZLeg4tyOHjh7yO1qeFV7FI2uJO7YRVveDxeVg/VC3c1rWau1cMghiK/oS7fPPoUcPqFcP3nnHrWeUkgJPPgkXXeRLJBEREREREZE8qXD+wgxrPYzke5OZ2GkisdGxxMW4Ta+Sfkg6tWubnJvzLh4ZY8obYz4wxiQaY742xgzO5jXtjDGHjDHrs77+L7C4AUqcQIMD98CupXBxPHT9Ctq/48sC2CetXg1durgFJD/6CB591BWNxo2D4sV9iyUiIiIiIiKS510QfQFDWgzhjT5vYIxh38/7qDe1Hs1eaMbSb5eqiHSOAhl5lA4MsdbWBJoBg4wxl2bzupXW2suyvsYEcL/Ale/Nt4WHQM9UaPQcFPFnf3tr4YMP4PLLoWVLN+ro8cchORn+7/+0+4iIiIiIiIhIMMTFxPGPK/7B3p/3cs2Ca2gwvQELv1lIps30O1qudt7FI2vt99badVmPDwOJQNmcChYUharyfexVEBXry+2tdVPSWrd2haNNm+Dpp13RaOhQiIvzJZaIiIiEKGPMlcaYb40xScaYoX7nERER8VtMVAzxDeP57u7vmN19NkdOHKH3v3uzaf8mv6Plajmy25oxphJQH/g0m9PNjTFfAqnAA9bar89yjXggHqBUqVIkJCTkRLTfSEtLC9q1z8ZaWL26GC+9VJFNm+IoWfIogwdvp2vX3URHZ/LZZ57G8ZQf7R3O1N7eUnt7T23uLbV33maMiQSmAJ2AncBnxpgl1tpv/E0mIiLiv3yR+eh/WX/61e3Hqh2ruLSEm0j18HsPU6N4DfrV7Ue+yHw+p8w9Ai4eGWMuABYC91prfzrj9DqgorU2zRjTFVgMVMvuOtba6cB0gEaNGtl27doFGi1bCQkJBOvaZ8rMhIULYexYt4talSowYwbcfHN+oqMvAS7xJIefvGxvUXt7Te3tPbW5t9TeeV4TIMlauxXAGLMA6A6oeCQiIpIlMiKSNhXbAHAs/Rgrtq1gwuoJjPloDENbDuWWy24hJirG55T+C6h4ZIzJhysczbPWvn7m+dOLSdbaZcaYfxpjiltr9wdy39wuPR0WLIDx4yExEapXh7lz4S9/gagcGeslIiIi8ofKAjtOe74TaHr6C0J55He4U5t7S+3tLbW3t8KtvZ+s9iSfFPuEF1NeZOBbAxnx3ghG1hxJ3SJ1PcuQG9v8vEsZxhgDvAAkWmufPstrLgL2WGutMaYJbo2lA+d7z9zu+HF46SW3+HVSEtSu7YpIvXtDZKTf6URERCTMZLed7K+2lAnFkd/iqM29pfb2ltrbW+HY3u1pz1A7lP9s/Q8TVk/gug7XUbpQabb+uJWSsSW5IPqCoN4/N7Z5IONgWgI3ARuNMeuzjg0DKgBYa6cCvYE7jTHpwC9AHxuC++AdOwYzZ8ITT8D27dCgASxaBNdcAxGB7GcnIiIicv52AuVPe14OtwaliIiI/AFjDJ2qdqJT1U6njt2y+Ba+2fcN9zW7j7ub3E3h/IV9TOit8y4eWWs/JvtPtE5/zWRg8vneI7c7csStYTRhAqSmQvPmMHUqXHklmN9tGREREZGg+wyoZoypDOwC+gA3+htJREQk7/p7x78zduVYRnwwgolrJnJPk3sY3GwwRQsU9Tta0GlczHk4fNgVjCpXhnvvhWrV4D//gVWroEsXFY5ERETEf9badOBu4F0gEXj1bLveioiIyB9rXr45b934Fmvj19K+UnvGfDSGOevn+B3LE1q++U84eBAmT4Z//AN++AE6d4YRI6B1a7+TiYiIiPyWtXYZsMzvHCIiIqGkQekGvH7D62zcs5EqF1YBYP7G+fx31395sOWDlClUxueEOU8jj87BgQMwciRUrOi+t2wJn34K776rwpGIiIiIiIhIOKpTqg6x0bEAJO5P5Ln/PkeVSVUY9NYgth/a7nO6nKXi0e/YswceesgVjcaOhU6d4IsvYMkSaNLE73QiIiIiIiIikhuMaT+G7/72HTfXu5kZ62ZQ9dmqjF853u9YOUbFo2zs2uXWMqpcGZ56Crp3h6++gtdeg8su8zudiIiIiIiIiOQ2VS6swvSrp5N0TxIDGw6kRvEaABw6eohN+zf5nC4wKh6dJiUF7rwTqlSBKVOgTx9ITIR586BWLb/TiYiIiIiIiEhuV6FwBZ7r+hy9avYCYPJ/J3PplEu54bUb2Lhno8/pzo+KR0BSEtx6K1x8McycCQMGwObN7vEll/idTkRERERERETyqviG8QxtNZS3N79N3al16bGgB2tT1/od608J6+JRYiL06wfVq8P8+XDXXbBlC0ydCpUq+Z1ORERERERERPK6ErElGN9hPMn3JjO67Wg+TPmQYe8P8zvWnxKWxaMvv4TrrnNT0RYvhvvvh23bYNIkKFfO73QiIiIiIiIiEmqKFijKqHajSLk3hWlXTQMg5WAKV7x0BQnJCVhrfU54dlF+B/DSZ5/B8OG1Wb0a4uJg2DC3MHbx4n4nExEREREREZFwEBcTR1xMHABJPySxYc8G2s9pT6sKrRjddjSRRPqc8LfCZuTRhg3QpAls3FiYMWPc4thjx6pwJCIiIiIiIiL+6FClA1vv2cpzXZ4j+WAybye97XekbIXNyKO6dWHuXChW7BO6dm3tdxwREREREREREQrkK8DdTe4mvmE8R9OPsm7NOr8j/UbYjDwCuOkmKFgww+8YIiIiIiIiIiK/Eh0ZfWo6W24TVsUjERERERERERH5c1Q8EhERERERERGRs1LxSEREREREREREzkrFIxEREREREREROSsVj0RERERERERE5KxUPBIRERERERERkbMKqHhkjLnSGPOtMSbJGDM0m/PGGPNs1vkNxpgGgdxPRERERERERES8dd7FI2NMJDAF6AJcCvzFGHPpGS/rAlTL+ooHnj/f+4mIiIiIiIiIiPcCGXnUBEiy1m611h4HFgDdz3hNd2CudT4BihhjSgdwTxERERERERER8VBUAH+2LLDjtOc7gabn8JqywPdnXswYE48bnQSQZoz5NoBsv6c4sD9I15bfUnt7S+3tLbW399Tm3gpme1cM0nXlPK1du3a/MSYlSJfXv13vqc29pfb2ltrbW2pv7+W6PlggxSOTzTF7Hq9xB62dDkwPIM85McZ8bq1tFOz7iKP29pba21tqb++pzb2l9g4v1toSwbq23kveU5t7S+3tLbW3t9Te3suNbR7ItLWdQPnTnpcDUs/jNSIiIiIiIiIikksFUjz6DKhmjKlsjIkG+gBLznjNEuDmrF3XmgGHrLW/mbImIiIiIiIiIiK503lPW7PWphtj7gbeBSKBmdbar40xA7POTwWWAV2BJOAIMCDwyAEL+tQ4+RW1t7fU3t5Se3tPbe4ttbfkFL2XvKc295ba21tqb2+pvb2X69rcWJvtEkQiIiIiIiIiIiIBTVsTEREREREREZEQp+KRiIiIiIiIiIicVdgUj4wxVxpjvjXGJBljhvqdJ5QZY8obYz4wxiQaY742xgz2O1M4MMZEGmO+MMa86XeWcGCMKWKMec0Ysynrvd7c70yhzBhzX9bPk6+MMfONMfn9zhRqjDEzjTF7jTFfnXasqDHmPWPM5qzvF/qZUfIm9cG8oz6YP9QH85b6YN5SHyy48lL/KyyKR8aYSGAK0AW4FPiLMeZSf1OFtHRgiLW2JtAMGKT29sRgINHvEGFkEvCOtbYGUA+1fdAYY8oC9wCNrLW1cZs09PE3VUiaDVx5xrGhwAprbTVgRdZzkXOmPpjn1Afzh/pg3lIfzCPqg3liNnmk/xUWxSOgCZBkrd1qrT0OLAC6+5wpZFlrv7fWrst6fBj3A72sv6lCmzGmHNAN+JffWcKBMSYOaAO8AGCtPW6tPehrqNAXBRQwxkQBBYFUn/OEHGvtR8APZxzuDszJejwH6OFlJgkJ6oN5SH0w76kP5i31wXyhPlgQ5aX+V7gUj8oCO057vhP9R+oJY0wloD7wqc9RQt0zwENAps85wkUVYB8wK2uY+r+MMbF+hwpV1tpdwERgO/A9cMhau9zfVGGjlLX2e3C/lAIlfc4jeY/6YD5RH8wzz6A+mJfUB/OQ+mC+yZX9r3ApHplsjlnPU4QZY8wFwELgXmvtT37nCVXGmKuAvdbatX5nCSNRQAPgeWttfeBncslw0lCUNc+7O1AZKAPEGmP6+ZtKRM6R+mA+UB/MG+qD+UJ9MA+pDyanC5fi0U6g/GnPy6HhdkFljMmH67TMs9a+7neeENcSuMYYk4ybDnC5MeYlfyOFvJ3ATmvtyU9zX8N1ZCQ4OgLbrLX7rLUngNeBFj5nChd7jDGlAbK+7/U5j+Q96oN5TH0wT6kP5j31wbylPpg/cmX/K1yKR58B1YwxlY0x0bhFvpb4nClkGWMMbh5yorX2ab/zhDpr7SPW2nLW2kq49/b71lp9IhBE1trdwA5jTPWsQx2Ab3yMFOq2A82MMQWzfr50QItjemUJ0D/rcX/gDR+zSN6kPpiH1Afzlvpg3lMfzHPqg/kjV/a/ovwO4AVrbbox5m7gXdwK8TOttV/7HCuUtQRuAjYaY9ZnHRtmrV3mXySRHPc3YF7WL0NbgQE+5wlZ1tpPjTGvAetwOwl9AUz3N1XoMcbMB9oBxY0xO4FRwBPAq8aYv+I6kNf5l1DyIvXBPKc+mIQD9cE8oj5Y8OWl/pexVtPORUREREREREQke+EybU1ERERERERERM6DikciIiIiIiIiInJWKh6JiIiIiIiIiMhZqXgkIiIiIiIiIiJnpeKRiIiIiIiIiIiclYpHIiIiIiIiIiJyVioeiYiIiIiIiIjIWf0/zWWRXSvPT8wAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "# True population parameters for the linear relationship\n", "true_slope = 2.0\n", "true_intercept = 1.0\n", "sigma2 = [2,5]\n", "sigmax = [1,0.2]\n", "\n", "# Generate data points from the population\n", "np.random.seed(42)\n", "population_x = np.linspace(0, 10, 1000)\n", "population_y = true_slope * population_x + true_intercept\n", "\n", "# Create a figure with the population regression line\n", "plt.figure(figsize=(20, 10))\n", "\n", "\n", "# Simulate different random samples from the population\n", "num_samples = 2\n", "sample_size = 20\n", "\n", "plt.suptitle(f\"Linear Regression and Sampling (Population regression line: $\\\\beta_0={true_intercept:.2f}, \\\\beta_1={true_slope:.2f}$)\")\n", "\n", "colors = ['orange','green','purple','red','brown','pink','gray']\n", "\n", "slopes = []\n", "intercepts = []\n", "\n", "h=1\n", "\n", "for j in range(len(sigmax)):\n", " for i in range(num_samples):\n", " plt.subplot(len(sigmax),num_samples,h); h+=1\n", " plt.plot(population_x, population_y, label=\"Population Regression Line\", color=\"blue\")\n", " #sample_x = np.random.choice(population_x, sample_size)\n", " sample_x = np.random.normal(5,sigmax[j],sample_size)\n", " sample_y = true_intercept + true_slope*sample_x + np.random.normal(0,sigma2[i],sample_size)\n", "\n", " RSE = np.sqrt(((true_intercept + true_slope*sample_x - sample_y)**2).sum()/(len(sample_x)-2))\n", " nsx = sample_x.var()*len(sample_x)\n", "\n", " xmean = sample_x.mean()\n", " n = len(sample_x)\n", " SE0 = RSE*(1/n+xmean**2/((sample_x-xmean)**2).sum())\n", " SE1 = RSE/(((sample_x-xmean)**2).mean())\n", " \n", " # Fit a linear regression model to the sample\n", " slope, intercept = np.polyfit(sample_x, sample_y, 1)\n", " sample_regression_y = slope * population_x + intercept\n", "\n", " slopes.append(slope)\n", " intercepts.append(intercept)\n", "\n", " plt.title(f\"$\\\\hat \\\\beta_0={intercept:.2f}$, $\\\\hat \\\\beta_1={slope:.2f}$, RSE={RSE:.2f}, $n\\\\sigma_x^2={nsx:.2f}$, $SE(\\\\hat \\\\beta_0)^2={SE0:0.2}$, $SE(\\\\hat \\\\beta_1)^2={SE1:0.2}$\")\n", "\n", " # Plot the regression line for the current sample\n", " plt.plot(population_x, sample_regression_y, linestyle='--', label=f\"Sample {i + 1}\", color=colors[i])\n", " plt.scatter(sample_x, sample_y, color=colors[i])\n", " plt.grid()\n", "\n", "\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Confidence Intervals of the Regression Coefficients\n", "As we have seen, standard errors allow to compute confidence intervals. We will not see it into details, but it turns out that the true values will be in the following intervals with a $95\\%$ confidence:\n", "\n", "$$[\\hat \\beta_0 - 1.96 \\cdot SE(\\hat \\beta_0), \\hat \\beta_0 + 1.96 \\cdot SE(\\hat \\beta_0)]$$\n", "$$[\\hat \\beta_1 - 1.96 \\cdot SE(\\hat \\beta_1), \\hat \\beta_1 + 1.96 \\cdot SE(\\hat \\beta_1)]$$\n", "\n", "In practice, it is common to compute confidence intervals with a $95\\%$ confidence. In the case of our model:\n", "\n", "$$horsepower \\approx = \\beta_0 + mpg \\cdot beta_1$$\n", "\n", "We will have:\n", "\n", "||COEFFICIENT|STD ERROR|CONFIDENCE INTERVAL|\n", "|-|-|-|-|\n", "|$\\beta_0$|39.94|0.717|$[38.53, 41.35]$|\n", "|$\\beta_1$|-0.1578|0.006|$[-0.17, -0.15]$|\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the table above, we can say that:\n", "* The value of `mpg` for `horsepower=0` lies somewhere between $38.53$ and $41.35$;\n", "* An increase of `horsepower` by one unit is associated to an decrease of `mpg` between $-0.17$ and $.015$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is also common to see plots like the following one:" ] }, { "cell_type": "code", "execution_count": 171, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABWV0lEQVR4nO29eXxcd3nv/37OObNJM1psSd4d24kTk9VZyAJuMAn7kqQthQTaQkualPbXwG1pSRcoDa97L7S9hdDb3sZNW6CFAE0hCZCUJcEEQ0xWJ44Tx3bkXbYka52RZjnL9/fHOTOakWak0TJav+/Xy9bozMyZZ86MnvM9z/J5RCmFRqPRaJYOxlwboNFoNJrZRTt+jUajWWJox6/RaDRLDO34NRqNZomhHb9Go9EsMay5NqAaWlpa1IYNG+baDI1Go1lQPPPMM2eUUq2jty8Ix79hwwaefvrpuTZDo9FoFhQicrTcdh3q0Wg0miWGdvwajUazxNCOX6PRaJYY2vFrNBrNEkM7fo1Go1liLIiqnoXIzv1d3PN4O8f7hlnXXMft125i+5a2uTZLo9Fo9Iq/Fuzc38WnHtpHVzJDUyxEVzLDpx7ax879XXNtmkaj0WjHXwvuebydkCnUhS1E/J8hU7jn8fa5Nk2j0Wi0468Fx/uGiYXMkm2xkMmJvuE5skij0WhG0I6/BqxrriNtuyXb0rbL2ua6ObJIo9FoRtCOvwbcfu0mbFcxnHNQyv9pu4rbr90016ZpNBqNdvy1YPuWNu664QLaElEG0jZtiSh33XCBrurRaDTzAl3OWSO2b2nTjl6j0cxL9Ipfo9Folhh6xT8L6GYujUYzn1gSjn8uHW++mStkSkkz112gnb9Go5kTFn2oZ667aHUzl0ajmW8s+hV/seMFqAtbDOcc7nm8ne1b2mp+NXC8b5imWKhkm27m0mg0c8miX/GP10U7G1cDuplLo9HMNxa941/XXMeZVJb27hT7Tw/S3p3iTCrL2ua6WQnD6GYujUYz31j0jv+aTcvoTuXIuR6GQM716E7luGbTslnR1NHNXBqNZr6x6GP8T7T30hi16E/b2AoMgaZYiCfae1nXXEdXMlOI/0NtwjC6mUuj0cwnFv2K/2BXkmTGIWQaREMGIdMgmXE42JXUYRiNRrMkWfSOP+d4IGCIIAiGCIi/XYdhNBrNUmTRh3pCppC2wfMUIqCUvz1sCqDDMBqNZumx6Ff8565oYHl9GMsUXKWwTGF5fZjNKxrm2jSNRqOZExa947/92k2ELZOVjVHOW5FgZWOUsGXqOL5Go1myLHrHr+P4Go1GU8qij/HDwo7ja2VPjUYz0yz6Ff9CZq4F5jQazeJEO/55jFb21Gg0tWBJhHrmgpkI0WhlT41GUwv0ir8GzFSIRit7ajSaWqAdfw2YqRCNlpTQaDS1oOaOX0RMEXlORL4b/L5MRH4oIgeDn821tmG2mSnVT12KqtFoasFsxPg/CrwM5Ftl7wQeVUp9VkTuDH7/xCzYMWvMpOrnQi5F1Wg085OarvhFZC3wTuDeos03Al8Obn8ZuKmWNswFOkSj0WjmM7Ve8X8B+BMgUbRthVLqFIBS6pSIlF3OishtwG0A69evr7GZM8v2LW3chR/rP9E3zNoyVT26MUuj0cwVNXP8IvIuoEsp9YyIbJ/s85VSO4AdAFdccYWaWesmz2Qd9XghmnzVT8iUkqqfu4LnaTQaTS2p5Yr/9cANIvIOIAo0iMh/AJ0isipY7a8C5n0b6mQcdTUniOKqH4C6sMVwzuGex9u149doNDWnZjF+pdSfKqXWKqU2ADcDjymlfh14CPhg8LAPAg/WyoaZotryzGrr92dj1q9Go9FUYi7q+D8LvFlEDgJvDn6f11TrqKs9QejGLI1GM5fMiuNXSu1USr0ruN2jlLpeKbU5+Nk7GzZMh2oddbUnCF31o9Fo5hJRas7zphNyxRVXqKeffnrOXr84xh8LmfQMZekdsolHTM5d0VBw2Hd8/TmGcy4Ry6AlHqEhFmI455DNOQxmXYZyLvVhk1u3beTitU3jVv3MlN26ckijWbqIyDNKqSvGbNeOvzryTvRgV5JkxqG5LkRLPELadukazJBxPDxP4SowBQzDH/E4lHUYyrmYhmAIeMr/99HrzuGON51bU3uLT1Zp28V2le781WiWEJUcv9bqqZLtW9q477ar2dyWYG1zjNZEFBHBcRWprO9UQ5ZByBTfuXuK4ZzrnwgMwTIMDDGCn3DvrsM1tVdLOms0mkpoxz9JRsfxz6Sy5K+ZBN/Bhy2DiGXQGAuRdTwMGXm+6ykcVzGYcbhlx+6aDVXRlUMajaYSWo9/kozW4cm5HjLqMSKQtj06BjK4nsL1wDI8ABxvJLR2+EyqZo1bk9UL0vkAjWbpoFf8k2R0RY5pCIIfzvE8hVKKnOOhAKVU4QA7nipx+gbQM5Qj57g1Cb9MpnJIj3jUaJYW2vFPktFSyRuW1bE8HqYlHsYyBcdT5P17xDKJhMwxB9mAYLuQzDg1Cb9MRtJZ5wM0mqWFDvVMgdE6PPkwSb40c3d7D2FrJABkmQY51w/1iIBlGIXbWcerWeNWtZLOesSjRrO00I5/CpSLh99329WF+y/+9PdJ2y5KKWzXo7hgVik/LxBGUPghorlu3JrJ+QEajWb+ox1/leSd/YHOQVJZl2X1IZbXR8oKtt26bSNfePQgXpkeCVPAVZBzFSKQiJiFkMr2LW0lr2O7irBlsLktMalk63iJ2nL33X7tJj710D6Gc05Jzf9cn5A0Gk1t0A1cVVDcDHV6IBNU8girm6Ikon53blsiWrLq3/a/f0THYLYQ7zfFD+3kf/cUrGqMsLw+UnC077lsDfc/e5Kc49IzlPMfqKAlESZkmiUx+krOfbzGLWDc+2rdSazRaGaXSg1cesVfBcXJz5zrYYofpulOZklEQ+Xj4YbB+asaOHxmCMdVGIagULieXwmEgpZ4FBiRZb5312FaExF6Ug4GgmEInlIMph1WNloF2ebxZKLHk3wGKt53321Xa0ev0SwRdFVPFRQ3Q4VNA6X81Xs+YVsuHp4XdmuJR/BQeJ7/zxTBdhUrGiIlj4+FTIZyLrGQ6V9RBLnh/OsUn1zGq8IZr3FLN3VpNBrQjr8qitU5W+IRbM8ja3s4ruJgV5KBtD0mHp6vo7dMYXVjFDH82H5rIkLENDjRn6a9O0UyYwP+yaM+7Idf8icX8JPBYdMoObmM58DHUxJd11xHz1CW9u4U+08P0t6domcoq5O4Gs0SQzv+KihuhgKFAAp8KQbFmM5dKK2j9xRcuq6Zj153DiJCQ8zCECHnepzsS3MmlcF2Fbdu24jtKhJRCw+F4/nCbw0xqyTZOp5zH69x65pNy+hK5si5voxEzvXoSua4ZtOyGh9BjUYzn9Ax/iooHp7+7LE+QqbBukY/sQswnHP47CMvl022FsfNb9mxm5ApNMaiuJ6iZyiHp6ArmSuodeblmh13kFxQ1bNhebwk2TpeFc54g97vebyd1niYZMbxS0pNg0TU4on2Xu6Yg+Oq0WjmBu34qyTvxLd97jGaYiFERtb5jutxpCfNBk8Vkq0fv/95WuMRklmncCLIN0oNpm360zYhwwDxpRzuf/YkF69tmnBIe/7kkohYKKUYSNtjqnAq7eN43zAt8QitiWhhm1JKx/g1miWGdvyTpFyzU2cyS8gwCtscV9E3lKMnlcM04Ewyyx/f/zwRUzjUnSJr+0lhFbR2GQK26447bH10JU9+lf+ZGy+suhpHN2ppNBrQMf5JUymGXlyl0zmYwVV+HsAyDRTQO5TjVDKH4/rufnQ3b+dAloNdyYqvOxN6Ordfu4mBtM3BriT7Tw9WTExrNJrFjV7xT5JyMfRwkRYP+Po74K/kBb8W3/XlOolaRolKJ1A4EQxlncK20Q1aBzoHWdUYK3neVEoxJXhBpRQoKZuY1mg0ixvt+KdAOZG24mRr3q1bhoHr+Xo9ecbrk3ZcVbK/4gatVNblTCpbEp8fHaaZSFP/nsfbaYiFWBmcQJIZm9MDGW7/j2e4bH2z7tbVaJYIiz7UU+x0a8VoCeRYyPAlGoLXL3b2hky8xi4X1llWH6Jv2K6or1+Npn5x/X8yY9PRn8FTCk8prcGv0SwhFv2K//RABtMQGmMh6iOV3+4Xf3SAe3cdZijnN1Ldum3jpIahF18F7Nzfxcfvf55U1kG5I3X++WEtxeTvU0DINNi5v4tnj/Xheh4Ry6Q1ESER9QXhbFfRloiW1dMZT6oh/5ji5G53Mut3ByspPG/04ydCT+3SaBYmi97xA2Rsl4ztEjINGmIhEhELIxiEu3N/F5988EWO96WDSVp+COXuxw4BTMr559m+pY2/fc8lhbp/AVY2RlHKn9GbLeq9UlB4XdNQfOqhfYj4VwaOp+joz7C6yT9pbG5LlAjBFVONpn5x/X/WcTECzaG8ZtBkcgbj6QUtZOevT2aapcCiDvWMVh61XY+eVJZjvcP0DuV49KVOPvXQPk70pf3HA47n3zAE7t11eMqvvX1LG/fddjX3/PrltDVEMQ0hEbVY2RglYhk0xSzqw2aw2jZpjUcQMQiZwopE1A8PBf+dHshMKJM8XjdvsU35kJRpGBiGsLoxRkNwwphMaedinNqlR1BqlgqL2vF/4r9e4H89/DKvnC4tk/SUon84x9//+BAiqrDqzoffXaUwBIZy7ph9TpbtW9p4z2Vr6E5mefl0ku5klndcuIKGWJiVjVHOW5EgEbXoG7ZJZR1O9acRgaZYCNvzyLmKrOvxnsvWjLvyrHbGbskJKRHFMmXCmbzlWIyCb4vxZKbRlGPRhnq6khm+/dxJbFfxyIunec2qBDduXcP2c1sJW/757tRAmoaoVdDeyWdhlfL18uvDZqXdA9UNPDnQOchA2sYQKejj/PRQD5tb63nyaD9uEPOPR0wsw1fmPN47XLCDwK5/33200NlbjuIy04OdI3IPxUNeKj1+Ig3+cu9zMTaD6RGUmqXCoh3Eks65fOu5E/zLTw/TfmaosL0xFuKdF63k3Zes5nOPvELPUJbhnEPPkF3yfNOQgn5OOSYaeJJP7mbskaqikCEYItieh6d8bfx8Qxf44aV8bB9Kk8IAm9viPPKxa8d93+PZNZVYdaX95YfGzNTrzAdu2bF7zMms3JAdjWahUGkQy6IN9cTCJh+46iy+9Fuv5fPvu4Tt57ZiGsJA2uZrTx7nA/f+gpzrMRTU3i+rG1npRSzhQ9ecxYe2bRyTJ8gzXljgs4+8TP+wjRpVSep4Khiu4v8uwdzdPJ6icAUAIwqgIdPAEEpOYJWY6XBFpf090d5bUsLaloguaKcP1YfLNJqFzqIN9eQRES5Z28Qla5s4k8ry3RdO8b0XTtEzlOOlU4MADFkuYcvgotWNfOCq9VwZyBSfSWbpH7JpiFk0REOFSiAYPyzQlcz6q3dDYFQFT9YZ2VCux2D0acZVvghcFeX/E9o1Fcbb33iCcguRyYS/NJqFzKJ3/MW0xCN86HUb+PWr1rPr0Bm+/VwHe08OkHU8so7Hwe4kP2/vobUhwsaWegAcz6N3KEf/sE0iatEYC2GZxrgx7q5ktrCtkD8IKL6AqDbIZnsKU2BzW/2Ej53p2PtijOWPx2I7mWk05Vi0oZ48bQ0RGmKhQpwcfOG07ee1cffNW7njunNYXh8GIGN7PPR8Bx/+8tP84Tf38JMD3TjBqtwLJJCP96XpGszw26/fUDEssKmlHtdTZGx3jHOfakbFVfCOi1ZVvH/n/i5u2bGbg11JTvSl6U5mGEznONiZ5EjPEH1D2SmVJerwh0az+Fi0yd3RKKUYyrkkMzbpoEzzyfZe7n7sIJbhd6/2Dtkks05JnL0lHubdF6/mnRevYllwgsiz51g/X3/qOKcG0iVhgS/+6ABfePQg3jiHdvSVgAFjVDtHUxc2+cf3XzZmRTo6AdszlOVMylcCjYQMViQiWKYx5eRrvqpHhz80moVFpeTuknH8xdiuRzLj8OEvPcWZVLakHn045xC2TFY0RNnd3lMkuCb80uYWfvnSNVywuqFkEEvYMth7fIAvP3GEE/1pBtN2oLGvJuwFEHyHnnM9DPwEsDvORxKxDOIRk3NXNBQccLlqlIOdSRDY3JYoeW+6QkWjWTpUcvxLKsafJ2QaLKsP05XM0BANoaCgoRMLmyQzDv/zly/k1ECa7zx/iof3nmIw4/DjV7r58SvdnN1az01b13D9a9qIhkx2HTjD3Y8dJGQK8YhFR38aM+iKHeqtnFQ1xV/hr2yMFkoiB9I2PalcycpfZCQ34ClFxvZKJBLKJWAdzys5OYGuSddoND41i/GLSFREnhSR50Vkn4j8VbB9mYj8UEQOBj+ba2XDRKxfVk/O9QiZBmHLwDSErOOxssGXLV7VGOO2azfxjduu5k/eeh7nrfBXz692D/F/fniA996zm3/ceYgvP3EEyxCilonnKSKWgVKK7mQGY7xqnKBuvzuZ5fRghrZElL99zyWctyKOVfTEkosy5TeBuZ6ia9CXVB5M2/QMjSSUkxkb1/OvONq7UyQzfo/CYk7KajSa6qnlij8LXKeUSolICNglIo8AvwI8qpT6rIjcCdwJfKKGdlRk9NByf5iK8JHtm4hHLIZyLkopIiGTt124krdduJKXTw3ywJ4Odr7SRSrrcP8zJwEKDj4c1LxnbI9hb3xJaNeD1rhFQyxcMiwd/Aaw0St/8Ct8QqbQ0Z8hP7yxLmzSlcwFr29wst8/4Sj8k8TJvjQtCZeQaZYkZbUgmUazNJmVGL+I1AG7gI8AXwG2K6VOicgqYKdS6rzxnj/TMf5ixktcup4ilXEYzNhjau77h3M8vPc0//nMCQbSdrldT4gBhCwDK7jSqAubfPHmS9m+pY2d+7v4yFefIW17YxLB4Mf6UWCZwqbWON3JDMM5l6zj1/yvCAa2nEllx+w7/75nssNXo9HMP+Ykxi8iJvAMcA7wD0qpX4jICqXUKYDA+Zf1MiJyG3AbwPr162tm43h126YhNNaFaKwLkbFdBjM2Q1n/KqCpLsz7r1rPU4d7OdyTIpkZW7pZFzYZHie56xGMaTQNTAOGck6JtPHyeART4EwqR8bx8DxfPM4NRicWSyq3xCMMpG0UvsBbPr7fEAuhglLU0dO4JtLv12g0i5Oa1vErpVyl1FZgLXCliFw4iefuUEpdoZS6orW1tWY2Vks0ZNKWiLJ+WR3L6yOETP/QnU5mWNEQZXVTlIhVOsN2PKdfjN8R7OcIiuUV1jXXYZkGm1rjnL+qgfXL6ghZBhI8p5ykcjXyzLA41TU1Gk11zEpVj1KqX0R2Am8DOkVkVVGoZ9bEzsvFtIFJxblHXwWsbfI7W+vDFvXL/MN5uCeF54FplA5hr0TadhFg1fK6gvPdub+L/uEcR3qGA43+CFnHQylIRK2g29hFKasQprlm0zIe3nuK9u4hRHy5inyl0SffeX7Jay6Ujlydh9BoZp5aVvW0ikhTcDsGvAnYDzwEfDB42AeBB2tlQzHlhmx8/P7n+eP7n5/y4I1oyOQPrjsHoODg07ZLPBKiIRaiLRFmTVO0pEKnEgpIZRyGcg7xiMWnHtpHzvVY2xQFBcd60/QM5VhWH2L9srrCDN7TA2naEtGCWmZ/2sYwRgTfPE9R7tUXQkeuHoyi0dSGWoZ6VgE/FpEXgKeAHyqlvgt8FniziBwE3hz8XnPKqUymsg7JjDMtJcvtW9r4zI0XsqoxRtp2Wd0U46/efQF3vm0LLfEorqe4cHUj771sDfGIOW5555mhHBnbI+e4mIYfd2+Ihdm8IkEkZGCK0BKPIsHPtc0xNq9o4L7bruaJ9l5CppDMOFhiEAuZRCyjMG5y9HsqNyBmomEvs40ejKLR1IaahXqUUi8Al5bZ3gNcX6vXrUS5JifXU2Nkl6cS5y6XIFZK8Y6LV5HMOGSCmPtlZy3ja08e44WTAxX3dfMV6/jaU8doiFrkHA/T8Ae4TGRr/v3lXA8zSOxKMPil3Hvaub+L+589SWsiwvqgquf+Z0+OO+xlttGDUTSa2rBkOnfLxbRNQ0CVLsFnKs4tIiSiIRLREDnHI5mxueac5Vy5aRnv/vtdZB0XEfHDMUX+/POPHiQesRhM26SDIS6C3yeQDxkNpm06BtLYgbbDaz75CMvrw6Rtl7Bp4Liq0O1rinCoK4XCHzRyzaZlPNHey7PH+nBcr0QeQoDb/+MZLlvfPGOx9OnE6BdKHkKjWWgsenXOPOVi2vGIRSJq1TzOHbYMlscjrF9WR1tDlPdfuQ4vKMk0DV+6QYBExHdwqaxTcPrgx/9dBWIIpwfSHOsdLjh9gLTtcaI/Q/dghkTUwkPheB6O62G7Ho6nWNkQ4fCZFHc/dogjPSmyjjdGE8ifF+DNWCx9ujH6hZCH0GgWIktKpK1csxbMzeCNz//gFf7lZ4cZzrnEQibvvXwtH7jmLJ4+0seff3tvWaG2kAkhw2C46KSQX9kLfhjkknVNhZm76ZyLaQorElEaYiHau1PkXI+waYwrHnfRmkaGcw4hQ2iuj0y5omYmRhlqZVCNZupodc55Sl4uOpVxGM45ALzp737iSy4oxpwALGNkJu9oTEN49X+9o/D7ts89VtLMtf/0IIb4FT/2OBKgF61pZDCd40R/mg3L66fc2Tv69fPvdyBt89NPXFfVPjQazdTR6pwzyEzWlv/kle7CvtY0xfiNq86iLmSScVws08BUfg4g7+wrOX0AE8XN9zzBwa4kdrDi7xxIYxgGnlK4nsKu8jzfmcwSMoySzt7uZIY7vv4cDbFQVe9bx+g1mvnJkonxzxQzWVs+el9nUln++gev8Obz24I6fC+QYfNr8d954Uq2rmuquL+cB4e6kgykbYZzDo6nsL1AFkKpcQfD5AkbFGLpKxoihe2+AmiOoZxT9fueiRh9frLYts89xi07dusafo1mBtCOf5LMZG15pX2dHszxses3Uxe2cD0/dv/br9/AH731PP7uvZfQEK3cD9CfdvA8X/kz7+cFcCZuIAbAVtCWiHJuWxzLHPl6nEn5ss9Ry6z6fU+3V0A3cGk0tUGHeibJTNaW5/eVzNh0J7P+bABDGEjb3Hfb1dzxpnNLHp8ORkduak3Qk8oStQxSOZf+Ybugz1MuFKTwK4fGm+wVC5l4ysPx4L7bri443bxkddbxVUJbE5GS54z3vqfbK6CF5DSa2qBX/JOkWhG0avfVM5Sloz+D4ylMQ7A9RTLjlF3VxsImbQ1R7njjOSgFWdcjHjFpiYexDIhalT/O8Zx+Hk9BfdgXbtu+pY27briAtkSUgbRNXdikJREmER056U30vqd7daSF5DSa2rBoV/xf/NEB7t11mKGcS33Y5NZtG8esoKfC6OEt+WqX8eLWxcngRMRCKcWZoRxDRfX6IUMwguqX5roQf/HAXgYzTon9F69t4p7H2znQOUgy48fLFRCzDN54XisvdiQ5NZCZ0vvKn8wsw+PiT3+fkCklc31HXwFU876nenWUP17dySxnkllWNkYLJxydHNZops+idPxf/NEB7n7sUNDt6juLux87BDBt5799Sxt3UX3tf/HAE1PgYFfK19JXYJojgXrbU0QtYXVDjOGczelBm5ApBfu/8OhB6sMm9RGL/rQ/WhH892d7imeP9fO+K9bxld1HGc66ePiXc4qxQ1zGI217pG0P04DDZ1Il8wEm875halU9xcdrZUOEk/0ZTvSlWdOksExDN3BpNDPAoqzjv/jT3ydtu1jGSOjD8XzNmhc+/dZamFiR4iam9u4UjqfIOR6InyjN6/iEg0lcm1rj7OsYwFMUwhyO62EHsft8HX7+lCHiN3WJAZeu86UWPvngixiGEDYNMrY/levC1Q08fvDMuOWgefITvyKWwdrm2JQbuaYy5Wt009dg2qYzmcFxPerCFmHLYHNbQjdyaTRVMK06fhH5lTKbB4C9Sql5V2IxlHMZHe42hHG7VWtFcbgj5/qiawoKy3B/xe43NmUdj+Gcg6cgFNhf7PSBQkmmInDQynf+rqc40Tfsq4VyoR9a6h1idVMdt7x2HZesb+Lnh87wvx/ZP+FxyL9azvFlH470pNngqZLKmvxVwHhM5SphdHjIHzSjONGfpjURIRYyJ2WDRqMZS7Whng8D1wA/Dn7fDuwGzhWRu5RS/14D26ZMfdhfXRaXPBYnLmeT4nBH2DRw8vr4gW35C658J23YNKgLmWRdl6zjjqm9z6/4YcRBZ4JazYG0zc79XWXVQn/00mke2NNR9VSw/P6P9qYBOHxmiNZ4hLaG6KQqa8YbbQljm+HiwWdXvOI/3pfGU3B6IENrIkIiGtLVPRrNNKi2qscDXqOU+lWl1K8C5wNZ4CrgE7Uybqrcum1j0O3qBSWKHp7yt882xU1MLfEwbjA3VxRkHRdH+aWWliGsbIwwlHO5ZG0DrscYp++rdFYW9LcMKVvnvnN/F3d992VO9A1PKt5fjKf8bt6uwcyMVdaUq9PvGcoVGtAG0zlO9qcLV0COp+joz5DM2Lq6R6OZBtWu+DcopTqLfu8CzlVK9YqIXQO7pkU+gVuLqh6YnGTD6HDH5rZ4oaqnb9jGRBENmSUr2X2nkjTFLAYzTsH5mwIh08A0BKfMqt0yhKzj0RyUS5YbrN6Tcqb93ruSWeoj5oxU1pSr0wf/qqepLsyzx/qwDMEyBKX8k56HojuZxTREV/doNFOkWsf/UxH5LvCfwe/vAR4XkXqgvxaGTZc73nTujDn6YooTltXGvCuFO8qJmMVCJkM5l9esTCAiBe19v/vWY01zPUd6hljbFKNjIIMpgoigUBWHruTj5plx2ndN8UXePOX3E2Sd8tcGCn+I/PuuWEvGdomGph4+q1TuOZC2eeRj1xaOTzLj0DGQ9q87RZFxPF3do9FMg2od/+8DvwJsw484fBn4L+WXBL2xRrbNS2aym7RSuWN9UZy7IXCMnckMooS2RJRQ0Og1euhK2DTKlkvmXydfwZWv2inGCJLOqxtj1EcsXj6dBMqrgQ6mHX7e3kNLIsLG1jgNUYt4xCo5gU3n/eftz9+fPwZnUlmyjqI+bJVUBumB7BrN5Kgqxh84+J8BO4FHgV1qIdSB1oCZ7CatJGJ267aNdA9m2NcxwN6TAxzvGyZsCPf8+uXcd9vV3Pn212C7ikTUwva8Qsmm7XoMpO3CSjgvcHawK8mJIEEK5ev6bVdhu4rjfWkO9wwRs3wnXq78c9h2+ebTJ/j1f3mSP/rmHr77QgdHe4bpG8rhVqMEV/T+B9M2BzuTvHxqgIOdSQaL7C8+PomoxcrGKKubYnzx5ktLnL7W89FoJkdVjl9EbgWeBH4ZP8yzW0R+u5aGzVdmUrJhtCxCWyLKXTdcAEAqN1LR4yn/9xdO9Jc8rzhMYoofA8+vuYsd4sqGKMvqQ4X7xhv4ni81FaO6vP/u9l7+9Fsv8pYvPM5ffHsv+zoG6EpmCv0JE6EAxB9ViZSelCodn3L5Cz2QXaOpnqoauETkFeB1waB0RGQ58HOl1Hk1tg+YX4NYptKUNFmqbUAbb8IVMOa+M6kMvUM2a5tjvNo9VPH1L1rTyIvBQHiRsdVF4xEyhTefv4Kbtq7hgjWN44aBbtmxm8NnUiQzTmEyWCJqsbElXvWELj3sRaOpzHQHsZwAkkW/J4HjM2HYQmMqTUmTpdoGtPG0cBSMuW95fQTbVbQlouM6fihaeVfh9M9aVkd/2mYwbWO7iof3nubhvae5YHUDF61u5OXTg3Qls5y1rI7ffcPZhWN1oHOQwYyDgWCK4LiKnqEcjjs48YsG6GEvGs3kqdbxnwR+ISIPBr/fADwpIn8IoJT6u1oYN9tUmyScqClpulRqQAubwi07dhfsS0SskmanZMbm9ECmILfgeh4RyyxIPpsiBVnl4lm9xb49/5r57dUs9usjFtGQSUt9iO5Ujua6MEd7h9nXMci+Dn/cY1MsxNHeYf78gRf5y3edz1suXFloWjOCFxUBz1PkqpESDahGNE8nfzWaUqpt4HoVeAC/oM4DHgQ6gETwb8Ezn5KE5RrQHFcRtowS+7pTWQaLmp1O9KVxPMXKhgh1YZPOwSzHe4exXV9L33Y9TvSlOdKToqXevxpQlH4JWurDDOccwuNIPBdTHzYxDSFsGXjA5rYEX/qt1/K3v3YxjYGipqegd9jm1ECG3qEsn/vv/ZzoG8YyBeUpPKVQ+D9RVP3aMHEeYD59rhrNfKHaFf/DwJ8BG4qeo5RSF9fCqLlgPg39KNeA1tgQImwZY5qd8gJqzx7rwzKFFYloofyxJ5XF9X0pYdNA8PDwyzE3tcbJ2SkGAiVPAZbHw0RCJm2JKB396RJ5iHIIvkaQUoq07eJ68AfXncNZy+tZnojwt99/heb6GINph4G0g6sUadvj1TND/Pq9v6AuZGHU+X0BOde/OmmoD7FheXxSx2u8K7D59LlqNPOFah3/fwAfB17EX/EvOmZystZMMLoBbdvnHitbRjqQtvnv/3F1+SQnflPWlpUNAOw/PRiUjbq8dGoQz1OY4odYzlpeX5KkPvvPHiZkCob4q++M7RbCPhetaQRgMJ3j9GCWgbQ9JtfREA2xsSXO6cE0bQ1RlsU9UhmH3iGbnOtxpGfkuBpCoUEt53gz2pg13z5XjWY+UK3j71ZKfaemlswxc5kkHC8GXe1QknL2W4aBpxTt3SlyrleIqQt+LF3hT+aKGDJmJRwxDYZtFxhbllmo+AGiIbNiHuD2azfxx/c/z6lMBtv1sAwhHrH4wFWbONSd4ocvdeJ4I0PgPUfR59p87BvPsbktwUe2n811r1kxrWOrk78azViqDab+pYjcKyK3iMiv5P/V1LJZplIzVa1lAcaLQZfW4kdwPMWJvjSD6dwY+8rZHwn5g0tyrleSKC4kU4Pf81cJ+ZWwH/+uHOPJJ309fCdqChVj5/k6fcMQxBAMQ7hoTSN/deMFbFmZoDFmEQrsUfihpf60w4HOJHd+ay8PPneSrDN1Oe25+lw1mvlMtXX8/wFsAfYxEupRSqlZaeKarTr+/Oq6VmWa5ZhMLX5+KIlScNn65jH2jba/byjLQMZmMO3XyeflHWBEDtoK4ixbVjaUvO5zx/rIOV7ZuF5xJZAI1IVMNrXGC8/P1+CP997uu+1qXv/ZR2mIhnA9xZGeocIoyWLiEYtVjVGSWZt1zXX83hvO5o2TvAqYi89Vo5kPTLeO/xKl1EUzbNO8o9ZlmuWYTC1+QyxEImoxkLbLNjiNtn/b5x5jeX2ElrjvzNu7U9iuhwLWNMXo6M+g8DV/ilfCf/HgizieRzhkkO8FLu5WjobMQsxfKX/ATLHd1bw3gPXL6nnl9CD9absQ7hHANPyVv6cglXU42JUCoDuZ5X98cw+fufFC3n7RKiyzugvWufhcNZr5TLWhnt0icn5NLVmijCcBMV15iNHPb4lH8BSY4sfal8dDGCLEQkZJGeS65josw8BxPbKOWyK/UDzyMf8zHDjg0bZNZP/KhjC9w3ZJ5ZDCr7w5uzVO0UhiAFzPDwP9xQMv8tSRXroGq5eG0Gg0I1Tr+LcBe0TkFRF5QUT2isgLtTRsqXD7tZsYSNsc7Eqy//QgB7uSBaG16canr9m0jGO9w+w96Yu9HesdxvEUhginBzM0xcJsXF5HNFx64Xf7tZsIm4ITDIMZHX5xvZGcgShoiYfL2jba/jMpf3D6gc5Bbtmxm++/1MUo3w5AMuPgKYUbNJj51UUj9w9kHN7/z7/gjq8/x4N7TnKsd4iBtI03GW0JjWYJU22o5201tWKJIwDK15hBjQitTUceYuf+Lv75p+2FSp7gJRCgsc7CcRXdqSyNsVDZuQJrmuvIdKcKz49YBnVhk4zj4XoKU4SViRCJWJhU1o/bj7at2P6DXUmSGYfmuhAt8QhdyUxhDGR+FGU+76CAtkSUoz1DGCIYIpimPysgXwWk8AXidrf3srY5xg2XrObtF65kVVOMhmhoUk1gGs1SoyrHr5Q6WmtDlir3PN5OQyzEysZYYVtxWeVU49OffeRlktmxYRCF38Dlev5yelXwuqPLOZNZh1WNUc6kcoUh8YmoRb2iIH6WT5oms5Une71wop99HQO+Jk8wFD6vollsU/FlhWkI9912NW//wuMc7EohQa8BwRXApuV1/ObrNvDAnpPsOT7Aib40/7jzVf5112Guf80Kbtq62heIi4WoD5uTnhOg0Sx2ql3xa2pErRqMDvdUfv5wbqQZ68DpQTz8OH1LPFx43UTE4mBXCtMQf9yjpzjZn2Fzm99VW2kS2XtO9PNEey/H+4YR4ERfGisI1nsKulM5gJIT3WhChm/dJ962hT++/3mSGQfH9bAMg8b6EJ969wW8duMy3nLBSl4+NchDezr4wUudpG2X7+09xff2nuKiNQ3cuHUNbzyvjWX1YRJRq+pk8GTQOkCahUjNHL+IrAO+AqzELwHdoZS6W0SWAd/Al384ArxXKdVXKzvmO7VqMBov3l18TzYI5diuy1BvmljIYOf+LpTypRhyjiqEiAyhMMXrnsfbSWXsQkWOIX4s/vM/OohhQMQ0SNteYTVvBKEcBfQM5VjZGCsrCSFA2PKPxfYtbfzNey6pGOqqj1gsj4e5aG0jv3PtJr6/7zRff/I43akse08OsvfkIHf/6CC/fOka3r11NWctqyMRDRELT31cZDFTGcOp0cwHarnid4A/Uko9KyIJ4BkR+SHwIeBRpdRnReRO4E7gEzW0Y15TjbrkVAhZBnaZoewTYbuKTz20j/7hnB9zzxftB477zJC/Ys+HbyR4iKcozOkNmUZBIwjAVQrLMLCDsk9PESR8x77+6E0ThboilklbwmR5fYQj3UNYBrTGwwzbLkNZl2TW4Su7j/LVJ4+x7ZwWbrp0NZevb6YhFiIemd5VgNYB0ixUaub4lVKngFPB7aSIvAysAW4EtgcP+zL+OMcl6/hrpe9vSOUV/3jia66nCJnCUM7FNGXMMJhcMLC9MBsgHz4v2p8gFIfVlfLj9mCQcz1E/OTtib402TID4J1JyDLnMQ3hq08eIxY2iYYsXE+Rc1zODOUYzrm4nuInB7r5yYFuNrXUc+PW1bz5/BUsj0dIRK2SK65q0TpAmoXKrMT4RWQDcCnwC2BFcFJAKXVKRMp6OBG5DbgNYP369bNh5pxRiwYjQwxM8QpNVsWTtCKWOaa+vphYyMTzFIYpeN7IMHfwZwLASChpvMbv4kHtnvIKonEfve4c7njTuZzzZ98r+7ycO7Xa/LwjFvHzEpYprLEM+oZz/Pa2TTyw5yQvn0rSfmaIz//oIDseb+etF6zkhq2rObs1TiJqkYiGgpPUxBSH6ZIZm+5klozjUh+22Lm/S6/6NfOWmte8iUgc+C/gY0qpqkcrKaV2KKWuUEpd0draWjsDFylhy8AQIWQaREIGoaKQxnjxf1P8HEMiarG8Poxlih+qMYXl9WE2r/CVPhNRC0NGlDWL8QKpZpGRwS5Zxy/DvOHilQXVUdMwglnBIzkEU/ztU2F0w5ghgu0pmmIhfvhSJ31DOc5ti3P5+ubCVc23njvJh/7tKT72jT185/kODp8ZqroxLN+ncCaV4WRfOtBEEurC5hjdovzg+22fe4xbduzW8wA0c0pNHb+IhPCd/leVUt8KNneKyKrg/lWA/guoAZvbEiSiFrbrkbE9bNcjHjERIOtWVtZW+HH+W7dtxPEUbrCkd5ViOOvQN5Rl2+ceoyFiFmQVik8j8bCBZY6s9ONhk02t9Vy4uoENy+t45tgAX/zRAW7ZsbvQpGWIEAkZmIbgKj/cNBXnWK7hbSBt0zts0zecY3l9GNv1ODWQ5s63buG2azexqtGXs3jmaB+ffHAfH7h3Nzseb+fljkGO9w4zMFy5MSw/BGYo6xZmHqxujNGaiJYMfNfDYDTzjZo5fvGLp/8FeHnUaMaHgA8Gtz+IP81LM8Ncs2kZAxkH0xAilh/6yDuo8fAU3HXDBVy8tqmksczzFKmcS3/apikWojuVLft8EWFZfZjXbljGOa1xWhui1IWtQu2+7br8w85X6UpmWN0YDXT4VXByUgiwpik6JedYbhpXazxCQyxEXdjCMAziQVXP91/q5NZtG/nKb1/J/7zpQq7c0AxA52CWe3cd5r07nuAz332JXYe6Odo7THcyW1YldPuWNhpiIbasTLCpNV4YglMc6y9OAuePQ/GJQaOZbWoZ43898BvAXhHZE2z7M+CzwDdF5MPAMeDXamjDkuWJ9l5a42GSGV+ZM2wa2EHsPF89VExxHH/7ljZu2bG7pLGsvTuFwqNvKEcy41CmNwyAZNZl71/5DV754TDFDAzbuJ6iLmwxmLZLXjdvB4ydD1At5YTqyiVgTw34A2Ka68Msqw/z+nNaON47zEPPd/DIi6dJZR1+8FInP3ipk/NWJLjp0tW88bw2EoFQXjxsFeStJyrJrSYJrPsBNLNJLat6djE2/Jvn+lq9rsbneN8wLfEIrYHMMsDeYIBKWYplmhnrrHKuh1KKrFf04Ako5xCzrkfU8uvoOwczeKqkYhRPwenBDA2x0IxUyEzklEOmwfJ4hOa6MM11YTa01POh12/gsZe7eGDPSV7tHuKVziSf++9X+Ovvv0JrPMKHrtnAOy5eRTxq0RANTViSO5ENuh9AM9vozt0FxGRWheWcTb6Ms1xFjwruP7u1vvD8w2dShSsGt2hS1ng5gmJuv3YTv/e1ZwuaPHkbElHfpnwpZ/40kv+ZdTzau1M0xKyq5u+Od1yq6ZMY/fzfvOYsfvXytbzjopX859Mn+NITR8jYHkpBVzLLX//gFb7zQgcfev0GXFdx/7MnSGVtbMcjYhlsXtEwKRvuebwd23XpSY1cnTXELN0PoKkZWslqgTDZBGG5RKc1Tpmi4Idc3nHRKsDPEXQHOj0TDV0vZnndyInmwT0nSpw++PsZzDi+XePsJ+d6dCVzXLNp2bivN9FxKRf3z8tPV3r+/35kPwdOJ1nTXMdTR/pojUfYtLyO5fXhQqnny6eTfOK/9vLJh/bR3j1EUyxEc32YSMjiw9s2jBWrG8eGg11JziRzOJ4qyGOcSeY42JWs7qBXia4s0uTRK/4FwmS7RLdvaeM9J/q5d9dhhnIu9WHTL7GkfKCmLmySiFo80d7LHfg5goaoyUDawZ5EP1V/ZsTRP/TCaYAxzVzpnEtbIsqr3UMV9xM2jRJ7KlHNcanUJ7Fzfxd3fP05hnMuEcugJUgEFz+/M5mhMWrhKVhuGSyrC5HMOvQM5bBdhesp+tO+dEWe2/79GT78+g189M3njRGJK3coc47nj6cMHicCnqhCs9xMoMNJmmL0in+BcLxvmFioVGNmvBj4zv1d3P/sSVoTEV6zMkFrIoLt+dOtYiFzZKBK8HNTa5yWeKSwvwOdg6SyLiHDIFqFxHHet7lFlwZuhcsEBdx329XEI5X3O9qeSkz2uOTJO8KhnINp+N3CHQNpBtN2yfPXNdeRcTws0yBsGoQsk7BlcMGqRpbXh2iMjV07eQru3XWEv3n4ZY71DvOdPSf55IMvVrwqCRU1xeUrqGCkWW4m0JVFmmK0418gTHYaV7k/dMGfYgWlq/B8BKh4f3kdfsOQMbLG5SJG+cqc4q7XSh2w+e2GGGWz/+XsqUQ1x6VciCN/fKKWieuB7fnlpMf7hjmTyhaeXxwyA4KSTuF337CJs5bX0xAtrdYpHA/gK784xr/sOsw//cR3riHTwFP+ianY6Z67ooH6sInteWQcD9vzqA+bhWa5mWCqJ0jN4kQ7/gXCZKdxlftDb42HUfiaO3nnqoCW+rETtMKWAQo8pVAoirXMQuOsRK88q6lw+4aLV/qvoUb+FW93vLHD1fOPr3ba2ETHpVIO4GBXkljIJB6xfDsCQ/LS0fncQqX4/NsuWsUd120e1zYFfOWJo+w7NUjfcI5UxsF2XHKuR8gQjvf6oa5rNi0jmXVLei6SWbckvzHd+Px0x3hqFhc6xr9AmKyYW7mqnkQsRCRkMpC2Gcq5xEJCSzwCMGaC1ua2BEd6Ugym/UqTqGUiAmnbw/H8VbsohVPkuetCBsjIGeLzN18GPMtDL5z2p3YZwg0Xrwy2U1agDUYmcFVTyz7RcamUA8g5HmnbJZV1CJmCGzh/Q6AtES7JLVTKEWzf0sZnuJAPfempivY1xkIMpG1SWZdUNk3YNGiqCxEyhdZ4lFMDaXYd6qE1HiKZcUuqevI2zER8vlYqsJqFiXb8C4jJiLlV+kP/zI0XVrWP/PNXNlolz89Xo+Qbo0oSl0qNCR18/ubL+PzN5V+jkhSC4OcAJku5vVVqngqbgu0qMo6LZQiGYeChWN0YIxG1qsoR5EtATYFygqL1IeEbt13Nv+46zLf3nMR2VVCtlEWADcvrOdiZ5GjvEI3RMM11/mpfREqO5UzIP9dKBXY0uhFtYaAd/yJlun/oEz1/JgbIJKIWqWBsY15BFCAeqf5rOdFquJKd+Vr7kaoeoSUeLVT1xCMWt+zYXdaBjX7NM8ksyvHIX78YAomIybkrG4hHLX53+9lctr6Zf/3ZYY71DZMNBtT87NUefvZqD4mIhesqmutCuJ5gGELWmVznbzXUQgW2GF05tHDQjn8RM90/9PGef/u1m/iD+55lKOcWJnDVh00++c7zSx73xR8dKCkpvXXbxoI6563bNvKFRw8WegTyoZZbt22s2saJVsPjhTi2b2njizdfWnBWsZDJcM5hMG2j8HsJyjmw0a+5sjHK8d5hDCiMqgxZJr+//RzWNtcxnHN4w5ZWrgxi9gPDNo+8eIoHn++gczBLMuuQzI4MuQGImPCRN5xN31COtU0xulPZGZ/SNprprtbvebydnFPaiJaI6ka0qVLLqyed3NVMiRdO9BecPvhJ0aGcywsn+guP+eKPDnD3Y4dI2y6W4Turux87xBd/dACAi9c2UR82C4nm/Mnj4rVNVdsxUbXKRM1T5e5fXh+mMRB2K1f6WO4188dABfMli9PfdWGLVY0xVjfFiEcsGutC3Hzlev7jw1fxm1efVbZKKuvCfz59nL7hHDdtXRPkI+yqEvtTYSYURA90DtIzlMNxFaYIjqvoGcpxsLNqNXZNQK0VXfWKXzMl7t112K9CGTWh695dhwsr+nt3HcYQClO8DCl9zD2Pt9MWqHfmmWzsel1zXUkSOp8YLZZ6mOjKp1pht+La/uLwUXcyi2EIUdNgU2ucwbRNZzLD7f/xDJetby6RZjjeN8yaphjvv3I9F69r4oUTAxW7op862s/vffVZbtq6mo9cezb/9exJOgfTrGmu4/fecPaMrqJnYrVeXAIMQSOap8hNYqKazhH41Hqsp3b8mikxlPNX8cUYUjSSsYrHzETs+ppNy3jySG9hKExe6uGW144v9TAeE+UvRoePMo6LIX6F1GDapmMgHQjOKbqSGf74/udR+BU+TbEQZ1JZ/s8PD/Dpd51PZzIzri37Tyf57H+/QmMsxDsuWsmfvP08VjZEERE6BzNTHhs5mgOdgwxmHAykZLXuuNWv1sOWQTrn4qmiqW0qKA2uAp0jGKHWYz21458HjBcHn6/Uh02Gsg4Kt5CYFaC+KDFbH/Zj6sWhDE/522GsEFx+lbmxZWJhtjzl5KerkXooZvQq85pNy7j/2ZMVSx9HJ77rwxZ1YZOGWIj27hQG/sGImAZ1YYuTfWkcT9E7lCvkQ5piIf5512E2LK/n1EB55y/A9vNaefzgGQbSNvc9eZxvPHWcqzct56atq7n8rGaGsg6W4b/neNQqmbQ20fssXk3brgoG46iRz1OY1Gp9dAlw2DRoqA9VJbQH0xOrW2xXCjNRPDEeOsY/x0wUB5+vXL+lFbdoApen/JLG67eMjMm8ddtGPOWHdzzlBT9HkrejheByrlfSPFUNefnpTa1xtqxsqFrqIU+5WOr9z57kPZetqZgXAN/533fb1fz0E9fxxZsvJWz5ieGc66HwnWdrwu+RyDpeoUksL4bXO2yzr2OA26/dVFG7PBYSPvmu8/n671zFB685i+X1YTwFP3+1hz/5r7186N+e4lvPnqA/naNvOMfx3mFODaRJZf1mtone5+iYseuNNNkpNdLlXS23X7uJkGmysjHKeSsSrGyMEjLNqnMRUxWrW4wTzibbsDlZ9Ip/jpkoDj5fOT2Yo7nOYiDtFFaxjTGL04MjlSnFsf5yVzNPtPfSlgiPic9PZrU+3ZVRpVjqE+29VfcSlF4B+GGelY1REoGcQ8EFF3v4IBm+fUtbRZXSYVtxyz/vZlVDjJtfu44PXLWeXYfO8O3nOth7coDjfWn+749f5d5dh3nz+Su4aesaNrbUk875XcDxiD88PmwZVcWMTfFtza/4J7sqnG4J8VTF6modD58Lat13oR3/HFNNrHw+4icp61jbPH4D1x1vOrfiCex43zDL6yO0xEeGxZTbx3hMtyN1pmvk86tP0/CbsIplEkYtwscdep9neX2YvnSWux87yEev28z289rYfl4br3aneGhPBz98qZOM7fGd50/xnedPccnaRm7cuoZt5yzH9RQDaZtoyORo7xDN47zPkOn3DxhIIT7voSYtFDedEuKQKaRt/7gUT2abyIZax8Pnilr2XehQzxxTHzbHVHUUx8HnKzOh/TIT+5ioXHM2bJjInljIKCSfBQq38wNpxsM0DBqiYWIhg/ufPVEQuDu7Nc7/ePO5fPP2a/j9N57N2mZ/RObzJwa467svccu9v+ArTxyhJ5UlY7u0xaMksw626+EFHrX4fZ67ooHl9WEsU3CVwjKF5fXhGRWKm4ip2qB1iCaPXvHPMbdu28jdjx0qCKd5Qdx8Mk1Mc8FMaL/MlH7MdFZGU7GhXCIRqJhczOdx8g4//xlfv6WVW3bsJmQIdpnVv2nAvo6BwnjKM6kc65fVkcw6DAzb2K5HPGrxq5et5ZcvXcPXdh/j/mdPMJhx6Enl+NLPj/Lvu49x7eYWrt64jK8/fYzTgxk8T2EEoaA/f/trSo7DaImO0cehloUI1dpQ6XmzqUM0UTJ5ovvnuqBDRieB5iNXXHGFevrpp+fajJox11+CqZL/ck8nBjkT+5guk7GhuOQw72QG0jYChTnBo3WNYOxnfP2WVp45NkDIFI72DFEpjJ0PcuT/Sv/wTZsL343hnMNA2iadc3myvZe7HzuIZQimAT0pm1TOKQkv5SMmSoFlCvURi0+8bQvXbWkjHrV4sr133ONQ6QT20evOmbHv61S/D7P5PSr3HSj+vCe6fzaOYx4ReUYpdcWY7drxazTVc8uO3WOSyQe7kqBg84pEYdtwzqEtEa2YIC7ez96TA1W9tiG+jtELn35ryfas4/L+Hb+gK5kp6SgezjkYYhCLmLxyOlmyn4ZoiGjIYGVDjL973yWAPy/ATwhbWGXKQi/+9PeD6rPSpr1YyBxj02Km3Heg+POe6P7ZPI6VHL+O8Ws0k6CcXIPrKRyvdMk+UXKxkuzDaPI5gZAhhEwpm/SPWCadyQwNUcvPAQQr+1jYJOe6/L8PXMay+hCJqBU0lkF/2ub0YJaXTg3wxKs9uJ7Cdj36hnMc6x3m9EDG79MoWhgO5dwx8hILoRBhpplIJmSi++fDcdQxfs2SJR8eePFkP8O2h1KKeMQaN9RWrnzUNATPg/buVEXZiNGhnoaoRdp2J+y6jQYOxHE9csHwg1t27B6TVxhM2ziuR2siiqkUnoJU1mZlg5/0Xd9cz4m+IWxLyLl+T4EvRKf48wdeZFVjlDWNUV46NUjG8Vef7718Lb+1bRPxqH8VUB82Gcw4QKmDaqgiSV0tC6ERa6LGw4lKjCdqbJwN9IpfsyTJx2H3nx4gmXVxPd9ZDmWdcRvoyjXWhINmo+JGtK7kSCNauSa9joEM3YOZwkjHSjieh+262MG0stZ4mK5kho/f/zx/fP/zhaal+ohJdypHdyABkR8RefsbNhEJmVy6rpHeYTtojhqpMFrd6JfSnhrI8PSx4AQIZGyXL+8+yr/taqc/aA5rjZcfM7m6MTKVj2AMC6URa6LGw4maryZqbJwNtOPXLEnyTT8Dad/x5iUnFL5TvHfX4bLPK1euubopRlsiQjiYqRs2DVrj/hQvKG3SM8TAMoygM9WfNDYesZBJ0NfEikSEFY0x6sL+HINkxikoiLbEo7Qlwgzn3JKy1rdftIo1TTH2nUrSEg8TMg1UoJ/TEg/Rlojypd96LVbR8lMFXdiegq89eazQQHW4J13WxoPdM1Mvv1AGwucbD4s/7/zUNpi4xPiON53LR687p/DZxkJmTRK746FDPZolSb7pZ3QVZX4mwHjx1nJqni3xCK2J8o1olZr0sq7HfbddzYY7v1fxtV749FvLTjvzR0WWGr+8PoJl2Pz0E9eN2U/HQJq2RJTWBMHVjf/804Np1i+rw1MqsDEYQxk8L+sqbt6xm3devKqiiqjrqUKJ6HRYKI1Y1TQeTlRiPF5j42ygHb9mSZKPw+bL6fKITD7eWuuYbqW8AqrU0fYMZRnKumz73GNj4uPF+zBMYWA4R2cyg1Lwh994nrBp4HgepiEYgXSD4/ongP60zVd/cayifYbA0d5h6sMm//7EEb78xNEplSZPR35jNnMDMyGgNte5DB3q0SxJ8nHYxpj/x5tPduarXiYTb51uTPeajc1l95vfXm7/+bLL/LYzqQxdyRx1YbNsfLx4H4PpHB0DGVwPVjZE6E/nsAxflM318iJzvmzC+y5fw29ecxbL6sMV3/9157WilOL//fgQ/7DzVYZzDqb4rzUZwcGpCpPNdm5gugJq8yGXoR2/ZkmSj8NuWdlIImIWVrr1EWvS8dbpxnTvu/11Y5z/NRubue/211Xc/9++5xL+5j2XFLYNZV1a42FaE9Gy8fHifZwezGIZwtrmGI11ERLREG0NUVY1RohaJq7nl4h+8OqzuH37OXzodRu473eu4pPvfM2YUIxpCHWREIfPDPHNZ05giC8zIWL4P1H880/bx4SlpnIcKzHbuYHpyoTMh1yGbuDSaBYB5fIASvkibaNj/hM9djjn0D9sk7HL5zle7UrxwJ4OHn25k8yolmPTAFOksG9Pebge/Pjj20vUQmeSybz3+cBs2qsbuDSaRcxkhMomemxd2GJ108iM4GIHBXB2W5w/eosvEPd7289mTVOscJ/r+b0BTpB8Vsq/wskrhZ7oG+Zkf5rBjF2VOulMv/f5wHywVyd3NZp5wHSTfZMRKqv2sdGQSTRkYrseg2mbZMYpKHsCxKMW77l8Lb9y2RqeOdrH/33sEMf7/JJP11OFNq+3nNsS5Az8E0jWdsnaLr2Soy5iBvIRU29emgmRtuLjn4hYKKVI5dyaJF7nQlRuNDrUo9HMMROJek1mP5MRm5usqJnnKQYzNoNpZ4xEBcCT7b3c9b19DOfG3ndOa5wbt67m+te0lXXyIdOgIRoinpedmCTTEWkrPv6O63Gy32+CW9MUxTKNKX0WtbR3MmiRNo1mnjKRqNd8QylFKusrgxZPx/rDbzxPz1CWWMjEU4pkxqF3OIddNLc3HrF4+4UrueGS1axpjo3Zt4hQHzaJz9AQ+WooPv7t3SmcYJ6oZQqbWuPz+rOYiEqOX4d6NJo5ZqE0LuURERLREIloqEQa+tRguqDbY4jQGAvRELPoGcpx+VnL2PlKF6msw38+c4L/fOYEV25o5qZL1/DaDcsKq/z8SSWVdSZUC50pio9/zvUKtuSCocPz+bOYKjVz/CLyr8C7gC6l1IXBtmXAN4ANwBHgvUqpvlrZoNEsBGaiIWiuqAv7K/OM7bK2qW6MNHTG9ljfXM+fvn0LH3nDJh7ee5qHnu+gK5nlySN9PHmkj1WNUW64ZDVvv3AlDUUnwLxaaN9wjljYJBENUR82xySbRzPZfEnx8fcb2fwVfzg42ZT7LOa6AWu61LKq50vA20ZtuxN4VCm1GXg0+F2jWdJMtyFoPhANmfzBdecAvhSFwp837HiKm1+7DoCmujDvv2o9X731Ku664QIuX98E+AJx9zzeznt37OZvvv8KBzqTY/afzrl0DWY41jvMmVQ2EKEby1Sao4qPf0s87CemlaIlHi77WcyHBqzpUtMYv4hsAL5btOJ/BdiulDolIquAnUqp8ybaj47xaxY782ES2UxQWAn3DrGyMcavXb6W125cVvHxx3qGeWDPSX7wUifDRfpI569q4KZLV3Pt5taKdf9hy/BDThGroBM01XxJ8fGPB1U9Qzm37GexkHIyc5LcLeP4+5VSTUX39ymlyvari8htwG0A69evv/zo0aM1s1Oj0dSGiSqB8gznHH74UhcP7jnJkZ6ReHpzXYh3XLSKd1+8iraG8kqmIkJ9xCQRCfHmz/+k5s1RC6lhbMEld5VSO4Ad4K/459gcjUYzBQxDaKoL0xgLlQyJH01d2OLGrau54ZJVPH9igAf2nGTXwTP0DfsCcfc9eYzXnd3CTZeu5tJ1TWOcbirjkMo4tMYj9A3nShrPZjpfspBzMnlm2/F3isiqolDPwgmKaTSaKSMiNERDNASVQJUkIUSEreua2Lquie5klu+9cIpvPXeSVNZh16Ez7Dp0hrZEhPe9dh1vOX8F9ZFSF/a+K9Zx92MHcT2burBJzvFwvJnNl8yHBqzpMtuSDQ8BHwxufxB4cJZfX6PRzDHFkhCjHXcxrYkI569qIB4xWV7vD4cH6Epm+fvHDvHee3Zz948OcqRnqPCcKzct46PXbWZ5fYSBtE1jLMwfvPEcLlrbWDEhPFmmK9I2H6hZjF9E7gO2Ay1AJ/CXwAPAN4H1wDHg15RSvRPtSyd3NZrFS87xGEjbpEYNd4fSpjDw5R7ODOUYtl2KH7p1XRM3bV3N689pGbfzt1xCeDEz6zF+pdQtFe66vlavqdFoFh5hy6A1EWFZfZjBtM1gxsYNBNyKm8IAIiGT1U3+SvtXL1/HQ3s6ONmfZs/xfvYc76c1HuFdl6zinRetKjtDIOd49KSy9A7lqA96A2KzOOR8vjBvk7sajWZpYRpCc32YproQgxmHwbTNqoZYyYof/Kaw1Y11/Nrla/nVy9bw9JE+Hthzkl+099KdyvJvPzvCvz9xlDec28pNl67m/FUNY5q+RncIJ6IW8UhtO4TnE1qrR6PRzFse2XuKz3z3JUxDiIYMMrafrP3odZu5clNpf0BHf5qHnu/gkRdPk8w4he3ntMW5aetqrttSXiCumLqwLxFRV0WH8EJAi7RpNJoFyc79Xfzjzlc53jfMikSUm1+7bozTLyZruzy2v4sH9nRwsCtV2J6IWrztgpXcsHV1yQyBcpiGEI9YxKMWEWvhhoK049doNAuenOPRn84xlHUnHOeolOLlU0ke2HOSnxzoLqiECnDlxmXcuHU1V25chjHByj6fEI5HpiYZPZdox6/RaBYNjusV8gBeFT6sbzjHw3tP8Z3nT9GVzBa2r27yBeLedkGpQFw55kIyerpox6/RaBYdnufr/g+k7XElIfK4nuLnr/bw4J6TPHusv7A9Yhlcv6WNG7euZvOKxIT7sQyDeNTPB4TmcUJYO36NRrNoqTQcZjyO9gzx4J6OMQJxF6xu4Kata7j23JaqnHosbPr5gDLzieca7fg1Gs2SYDxJiEqP/+FLnTzwXAdHe0sF4t518SredfFqWhORCfdjiFAfDI6ZzgzhmUQ7fo1Gs6TI2C79wzbDOWfiB+NfNew53s+DezrYdegMQQ8ZhsC2c1q4cetqto4SiKvEdGcIzxTa8Ws0miVJ1nEZSNtVVQLl6U5m+c4LHXzvhVP0DduF7Wctr+Omrat58/krqkrwigh1YTPoDZj9hLB2/BqNZklju74mUDIzVhOoEjnH46cHu3lgTwf7OgYL2+vCJm85fwU3bl3NWcvrq9qXZQQdwrOYENaOX6PRaPAre0ZrAlXDwc4kD+7p4NH9XWSLEsiXrW/ixq1reN3Zy6sO60xmhvB00I5fo9FoiphsKWiewbTNf+87zYN7Ojg1kClsb0tEePclq3jHRatorhsrEFcO0xhJCNeiQ1g7fo1GoymDUmrc6WCV8JTiqSO9PPBcB08e7iXvSUOm+AJxW9fwmlWJqlf0kZBfFjqTktHa8Ws0Gs0EDGUd+tM22SpLQfOc7E/znTICceeuiHPj1jVcd14rkSpLPItnCE9XMlo7fo1Go6mSyZaCFj/vsf1dPPBcB4e6RwTiGqIWb7/QF4hb1Ti+QFwxzXVhmsvMFagW7fg1Go1mkkxGFK4YpRT7OgZ5cE8HPznQjeONCMRdtWkZN21dwxUbmicUiGuqC5cdKFMt2vFrNBrNFHGKSkGrEYUrpndoRCCuOzUiELemKcYNW1fztgtWkIiWF4jTjl87fo1GM8d4nmIwYzOQnlwpKPhlpD979QwP7ungudECca9p46atazinLV7yHO34tePXaDTzhKlWAuU5kheI29dJuiiRfOHqBm4sEojTjl87fo1GMw+ZaiVQ/rk/fKmTB/eUF4j7wFVnsWVVw5Rt045fo9FoashUK4HAv4J4LhCI+1mRQJwpwk2XruFvf+3iKXX4VnL8C2OMjEaj0cxzoiGTlY3mlCqBRITL1jdz2fpmugYzfOeFUzy81xeIC1sy47IO2vFrNBrNDBK2DNoSUZy6qVUCtTVE+fC2jfzG1Wfx9NE+rh5nsPxU0Y5fo9FoaoBlGiyPR2iuCzOYsRlMO5PSBApbBu+4aNW0krsVbZvxPWo0Go2mgGEITXVhGmMhUll/OthUKoFmEu34NRqNZhYQERLREIloaNLjIWca7fg1Go1mlqkL+xO5MnZ+OtjkK4Gmg3b8Go1GM0dEQybRkDml6WDTQTt+jUajmWNCpkFLPhE8helgk0U7fo1Go5knmIbQXO8ngpMZx5fzrAHa8Ws0Gs08wzCExrryip0zsv+a7Vmj0Wg08xLt+DUajWaJoR2/RqPRLDHmxPGLyNtE5BUROSQid86FDRqNRrNUmXXHLyIm8A/A24HzgVtE5PzZtkOj0WiWKnOx4r8SOKSUaldK5YCvAzfOgR0ajUazJJkLx78GOF70+4lgWwkicpuIPC0iT3d3d8+acRqNRrPYmQvHX64lYUyLmlJqh1LqCqXUFa2trbNglkaj0SwN5sLxnwDWFf2+FuiYAzs0Go1mSTLrM3dFxAIOANcDJ4GngPcrpfaN85xu4GgNzGkBztRgvzOJtnHmWAh2LgQbYWHYqW2Es5RSY0Imsy7ZoJRyROT/A74PmMC/juf0g+fUJNYjIk+XG0Q8n9A2zhwLwc6FYCMsDDu1jZWZE60epdTDwMNz8doajUaz1NGduxqNRrPEWOqOf8dcG1AF2saZYyHYuRBshIVhp7axArOe3NVoNBrN3LLUV/wajUaz5NCOX6PRaJYYS8bxi8gREdkrIntE5Olg2zIR+aGIHAx+Ns+xjecF9uX/DYrIx0Tk0yJysmj7O2bZrn8VkS4RebFoW8VjJyJ/GiivviIib51DG/9GRPaLyAsi8m0RaQq2bxCRdNHx/KfZsHEcOyt+vvPoWH6jyL4jIrIn2D4nx1JE1onIj0XkZRHZJyIfDbbPm+/lODbO/fdSKbUk/gFHgJZR2/4auDO4fSfwubm2s8g2EzgNnAV8Gvj4HNpyLXAZ8OJExw5fcfV5IAJsBF4FzDmy8S2AFdz+XJGNG4ofNw+OZdnPdz4dy1H3/x/gU3N5LIFVwGXB7QR+U+j58+l7OY6Nc/69XDIr/grcCHw5uP1l4Ka5M2UM1wOvKqVq0bE8KZRSjwO9ozZXOnY3Al9XSmWVUoeBQ/iKrLNuo1LqB0opJ/h1N748yJxS4VhWYt4cyzwiIsB7gftqbcd4KKVOKaWeDW4ngZfxxR7nzfeyko3z4Xu5lBy/An4gIs+IyG3BthVKqVPgf0hA25xZN5abKf3j+v+CS8N/neuQVEClY1eV+uoc8NvAI0W/bxSR50TkJyLyS3NlVBHlPt/5eCx/CehUSh0s2janx1JENgCXAr9gnn4vR9lYzJx8L5eS43+9Uuoy/AEwvy8i1861QZUQkTBwA/Cfwab/B5wNbAVO4V9qz1eqUl+dTUTkzwEH+Gqw6RSwXil1KfCHwNdEpGGu7KPy5zvvjiVwC6ULkjk9liISB/4L+JhSanC8h5bZNivHspKNc/m9XDKOXynVEfzsAr6Nf5nXKSKrAIKfXXNnYQlvB55VSnUCKKU6lVKuUsoD/plZuNyvgkrHbl6pr4rIB4F3AR9QQSA1uNzvCW4/gx/vPXeubBzn851vx9ICfgX4Rn7bXB5LEQnhO9SvKqW+FWyeV9/LCjbO+fdySTh+EakXkUT+Nn5y5UXgIeCDwcM+CDw4NxaOoWRVlf8iB/wyvu1zTaVj9xBws4hERGQjsBl4cg7sQ0TeBnwCuEEpNVy0vVX8EaCIyKbAxva5sDGwodLnO2+OZcCbgP1KqRP5DXN1LINcw78ALyul/q7ornnzvaxk47z4Xs5GBnmu/wGb8DP6zwP7gD8Pti8HHgUOBj+XzQNb64AeoLFo278De4EX8L/Aq2bZpvvwL0Nt/JXTh8c7dsCf469WXgHePoc2HsKP6+4J/v1T8NhfDb4HzwPPAu+e42NZ8fOdL8cy2P4l4HdHPXZOjiWwDT9U80LR5/uO+fS9HMfGOf9easkGjUajWWIsiVCPRqPRaEbQjl+j0WiWGNrxazQazRJDO36NRqNZYmjHr9FoNEsM7fg1i4pA4XA+9DloNPMW7fg1moCgM3Xes1Ds1MxftOPXLEZMEfnnQAP9ByISE5GtIrK7SAO9GUBEdorI/xKRnwAfFZFfE5EXReR5EXk8eIwZaKg/FTz/9mD7dhF5PNjfSyLyTyJiBPfdIv78hxdF5HPBtveKyN8Ftz8qIu3B7bNFZFdw+/JAoOsZEfl+kfxAiZ2zezg1iw29ctAsRjYDtyilfkdEvonfEfknwB8opX4iIncBfwl8LHh8k1LqDQAishd4q1LqpAQDMvC7aweUUq8VkQjwMxH5QXDflfga60eB/wZ+RUR+jq+zfjnQh68KexPwOPDHwfN+CegRkTX4HZ4/DXRd/h64USnVLSLvA/4nvoJjiZ0azXTQjl+zGDmslNoT3H4GX/mySSn1k2DblxlRPoUi0THgZ8CXghNGXlTrLcDFIvKe4PdG/JNLDnhSKZVfud+H78RtYKdSqjvY/lXgWqXUAyISD3Sj1gFfwx968kvBa50HXAj80Jd5wcSXTihnp0YzZbTj1yxGskW3XaBpgscP5W8opX5XRK4C3gnsEZGt+JK+f6CU+n7xk0RkO2OlfRXlJYDzPAH8Fr5ezE/xV/PXAH8ErAf2KaWumchOjWY66Bi/ZikwAPQVDbb4DeAn5R4oImcrpX6hlPoUcAZ/Zf594CNBKAYROTdQeQW4UkQ2BrH99wG78IdtvEFEWgK1xVuKXu9x4OPBz+eANwJZpdQA/smgVUSuCV4nJCIXzNxh0Gh89Ipfs1T4IPBPIlKHL3X7WxUe9zcishl/1f4ovlLiC/jzUJ8NpHa7GRnp9wTwWeAifGf+baWUJyJ/Cvw42M/DSqm8PPBP8U8mjyulXBE5DuwHUErlgnDSF0WkEf/v8wv4io0azYyh1Tk1mikShHo+rpR61xybotFMCh3q0Wg0miWGXvFrNBrNEkOv+DUajWaJoR2/RqPRLDG049doNJolhnb8Go1Gs8TQjl+j0WiWGP8/pLaNGGTVwG0AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import seaborn as sns\n", "sns.regplot(data=data, x='horsepower', y='mpg')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the plot above, the shading around the line illustrates the variability induced by the confidence intervals estimated for the coefficients." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Statistical Tests for the Relevance of Coefficients\n", "Standard errors are also used to perform **hypothesis tests** on the coefficients. In practice, it is common to perform a statistical test to assess whether the coefficient $\\beta_1$ is significantly different from zero. It is interesting to check this because, if $\\beta_1$ was equal to zero, then there would not be any correlation between the variables (and hence the linear regressor would not be useful). Indeed, if $\\beta-1=0$:\n", "\n", "$$Y=\\beta_0 + \\epsilon$$\n", "\n", "Hence $Y$ cannot be predicted from $X$ and the two variables are not associated. \n", "\n", "The **null hypothesis** of the test is as follows:\n", "\n", "$$H_0: \\text{There is no association between } X \\text{ and } Y \\Leftrightarrow \\beta_1=0$$\n", "\n", "While the **alternative hypothesis** is formulated as follows:\n", "\n", "$$H_1: \\text{There is some association between } X \\text{ and } Y \\Leftrightarrow \\beta_1 \\neq 0$$\n", "\n", "To conduct the test, the following t-statistic is computed from the estimate of $\\beta_1$ and the standard error:\n", "\n", "$$t=\\frac{\\hat \\beta_1 - 0}{SE(\\hat \\beta_1)}$$\n", "\n", "Where the $-0$ term indicates that we are subtracting the value assumed by the null hypothesis ($\\beta_1=0$). The statistic will follow a t-Student distribution with $n-2$ degrees of freedom ($n$ being the number of data points). If $n>30$ the distribution is approximately Gaussian. Using this statistic, a **$p-value$** indicating the **probability of observing a t statistic more extreme than this one if there is no associated between the two variables** is computed. Chosen a significance level $\\alpha$ (often $\\alpha=0.05$), we will reject the null hypothesis if $p<\\alpha$. \n", "\n", "A similar test is conducted to check that $\\beta_0$ is significantly different from zero.\n", "\n", "Let's see the updated table from the same example:\n", "\n", "||COEFFICIENT|STD ERROR|t|P>\\|t\\||CONFIDENCE INTERVAL|\n", "|-|-|-|-|-|-|\n", "|$\\beta_0$|$39.94$|$0.717$|$55.66$|$0$|$[38.53, 41.35]$|\n", "|$\\beta_1$|$-0.1578$|$0.006$|$-24.49$|$0$|$[-0.17, -0.15]$|" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the table above, we can conclude that both $\\beta_0$ and $\\beta_1$ are significantly different than $0$ (p-value is equal to zero). This can also be noted by the fact that the confidence intervals do not contain the zero number. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Accuracy of the Model\n", "\n", "The tests performed above will tell us if there is a relationship between the variables, but they will not tell us **how well does the model fit the data**. For instance, if the relationship between $X$ and $Y$ is not linear, we would expect the model not to fit the data very well. In practice, we can use different measures of accuracy of the model.\n", "\n", "#### Residual Standard Error\n", "One way to measure how well the model fits the data is to check the variance of the residuals $\\epsilon$. Recall that our model is:\n", "\n", "$$Y=\\beta_0 + \\beta_1 X + \\epsilon$$\n", "\n", "If the model fits the data well, then the values of $\\epsilon$ will be close to zero and their variance will be small. We have already seen that the **Residual Sum of Squares (RSS)** is defined as:\n", "\n", "$$RSE = \\sqrt{\\frac{RSS}{n-2}} = \\sqrt{\\frac{1}{n-2}\\sum_{i=1}^n (y_i-\\hat y_i)^2}$$\n", "\n", "The residual standard error is a measure of the **lack of fit**. Large values will indicate that the model is not a good fit. For instance, in our example we have:\n", "\n", "$$RSE = 4.91$$\n", "\n", "This value has to be interpreted depending on the scale of the $Y$ variable. The average value of $Y$ is:\n", "\n", "$$\\overline{mpg} = 23.52$$\n", "\n", "So the percentage error will be $4.91/23.52 \\approx 20\\%$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### $R^2$ Statistic\n", "The RSE value is an absolute measure, which is measured in the units of $Y$. Indeed, to interpret it, we had to check the range of the $Y$ values. An alternative way to check if the model is fitting the data well, would be to compare the performance of our model with the performance of a **baseline model** which assumes no association between the $X$ and $Y$ variables. This model would be:\n", "\n", "$$Y = k$$\n", "\n", "This model has a single parameter $k$. The **Residual Sum of Squares** of this model would be:\n", "\n", "$$RSS(k)=\\sum_{i=1}^n{(k-y_i)^2}$$\n", "\n", "To find the optimal value $k$, we can compute the derivative of the RSS and set it to zero:\n", "\n", "$$\\frac{\\partial RSS(k)}{\\partial k}=2\\sum_{i=1}^n{(k-y_i)} = 2(nk - \\sum_{i=1}^n y_i) = 2(nk - n\\overline y_i)$$\n", "\n", "$$2n(k - \\overline y_i) = 0 \\Leftrightarrow k=\\overline y_i$$\n", "\n", "Hence, the optimal estimator, **when there is not relationship between $X$ and $Y$ is the average value of $Y$**. We will call its RSS value the **total sum of squares**:\n", "\n", "$$TSS = \\sum_{i=1}^n(y_i-\\overline y)^2$$\n", "\n", "We can compare the RSS value obtained by our model to the TSS, which is the error of the baseline method:\n", "\n", "$$\\frac{RSS}{TSS}$$\n", "\n", "This number will be **comprised between 0 and 1**, and in particular:\n", "* $\\frac{RSS}{TSS}=0$ when $RSS=0$, i.e., we have a perfect model;\n", "* $\\frac{RSS}{TSS}=1$ when $RSS=TSS$, i.e., we are not doing any better than the baseline model (so our model is poor).\n", "\n", "Note that the RSS measures **the variability in $Y$ left unexplained after regression** (the one that the model could not capture), while the TSS measures **the total variability in $Y$**. The fraction hence explains the **proportion of variability which the model could not explain**.\n", "\n", "We define the $R^2$ statistic as:\n", "\n", "$$R^2 = 1 - \\frac{RSS}{TSS}$$\n", "\n", "Inverting by the $1-$ subtraction, this number measures the **proportion of variability in $Y$ that can be explained using $X$**\n", "\n", "The plot below shows examples of linear regression fits with different $R^2$ values." ] }, { "cell_type": "code", "execution_count": 163, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABDAAAAFgCAYAAABNIolGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACiB0lEQVR4nO3de3wU5fU/8M9JSJQIggS8m0RbrVWpt2i1Xqqi/hS1td7bgChWRLTFVsVLVIo2Xmu/YCsitSDK1kur1hu2VRTvVaNV8W7VJFIvQLgoEAkk5/fHs5vsbmZmZ3ZndmZ3P+/XixfZ2dndZzfw7MyZ85wjqgoiIiIiIiIioigrC3sARERERERERESZMIBBRERERERERJHHAAYRERERERERRR4DGEREREREREQUeQxgEBEREREREVHkMYBBRERERERERJHHAEaJEZG3ReQgl/u2iMihwY6osIjIAhH5ucP9O4lIc5bPPUJELheRgdmPsDCIyO9FZHzY4yAKk4ioiHw7/vMMEbk87DEVCxE5TUSey7DP8yKyexbPPVREJovID7IfYWEQke+JyAthj4OIwpXpnEBEDheRv2f53MeLyIUi0i/rARYIEblfRI4IexyFjgGMImI1uaQfxKnqzqq6IIDXPk1EukRklYh8JSJviMjRfr9OAbgKwO8SN+K/k4745/KFiNwuIgPSHyQiBwC4H8BIAA+ISGXa/ReKyFsi8rWIfCIiFwYx+HgQ5T0RWSMiT4lIrcO+3xWRJ0VkpYj8V0R+knRfQ/w9J/6siZ+s7Rnf5QYAjenvkyiK4v+PO0VkaNr21+P/rutyfQ1VHa+qV+X6PG7Ex7w6/n/zf/GAYnk+XjsqROQYAF+r6n/it38jIuvin8kKEXlBRPa1eNxGAB4FcBiAR9IDICKyj4g8LiLLRGSJiPxVRLYIYPxDROSB+O+xVUR+5rDvjLT5eK2IfJ10f52IzBOR5fHvqT8mTiRU9U0AK+KfF1FByOcFOLdzRwm4GsC1iRtuv2dE5GQAtwFoADBLRCTt/t+JyIfx49/3ROTUIAYvIj+Lz6WrReTvIjLEYd/kY/tVIvIvD891LYCmIN5DKWEAg/z0oqoOADAYwHQAd4vI4FBH5EB8jvTGD1IPBvD3tLuOiX8uuwHYHcAlaY/7HoB7AfwMwIEAVgK4U0SS/38KgFMBbALgCADnisgpPo9/KEwQ5XIAQwA0A7jHZt9+AB4E8Eh833EA5orIDgCgqjFVHZD4A2ACgI8BvBa//3MA7wH4kZ/vgShAnwD4aeKGiAwH0D+84eRs1/j/zR8COBnA2JDHY0sMv49XxgO4M23bPfHPZCiApwD8NW0cFQDuA/AOzFx9NoCHRGS7pN02ATATQB2AWgBfA5jt89gB4GYAnQA2gznwv0VEdrbaMR4cS56P70Lqe5sOYDGALWC+p34IM2cnxACc5fs7ICoejnNH1ARw/LsXgEGq+u+0uxy/Z+JBpqkwAeEDAWwH4Pq051gN4BgAgwCMATBNfM5+i8+dtwIYDTOnroGZF50ckzSvHu72uVT1ZQAbi0i9n++h1DCAUWKSo9Ii0l9E5sSvurwrIpNEZFHaQ3YTkTfFXGW/R0Q2zPQaqtoNc2C4EYDtbcYxVEQeiUerl4nIs4kDVBHZXURei0db7xGRu0Xkt/H7+qQFS2oa9lEi8h8xWSCfishvkvari+97hoi0AXgyvn1s/P0vF5F/SlLWgYgcFo/4rhSRP8IEEuwcBuA1Vf3G5nP5AsA/YQ4Qe8YEc0A8SlUfVdV1MJP8egDTkh57vaq+pqrrVfV9mODBfg5jycZxAN5W1b/G38NvAOwqIjta7LsjgC0B/J+qdqnqkwCeh5mwrYwBcIeqatK2BQCO8mvwRAG7EyaImDAGwB3JO4jIBvGrRW0i8qWYK9/9k+6/UEQ+F5HPRCT9QO52D/Pc7SIyXUQei1/9eV5ENheRqfF57D1xuTRCVf8L8393N7t9ROQiMVfQvhaR90VkRHx7//hYlovIO/H3tyjpcT1jtniPm8S/A5bEH/+IiGydtO8CEWkSkedhDgC3E5EdpTe74X0ROSlp/2oReSg+978M4FsO76cSwCEAnrb5TNbDnLRvJSLD4o8RALfDBLLGqmq3qt4D4BcAHhaRzeKPfSw+h36lqmsA/BE+z9ViskCOB3C5qq5S1ecAPAT7+dfqsXOSNm8L4F5V/Sb+PfUPAMnBkAUARojIBj69BaJQxOfoqfE5+LP4zxvE73taRI6P/7x/fP4aGb99qIi8nun5reYOizF8O/5aK0VkqYjck3RfyjFnfL+fx+/7jYjMTdo3cUzbL3779Pix7Nci8rGInJW070Eisig+l38BYLaIlInIxSLykYi0i8i9kpQpICKjxWQRtItIY4a3fiRs5tP459Lne0bMCfytAP6fqjar6lcA/h+APUTkgqTHTlbV9+Jz7ksAngXgd4ZLA4CHVfUZVV0FcyHvOMluSbeb51oAHv/mhAGM0jYZ5irRdjAn36Ms9jkJ5or/tgC+B+C0TE8qJkXsdADrALTa7HY+gEUAhsFEKC8FoPEDy7/DnCwMgYliH+/u7QAwkdpTYbJAjgJwtogcm7bPDwF8F8D/i993KczJ+zCYifGu+PsYChNcuAwmqv4RnA9EhwN43+7O+MH5kQD+m9imqi2qur2qzk/atl5VG1T1FzbPIwAOAPC2w2utcPhzsc3DdgbwRtI4VsO8Z6urelaBHAGwi8VYamEi63ek3fUugF3t3gNRxPwb5qrJd+Nz3MkA5qbtcx2AHWAO0r4NYCsAVwCAmDWvF8DMtdsDyDW9+ST0zk1rAbwIk+E0FMDfAPzezZOICVAegKR5Ke3+7wA4F8BeqjoQ5gCzJX73ZJhAwbfi28d4GH8ZTGZCLYAaAB0wJ/vJRsNkdw0EsATA4wD+AmBTmGyY6dKbdXAzgG9gsgjGwjmjZHsA3aqaHrAH0BPgOBVAO4DlAKBGg6qenRyIVdW/x5dmfmnzWgfCea6e7jBXv2nzsB0AdKnqB0nb3oD1XJ3ueJjP8pmkbdMAnCIiVSKyFcz31D8Sd6rq/2C+z7/j4vmJoqwRwD4wc/SuAPaGmUcBcwJ+UPznA2GyRn+YdNv2BD3Bau6wcBWAf8Fka20N4A/xx3o95ky3GMDRADaGOQb/PxHZI+n+zWGOq2th5tVfAjgW5j1uGR/vzfGx7ATgFpg5eEsA1fGx2sl0/NvneyYetPhWfJlaYttqVR2hqr+zeZ7+APaCzZwqIjUZjn/tltqlH/9+BJPhtoPtOwZiYgLw/xKR5GNZN8/F498cMYBRfP6e/J8VzilQJwG4WlWXxw/kbrLY5yZV/UxVlwF4GA5X6QDsE3/Nb2DqQIxS1cU2+66DOdCsVdV1qvps/KBwHwAVAKbGt/8NwCsOr5lCVReo6sJ4pPZNmGDED9N2+018kuyASYu9RlXfjUfOr4bJOqmFqUfxjqr+LZ4ZMRXAFw4vPxgmXTjd38WsN/4U5gtmstv3Y+M36D34t6Sqgx3+XGvzsAEwy1eSrYQ5eUj3Hsx7uVBEKkTkcJjPucpi31MBPKuqn6Rt/xrmMyMqFIksjMNg/g/8L3FHPLB4JoBfqeoyVf0aZj5JLPU6CcBsVX0rHhz8TY5jeUBVX41nSz0A4BtVvUNVu2CWfmXKwHhNRFbDHEgtgP13RReADQDsJCIV8aDrR/H7TgLQFH+/n8L6O8SSqrar6n2quib+WTWh71x9u6q+HZ+bjwDQoqqz40He12AO9k+IB5SOB3BFfG5/C6kZBukGw3quPin+HdYB87s8If7aWRGzPPAKALY1i1R1gsNc/T2bh3mZq9NZZcM9DXPQ/RXMhYVm9F0KyfmaikEDgCtVdbGqLgEwBb2ZS08jNWBxTdLtH8I5gOFl7lgHE0TYMp71lMi283rMmUJNFu9H8WDr0zBBkgOSdukGMFlV1yYd/zaq6iJVXQvznXRCPKPjBACPxLMI1sJkEXQ7vPxgWM+pbr9n3JoBExz4p9WdqtqW4fj3LzbP63VObUDvMsGnAPxTepfMu3kuzqc5YgCj+Byb/J8VqetY020Jc1Kd8KnFPsmT5xqY/5h2/h1/zU1g0lkPAHoioj0FxOL73gATif1XPNUtkRWwJYD/pR1c2WVx9CEi3xdTfHKJiKyEWec8NG235PdZC7OeLhHwWQaTSbAV0j6f+JisPqOE5bCe7I5Vc+XyIJilF+njcU1EzoU5gToq/qXip1UwkftkG8PiSyn+5XosTJbLFzAZNffCHPymOxXWJxMDAazIerRE+XcnTK2a09A3o2gYTADv1aT55B/x7UDf+db1vGYj+Yp/h8Vtp7kaAPaI73MygO/DLPmD9C5LWSUiDWpSf8+DObhdLGZJ35bx58j6PcWv9t8aT1H+CiYjYLCkFnlLn6u/nxagb4C5qjgMQD8PY7Gbq++Nf4dtBuAtAHta7OOKmKUzjwGYqKrPZvs8NlzP1Wlj2gbmROyOpG1lMCcD98P8GxgK8x1+XdrDOV9TMdgSqXNDa3wbYLLYdhCzHGw3mP8n28QzI/ZGatZSOsu5Q0QOSJpPE1kDk2COM18W0xkwkS3m9ZgzhYgcKSL/FrPEbgVMQCT5eHOJpi5xroUpGp+YT9+FCVhvZjGW1TBZJXbs5lTL75lsiMgNMFm+J6WdI/jB05yqqs+rakc8AH8NzNyYCBa5eS7OpzliAKO0fY7UlLBt/HhSNWu+JgAYLSK7xyOiyQXEoKpfq+r5qrodTHGeX4tZV/05zNrB5CUKNUk/r0bSVX4R2Tzt5f8CEzzZRlUHwURr05c7JE98nwI4Ky1C219VX4iPpecziY/J6TN6Ew7pZvGI+O1I6lLiRfxL7mIAI9Qm9Tlp31UOfy61edjbSEppE7NW+luwSdVT1TdV9YeqWq2q/w9mKdLLaePYD+aL8G8WT/FdJKXZEUWdqrbC1EAYCXPCl2wpTOBg56S5ZFBizkPafILUeS1dpnnOF/ErdffCHLhfEd92ZNJ8HYtv+4uq7g9zwKvoPbnN9J7WIDUrK/l9nA+zJOH7qroxzBVPIHW+Tp+rn06bqweo6tkwSyLWZxhLsg9hpvStrO5U1aUwVyd/I1l0EIln8D0B4CpVTS8Umr5veoeQ5D92S08+ANBPRJJrTO0Kh6UqcacCeEFVP07aNgTmc/tj/MpsO0x238ikMW4JoBIOKeJEBeIzmHksoSa+DWpq1rwKYCKAt1S1E8ALAH4N4KP4vOAofe5Qk12cmE93ju/zhaqeqapbxvedHg94ZjrmTPleQNJ8KqaOx30wx5ebxYMp82A/nwJmTj0ybU7dUM2SsfSxVMEsI7Fje/xr9T3jlYhMgVnadriaWhl2+9U4zKerRKTB5qHpx7/bwWQefmCzfzpF72ft5rl4/JsjBjBK270ALhFTTG0rmHXOvogfBN0Gm8lKRI4WU8hIYNJWu+J/XoQ5EP2liPQTkeNgIt8JbwDYWUR2E1NQ9DdpTz0QwDJV/UZE9oa5WupkBsxnsHN8XINE5MT4fY/GX+u4eErdL5F6AJ7ucZjiQ06FTqcCOExEdsswrhTxSfdqAIelHXxaSg4YWfy52uZhDwDYRUw/7g1hfndvqup7NmP6nohsGL+SegHMkqDb03YbA+A+NSni6X4Ic4WSqJCcAeCQ+BWpHmqKF/8JZt3xpgAgIluJyP+L73IvgNNEZKf4waDTUrJM85zfrgUwzipQIiLfEZFD4gfI38AEabridyd/h2wNU9Ay2esAfiYi5WJqgCQvERkYf64VYgrHZVpa9wjM1dHRYpatVYjIXiLyXTXLZu6HOWmoErN+27YeRzyD7An0XbKSvM97MJkJkzKMK0X8u/RJADer6oxM+2tah5C0P3ZdRVbDvN8rRWSjeKD4x+jbVSXdqUibo+MnXJ/A1IvqJyYNegxSD64PAvBkAFl/REGqiB+jJP70g1lWfJmIDItnVlyB1FpGT8McCyeWiyxIu51RprlDRE6U3oLFy2FOfruQ+ZjzdQAHxk/SByG1o10lzEnyEgDrReRIAIfD2QwATfGAK+KfyY/j9/0NwNFiiplWArgSzueM8+Awn8bZfs84EZFLYI7lD4ufW9hKv2Bq8Sdm89AYgGPEZMxsBPN+77c6do1//vuJSGX839WFMJkuz3t4Lh7/5ogBjNJ2JUzK/ycwB3N/gykG55epAEaKWQecbvv4a66CCVpMV1O/ohOmoOZpMBP7yUi60qmmaNmV8cd+COC51KfFBJiDuq9hvpjudRqgqj4AczXxbjFpzG/BRHkTB3Ynwky67fExP2/zVFBTxO1JmANJu32WwKQlXu40Lgu/hYl+v5IUSc54cOxFfGzHw6xFXw6T7tfTqlVELhWR5Al3NEyUfjGAETBfLmuT9t8QZo18n+Uj8auaO6HvOmuiSFOzxrjZ5u6LYJbG/Ts+nzyBeOFDVX0MZk58Mr7Pkw6vkWme85WqLoQ5QLeq1bABzBy4FGa52KYwhY8Bs348kZXyL/Q9gZ4Ik2G3Ama5x9+T7psK04Z2KUyB1H/AQfzg73CYOemz+Fiui48PMCcZA+Lbb0fm1qWJNndOboA54N40w37Jfg6TjTZZ+i6d9NMEmM9vMcxJ2dmq+jaQchWyJwtFRPaFybi0au94HEyNkSUw/zbXA/hV0v0NMCc7RIVkHkyQNPHnNzDHUs0wGQMLYQof/zbpMU/DBFefsbntltPcsReAl+LzwkMwy8w+yXTMqaqPw9Q3ehMmU+SRpPu+hgl43Atz/Paz+HM7mRbf51/xY+Z/wxz3IT6XnAOT1fx5/DltM3/V1CRaKSLfd9jH6XvGydUwmTIfSuZM4qzE3+94mODDYpjfec8SfDGZcok5cCBMgdPlMHWwjoDJZGl3+Vx7AVitpp0qZUnU92VEVKhE5GwAp6hqpihqXonI7QAWqeplmfYNW/zK3xwAeyv/c9kSkRthUjJzLehERBEhIgcBmKuqTtXqI0NMq9pfqOp/wh5LVInIcAAzVdXvtoVElIGILICZU28LeyyZiCnmPkFVjw17LFEmIvcB+LOqzgt7LIWsX9gDoPDEr4JvB5MBsT3MmuT0Nnbkgaq+AxNdJweqen7YYyCi0hav60EO4ldNGbwgIkeq+i+YTDxyoKrHhz2GYsAARmmrhEmj3RYmxfdu5N7iiIiIiIiIiMh3XEJCRERERERERJHHIp5EREREREREFHkFt4Rk6NChWldXF/YwiIgC9eqrry5V1WFhjyMd52AiKgVRnYMBzsNEVBrs5uGCC2DU1dWhudmugx0RUXEQkdawx2CFczARlYKozsEA52EiKg128zCXkBARERERERFR5DGAQURERERERESRxwAGEREREREREUUeAxhEREREREREFHkMYBARERERERFR5DGAQURERERERESRxwAGEREREREREUVe4AEMESkXkf+IyCMW9x0kIitF5PX4nyuCHg8RERERERERFZ5+eXiNiQDeBbCxzf3PqurReRgHERERERERERWoQDMwRGRrAEcBuC3I1yEiippYDKirA8rKzN+xWNgjIiIqPrGFMdRNrUPZlDLUTa1DbCEnWyIqMSV20Bl0BsZUAJMADHTYZ18ReQPAZwAuUNW303cQkXEAxgFATU1NAMMkIvJPLAaMGwesWWNut7aa2wDQ0BDeuIiIiklsYQzjHh6HNevMZNu6shXjHjaTbcNwTrZEVAJK8KAzsAwMETkawGJVfdVht9cA1KrqrgD+AODvVjup6kxVrVfV+mHDhvk/WCIiHzU29n6PJKxZY7YTEZE/Guc39gQvEtasW4PG+ZxsiahEhH3QGUL2R5BLSPYD8CMRaQFwN4BDRGRu8g6q+pWqror/PA9AhYgMDXBMRESBa2vztp2IiLxrW2k9qdptJyIqOmEedCayP1pbAdXe7I+AgxiBBTBU9RJV3VpV6wCcAuBJVR2VvI+IbC4iEv957/h42oMaExGRn+yCznYr3bgCjojIPzWDrCdVu+1EREUnzIPOkLI/Am+jmk5ExovI+PjNEwC8Fa+BcROAU1RV8z0mIiKvnILOTU1AVVXq/lVVZjsREfmjaUQTqipSJ9uqiio0jeBkS0QlIsyDzpCyP/LRRhWqugDAgvjPM5K2/xHAH/MxBiIiPzkFnVtaevdpazNB8Kamoq2lREQUikShzsb5jWhb2YaaQTVoGtHEAp5EVDoSB5dhHHTW1JgreFbbA5SXAAYRUbHJFHRuaGDAgogoaA3DGxiwIKLSFtZBZ1NTagcUIC/ZH3lfQkJEVAxY54KIiIiIip5d0beGBmDmTKC2FhAxf8+cGXgwhQEMIqIsjBzpbTsRERERUUHJ1GmkocGsne7uNn/nIROEAQwioizMm2e9febMvLbCJiIiIqJSYpcREYSQOo04YQ0MIqIs2NXA6OoyfycC1ABrYRARERGRDxIZEYmgQtAHnCF1GnHCDAwioiy4qXURcoCaiIiIiIpJvjMiIlj0jQEMIqIsWLXdthJigJqIiIiIikm+MyKsDnjz0GnECQMYRERZSC+8XF5uvR+7khARERGRL/KdERFSpxEnDGAQEWUpufDynDmRC1ATERERUTEJIyMihE4jThjAICLyQQQD1ERERERUTHjAyQAGERHQtyPVhAneO1RFLEBNRERERMWmxA84GcAgopKX6EjV2gqomr9vuSX19rhx1kGMfLbiJiIqVrGFMdRNrUPZlDLUTa1DbCEnUyIi6osBDCIqeVYdqdJZdaiyCnzYBTqIiMhabGEM4x4eh9aVrVAoWle2YtzD4xjEICKiPhjAIKKS57bzVPp++W7FTURUjBrnN2LNutTJdM26NWicz8mUiKgH034BMIBBROS681T6fplacX/6KbByZfbjIiIqBW0rrSdTu+1ERCWHab89GMAgopLX1ARUVDjvY9WhyqkV98iR5m9mYxAROasZZD2Z2m0nIgpNLlkQuTyWab89GMAgopLX0ABsvLH9/XYdqqxacffvb4Lijz1mbv/iF/6OlYio2DSNaEJVRepkWlVRhaYRTTaPICIKQS5ZELlmUGRK+y0hDGAQEQFYtsx6u4h9h6r0VtxbbQV0dPTev3o18J3vBDJcIqKi0TC8ATOPmYnaQbUQCGoH1WLmMTPRMLzvxMtuJUQUmlyyIHLNoHBK+y0xDGAQEcH990J69h9gAhz/+hfwv/+Z27vsYoLr6dkZUSUiLSKyUEReF5HmsMdDRKWnYXgDWs5rQffkbrSc12IbvGC3EiLKu8TBX2ur9f1usiByzaCwSvu1Wt9cAhjAICKCu+8Fu+y/444DDjvM7HPZZcDChfkbt48OVtXdVLU+7IEQUWnwmk3BbiVElHfJB3923GRB5JpBkZ72a7e+uQQwgEFEBHffC3bZfw88YH7+5z+Bq67K35iJiApVNtkU7FZCRL5LT62dMCH19sSJfQ/+krnNgvAjg6KhwaT9dnfbr28uAQxgEBHFZfpecMry+/RT4PDDgxxdoBTAv0TkVREZl36niIwTkWYRaV6yZEkIwyOiKPGjDkU22RTsVkJEvrJKrb3lltTb7e32j/eSBcEMCt8wgEFEBHedrZyy/7beOsjRBW4/Vd0DwJEAzhGRA5PvVNWZqlqvqvXDhg0LZ4REFAl+1aHIJpuiWLuViMhgEfmbiLwnIu+KyL5hj4moJFil1rpVW+s9C4IZFL5gAIOISp7bzlZNTUBlZeq2igrTbSSblt5Roaqfxf9eDOABAHuHOyIiiiq/6lBkk03hpVtJgZkG4B+quiOAXQG8G/J4iEpDti1IS7R4ZlQwgEFEJc9tZ6tnnwU6O3tvV1ebLMD29uxaekeBiGwkIgMTPwM4HMBb4Y6KiKLKLkOidWWrp+Uk2WZTuOlWUkhEZGMABwL4MwCoaqeqrgh1UESlwm0BzepqLv2IEAYwiKiouFkKki5TZytV8911663m9r//bbYNGJAa0AC8tfSOiM0APCcibwB4GcCjqvqPkMdERAHKpYaFU4aEl+UkmbIp3I7Rj3ocIdsOwBIAs0XkPyJyWzyYnIK1iIgCYFVYM11VFTBtWmku/cjmoDoPGMAgoqLhdilIOqfaFitWmHl72TKzbelS4PvfNz/n2tI7ClT1Y1XdNf5nZ1VlTiRREcu1hoVV5kQyL8tJ7LIp3I7Rr3ocIesHYA8At6jq7gBWA7g4fSfWIiIKgFVhzbPPLp1sC6cARbYH1XnAAAYRFQ23S0HS2XW2+vnPgU026b3d1WUyMRJybelNRJRvdjUsxjwwxnPmhJ1s25omsilG3T/KVZ0Nv+pxhGwRgEWq+lL89t9gAhpElA/phTWnTy+NbItMAYpsD6rzgAEMIioa2WZEWAXgTz4ZuPxyc/+YMb2FOpP50dKbiCif7IILXdrlaflHy3kttkGMbNqaJmdT2EkfezadTKJGVb8A8KmIfCe+aQSAd0IcEhGVgkwBiginGTOAQUQFL5EBp2p9v5uMiOQA/K67ArNnm+1z5wK3327/GLb0JqJC4hRc8Jq94GdbU6tsinTpY8+mk0lE/QJATETeBLAbgKvDHQ4RFb1MAYoIpxn3C/oFRKQcQDOA/6nq0Wn3CUzrqJEA1gA4TVVfC3pMRFQ8Ehlwdm28vWRErF9v2qImvP02sNNOzo9paGDAgogKQ2xhDKs6Vznu4yV7IVGzonF+I9pWtqFmUA2aRjRl1Rkk0+smAiOxhbGe1xvSfwgqyyvR2dXZZ79CoqqvA6gPexxEVEJqasyyEavtgDl4Tj/AjkiaceABDAATYfpZb2xx35EAto//+T6AW+J/ExG5YpUBl1Bba+ZZNwGGzz8Httyy9/bXX5suI0RExSCxRMNrlkMmDcMbfGllWjOoxnb5SO2g2p6gRPJ7aO9oR0VZBar7V2NZx7KcAihERCUlU4AicfDc2GiyMmpq3B9UByzQAIaIbA3gKABNAH5tscuPAdyhqgrg3yIyWES2UNXPgxwXERUPuww4EbMkxI2nngIOOcT8vMMOwHvvmccTERULN0s0rLIXkjMeggwQNI1o6hNgqaqoSmmtWje1rs97WNe9DgMqB2DppKW+j4mIqGi5CVBENM046BoYUwFMAtBtc/9WAD5Nur0ovo2ISpiXttO5LtG76qre4MVFFwHvv2+CFxFtfU1ElBWnJRoCQe2g2pRgAZDfNqXJ3U3sxlMMRTuJqIRE/WAyvQNLNsGKEN5jYBkYInI0gMWq+qqIHGS3m8W2PmX4RGQcgHEAUBOBwiFEFJz0mhaJrk6A9byayxK9vfYCmpvNz48+Cowcmd0YiIiizm6JRu2gWrSc12L5GKc2pUFkYWRajmL3HgqwaCcRFbtSOJgM6T0GmYGxH4AfiUgLgLsBHCIic9P2WQRgm6TbWwP4LP2JVHWmqtarav2wYcOCGi8RRYDXttPZdALp6DD7JoIXra29wYtsxkBEFHXZdAyJWsaDn11PiKhARD2LwU4pHEyG9B4DC2Co6iWqurWq1gE4BcCTqjoqbbeHAJwqxj4AVrL+BVFpy6bttJcMuI8+MhkaCWvX9l1uYlWU2Wk7EVHUuVmikS5qbUq9vofFqxdj8erFeR4lEfkmcYW/tRVQ7b3CXwhBjGwOaAtNSO8x6BoYfYjIeBEZH785D8DHAP4L4E8AJuR7PEQULUG2nb7/fuDb3zY/H3yw+S6srOy7X3m59eNFCvMiABERYAIALee1oHtyN1rOa8m4DCSKGQ9u3oOq4uA5B2Oz322Gg24/KP+DJCJ/RDGLwW1GSJAHtFER0nvMSwBDVReo6tHxn2eo6oz4z6qq56jqt1R1uKo252M8RBRdTU2pGRKAP22nzz0XOP548/ONNwJPPtn7HSQC9OvXG6Do6rJ+jkTwv9AuAhARZSObrI18ii2MYej1QyFTBDJFMPT6objiqStQdmUZFrQsAAD8/v/9PtxBElH2gr7C73V5ipeMkKAOaKMkpPeY9wwMIiIn2dS0sBOL9T7PzTebbc8/D/z616nfQUBv0KK11X0L1bAvAhARBc1r1kZsYQx1U+tQNqUMdVPrAulYknidsQ+ORXtHe8+29o52XPXMVQCA71R/B+suX4cjvn1EIK9PRHkQ5BX+bJaneMkI8euANso1QPw8aPeAAQwiihyrmhbZBMnPPDM1SN+/P/DJJ+Znq++gBFX3QYxiWspIRJSLfLZdbZzfiM6uTsv7NttoM7x37nvoVxZYsz0iygc3V/izPcHPZnmK14yQXNuUFkINED9asXrEAAYR5UUuAeRs5u8LLzTdRpJ1dAATJ5qfMwUeVHsDynY1MYDiWspIRNFhlcmQr+yGbDm1XfUq03t16oTCwp1EEWS3btfpYC7TFf5cTvCzWZ6S75oPYdYAiXDmBwMYRBS4XAPIXubvWAyorgY+t+ln1N5u9sn0XVNb2xtQtquJARTXUkYiigarTIaxD47F6X8/PS/ZDdnyq+2qm0yO6v7Vto8Pq0sKEdlwWreb6YDQ6Qr/xInZn+BnE4zId82HsDqZRDzzgwEMIgpcrgFkt/N3LAaMGQMsW5Z5PFbfQQnJ30WxmP1ykurqvGTKEVGJscpk6OzqxLrudSnbss1uCEoubVeTMy7GPDDGNpNjzbo1qLyqEks7llo+T0VZRahdUojIgtO63WwzCmIxc1XKipsT/GyCEfmuaxFWJ5Modn9JwgAGEQXO7nuktdVdMNdp/k7OSBw1yjlbInk8yd9BQO8ykfTvosZGE3xOJwJMm5b5tYiIvPKSseA1uyFI2bZdTc+46FLribx1ZSs2unqjnkDOdYdel5KJUd2/GrOPnR2ZLilEFJcpoJBNRoHTybSbE/xsgxH5rGsRVieTsDI/XGIAg4gC5/Q9MmoUMHSocyDDbv4eOTI1I9HreBLfQarA+vXm7/TvIru5WpXZF0QUDC9LIKK0XCLbtqtWGSdOxu42FjpZMWm/SVg6aSl0skInK5ZOWsrgBVEUZQooZJNR4HQy7fYEP4QClKF0MvHKj8yPAGtoMIBBRIFzWq4BmAxAp6V1dvP3vHn2GYl2vAau7ebqROYGEZHfrDIZKssrUVFWkbLNTXZDviW3XW0a0YTG+Y0Zi456ySL5+Jcf488//rNfwyWifHC7btcLuwO0qK/vzXcnk2zkmvkRcA0NBjCIKHCJAISTTEvrkufvpiazr5vMi4oK812WbeA6rOw9IipNsYWxnoyEcjFr22oH1WLWj2dh9rGzPWc35INdxxS3LVXdZJGM3H4kdLJi2022DeItEFGQ3K7b9cLuAC3q63vdrIsuKzPpyUOHhtMFJNfMj4BraIhaLe6OsPr6em1ubg57GESUhbq6zEGH2lrznWQ3RyaCuk6ZF+XlJtBRU+P8XG7FYmbObWvz7zkzEZFXVbU+2FfxjnMwUXASJ/3JyymqKqoiE6iwYjfm/v36o72jb4G92kG1aDmvJeNzJPvDkX/A7174HdpWtqFmUA2aRjQF/nlEdQ4GOA9TCXB74BXGAVqurA5kq6pMFfo5c+wPcKuq8rN8xA9lZfYF5Lq7XT+N3TzMDAwiyptMS0mAzFlml17qHLyoqjLzv5+ZdmFk7xFR6bGqBRG1TiPp7MZsFbwArJeLJGpnbDVwq5TtVx9yNeYeNxcXPXFRpNvHEpGPvCw/8OsALcB6DX1kuy46Kl1A3HxWAXdPYQCDiPImMWdXVzvvZzdHf/yxc82mfNU2IiIKgl0tiCh1GknndWx2y0WebX0W//v6fz232ye145IDLsk6qGO1rIWICkC+Wnimt7GzCpgEFdiwCry46fARdhcQt8Glpiagf//UbT6uv2YAg4gCYzXvNzQAS5cCc+c6F8JMn6MffBD41rfs96+tZXYEERWW9JPsIf2HWO4XpU4j6ezGVt2/2lVL1feXvg+ZIrj11VsBANNHTodO1p7PIpugjpf6G0QUMflo4Zl8Im5lzRpg4sRAC1H24SY7wacMhqy5CS61twPnnw90dPRuq6nx9QojAxhEFIhMQdpE8NkuiJE8R593HnDssebnU05hUU0iKnxWJ9lfd35dEJ1Gkll1TKmqqMK0I6c5tlRVVZz41xOx4807AgAEgq8v+Rpn73V2ynPZBUicgjqFuBSHiOICXn4AwPpEPF17e34yQRIyrbOOwsGuU3Dpq6+AHXYwhUe//NJsv+mm3pMAH68wMoBBRIFwmwHo1OVDFdhmm96C0s8+C9x1VzgtsYmI/GR1kt3Z1YmNN9g4kp1G7CTqV1iNObmlast5LT3v47XPX0PZlWX42zt/AwDEjouhe3I3BlQO6PP8dgESp6BOIS7FIaK4fLR/yyWbI6hlHOm1Maqrc2ujFwS7IFJFBTBoEPDhh+Z24iD+F78IZBj9AnlWIip5bjMAE3NxehHpY44xS08SvvwS2HTT3seEPYcTEeXC7mR6WccyLJ20NGVborVqPrtweJEIVmSiqjjkjkOwoGUBAGBo1VAs+tUibNBvA8fnBuDp/dcMqkHryr6p4VFeikNEcXYHhn4e+NXUOLfFEwGGDDFZGFaPDUrUD3CbmqxbAXZ2mr8vvhi4+mrz+QWIGRhEFAgvGYDptYyGDzeB3OTHPP649zHks6g0EZEXbpdGFEs9h2dbn0XZlWU9wYuHf/owlly4xDF4kWCXyWEnm6wNIoqQoNu/OS3XEAHGjzfpv1yznKqhAbjllr4FOidMML+ra64JPHgBMIBBRAHJNgNw9mxg111Tt7W1ea+b5KULFxFRvo3cfiQEqQd6VifZhV7Poau7C8NvGY4Dbz8QALDj0B2x7vJ1OHqHowN7TadlLUTkQbFeCWpoAMaMAcrLU7fX1gJ33glMn27f7jTKGRJB6u42n9mYMb0FOkeNArq6gJtvzkvgIoEBDCIKRDbz/imnAGPHWt/ntW5SvrpwERF5FVsYw5w35kChPdsEgjG7julzkp2Peg5BtRx97MPH0O+qfnhr8VsAgKfGPIV3z3kX/cqCX8HsNWuDiOKS24uOHl1cV4KS39uMGebkOyFxlS35QDXoTJAosQtWqQLnnmuCPXfcYbb96Edm2cidd6au984TBjCIKDBu5/2uLvNdcs89zs/npW5SPrpwERFlwyqrQqGY9+G8Pvtm04XDiyCWqHR2dWKLG7fAyL+MBADst81+6LqiCwfVHeTLmIkoIOntRVVT7/frSlDQmR1Wz5+v95brOMN4Hqu05TPPNIGKsjKTYQEABx0EfPMN8OCDpnBnSBjAICJHQX/HLF4M9Eu6GLdypbvWqpnkowsXEVE2vGRVBF3Pwe8lKve+fS82+O0G+GLVFwCAV858Bc+NfQ5lwkNOoshz01401ytBQa/xtXv+iRODf29e+PU5+PE8Vr/3jg7g4YfNz3vsAaxaBTz1FLBB5rpFQeO3CRHZymVOdBP4eO45YLPNzM9bb20yNTbe2J8OWvnowkVElA0vWRVB13Pwa4nK6s7VqLiqAif/7WQAwLE7HovuK7pRv2V9zmN0K6ilMEQlw80JfK5XgoJe42v3/FYdRdLl8yqX18/B7sDaj8/T6fe+YgXw6qvARhu5f76AMYBBRLaynRPdBD5uuAE44ADz8y9/CXz6aW/9Hy/1M+zmc9ZeIqKo8ppV4bWeg5cTeT+WqPzp1T9hwDUDsL57PQDg7Qlv44GTH4DksahbsXRrIQpVphN4P64EBb3GN9vnyfdVLi+fg9OBtR+f55Ah1ttra1PbAkYEAxhEZCvbOTFT4OPAA4FJk8zPDzxgOlUBqcGIxkbzPZKonwE4L2e0CpSUUu0lIiocQWZVeD2Rz2WJyopvVkCmCMY9Mg4AcMbuZ0AnK3YatlPO78OrQu/WQhQJVumriUCkX1eCgl7ja/c81dXBvzcvvHwOTgfWuXye991nPgOr7JQIpy0zgEFEtrKdE+0CHK2tZp589llz+6OPgGOPNT87BSO8LGdkpxEiKgRBdcnweiKfbTDl+uevxybXbdJz+5OJn+C2H92W+xvIUj66tRAVPav01TvvNAdffl0JCnqNr93zT5sW/HvzY5xWn4PTFcVsPs9//MN8Biec0Lvt978vmLTl4PtYEVHBamoygYLkIIGb75iamt4iz3Y6OoANN+y9nSlrw+o+u1pM7DRCRKUqmxP5huENrgMoX676EpvfuHnP7Qt/cCGuP+x6b4MMQM2gGrSu7PvF41e3FqKS0dAQ7Ilr4rkbG80BW01N3/alQT5/VE7KvXwOdgfWNTXenueZZ4Af/jB127vvAjvuaH7+1a+8v49YLLjfpQ1mYBCRrWzrSFgFgxP22ccEu5ODF4BzcNlrQIKdRoioVAXZdvWSJy5JCV58fv7nkQheAMF3ayEqGEG3j/ND0Gt8C2UNsdtxZsqyyPQ8r7xiDuSTgxf/+Y85IE8EL7IRdEcZGwxgEJGjbL4DkgMfyZqagBdf7L2d/B1bZjMb1dR4W84Y4SV7RESBC+JEvm1lG2SK4NrnrwUAXH3I1dDJis0HbJ7hkfkTdLcWooIQ0gklBSzbK4pvvWX233vv3m0vvGD+bey2W+7jCrqjjA1R1UBfwG/19fXa3Nwc9jCIKANV4NvfBj7+2NxesCA18Jv4jnVqyV1VBYwZA9x7b9/6QlVVZu4G8p65lhci8qqq5q//oEucg4miL7Ywhsb5jWhb2YaaQTVoGtGU9Yn8WQ+fhZmvzey5vWzSMmzSfxOHRxSHqM7BAOdhclBXZ73UoLa2tyI6Fb///hfYfvvUbU88AYwY4e/rlJWZA/50IubKZ47s5mHWwCAi361aBQwc2Hv788+BzdMu1FkFbQGgvNzMeTU1wMiRwJw5fferrja1mKK2nJGIyCs/gw0JXmpa2Hl/6fvY8ebe1OLpI6fj7L3Ozuk5iShgQbcopfzItq7Ep5/2TVt+6CHgmGOCGadTbY4AMYBBRL56+21gl116b69bB/SzmGnsvku7u3uDtnV11kGOAQMYtCCiwpdoeZroGpJoeQogtKUPqooT/3oi7nv3PgBAmZRh5cUrMaByQCjjISIPQjqhJB+lpygnlgEB9ge/X34J7LAD8NVXvdvuugs45ZRgx5pttf8cBVYDQ0Q2FJGXReQNEXlbRKZY7HOQiKwUkdfjf64IajxElB0vtaDuvLM3eHHccSarzCp4Abhr0coLCUTkt9jCGOqm1qFsShnqptYhtjC8teFeW54G7bXPX0PZlWU9wYvYcTF0XdHF4EXARKRFRBbGj4W5NqTU+Fl0M+gWpRQ8L3Ulli0DttnGpDknghczZ5oD8KCDF0D2tTlyFGQRz7UADlHVXQHsBuAIEdnHYr9nVXW3+J8rAxwPEbmQ/D06dCgwdqy7WlCjRwOnnmp+vvVW4L77nJ971SqgoiL1/vTvWDdBDiIitxIZD60rW6HQnoyHsIIY2bQ8DYKq4qDbD8KeM/cEAAyrGoZvGr/Bz4b/LC+vH6WgUogOjh8LR7LuBgXE76KbIZ1Qko/cXL37+mtg553NmupFi8y2G280/4bOPDP4MYYssACGGqviNyvifwqrYihRkXAb3E//Hm1vBzo7U/dJDwJ3dwOVlcDcueb2a6/1Zrplem4RM/fafcfyQgIR+SlqGQ9Btjx169nWZ1F2ZRmebn0aAPDwTx/G4gsXY4N+G+Tl9aMWVCLKqyC6OBRKC1Gy5nT1rqMD2HdfYOONgXfeMdt/8xtzYP3rX+dtiD2KsY2qiJSLyOsAFgN4XFVfstht3/gyk8dEZOcgx0NUirzMLXaFNdMlgsBLl5qim+vWmdsrVgC77279GKvn7uw09SzsvmN5IYGI/BSVjIeEIFqeutXV3YVdpu+CA28/EACw49AdMefYOTh33rl5zYSIWlApJArgXyLyqohYXAIARGSciDSLSPOSJUvyPDwKDNfKUjqrq3f9+5ugRVUV8O9/m23nn28OoCdPTt3XzyVJmYTURjXQAIaqdqnqbgC2BrC3iOyStstrAGrjy0z+AODvVs/DSZsoe17mFrfflzU1wIsvAsOGmdubbmrm0EGD7B+T7Xc0LyQQkV/cZjzka0lDw/AGzDxmJmoH1UIgqB1Ui5nHzAy8gOe8D+eh31X98PaStwEAC8YswGUHXoazHz0775kQUQsqhWQ/Vd0DwJEAzhGRA9N3UNWZqlqvqvXDEl++VPi4VpbSJV+9A0zQoqMDWLjQ3D7zTHNQ/Lvfmat7yfKdERFSAC7QAEaCqq4AsADAEWnbv0osM1HVeQAqRGSoxeM5aRNlyW4OaW3tG6B1831ZVQXsvz/wgx+Y2+ecY4ofp8+h6fgdTURhG7n9yIzb872koWF4A1rOa0H35G60nNcSaPCis6sTm/9ucxz1l6MAAAfUHICuK7rww7ofhpYJEYVlNGFT1c/ify8G8ACAvcMdEeUN18qSlZ/+FDj0UPNz4irkyScD69eb4IbdQXe+MyJCOrgPsgvJMBEZHP+5P4BDAbyXts/mIuY3ICJ7x8fTHtSYiEqR3Rwi0jdAO3Jk38KagAlyACYYnJyN9re/AX/8Y9/9rbLX+B1NRGGb9+G8jNuLdUnDPW/dgw1+uwG+XP0lAOCVM1/BM6c/gzIxE3xYmRBhLqOJAhHZSEQGJn4GcDiAt8IdFeUN18pSMlXgV78y67P//Gez7cgjzZrru+82253kOyMipIP7IDMwtgDwlIi8CeAVmBoYj4jIeBEZH9/nBABvicgbAG4CcIqqstAnkY+s5hYRM0cmW7MGuPde66Bud7dZftfa2lsz6MMPgeOP77uvXfYawO9oIgqX3cl468rWniUjrStbPT026lZ3rkbFVRU45T7TUu8nO/4E3Vd0o37L1GYXmTIhglpWE9YymgjZDMBz8WPhlwE8qqr/CHlMlImfdQa4VjZVPms4RMlvfmPe89Sp5vZ++5mlI/PmWV9dtJLvjIiQAnBSaPGC+vp6bW5mi2wiL2Ixkz3W1mbmsFbr43PX1qwxAQ0rdXXWz19ba76XyR0ReTWK7fQ4B1OUxRbG0Di/EW0r21AzqAZNI5pSToTrptZZBigEAs3QKK12UC1azmvxe8iBmvnqTJz1yFk9t9+Z8A6+O+y7lvsmls4kZ59UVVRh5jEzAcD2vmINNER1DgY4D4cucaUmOVW/qopXZfxQip/tjTcCF1zQe3uXXYAXXgAGDvT+XEX2+dnNw3mpgUFEwXAbpE4P7ifqAmVD1T54AbCgNhGFw03tCqvlCm6CF4W2pGHFNysgU6QneHHG7mdAJ6tt8AJwzoQo1mU1RFkJqfNCUUsc0I4aVTqfbaKWRSJ4UVMDLFtminVmE7wASmZJEgMYRAUql0LDdkvWqqudH+cm8MFinUQUBjcn2VYn6U7Bi6CXNASxLOP656/HJtdt0nP7k4mf4LYf3ebqsXYFRbOtj5Gvbi5EecUrNf5KPqC1U0yf7V/+YoILZ8Wz4zbZxFTDb201P+eqBJYkMYBBVKByuQBgF6CdNq1vYCOhshJYtSpztgeLdRYeESkXkf+IyCNhj4UoW25PstNP0msHWUdmawfVuuoMknySPvT6oRh6/VBXJ+x+dzv5ctWXkCmCi564CAAw6QeToJMVdYPrsnq+ZNl0Csl3NxeivOGVGn9ZHdCmK4bP9sEHzUF3IqBQVmYCM8uWAZtuGu7YCgwDGEQFKtMFgEzLSxoaTFChpsY8JhH4uOmmvs9ZXW2yPNrbM2d7lEj2WrGZCODdsAdBlIts23Hm0gUj/SS9vaMd7R3trk7Y3WSMuA2OXPLEJdj8xs17bn9+/ue47rDrMo7frWw+Iy47oaLFKzX+ypRdUeif7RNPmAPiY4/t3fbhh0BXF7DNNqENq5AxgEFUoJwuALhZXmK1z6hRwM9/3rvPunXmvgEDzM/JnLI9SiB7rWiIyNYAjgLgLsecKGDZLjvINhCRSxcMq5P0ZE4n7JkyRtwER6a9NA0yRXDt89cCAK4ZcQ10smLzAZtbPne2svmMwmrLShQ4Xqnxl1N2RSF/ti+8YP59HHZY77ZrrzXvaYcdSqvDis/YhYSoQDkVGm5stF5KWF1tghFtbSYzo6vL+rnLy4E5c1Kz3OymigKbQgpGvirgi8jfAFwDYCCAC1T1aIt9xgEYBwA1NTV7tubaxobIhlMnDDcBhUxdSPxWNqUsYwFQgaB7cnef7XYdURLdTuzut7Ns0jJs0t+H9dM5SvwO7MZeKN1c2IWEKE+KrHMG/vMfYI89Ure98grw/vvF9T7zgF1IiIqM0wUAu2y89vbejAu74AVg7kvOrrALjosweFzIRORoAItV9VWn/VR1pqrWq2r9sGHD8jQ6KkVel1WkZ2jYFaEMSqblKU77ZMoYcZupcMtRt0Ana2SCF4msESuF1s2FiPKgWDJa3n3XjD85ePHMM+agu74+v91r3LYpLNDXZQCDqIDZLdXwo9ZRW1vvPGR3wV21ODtblZD9APxIRFoA3A3gEBGZG+6QqJR5XVYRdmFIqyCE1T5WMi3LcBMc2WbjbTC+frz3gQfEaUmN124u7GBCgQrrBK9Y+P35FfLa408+MYGLnXbq3faPf5iD5AMO6N2Wr+41ubQpLJDX5RISooiJxUxQoK0NGDLEbFu2zAQlmprczelW2XheVVcDHR2Zn0PEfN+Qv/KdviwiB8FmCUkyzsEUpGyXVYS5LCG2MIZTHzgV3dp3IhxQOQBfX/K15+dLLMEQiO0SFS9La/LFbkmN3TIaO1ZLiSrKKrDxBhtjWceyvCwP4hKSIlZsSxbyjZ+f8b//Adtum1ok7r77gOOOs97f7opgba0J2vglX6+Th9flEhKiApAevGxvd9f5I51VNl51tftxJIpruwmAFENnKyKKhmyXVYRZGLJheAPu+MkdqCyvTNleWV6J0d8b7SmLIH0JRnowQCAAvGcz5Eu2nWDSWWVyrOte57rDC5GjfKbyOynULJCofH5hWbIEGDoU2Hrr3uDFHXeYg3W74AWQv+41+cr0CPF1GcAgipBMrbC9fD+kZ+NNm9Z33uzXD5g71/xJX3q4bFnm1yj0zlbUS1UXZMq+IApatssqvJ4g+61heANm/XhWyrjP2P0MzHljjqflLk5LMB756SPontwNnax5qe+RjVxa0iZzE5BiS1bKWlgneMnCSvP3QxQ+vzCsWAFstx2w6abm6iIATJ9ufn+jR2d+fFC1PtIDYYn07XRBX3F0ao/oMwYwiCLEzdyf7fdDQwPwrW/13h46FLj9drPdaumh3XxTXl7YNZaIKNqcCnH6dYLslZt6DOnjnvfhvIwFSdM5nbgftcNR2b8Bj7KtP5FLS9pkbgNSbMlKWcnjiZatQs5iiMLnl0+rVwO77QZssompdwEA111nAhdnn+3tufyu9WEVCPv6a6CiInW/fFxxzFeGCRjAIIoUN3O/3T5OmYjr1pmgw8KF5vb775sMOLt5MxYDVq3qu72qyrRXLcQaS0RU+Pw6QfYi28Kh2Sx3GVZl3eWndlCt+wHnKNdCqX50gnFTHBUIP/OGClQeT7RsFXIWw8iR3rYXqm++AX74Q2DAAOCNN8y2yy4zgYJJk8IdW4JVIKyzE9h44/x3dcljNxkGMIgixOo7NZnd92ssBowdmxqAHTvWbF+0CKhMWpq9ejWwww72r5EI5iay4xKqq4ExY8xcWWjLNYmoeOS7Vaqb1q5WvCx3Wbt+LTb/3eZYvGZxn/vy3Xo02/frp/RAVXX/6j41RtiSlbKWr1R+p4OkQs5imDfP2/ZCs24dcMwxQP/+pg0qAPzyl+bq3VVXhTu2dHYBr2XLwunqkqduMgxgEEVI+ndqdbX5k+n7deJEE3BN1tlpMtu22cbcHj7cBDecAiSAcx2OOXMKc7kmEUVLIbXIzLZwqNvlLve8dQ82bNoQX67+EgBw1cFX5TXDJF1UCqUmB6qWTlrap8ZIFIuYUgHx+0RrwgRTB8HtQVIUskCyFeXskVwKo3Z1AT/7mbnq98gjZttpp5nt06aZg3G/x5NrIddCDoTlgAEMojzLNFclf6cuXWr+ZPp+Tc+WSPg6qXvfV1+5mxftvn/a2wt3uSYR5ZdTgCLXJQr5lm3h0EzLXVZ3rkbFVRU45b5TAAA/2fEn6L6iG5cdeFleM0zSRblQapifC5GtWAyYMcMELpI5HSTlMd3ed1E9ac62MGqilkW/fsBdd5ltxx1nMjEOPdQU7swmwJBpPH4Uci3kQFgORNP/s0Uce19TIQuqdbbboLCb17Jr4+z02t3d7vcnd+x6X4eNczBlkghQJC9DqKqo6jl5r5ta19MmNFntoFq0nNeSx5G6k+n9ZGPmqzNx1iNn9dy+7tDrMP2V6Whb2YaaQTVoGtEU2gl6EO+3EEV1DgY4D0eO04FTMR4kBXUwmyu730NtrbkKmE4VuPhi4Prre7cdeqjJvthgg9zfZ6bxeB2vnVjMBMra2kwQqampMAJhLtjNwwxgEOWRX3NVuqFD7bMwnF7Las4DrOfr/v2tXyPXsZO1qB48cw4mJ7GFMYx5YAy6tKvPfYkARdmUMij6HnsIBN2To3mgH1sYQ+P8xpwDDMs7lmPI9b0t7s7Y/QwcvO3BfQIGleWVGFg5EMs6lgUa0LB7X36930IW1TkY4DwcOWVlfbMvEor1ICmKJ812vwerIFJTkynImbDXXsCCBanZDHYH7eXlZk11pvebaTxexlui7ObhfmEMhqhUBbVscNo0s0xv/Xr3Y0gPLCcy12bONH/cBjaKPEuNiFxKXLm3Cl4AvTUUagbVWGZghL1EwUnD8IacT+Cve+46XDz/4p7bn0z8BHWD61A3ta5P0czOrk60d5iIcWKJTWIcfknPtEh/HbevxWAHlbyaGusTXZHiPUhqaAg/YJHO7veQvLTlpptM4biE73wHePll07Ujnd3BeVeXOSAGnD+DTONxM16yxBoYRHlkNyeVleXW2aNfv9TgRW2tKf7pNAanFuRWta0KebkmEQXPqntFskSAwm1xSyeFVAT0y1VfQqZIT/Diov0ugk5W1A2uA+CuOGYQXUD86DZSaPVMiAJhVYdABBg/ngdJ+eRUD2L2bPM7SQQvttjCFJl77z3r4AXgHEhwUwQuU32KEq1f4QcGMIjyyK5NaldX9vV7xo0DTjE14LDJJr31ME46yXletAsst7bav36euiMRUQFyOhFPDlBkKm6ZSSGdNF/8xMXY/MbNe25/fv7nuPbQa1P2cZt54ncXED+6jUSh5SpR6Kyu8Nx5JzB9etgjKw5uO3VY/R7OOAMYNQoYO9bss9FGwGefmT92V/oS7A7aEzKlT2e68scrg1ljDQyiPEteNlhWZoIX6dwsmVQFhgwBVqwwtzfYAFi7tvf+qipgzBjTlttqiaJTzako1GIqdVFdf805mOwMvX5oz7KHZGVShjt+codvywqyLQKaz6UOrStaUTetruf2tSOuxUX7X2Q5ntaVrRCIZV2QZH4XOfWjmGoh1jNxK6pzMMB5mEpItoU0H30UOPro1G0tLeYA2+vrjxmT/cF62KJYq8QDu3mYGRhEeZacxWBXoydTUHf5chP8SAQvtt46NXgBmLl+5kwzV1llTDQ1mVbXVtgelYj8ssmGm/gaKMgmcyCfWRvjHh6XErxYNmmZZfAiMR4AUCgEJn2uun81KsoqUvb3usTGjWyW8qQv3RnSf4jlfulZJYW05IeIIsRuvXNyHQugN0tDxPxJDl68/7656ucleJF4vtGjgcGD+x4wF8JSDz/atEYUAxhEIcrUStsqa6652WReAMCAASYo/L//WT9Pos6Q1VzV0AAMHGg/tlwLixJRaVnWsczT9mzZLblwWoqR7VIHLyfe7y19DzJF8KfX/gQAmHHUDOhkxSb9N+nzfKPuH9VnPApF7aBaLJ20FLOPnW25xMbPQIDXpTxWQaCvO7/OGGwppCU/RBQxdgej7e29B7exmFkqYpVWXFUFvPKKt9dMP/Fvbzd/V1cX1lIPp2J3BY5LSIjyxEvL0pkzre9LNnYs8Oc/m5+dloMA9llupdj5q1BENX2ZczDZ8WNJghvp3TMAc9LsdPKdzVIHN68TWxjDpU9ciraveg+yy6QMX138FTaq3Cjj8/k9niDZ/X6r+1djQOUA26U5+fp34beozsEA52EqEm6WNzgd4NbWAg89BOy6q/PreD2gtXvNQjswLoI2rVxCQhQiuywuwL5+j1XgNKGyEjjkkN7nXrXK+fWtAtixmJnbrBRz5y8iCoYf3UXcyKYIaBBZG7GFMfz8oZ+nBC8qyytxx0/u6BO8sHs+P8cTNLslOss6lqHlvBZ0T+5Gy3ktfX4PfhQLJSKfuC2ImY9xuFne4HQw2tqaOXgBeE8pttu/0FKTM6V5FzAGMIjywGvLUsB5nuzsNI9NzP/tfevmpSgrS/1OSDzOqiYRO38RUTZy7S7i9bWcTprTZRNcsTvBbl3ZClXFGQ+egW/Wf5NyX2dXJyY+NtHycZlO2LMdT74CAdkEgXJ5HBUZryfOUTnRLiZh10RI/p2OGeNueUNDQ+ZuIcOGOd/v9YS9WE78i7hNKwMYRFnw+r2aTTA30zzZ1uacpZEsvRaG3ePKy9n5i4iy5zWwkC9+Zm0AQNmVZVjbtdbyvvaOdsv6Dk7PF1QWiZ+yzbDJV2YORZjXE+ewT7SLVZg1EdJ/p1ZX0ADrA+Np04D+/ftuP/dc81z/93/27U6zOWEvlhP/Im7TygAGkUcTJpiixF6+V70Gc2Mx02nESU2Nt2y25O8ou8d1dxfFvEZE1EciuHLncXcCAEbfP9qxEGbTiKaeziBW0otXJrNa1mF3Ij/3uLmBZZGEWfQz18dREfF64lzExQdDFebSCLdX3NIPjNvbgQsuADo6erdVVwNz5wJ/+IO5nXyiDpircUD2J+zFdOJvl+Zd4FjEk8iDWMwEL6z+2zjV9onFTNHNzs7ebZWVwKxZfeeSWAw4/XRg3Trnscyda74PnIp3pkvU7SmW+kTFLKoF5DgHU7rYwhga5zfaFnGMEq+FMGWKfQBj7nFzMer+UZb32RXjzPWz8vL4sIt+FrqozsFAAc7DXosJFkHxwUgK8+DPqWp8QqKKfUMD8NVXwF57AR980Hv/tGnAL38Z7DiLjZtCqRHGIp5EPmhstJ9/W1udl5OkP279etPGOn0ZytixmYMXG21k5h+7LDe75YKJwHaxZMcRUbisWmSe/vfTMfT6ob5c9feb10KYNRtbp8nVDqpFw/AGVPe3nmztlnXkusTGy+PDLvpJ1MNrGmouNQhYO8NemAd/Tr+75CyHn/wE2HtvYNCg3uDFb39rDqIZvPCmiJdiBRbAEJENReRlEXlDRN4WkSkW+4iI3CQi/xWRN0Vkj6DGQ+SHTFl2dnNDY2PfoER3d29r6dZW4MwzzRyenKVhpaICuPVW87Ndltu0ac7fUcWUHUdE4bE6SV7XvQ7tHe09AY1xD4+LTBDDSyHMu9+6O6XDSELyso1pR06LbH2HsIt+EvXweuKc7Ym2mxO2Ug5whHnw19Rk3/pu/HgTrJg921yhe+UVs33SJHOwzKVD2fGyFMvu/0VE/78EtoRERATARqq6SkQqADwHYKKq/jtpn5EAfgFgJIDvA5imqt93et6CS5ujouLUjjpZejaem8w5N8rLgTlz3H3XFHjWWMmLavoy52BKVjalDIrMk1vtoFq0nNcS/IAyqJtah9aVfSfx5PGt7lyNQdcOQpeaInN7bbkXvlz1JT796lPLZRvJyzqG9B8CwLQWTewLIJQlNm7eK9mL6hwMFOg87PWgJJuDmExLJBIBjuSTuuRlCxSs8nJ3S4DOPhu4+WYTZEmW64FtqR0Yu12KZff/YswYc9IR4v8Xu3k4LzUwRKQKJoBxtqq+lLT9VgALVPWu+O33ARykqp/bPVdBTtpUNKz+j1tJnxvcBj4Ak2Fht4Qk0/LPUpubi1lUD545B1Myu5PkdHY1IfItU12IW5tvxfhHx/fc9+4572LHoTtm/dyV5ZVQVazr7p3U81WHIrYwhrEPjkVnV29aX2V5JWb9eJar1y6k2iZBiOocDHAetpXphI0FwMKVHpBI19BgTpgTRTiTZRt8ShwYt7aa10/+9+H0+GI4oHb7791uv/Jy624x1dXAgAF5+WxCqYEhIuUi8jqAxQAeTw5exG0F4NOk24vi24giKT37zmqOBfou9bPKhrRSXu5c/8JqCWEiu0vEe3cUIqJcWHXGsJJeE8LP7hhe2HXEGPntkZAp0hO8OHOPM6GT1XXwArBeTtPZ1ZkSvABMHYoxD4zJy3tOv0jl9qKVVW2TKC0FIrKUqXZGmF04yP6gGTDrp+fOtd8nm840yUuKgL7BLaflFMVQO8LtUiy7f/92rW7b20P/bAINYKhql6ruBmBrAHuLyC5pu1iF4vp8u4rIOBFpFpHmJUuWBDBSIveSOxLNmeNubkgEPpzm7qoq+7nC7nmznZuJiPyQHhCo7l+NyvLKlH3Sa0KEfXKcXghz0cpFGHL9kJ77Wya2YOYxM1PG6ybY4qW2RJd2Bf6eG+c39gmerOte56qIJwuAUkHKdMKWS3HQqItorYIUu+5qvf3ss036sZNsgk9uWrdaPb5Y2vi6rXmS67//ED6bvHQhUdUVABYAOCLtrkUAtkm6vTWAzyweP1NV61W1ftiwYUENk8jz/O+lHlJDg/Pyj+QW1lYS80PymLKdm4mI/MqCSA4ILJ20FLN+PKtPhkPy0oOonBx/seoLyBTBxfMvBgBctN9F0MmK2sG9E7GXYItd5xE7Qb/nXIp4sgAoFaRMB2XF2oIt6hkD119vfh+vvZa6vbzcBC+mT8/8HNkEn9wcAFs9vpgydZKvura0WJ+gNDVlDiBlkufPJsguJMNEZHD85/4ADgXwXtpuDwE4Nd6NZB8AK53qXxAFKdv5383ckLDZZtbba2vt26ImSx9TtnMzEZU2qxPz0fePxoRHJ+T83JlafUbh5PjiJy7GFjdu0XP78/M/x7WHXttnPy/BFqvlNJXllagosz8wDPI92wVU3ARacnksUaicDsqKtQWbXcbAmDHhZmTccov5nC+6yNzebjtg+XJzkK0KrF/vLngBZBd8ynQAbPd4vzJ1CiErBjD//jfeOPN+tbWm/oWVPJ9sBJmBsQWAp0TkTQCvwNTAeERExotIokLWPAAfA/gvgD8ByP3IiShLQWeMzZwJfPFF3+1O7U2tlpwkjynbuZmISpvViblCMaN5RuBLOcI8OW5d0QqZIrju+esAACfvfDJqB9Viyxu3tMxC8RJssaqvMevHszD72NkoF+v1g0G+Z6uAitsWr7k8lijSvFx1Soj6iahTDYMwMjLefBPYfntgQvy0buhQYPFi4KOPgMGDs3vObIJPVkGPRCFRp8f7kakT9ayYdMuWOd+fKPw5bVokspgCC2Co6puquruqfk9Vd1HVK+PbZ6jqjPjPqqrnqOq3VHW4qrKkMoXGbcZYNt9jxx0HnHWW+Xn8eOf5N/m71W7JSWJM2c7NRFTa7E7MFRr4Uo6wTo7PfOhM1E2r67l969G34uEPHnZcHuI12GKVfdIwvAFzfjIn7+/ZrmCpm04iuTyWshMvfP8fEXkksBeJ+ol4FBXCiaibq9/5qFPw7rvAySebWhdLlpggxqJF5mc/SgB4DT5ZBT3uvNP8Hp0e70emTqHV0XD6N+R0pTWkk428tFH1E1tHUVDcdBvy2sVp/frUZWVbbGGyMPxqaZ4YU6F3eqK+otrCj3NwNHlteenU/jQfLU/z2aLz3SXvYqfpO/XcnnHUDJxVf5btZ1A7qBYt57X0jNOp7aoXYbclDfv1C02+52AR+TWAegAbq+rRTvtmNQ9n24ay1BVC61Wr362VRDtZv330ETBlihlHVRUwcSJw/vnAJpv4/1qFIlNL36ix+zdUXW2yLkKaI+zmYQYwqOTYnfC7+W738j32xRcmYJHQvz/Q0WH/3HZj5fFGaWIAg+ykn4iO3H4k5rwxx9NJdmxhDKPvHw3t2/gr5QS+kKkqjr/3eDzw3gMAgH5l/bDiohXYqHIjxBbGMOr+UZaPSw/gFMOJv5+BmFKRzzlYRLYGMAdAE4BfBxLAKIQT8SgqlBPR5IPbsjLrtnZ+/67b2oCrrgJmzwYqK4FzzgEmTfIn26LQFeL/twheEbWbh/PShYQoKpwyAd1kRbldZrJgQW/w4lvfAoYMSQ1eAO4yySKSqUVEEWFVfHNG8wzPXT0ahjdgfP14SFo382Kpc/DqZ6+i7MqynuDFXcffhXWXr+sJXox7eJztY2sG1aR0aGmc34imEU22RUkLQVQ6v5CtqQAmAbA9IxaRcSLSLCLNS5Ys8f4K+eqsUGzLVAql9Wry8oo5c4KtU/DZZ8C555olInfcYWpdfPQRcMMNDF4kFGLHm0xLdCL0f5sBDCopmZakZfq/6+Z77JlngIMPNj9fcIHJqrOrjdPa6m+XEyIqbnbFN61k6nAx/ajpuPO4O4uqzoGqYvZ/ZqP+T+aCzeYDNsc3jd/glF1O6dnH6jNMqKqowsjtR7punerErza1fohC5xeyJiJHA1isqq867aeqM1W1XlXrh2VzkpiPE/FCqBfhVaGeiAZx9WvxYrM05FvfAm69FTjtNOC//wVuuik15ZiK7wpkxP5vM4BBJcXuQoNVlpeVTN9jt90GHHoo8O1vA//6lwlGZ8qyGDMGGDjQzG8iplhzIX/XE1FwvJxwuulwkanlaSFpXdGKI2JHYOxDY3FAzQF49vRn8fn5n2ODfhuk7Of0Gc48ZibmfTgv52wFq0yZbIIgfmFb1EjbD8CPRKQFwN0ADhGRub6/Sj5OxO2uEo0aFfoV26xF5UTU69VvP69+LVsGXHqpaYM6daop1Pn++yaIsc022T9vsfPyO4hQdoOliBUlZQCDSordhQYRd3OF3ffYyScDv/wlcOaZwCGHAK+8Ahx2mHlMpuzMri5g1are2+3twOmnR2/uIqLw2Z1wFutSEDe6tRs3v3wzdp6+M1749AXcPPJmLDhtAfav2T9lv0RGhF3GSu2gWjQMb/AlWyFqSzbYFjW6VPUSVd1aVesAnALgSVW1LtCSi3yciDsd8ORyxTbsk7uwU2HDuvr91VcmjXjbbYFrrwWOOQZ4+23g9ttNMIP8EbHsBkv5WoLmEgMYVFKamnrbjCZTdR9ETP8eGzkSOPJI4A9/AH79a+CRR1LbXGeTnbluXXQ7LRFReOxORMfXjw90KUiUlkMk+6D9Axx0+0E497FzsV/Nfnjr7LcwYa8JKJPUw5vkjAgrySfzfmQrRG3JBtuiEoDgT8QzHfBkc8W2EE7ugpbvq9+rV5uAxbbbAr/5DTBiBPDGG8BddwE77hjMa5ayiGU3WIpYLRjbAIaIzBORujyOhSgwieD96NHWxaSB7IKI770H7L23qXsxaxZw443APfekXigYObJv1qYbIQU1qcBwri4tiRPR6v7VPdsEgnvfvjewLhlRWw4BAOu71+OG52/ArjN2xcLFCzHrR7Pwj4Z/oHZwreX+TnUv0k/m/chWiOKSjWJaLhQlfs7BqrogUweSSLNappLO68FNIZzcBS1fV787OoD/+z+TXXHJJcA++wDNzcD99wPDh/v7WtQrYtkNliJWC8YpA+N2AP8SkUYRqcjTeIh8lx68t+M1iPjYY8D3v28y7J56qnfZR/qFgjlzTJ2LWuvjat/GQyXrdnCuLjkd63vbGq1etxrtHe2BBReithxi4ZcLse+f98WkJybhiG8fgXcmvIPTdz8dYpVeF2eX+SCQPifz6dkK1f2r0b9ff4y+f7Tr7BO/l2xENQOGAHAO7pW8TMWO14ObQji5C1rQV787O4Hp000Bt1//2gQrXngBePRRYM89/XkNspevAru5LMOKSi2YONsAhqreC2B3ABsDaBaRC0Tk14k/eRshURaS/5+OGdM3eJ/OSxBRFfj974GjjzZB6ldeAX7wA3Of3YWCefNMtubcuUCFi8ObiopoF7im6OBcXXqcsgkA/4MLUVkO0dnViSkLpmDPmXuidUUr7jnhHtx/0v3YYmDm6vd2mQ9lUmYZFEhkK9x53J3oWN/hOUDk55KNKGbAUC/OwWkSy1TmzvXnim3EUtdDEdTV7/XrTfrwDjsA55xjDmqfegp44glg331ze25yL+jsBr+WYYVdCyZJphoY6wCsBrABgIFpf4giKf3/aVeX/b5eg4hr1wJjx5ouUscdBzz3XOp3qNOFgljMBDjWrQPKy51fZ/bswu20RKHgXF1C3AQO/AwuDOk/xNP2IDR/1oz6mfX4zdO/wYk7n4h3znkHJ+18kmXWhVW2glVGBAB0aZdjUCCX7BO/lmxELQOGLHEOTufXFduIpa6Hwu+r311dJsD03e8CZ5wBbLop8I9/mPXQBx3k69DJhaCzG4pwGVY/uztE5AgAvwfwEIA9VDXDNWyiaLD6f2qlttYEEN364gsTtHjxRVPT6PLLTYZHspoa65asQ4aYoEpiXF1dZo6yWtJSW8vgBbnHubr01AyqsS1GmbxPMehY14HfLPgNfvfi77D5gM3x0CkP4ZjvHNNzf2xhDI3zG3vqf4zcfiTmvDGn54Q/EZiYecxMzDxmZs++ZVKGLk2NbieCAsmBhihkn0RhDGSPc7CDhobcD2gSj29sNFeDampM8KLUDpS8fJaJK2bpn1d3t6lnccUVwLvv9qYEf/klsHSpdZV7yg8//q/YKcJlWE4ZGI0ATlTVizkZUyFx8//Ra/D+P/8B9trLFGH+61+ByZP7Bi8A+wsFQN+gilXwotQuKpAvOFeXGLtsggS/22Mu61jmabtf9Rqea3sOu926G65/4XqM3W0s3p7wdp/gRfrSihnNM2yzFZIzIrq12/I104MCdlkm+QwQRbEgKKXgHBy0CKWuR57VcoEzzzQV5TfcEDjxROCDD0wq8Lp15jFtbaXX2aWUFOEyLKcaGAeo6tv5HAyRHzL9f/SamfXXvwL77WcC088/D5xwgv2+dllgy6yP8wEA1dWRqIdDBYpzdemxKjJZ3b86sPaYXk6g/ajXsKpzFX4x7xc4cPaB6OzqxOOjH8effvQnDN5wcMp+VksrFNaVmtMDE27eU2xhDF93ft1nn4qyCl8DRJn4XRCU/MU52Ae5FhikXlZpyB0dpvJ8ImDR1dV3fXWBLykgB0W4DCtTDQyiguPUxSvx/9VNkKC722RanHQSsPvupljnbrs5P8Yua88pqDJgAC8qEJE3ydkESyctxdJJSwNrj+nlBDrXeg2Pf/Q4ht8yHDe/cjPO3ftcLDx7IQ7d7lDLfb0soUgPWLh5T43zG9HZ1dnnuTbeYOO8tiD1syAoUeT4VWCQjFyWBVitgabCF7EOIn5gAIOKTuL/qVWhTLcB5tWrTeDiyitNe9QnnwQ228z5MU7fwSNH2j+ugJegEVEJ8HICnW29hhXfrMAZD56Bw+cejsrySjx7+rO46cibMKBygO1j7LIoBKnruK2CLW7ek92Y7ZbOBMmvgqBEkeN3gcFSz+YYPDj7x4qU3udVKopsGRYDGFSUErWKrGQKGLS2miUjDzxg2qX++c/ABhtY75upXWviO3jePPvXK+AlaERUIpJPoJtGNKFxfqNljYts6jU89P5D2Hn6zpjzxhxctN9FeP2s17FfzX6O44ktjGFV56o+26sqqjC+frxtYCK5Pkfj/EY0jWiyDQqw9gRRHvhZYLCUszluu80EIJYv73uf2+KcqlxGQgWBAQwqGulB9yE2Hf6cAgbPP2+Kdba0AI8+CvzqV/bzvtt2rW1tzt/DBbwEjYhKTKYaF16WmyxZvQQ/u+9n+PHdP8bQqqF46ecv4dpDr0X/iv6uxtDe0Z6yvbp/NWYeMxPTj5puma3gtT5HPmtP+FX4lCgrYWYt+FlgsAjbRWZ0993mQPXMM83tQYOAm29OXS4wfjxQWenu+ZgWTAWAAQwqWMnft0OHAmPHpgbdv/66t0NUglPNmlmzgIMPNtl3L70EHHGE8+u7bddaU2P/PVxdXfBZXERUQjLVuHCzNENVcfdbd2On6Tvhb+/8DVcedCVeOfMV7LnlnlmPAQAGVA5wXFrhtT5HLrUnvAQk/Ch8SpS1sLMW/Cww6Ec2R6EsQXn4YROg+OlPzW0R8z5XrAAmTEhdLjB9OjBwoLvnZVowFQBRq16OEVZfX6/Nzc1hD4NClvi+zRRAKCsDNtnEdAGxax2+fj1w4YXA1KnAYYcB99xjHpNJWZl1K9RkVVWmHgfQd7yJ+xjAICsi8qqq1oc9jnScg0tb2ZQyy04fAkH3ZJt1e0k++/ozTHh0Ah58/0HsteVemPXjWdhl013yMoZcx+5WIiCRHCypqqiyDX7UTa1D68q+xfNqB9Wi5bwW38ZF3kR1DgZ8nofr6qyLN9bWmpPffLCrgO5Vru/F6uAyagdr8+cDh6YVNv7wQ+Db33Z+nJeDVi/v1a/fHZEFu3mYGRhUkNxmP3R3m+5Rd95pXbNmxQrg6KNN8GLiRFOrwk3wArAPUpeX9y3yW4QFgImoBGVbF0JVMes/s7DTzTvhnx/9EzccdgNeOOMFz8GLXMaQr5oWXjM9si18SuQLP2tQZMuvAoO5ZnNEeQnKiy+aA8jk4MXChSYokSl4AXg7aHUjFjPpz6NG+ZO9UyiZLxQJDGBQQfLyvZr47kmfG2+4Afj+902HkdtuM0GMfv3cP6/d9+ScOdbfwUVWAJiIioSX5Q7Z1IVoWdGC/zf3/+GMh87A9zb7Ht4c/yYu+MEF6FfmYcLNcQy5PM4rrwEJFgulUPlZgyJsuV4tikIwJ93rr5v38oMf9G57+WUTMNjFQwDY60Grk0SmSnt73/vcBHzSD8gnTCjd4quUFQYwqCB5/V5NzIXJc+OkScAXX5hsvDPO8D4GZlUQUTq3wYCoFG30Wn/BS12Ibu3GzS/fjF2m74IXF72Im0fejAWnLcD21dvnNOZsa1PkUtPCC68BiXwWC6US5XR1288aFFGQy9WiKAVz3nvPHFzuvnvvtmeeMQexe+3l/fn8PGjNlAbtFPCxqrkyY0Z0M18oklgDgwpSLGaKdnZ29m4rLzdzoVX71PJy6y4hW20FLFoU3DiJshXV9decg+25rX3gtUZCkIKqv/DSopdw4eMX4tm2Z3H4tw7HzKNnonZwbQ4jLRzZ/H5jC2NonN+ItpVtqBlUg6YRTXn/t0CpojoHAx7nYTd1HVjHwIhCDYxPPgG22y5122OPZa4sn0+Z6mmUl5vMDqvPzK5OiRUR64N6KhmsgUEFxc1SuPS5s6wMOOss6wsJdi1OP/vMj9ESEbmvfeC1RkKQ/K6/sHb9Wgy7YRj2+fM+eLbtWcz+8Wz8o+EfkQle5CPzJZtMj4bhDZatX4ly5qauA9e4GmGm1n72GbDBBqnBi/vuMwe7UQpeAJkzUrq67JeAeFmOU4jLmCgvGMCgyHHT0auxEVi3LvVx69aZIpxW3z1bb239WpwbqdSJyIYi8rKIvCEib4vIlLDHVKjcBgOiVLTRz/oLdy28Cxs2bYila5YCAF4d9ypO2+00iEhOY/RLPtuVMiBBkRHFug5Rlu9gztKlwKabmpTgRFrxnDnmAPi444J97WxZLTtKZ7cExO7AO/17opCXMVHgGMCgyHFzscDp+zj9u2fnnU0nknRu5kYWRaYSsBbAIaq6K4DdABwhIvuEO6TC5DYYEKWijX7UX1jVuQoyRfCz+38GADhhpxPQfUU39thijz77hln7I0qZL0R5E6W6DoXOz4PClStN95Bhw4AlS8y2P/7RBC5OPTXcsWWSnqlix+pg3a7myvjxwWW++PXZ8KQgMhjAoMhxc7HA7ffx/fcD++0H9O8PXHWVt7nRTSYIUaFTY1X8ZkX8T2EVR4qIphFNqCirSNlWUVbRJxgQpaKNuRa2nNE8AwOvGdhz+91z3sVfT/yrZdZFPjMgrEQp84Uob4qtSGdY/DooXL0a2GMPYPBg4KOPzLZrrjHPec454Y7Ni+SrhbU2SwStDtbtlulMnx5M5otfnw1PCiKFAQyKHDfBiUzfx6rAlVcCxx8PfO97wCuvAJdd5m1ujHI7cCI/iUi5iLwOYDGAx1X1pZCHFClesgbST9ytTuTz1Q3DrWyWOyzvWA6ZIjj70bMBAGfucSZ0smLHoTvaPibsDAi3mS9R6RBD5Au2TPNHrgeFa9cCBx0EDBgA/Oc/Ztull5qD0osvDmZsEyfm9rxueQ2S5XOZjl8H8zwpiBR2IaHIcVsE2q5o9i23mJbSALDRRsAf/gCcfrr3cdgVWWZRZMqHMCrgi8hgAA8A+IWqvpW0fRyAcQBQU1OzZ6vbCuJFwEtHiaA6ekTNNc9eg0ufvLTndsvEFldFOsumlEEtknsEgu7JwU+qTr9LwARYWle2QiAp4wyrQwyFq2i6kJA/sj0oXL/e1LJ4+OHU7TU1wNVX+3Py7tQVZO7c/ASrotrJxq+DeZ4UhIJdSKhguL1YYBXAnTy5N3gBmEy9c8/tzfDysnyNy0ap1KjqCgALAByRtn2mqtarav2wYcPCGFpovGQNFPsShS9WfQGZIj3Bi4v3uxg6WV13GMmm9oef2RB2mS8Aepa2AOgTZGGdDCo6XMvvndeDwu5uYNQooKKiN3hRXt57f1ubf0sQnA5M85UhENVONn4dzPOkIFICC2CIyDYi8pSIvBuvbN8nj0lEDhKRlSLyevzPFUGNh6LH6fszm3nwxhvNspF0iQwvr8vXuGyUSoGIDItnXkBE+gM4FMB7oQ4qz5xOkr0EJfJVnDOMJQ6THp+ELW7couf2F+d/gWsOvcbTc3it/RFEzQyr5TJWQap0xRKEIorEWv5cAyhhBGDcHhSqmitp5eW94zr2WHOi29WVuq9fSxCcDkxLvduM299bpn9TPCmIlCAzMNYDOF9VvwtgHwDniMhOFvs9q6q7xf9YnH5SMbL6/hw1Chg6NLvvoYMPBi64wP7+tjbvy9e4bJRKxBYAnhKRNwG8AlMD45GQx5Q3mU6SvQQlgirOmRywGHr9UIx9cGzeCmG2rGiBTBHc8MINAIDrDr0OOlmx2YDNPD+X19offtfMsAv8uAlOhNEhhigQYa/lzzWAElYAJtNBoaqpZVFWZtYyA8AhhwDffAM88ADw6afWz+tHgKGhAaiutr6vEDIE/A5IJT9fYyMwZozzwbybf1M8KYiUvNXAEJEHAfxRVR9P2nYQgAtU9Wi3z8N1f8Whrs7MD1as6l3Y6ewENtig9/aWWwKffdZ3v9pa8x3B5WtUKKK6/rrY5uBMdSu81MAAzEly4/xGtK1sQ82gGjSNaMqpdoLV61sJos7Gzx/6Of78nz/33F5+0XIM3nCwr6/hxM+aGU6/x0TtCzsVZRXYeIONsaxjmS+/UyoMUZ2DgRzn4bDX8tsdANbWmpTboB8fhGuuMQU5E/baC1iwIPWKfaZx51pDwm0BuajJNG4vn0ssZgqXtrenbs/0OUTx3xQBCLkGhojUAdgdgFVl+31F5A0ReUxEds7HeCh8TgFntxcCWltTgxdr1gDXX2+f4cXla0SUfhXe7sQ1cVXea9ZANh09nLhZ3pA8Xj+8u+RdyBTpCV7cevSt0Mma1+AF4O+SHKdsjpHbj4QgrXtM/HZ1/2qICNo72kNp/Urku7APhuwOAN1mIuT6eD/98Y8m8JMIXuywA7BiBfDyy30PRp2WIPiRVVKoGQJOGUFePpfEvunBi+TnsxOlf1PkSuABDBEZAOA+AOep6ldpd78GoFZVdwXwBwB/t3mOcSLSLCLNS5YsCXS8lB+ZviczzRnz5pmAKQDsuaeZ1/r3d56/uXyNqLRZLRdJP3FNSD5J9hKU8Ls+hdvAhB9LHFQVx959LHaablZ7VpZXYtUlqzBuz3E5P3c2/FySY/c5tq5sxZw35qRkeggE4+vHQycrBlQOQGdXZ8pjWNSTClrYB0O5BlDCDsAAwFlnmYPMX/zC3B40CFiyBHj/ffOzFacDVLuT+DFjvC2riGohTSdOwQMvy52s9nXzOkA0/k2RJ4EGMESkAiZ4EVPV+9PvV9WvVHVV/Od5ACpEZKjFfiVbAb9YWX1/JnOaMy66CDjqKPPzlVcC6VmUdvN3oQanicgfVlfhFdoniJHtSXIQRSfdBCb8qLPR/Fkzyq4sw4PvPwgAuPv4u7H2srXYqHKjnJ43F16zX5zYfY7lUm75b2Leh/MAFH9nGSpBYR8M5RpACTMA87e/mc9s5szU7evWAf/8Z+bH2x2g2p1cd3WFV2g1X5yCB14yIzJd+XQ6sQg7qEeeBdmFRAD8GcC7qvp7m302j+8HEdk7Ph6L3B8qBlY1daxqDtnNGarAt79tlokAwPz5wOWXWz+/XbC6EIPTRJS72MKY7XIRhfpykux30UnAOguhoqzCLG3IcbwA0K3d2H/W/tjrT3sBADYfsDm+afwGJ+9yctZj9pNfS3Lssjm6tMty/0SAIl+dZYjyKsyDoVwDKGEEYB57zLzWiSda359rEVQ3V/rzWWg1n5yCB14yI5w+w0zBiLCDeuRZkBkY+wEYDeCQpDapI0VkvIiMj+9zAoC3ROQNADcBOEXzVVWU8spqGducOcC0acDcuZnnjFWrTGDio496t40d2xukiEJXMCKKpkRmhJ1EAcxcT5KDuFpvlYUw+9jZWDppac7jfbrlaZRfWY7nP30eADDvZ/Pw+fmfY4N+G2R4pLXE8hmZIuh3ZT/IFMlbm9dMGoY3YMyuY1Au5QBM5sWYXcegdlCt5f6JAEVQnWWIipLbbhK5BlDyFYB5+mlzcDpyZOZ9s6mXkPi8WlvN63h9jTDayfrNr7Xfdqnd1dXughG8wllQ8taFxC/FVgG/VORS4Pedd4Cdbcq7VlWZTI6ZM/u213b7/ERRFNUK+IU4BzsV63TqKOLX6wTRISQX67vXY5fpu+D99vcBALtsugteP+t1lJeVZ/2cTt1S/PyMs2U1PoHgkG0PwYuLXnTsMuN3ZxkqDFGdg4GIzsOxGHD66WY5RUJFBTB7duGdDL78MvD976due/11YNdd/etYYdV9Q8RchSsvz3xQW6hdR7yaMAG49dbeDjkbbWRuW73HXDu5UOSE2oWEKNsCv7FYb/Cif/++969ZA8yYYT3PA/atWomodDhlQPh5Yl0IV+sf+eARVFxV0RO8eOa0Z7Dw7IU5BS8A524pUSh6aVf/5MlPnuzJxLBbkuN3ZxmiojRxYmrwAjC3J04MZzzZWLjQBBGSgxcvvmiCCrvuam5n6ibiNiPCquikqglSzJmTOfMgU4HLsLMz/Hj9WAy47bbU9r6rV6emYCdjFkXJYACD8iKbAr+nnQaMGmV+nj4d+OYb6/2ckohECjOjjoj8Y1evoHZQra8no34WnfTb2vVrMfT6oTjmrmMAAAfXHYzuK7pxQO0Bvjx/pmUyYRe9tHv9RMFOBiiopARxcmvVvtJpe5R8+KE5YPze93q3PfmkOcDcZ5/Ufe2WPADe1jI7XdlzU5PB6fFhr6v26/UbG/sGxQCgs7M464GQa1xCQnnhJdOtu9vct3atud3cbFql2mXtZVJdDSxdmvXQiUIR1fTlQpyD7ZYPJIp3FvuSgL8s/Asa7u99f6+New27b7G7r6/htEwHQM/nHNZSDKfxCQTdk7st76PSFdU5GMhxHg5q6YFTDYeonmu0tZngQLKHHwaOPtr7c3ldWpLrUhSnxwP+LHPJll/LbMrK7P/tiKRmZlBR4hISCpXbAr/t7WbpXyJ4sXy5CV4A1ll7bmoetbczC4OolCVnRgC9wQsAvrQ6japVnasgU6QneHHiTiei+4pu34MXgPXymYSqiiqM3H6k7y1mvY4vvV1uAjuKUEnJtPQgW1Zt5Zy2h+mLL4CBA1ODF/fcY06WswleAN7XSgfZTjbbddt+8ev1ndK03XRuAcJfSkOBYACD8ibT0rR//xsYOtT8PGSI2W/w4NTHpwdBxo+3LjqcjplmRKUtUcegdlBtT/AiIQo1GhISnTzKppTl1MFjRvMMDLxmYM/t9855D/eeeC/ETdQ3C+lBokS3j8QymnkfzvO9xazX8Y2vH98niBG1GiVEgcu09CDbk71p04DKytRtlZVme1QsWwZstRWwxRamvR0A/PnPJnBx0km5PbfXtdJBtpPNZt22n/x6/aYmUwg2XWWlu0BP2EtpKDBcQkKhShQMTs40GzfOFBjO5TnSMdOMCk1U05cLfQ4um1LWJ4ABRGMZgdVSl+SOGG66YSzvWI4h1w/puX3WnmdhxtEz8vYe7ETlc2dHEXIrqnMwkOM8bJfeX10NdHTktrQkql0gvv4a2Htv4L33erdNnepvgdEodQUJeyx+vn4sZn5PiVoq1dUmKObmefxaykKh4RISylpQ2VfJgdGEykrgwAO9PU8is0PVPlMxX0FnIoo2u+UCUVhGYNUpI5GlkAhuOC3BuObZa1KCFy0TWwINXkx4dAL6XdkPMkXQ78p+mPDoBNt9o/K5s6MIlTy7pQdA7ktLotYFoqPDFOHceOPe4MWVV5oDRr+7o+SaUVFMY3EqdJo4oRg61PzJdHLR0GAK2amaP0uXun8fYS+locAwgEGOgsy+uvTSvt+VVoWFvQRQpk3LbUkhERW3KLc6teuU0bayzTG48cWqLyBTBJc+eSkA4JL9L4FOVtQOrrV6Ol9MeHQCbmm+BV1qelh3aRduab7FNogR9Ofu19IboqJnd3K5bJn1/oV4stfZCRx+uDkAfOkls23SJBNYufzy4F43SgGcsMeS/vpA6glFe7v5Y3dy4cfV07CX0lBgGMAgR0HVelq0yF1g1GsAJeygMxFFW5RbnTplKdgFN1pXtmKLG7fouf3F+V/g6hFXBzK+ZDNfnelpe5Cfu5vsFKKoEpENReRlEXlDRN4WkSmBv6jVyW2+T/aCSO9dvx44/nhggw2Axx8328aPN+/zuuvcVX6nYFidUCRbswYYNcr8W5gwwZ+rp7kWSqXIYgCDHAWRffXPfwLbbGN/f/J3pZsASvp3IBCdADgR5YeXK/BWywiicAXfKUsh01KL6w+9HjpZsdmAzYIcYo9E5oXb7UBwyzecslOICsBaAIeo6q4AdgNwhIjsk/dRBH2yl3ywNnQoMHasf+m93d3m+SoqgPvvN9t++lMT0LjlFv8CF1HpaBGVcXjh9sShtRWYMcOfq6e8qlm0GMAgR34H5BsbgSOOMD+XWfzrq6hI/a7MFEBhgWEiyvUKfFSu4DtlKTi1KV1+0XJcuN+Fnl8vl6BNosuI2+1Bclp6QxR1asRbYqAi/if/FfaDPNlLP1hrbzfLPJJlc4KqCpx3HlBeDsyebbYdfbR57r/8xWz3S1QOOKMyDq+8nDjYNZjI5upp2EtpKBAMYJAju4D8yJHegr+qwM47A1fHM5s33dS6K8jGG6fOLZkCKEEtcSGiwpHrFfgoXcG3y1JoGN6AyT+cnLLvGbufAZ2sGLzhYM+vk2vQZtye4zxtD1JUCoQSZUtEykXkdQCLATyuqi9Z7DNORJpFpHnJkiXBDCSok71MywcSvJygXnGFOQhNtGk98EBTtPPhh61bb+YqKgecURmHV1YnFF6xdgXFMYBBjqwC8vvua7K73AZ/V6823zHvvGNuL1oE2H33pteQypTRyALDRJTrFfioX8FXVRx797G46ImLAACV5ZVYdckq3Paj27J+zlyDNtOPmo6z68/uybgol3KcXX82ph81PesxZSvKhVmJ3FDVLlXdDcDWAPYWkV0s9pmpqvWqWj9s2LC8jzEnbg/K3Jyg/u535oD0qqvM7V13NW1Sn34a2HDD7MeYSVQOOKMyDq8SJxTJ7QKtUrET0pf9sHYFJWEAgzJKDsg3NQFPPtk3u8su+Pvee8CAAb23OzuBrbZyvzTFar7r399+/0zbiaj45HoF3uvj81kvo/mzZpRdWYYH338QAHD38Xdj7WVrsVHlRjk9rx9Bm+lHTcf6K9ZDJyvWX7HeMXgR5GcW5cKsRF6o6goACwAcEe5IfObmoCzTCeqtt5qT2gvjy+W23RZYvhx4/fXUA82gROWAMyrjyFZHR+/P3d0mW6ayMnWfqipTfJW1K8gGAxjkSWOj+6Vpd98NfPe75ucjjzSPS2T1ea0VlTzftbf3ZnywwDAR5XoF3svj81Uvo1u7sf+s/bHXn/YCAGwxYAusvWwtTt7lZF+eP5/LLvLxmQVVIJQoaCIyTEQGx3/uD+BQAO+FOii/WR2sVVSYq1OZTlBjMbPP+PHmdnU1sHgx8PHHwODBgQ+9R1QOOKMyjmxYLX9Ztw4YOLBvsGL6dNauIFsMYJAnra329yUHf3/+c1MAGgD+8Adg3rzUfZOXpgCmzlIiiyN9KYrTcj8WGCYqHXZX8bO9Ap94vtH3j0b/fv1R3b864+PzUS/j6ZanUX5lOZ7/9HkAwLyfzcNn53+GyvLKDI90L5/LLqJUY4QogrYA8JSIvAngFZgaGI+EPCZ/WR2szZ4NLF1qf4L64INm31GjzO2KCrMGeelSwOsSGj+6dkTlgDMq48iG3TKXZcsYrCBPRO0up0dUfX29Njc3hz2MohaLmeBAW5sJSjQ1mbkkFgNGj7bOwBAB7rzTBC0GDzbLEQHg5ZeBvfZyfq1x41IDFFVVqXNxWZn9a1oVAiUqBiLyqqrWhz2OdGHNwYmr+MknwlUVVVkvFcj2+cqmlEEtGgQIBN2Tc5uQ1nevxy7Td8H77e8DAL632ffw2rjXUF4WTGeP2MIYGuc3om1lG2oG1aBpRFMgmQtBfmZEQYnqHAz4MA/bHehFweOPA4cfnrrto4+A7bbL7vncHGgWszB+13avWVdnfSW0ttYELojS2M3DzMCgFE7dmZyWj4wfb5aJlJf3Bi/a252DF4C7YsqFvtyPiHLn91X8bJ8vqKUXj3zwCCququgJXjx7+rN4Y/wbgQUvgPwsu4gtjKFMrA812CWEKARRbcP5/PPmylRy8OLtt80YnYIXmbIrCrVrhx/C+F07vWYhL3+hSGEAg1I4zfNOBY5PP7230ObAgUBXFzBkSObXc1NMmfMdEfndKSTb5/N76cXa9Wsx9PqhOOauYwAAh2x7CLqv6Mb+Nftn9XxRkshy6dKuPvexSwhRSKJ2Qv/aayZwsX/SnPfqq+bkd6ednB/r5gS9ULt2pMtmGUwYv2uu+6Y8YACDUjjN83YZD0OGAHvvbX4eOxb46ivnzkjJ3GRXcL4jIr8zH7J9Pj87Xvxl4V+wYdOGaO9o79n20bKP8Je3/mK5fz67n/jBKssFMC1X2SWEKCRROaF/5x1zULfnnr3bnnvOBCL22MPdc5RKGq+XTIrkQIdd4bogf9eZ/n0ltzZkvQvKEgMYlMJpnrfKhCgrM7V3AGDCBGD+fG/BYbfZFZzviIqXmxNzvzMfcnm+XJderOpcBZkiaLjfPK5cepeJ2HXoyFf3Ez/ZZbN0azeDF0RhCfuE/uOPTeBi5517t/3rX+bEfL/9zG232QalksbrNpMiPdBhJ8jfddj/vqgkMIBBKZzm+fTOIUBvEc3Bg03HI6/L7JhdQVTa3J6Y+5n5EMTzuXXLK7dg4DUDe25vOWDLPkssrGpxFGInj3y2aiUil8I6oV+0yHQS+da3erc98IA5aDzssN5tXrINSiWN123WjFWgI13Qv+tiCBhR5LELCfXh1IWksbFvRlr//kBHh/VzsbAwUXaiWgHf7zm4bmodWlf2TXOtHVSLlvNafHudsC3rWIbq66t7bp+151mYcfQM1x06CrGTh9+dY4jyKapzMFBgXUgWLwZ23BFYvrx329y59q/npVNFqXQYcfuZ2LXtA0zwJuwuJFHufkORxC4k5JrVco3kgHiCiKl/YRe8AAqvRhIR5ZffxTmdhFVD4ppnr0kJXrSe14oZR88A4D5LoRCzGcLKciGiDPKxLnfFCmDbbYHNNusNXsyYYU6wnV7PS42OsLIrsimomQu7rIaRI1PHYVc9v7Y2v2uwM51IRKn7DRWkfmEPgAqDVVaaam/9CztuOpEQUemqGVRjmYHh94l5ejZAYqkKgMBOqL9Y9QW2uHGLntuX7n9pnxobTSOaLLMUst0vahqGNzBgQVRKVq0ytSzefLN32w03ABdc4O7xNTXW2QZ2y0UaGvJ7FT896yNxIp4YSxASz5ucvTByJDBnTuo4KiqAykqgs7P3sVFZvpGpOwmRB8zAKCJBBoTtChkTEeXC7+KcdvJdQ2LS45NSghdfXvCl5Xtym6XAbAYiirRvvgEOOAAYOLA3eHHFFeZql9vgBZC5hkK+sx/ShdWGNj2rYd68vuNYt858/lGs9xGV7jdUFJiBUSSCCgh3dPT9HklWXW32sasZlClDg4hKW+IEvHF+I9pWtqFmUA2aRjT5fmKer6Uqnyz/BNvdtF3P7RsOuwEX/MD54D09SyGx1CX988iUzRBbGMv6c8zlsURUwtatA4491pxQJ/zqV8CNN5qTaK+ssg2SayjkO/shXVROxO1eb9kyYOnS/I7FDa+ZNUQOmIFRJLINCDsFsj/8MDV40S8t3FVRAUybZoK75eWwxHmJiDLJtS1pMrs6F3ZLUhTqWz2MMx48IyV4sfyi5RmDF+mybZeaS5vVQmzRSkQh6+oCfvYzs2QhEbw44wyz/fe/zy54kWBXoyOs7IdkUWkTGpVxuMXuJOQjBjCKRDYBYad6On/9K7DDDma/Qw81BaPL0v61JL6bGhrMMjzOS0QUJqcTcaulKgm5nrC/s+QdyBTBrNdnAQD+dMyfoJMVgzcc7Pm5sl3qkssSmUJs0UpEIVEFxo83V7XuustsO+EEk4lx2219DxYT/Fj6EYXsh6iciEdlHG4VQztbigwGMIqEXcC1rMz+u8IukD1+PHDSSeb2//0f8PjjZt/kmkCAuZ0IenNeIqKw2Z2IT3xsYs995WKdLpbNCbuq4sd3/xg7T98ZAFBZXolVl6zCz/f4eXZvAO6WulhlmeSyRCafnWCIqECpAhdeaA4qb73VbDv8cGDtWnPVKz1NN5lfHSiyyTrwu2ZGVA54ozIOL/LR/YZKAgMYRcIqEAuYTD677wq7gPWqVebvF18EzjvPed/EdrZ2JqKw2Z1wt3e093Q66dIuz4+30vxZM8quLMND7z8EALjnhHuw9rK12KhyIw8j7itTu1S7LJMh/a1bPrnp5lKILVqJKI9++1sTAPjd78ztffc1V7z++U+zhCQTv5Z+eM06CKp1Z1ROxKMyDqI8CyyAISLbiMhTIvKuiLwtIhMt9hERuUlE/isib4rIHkGNp9ilB2KtalKsWQNMnNgbiLbL8gNM/Z999um97RT0ZmtnIoqCXE+43Ty+W7ux36z9sNef9gIAbDVwK6y9bC1O2vmknF47IVNXFrssk8R+do8D7OuD5NoJxu55iajATZtmDiovv9zc3mkn4KuvgBdeAPr3d/88fi398Jp1EIWaGUTkuyAzMNYDOF9VvwtgHwDniMhOafscCWD7+J9xAG4JcDxFLzkQ291tvU97e2+gocvmQuQdd5juIsmcgt78fiCiKHCqc5GJmxP2BS0LUH5lOV749AUAwGMNj2HRrxehstzFFUiXMrVLtcsSWdaxzPFxTvVBcmnRygKgREVo1iwTIEik4W69tTmAfPtt06bTK7urYEOGeF/e4SXrwG3gJOzWrETkiahqfl5I5EEAf1TVx5O23QpggareFb/9PoCDVPVzu+epr6/X5ubmwMdbSKyWbzQ2WncrcrLRRmZZo913gd0ykbIyExBJJ2IfSCEiZyLyqqrWhz2OdEHOwX608kx/jlWdq9De0d5nv+r+1RhQOcDVa63vXo+dp++MD9o/AADsutmueHXcqygvs2m/lOVY3bzfuql1PcthktUOqkXLeS2+Py6ToJ6XKGxRnYOBAOfhe+4BTjml9/bGGwPvvw9svnluz5ve/hQwrexEUgusVVX5W8ehrs76YLi21gQ/7MZWWWkCNcuWcV00UYjs5uG81MAQkToAuwN4Ke2urQB8mnR7UXxb+uPHiUiziDQvWbIksHEWIrvlGyNHWtfEsHPHHab2hdP8bBf0LrROTkQUPX5dyU9vyTrtyGmWyyOmHTnNVevWRz54BBVXVfQEL549/Vm8Pv51X4IX2bzfbJd7BFWokwVAiYrAI4+YYEJy8KK1FVi5MvfgBWC99GPjjftWh/c7fddNzQyrNOLOTpNxwnXRRJEUeABDRAYAuA/Aear6VfrdFg/pcy1fVWeqar2q1g8bNiyIYRYsu+Ub8+b1/a5IXxaS7PLLs5+bC62TExFFT1CtPLNdHrF2/VoMvX4ojrnrGADAIdsegu4rurF/zf6ex2BVIyLb95vt+wmqUCcLgBIVsCefNAeJxxzTu+2DD8yJu99XodKvgi1bZr2fny1R3dTMcPN6XBdNFCmBBjBEpAImeBFT1fstdlkEYJuk21sD+CzIMRUbp+V96d8V06bZ11xqbQVGjwYmTMj8mulLBYHC6+RERNES5JX89KyMTCf7f1n4F2zYtGHP0pPXxr2G+afOh4hVzN2ZXaaF1bILwN379fp+AO+ZG24Lc+ZaAJSIQvDSS+aAbcSI3m1vvmkCF9tvn58x5Ct916lmRizmXNE+mZ+BFSLKSZBdSATAnwG8q6q/t9ntIQCnxruR7ANgpVP9C+priHXnPMv5f8stgY4O++dSBWbMcM7EsFuyArCTExFlLwpX8ld1roJMETTcbyawk3Y+Cd1XdGP3LXbP+jntMi3KxXoJSlDv10vmhpflLbkUACWiPHvjDRO4SG4z9/LL5oBu+PD8jiXs9N3EAa1dRft0XBdNFBlBZmDsB2A0gENE5PX4n5EiMl5Exsf3mQfgYwD/BfAnAC6u/5eOTEWRYzHTzcpKa2vqY377W+CQQ8zPF15ovr+sqAKjRtkXYWbHESIKQthX8qe/Mh0Dr+mtrv/eOe/hnhPuySrrIpldRkWXduX9/brN3PC6vCWbjBAiyrPTTwd226339tNPm4O+vfbK/NggunR4bYnqltuxWh3QAuZxFRWp24IMrLADCpFngQUwVPU5VRVV/Z6q7hb/M09VZ6jqjPg+qqrnqOq3VHW4qrK9SJxdpkPyvNbYCKxbZ/8cicdst11vC+9HHgGuvz5zINmuZpFfrbyJiJKFdSV/WccyyBTBOfPOAQCcXX82dLKi+fNmV0soMrHLqEi8v/T3C8CX180FC3MSFaFNNzV/P/aYObA88EB3j3NzQJqt9OUdQG4n817GanfgqgrMnp2fddFBfrZERSxvbVT9UiptVN10frJrX2qnpcU8HjBz4+jRmR+f/Hpux0VEuYtqC79imoOvfvZqND7Zm1XQel4ragbV9CyhSM5CqKqoyiqg4uW5/HzdXLA1KlF052Agz/Ow1wO/WMxcYWtr89aC1Kqdqde2ql7GGoUD2iiMgSjCQm2jStacssbcZDp4WY63dm1v8CLBTZvV9HGEvWSRiChXn3/9OWSK9AQvGg9ohE7WnmwJvzui9O/XWz25un+1bUAiqE4sXoW9nIeIIsRL6m0uGQV+rFH2MtYoHNAGldbMZSlU5BjACEmmOd5NcWaruddKbS1QWdn3tVevzvzY9CKhQS1ZJCLKhwv+dQG2/P2WPbe/vOBL/PaQ36bs49cSikRGRaKbCQB0rLevpByVpRsszElEPdwckCZOmEeNyj4I4cfJvJfOJlE4oA2iEwuXpVAJYAAjJJkCzXbBiVWreueg9Lm3urpvN6iqKmDkyNRA7MSJ1nWLrHz9dd85z6kjFRFRFH2y/BPIFMGNL94IALjhsBugkxWbbrRpn3396ojiNaMiCp1YEliYk4gAZM5USD5htuMmCOHHybzXrAq/DmizzXgIIguE1fapBDCAEZJMgeZEcKK6OvX+9vbUQGpi7u3qMkWTu7t79y0vB/bdF5gzJzUQ294O1zo7OecRUWE748EzsN1N2/XcXn7Rclzwgwts9/drCYXXjAou3SCiyMmUqWDXzSOZmyBELifziQDC6NFA//7m4DlfWRW5ZDwEkQXCavtUAhjACImbQHNDAzBgQN990gOpK1eaoO8XX6Tu19UFPPmk+2wLO5zziKgQvbPkHcgUwazXZwEA/nTMn6CTFYM3HOz4OL+WUHjNqMj1dWMLY6F3MCGiIuSUqZDpINEpCJGcudDYCIwZ4/1kPj2A0N4OdHQAd94ZXJpw8rjHjMkt48HvtOYglqUQRQy7kITEbbFlu04jImaue/11YPfdcx9PVZUJWltlZ7AYMlH+RbUCfiHMwaqKY+85Fg+9/xAAYMN+G6J9Unuf7IagxRbGMPbBsejs6uzZVlleiVk/nuX7koyodDAhKhZRnYOBiM3Ddp00AHMAadeFxI+uI06vH9TBq9W4rSQO1PPNr8+VKALYhSRCEh2m1qwxyzwA+0CzUyD1ttt6gxc//amZK92qru4b5J42LfyCzEREuWj+rBllV5b1BC/uPeFedDR24IH3HgglOyH9IkFQFw2i0sGEiEqM3dKPuXOdMwr8qtWQ7yUTbpbMAOFlPEShOClRwBjAyIPkTLOhQ4GxY3uDxV1dvUECq7nF7nths82AM880t2fPBv7yF/u5Mj2wUVVlghXpGWuc84ioUHVrN/abtR/2+tNeAICtN94aay9bixN3PrEnO6F1ZSsUitaVrRj38LjAgxiN8xuxrntdyrZ13esCCSpEpYMJERUxq2KVXg4ekx9vl7XhNfCQ7yUTbsYX9tU/VtunIscARsCsluZ1dqbu4xRwTv9eqKkx+7/8srn/zTeB004zP9sFO8aPdx+U4JxHVFpEZBsReUpE3hWRt0VkYthj8mpBywKUX1mOFz59AQDwWMNj+PRXn6Ky3PSPDis7IZ9BhSh1MCGiIuRUrNLNwWP64+14DTwE0cnDid34yst59Y8oTxjACJjbTLPWVqBfPzP3pXdgSnwvfP55auD3q6+A4cNT97MKgk+fzqAEEdlaD+B8Vf0ugH0AnCMiO4U8JlfWd6/Hd/74HRw852AAwK6b7Yr1l6/HEd8+ImW/sLIT8hlUYAcTIgpUrks+3BwQZxN4yHf6sF3AZM4cHmgT5QkDGAHzkgnX1WX+turA9MwzwOabm59raswcOXBg3+dID4ID2bWmJqLSoKqfq+pr8Z+/BvAugK3CHVVmD7//MCquqsAH7R8AAJ47/Tm8Pv51lJeV99k3rOyEfAYV/OqcQkRkKddaE0775Rp4yDV92GppjNNrcb01Uaj6hT2AYldTY7/Mz0kiqN3QAFx7LXDJJWb7r34F/P737p4jvRBxIjACcJ4lor5EpA7A7gBeSts+DsA4AKgJuRXbN+u/wVa/3wrLOpYBAA7Z9hA8MfoJiEMV46YRTZYdOrIJJMQWxtA4vxFtK9tQM6gGI7cfiXkfzuu53TSiqSdokPg7ef/k+/3WMLyBAQsiCobdAa3b7wS7x4fd6i6bg+VE4TgiCgXbqAYsFgNGj3Ze7mdHBNh3X+AFs6wbDz4I/OhH7h+f785SROSffLfwE5EBAJ4G0KSq99vtF+YcHHszhlEPjOq5/Z+z/oPdNt/N3WPTAg/ZBBKsWpWmY+tSouLANqppcm3PGdX2njxYJoosu3mYAYw88NLe1M7HHwPbbuvtMWVl1oGTsFpTE5F7+Tx4FpEKAI8A+KeqOuZ4hTEHr+pchYHX9K6ZO3nnk3H3CXfndQwAUDe1Dq0rM6fU1Q6qRct5LcEPiIgCwwCGhVjMpAe3tZmMCrsWekE9Pgg8WCaKLLt5mDUw8qC21np7dXXfOkBWamp6szC8yHdnKSIqPGLWXvwZwLuZghdhmP7K9JTgxfvnvu86eBFbGEPd1DqUTSlD3dS6nNumui36ydalRFSUcq01EcVWdzxYJio4DGDkgV3B4mnTeusAAaYDk5W2ttSinm5rDeW7sxQRFaT9AIwGcIiIvB7/MzLsQS3rWAaZIjhn3jkAgLPrz4ZOVuxQvYOrxyeWe7SubIVC0bqyFeMeHucqiGEX+HBb9JOtS4nIrWJoZV3QeLBMVHAYwPDAbeAgfT/AvmBxIhitCvzyl/avnSjq6dSGOx0LJRNRJqr6nKqKqn5PVXeL/5kX5piufvZqVF9f3XO77bw2TD9quqfnaJzf2KdWxZp1a9A437nln1Pgw6qrSDq2LiUijwq2lXVRSD9Yrq4G+vc3BezYvo8okhjAcMlt4MBuP8A+a07VZKr93/85j6GtDZg40Vsb7ihm6xFRabPLcPj8688hUwSNT5oJrfGARuhkxTaDtvH8GnbLODIt73AKfFi1Kj27/mxU9+8NtvTv19/zWImodBVqK+uikjhYvvNOoKMDaG/PfJWQiELDIp4uuS1S7LWY8ddfAxtv3Hv7iy+A73/f+jmqq82caoW1hoiKS1QLyOUyB8cWxjDxsYlo70idyKoqqnBQ3UGY92Fv4seXF3yJTTfaNOtx2hXczFRgs2xKGRTW34s6ue92q84kXjqR+NEdhYj8F8YcHG9l/QyAXVT1q7T7kttZ79lqdaBIuWFHEqJIYRHPHLXZXLRrbU1dLmL3fdLW1ndpybXXpgYv1q8HNtvMfjmeE9YaIqIoS5zopwcvAJPhkAhe/O6w30Ena07BCwCWyz3cLO+wq18hEMv6GV6XqiRnnwy9fihO//vpWdXpIKLiEm9lfR+A89KDFwCgqjNVtV5V64cNG5a/gbldP10Mr213sG+3nYhCwQCGS3YBApHU5SJ2LVOHDOm7tOSSS8x9J55otiWKeNrVrli2zH58rDVERFFmdaKfbsVFK3D+D8735fWslnu4yYpoGtEEQd+JXKGWQQkvS1XS62u0d7RjXfe6lH3c1OkgouISb2V9H4CYqt4f9nh6TJhgakG4KbzmNy9F3/zCjiREBYEBDJessiJE+raOVu0bxEg8Lr12BWACG/fe23e7Ve0Ku/mzupq1LYgo2jLVniiXcgzacJCvr9kwvAEt57Wge3I3Ws5rcbU0o2F4g+0SEqv3YJexYbXdTRDH7nWIqDhFtpV1LAbMmNH3QNep8JqfGhu9FX2z4yWLgx1JiAoCAxguWWVF2JUPUXWfPbF8ufsxOLVjJSKKqtjCGMrE+eumS7vyNJrMagfVWm63Ckp4WariNjDBNqxEJSWSrazR2Gh/oJuPJRV+LOfwmsXB9n1EBYEBjDg3Adr0rIha62Pcnlo/ydkTW9nUk7bKqrAbC+dVIio0iWUTmQIUdkGDMHgJSnhZquImMME2rESlJYqtrAE4BwrysaTCj+Uc2WRxsH0fUeQxgIHsl9nZLStJFPZMPP7554FFi/o+3iorLdNYOK8SUSFxs2zC6aTdruVqrvs68Vo/w+1SFavASGV5Jar7V3uq00FEFDin4m+ZllT4UXzTj+UcLMpJVJQYwED2y+ySMyKA1JoYicDDz34G7L+/2Xb44ZmzJ/xa8kdEFAVOyyYynbSnF7106tLhZV83GoY3oGlEE2oG1aBtZRsa5zfm3B3EKjAy68ezsHTSUk91OoiIAmd3lW78eOerZ34V3/Qj7ZhFOYmKkqjd+raIqq+v1+bmZl+fs6zMepmfiMl0cMOphSoA3H8/8JOf5GcsRFT47Hpfh83rHFw3tQ6tK/tOjrWDatFyXotvj83ldawkAiLJ2SNVFVXMkCAqEVGdg4FgjoUtxWLmClpbmznpb2rKHECwOyBOrK/Op0QwJfnKYFUV118TFQi7eZgZGPAnQOuUjXbjje6CF36NhYgoKrzUk0jnpUWpl33dsFr6whanRFRSslm3HKVlGyweR1SUGMCAP8vsnAIMN92U21hEgJHh16MmIvLMaz2JZF5alHrZ1w2/AyJERCUhalfiWDyOqOgwgAF/ArTf/rb9fV6Czg0NwJgxZhwJqsCcOdnVQCIiClt6kUsAroptesneyCXTw4rfAREiopLgx1VBIiIHgQUwRGSWiCwWkbds7j9IRFYm9by+IqixuJEpQOtUUDkWA+bPt39ur0HnefP61sFgIU8iKgZeim16yd5oGN6AMbuOQbmUAwDKpRxjdh2Tdb0KvwMiREQlgcs2iChgQWZg3A7giAz7PJvU8/rKoAaSHnyYMMFbdyengsqqwGmnOT/ea9A5SssHiYj85LW2RKYWpYnWqTJFMKN5Brq0CwDQpV2Y88acvLVSJSKiOD+WbfjRipWIilJgAQxVfQbAsqCe3y2r4MMtt3jr7mTX2vSSS8y8un69/WOrq1PnbTfzcdSWDxIR+cWqU4jTdifJ2RwAoEhNXcu16Gam4AkREQXAr1asRFSUwq6Bsa+IvCEij4nIznY7icg4EWkWkeYlS5Z4egGr4EO6TMsz7DIfPv3U+XlFgGnTem+7nY+5fJCIilViiYfb7U6ssjnSsegmEVGBsbtyyLXURIRwAxivAahV1V0B/AHA3+12VNWZqlqvqvXDhg3z9CJul1047eeU+XDsscDcudadQ8aPT82+cDsfc/kgERWrxBIPt9uduAlOsOgmEVGB4VpqInIQWgBDVb9S1VXxn+cBqBCRoX6/jttlF077WWVEAMDppwMPPGAdcLjzTmD6dLNfYtlIq02GtNV8zK5PRFSMagfVetruJFNwgkU3iYgKENdSE5GD0AIYIrK5iGkWKiJ7x8fS7vfr2AUfkmVantHQAMyYkbrtqquAWbNS97EKOCQvG7FTVsZlfURUGvzs7mH1XALTg5pFN4mIChTXUhORgyDbqN4F4EUA3xGRRSJyhoiMF5Hx8V1OAPCWiLwB4CYAp6imNw/NnVV2xNlne1ue0d4OnHpq7+3ly4HLLnP3+m5qcHR1sTYREZWGXLt7JLqOlE0pQ+P8RozZdUzKc9153J3Qycqim0REdqLe4YNrqYnIgQQQMwhUfX29Njc35/QcsZgJLLS1mWy0pib7OfHf/wb23df8PHQosHixmUvdKiszBTvdqK012RtERCLyqqrWhz2OdH7MwdlKdB1JLtxZVVHFTAsi8l1U52Agx3k4kRqcfHWtqooBAiKKHLt5OOwuJHkVi5kgxKhRqZ1ARo82QYn0IPTUqb3Bi7PPBpYs8Ra8ALwt12NtIiIie1ZdR3JtlUpEVFJy7fAR9ewNIip6/cIeQL5YBZwTEhkSibamAHD77cATT5if//pX4IQTsnvNVav6bhexzspgbSIiInt2XUfYKpWIyKVcOnykH0wnHzgze4OI8qRkMjDc1KIAzD6jRvUGLz74IPvgxbhxpn5Gsupq016VtYmIiLyx6zrCVqlERC7l0uEj1+wNIiIflEwAI5vlGWvWANtvn93r2QVMBgww7VVZm4iIyBu3HUySC33WTa1DbCFTnImIAOTW4SOX7A0iIp+UTADDy/KMigqzxKN//+xfL9Mcb9d2lYiIrLnpYJIo9Nm6shUKRevKVox7eByDGEREQG4dPnLJ3iAi8knJBDCsAs5WKiqA2bPNz7nUKeIcT0Tkv4bhDWg5rwXdk7stW6Wy0CcRUQbZXkXLJXuDiMgnJRPASAScq6vt99l0UxO8aGjorWGR3K1k3Dj3QQzO8URE/nG7LISFPomIApJL9gYRkU9KJoABmPl16VJg7lxgm21S71u0CPjyy945ONc6RZzjiYj84WVZCAt9EhEFiGugiShkJRXASNhzT+DTT3tvr1sHbLVV6j5+1CniHE9ElDsvy0LcFvokIiIiosJTcgGMu+4Cvvtd8/PRR5vlIf369d2PNSyIiKLBy7IQN4U+iYiIiKgwWZy6F68zzgBmzTI/33wzMGGC/b5NTabmRfIyEtawICLKv5pBNWhd2Wq53UrD8AYGLIiIiIiKUMlkYAwe3Bu8eOUV5+AFwBoWRERRwWUhREQhy6U1HxGRj0oigPH558DKlebn9nagvt7d4xI1LO6809wePZpzNhFRvnFZCBFRiHJtzUdE5CNR1bDH4El9fb02Nzd7ftyiRcCWW5rAsReJOTt5KYmImb9ra82SEmZlEJHfRORVVXUZbs2fbOdgIqJCEtU5GAhhHq6rM0GLdLW15kofEVEA7ObhksjAAICtt+4NXnjJgrNqp5qI+TAATURERERFzY/WfEREPimZAEaC1yy4THPzmjUmyEFEREREVHTYmo+IIqTkAhhWGRVOQQg3czMD0ERE7sUWxlA3tQ5lU8pQN7UOsYXOaWxe9yciIh81NZlWfMnYmo+IQlJyAQyvWXAjR5qaF04YgCYicie2MIZxD49D68pWKBStK1sx7uFxtkEJr/sTEZHP2JqPiCKk5AIYXrLgYjFgzpzemhdWGIAmInKvcX4j1qxLTYNbs24NGudbp8F53Z+IiAKQaM3X3W3+ZvCCiEJScgGMpiagoiJ1W0WFdRDCarkJAJSXMwBNRJSNtpXW6W5W22MLY2hdaVH53uF5iIgoAy/V7ImIIqZf2AMIQ/qSELslInbLSrq7zR8iIvKmZlCNZVCiZlBqGlxi6YjT8xARkUeJavaJK3SJavYAr8gRUUEouQyMxkagszN1W2endRFPFl0mIvJX04gmVFWkFoOrqqhC04jUNDirpSNO+xMRkQteq9kTEUVMyQUwvBTxZNFlIiJ/NQxvwMxjZqJ2UC0EgtpBtZh5zEw0DE+98ue0RMRqfyIicsFrNXsioogpuSUkNTUmW85qe7pEJl1jo5nXa2pM8IIZdkRE2WsY3pAxAGG31KR2UC2DF0RE2fJyIExEFEEll4HhNauCRZeJiPLP7VITIqJCJiKzRGSxiLyVlxdkejERFbiSC2CwlTURUfS5XWpCRFTgbgdwRN5ejQfCRFTgSm4JCWDmaM7TRETR5mapCRFRIVPVZ0SkLq8vygNhIipgJZeBQURERERUSERknIg0i0jzkiVLwh4OEVFoGMAgIiIiIoowVZ2pqvWqWj9s2LCwh0NEFBoGMIiIiIiIiIgo8hjAICIiIiIiIqLICyyAkaktlBg3ich/ReRNEdkjqLEQEREREUWNiNwF4EUA3xGRRSJyRthjIiKKsiC7kNwO4I8A7rC5/0gA28f/fB/ALfG/iYiIiIiKnqr+NOwxEBEVksAyMFT1GQDLHHb5MYA71Pg3gMEiskVQ4yEiIiIiIiKiwhVmDYytAHyadHtRfFsfbB1FREREREREVNqCXEKSiVhsU6sdVXUmgJkAICJLRKTV42sNBbDU42MKUSm8z1J4jwDfZzHJ9j3W+j0QP7z66qtLOQfb4vssHqXwHoHSeJ9FNQcDnIcdlMJ7BErjfZbCewT4PjOxnIfDDGAsArBN0u2tAXyW6UGq6rn5tYg0q2q918cVmlJ4n6XwHgG+z2JSbO+Rc7A9vs/iUQrvESiN91mM75HzsLVSeI9AabzPUniPAN9ntsJcQvIQgFPj3Uj2AbBSVT8PcTxEREREREREFFGBZWDE20IdBGCoiCwCMBlABQCo6gwA8wCMBPBfAGsAnB7UWIiIiIiIiIiosAUWwMjUFkpVFcA5Qb1+mpl5ep2wlcL7LIX3CPB9FpNSeI+ZlMpnwPdZPErhPQKl8T5L4T26UQqfQym8R6A03mcpvEeA7zMrYuIIRERERERERETRFWYNDCIiIiIiIiIiVxjAICIiIiIiIqLIK6oAhogcISLvi8h/ReRii/tFRG6K3/+miOwRxjhz4eI9NsTf25si8oKI7BrGOHOV6X0m7beXiHSJyAn5HJ9f3LxPETlIRF4XkbdF5Ol8jzFXLv7NDhKRh0Xkjfh7LLiCviIyS0QWi8hbNvcX/NzjRinMwUBpzMOcg1P24RxcADgPcw5Oup9zcIEohTkYKI15OK9zsKoWxR8A5QA+ArAdgEoAbwDYKW2fkQAeAyAA9gHwUtjjDuA9/gDAJvGfjyy09+j2fSbt9yRMR5sTwh53QL/PwQDeAVATv71p2OMO4D1eCuC6+M/DACwDUBn22D2+zwMB7AHgLZv7C3ru8fF3XfCfQynMw5yDU/bhHFwgf0p9HuYcnLIP5+AC+FMKc7CH91nw83A+5+BiysDYG8B/VfVjVe0EcDeAH6ft82MAd6jxbwCDRWSLfA80Bxnfo6q+oKrL4zf/DWDrPI/RD25+lwDwCwD3AVicz8H5yM37/BmA+1W1DQBUtdDeq5v3qAAGiogAGAAzaa/P7zBzo6rPwIzbTqHPPW6UwhwMlMY8zDm4F+fgAsF5mHNwAufgglEKczBQIvNwPufgYgpgbAXg06Tbi+LbvO4TZV7HfwZMpKvQZHyfIrIVgJ8AmJHHcfnNze9zBwCbiMgCEXlVRE7N2+j84eY9/hHAdwF8BmAhgImq2p2f4eVNoc89bpTCHAyUxjzMObgX5+DiUQzzjxPOwdY4B0dXKczBAOfhBN/mn36+DCcaxGJbeo9YN/tEmevxi8jBMJP2/oGOKBhu3udUABepapcJVhYkN++zH4A9AYwA0B/AiyLyb1X9IOjB+cTNe/x/AF4HcAiAbwF4XESeVdWvAh5bPhX63ONGKczBQGnMw5yDe3EOLh7FMP844RycviPn4KgrhTkY4Dyc4Nv8U0wBjEUAtkm6vTVMFMvrPlHmavwi8j0AtwE4UlXb8zQ2P7l5n/UA7o5P2kMBjBSR9ar697yM0B9u/80uVdXVAFaLyDMAdgVQKBO3m/d4OoBr1SyQ+6+IfAJgRwAv52eIeVHoc48bpTAHA6UxD3MOTt2Hc3BxKIb5xwnn4CScgwtCKczBAOfhBN/mn2JaQvIKgO1FZFsRqQRwCoCH0vZ5CMCp8Sqo+wBYqaqf53ugOcj4HkWkBsD9AEYXWHQyWcb3qarbqmqdqtYB+BuACQU2aQPu/s0+COAAEeknIlUAvg/g3TyPMxdu3mMbTGQdIrIZgO8A+Divowxeoc89bpTCHAyUxjzMObgX5+DiUQzzjxPOwXGcgwtGKczBAOfhBN/mn6LJwFDV9SJyLoB/wlR7naWqb4vI+Pj9M2Cq9I4E8F8Aa2CiXQXD5Xu8AkA1gOnxqOx6Va0Pa8zZcPk+C56b96mq74rIPwC8CaAbwG2qatmeKIpc/i6vAnC7iCyESS+7SFWXhjboLIjIXQAOAjBURBYBmAygAiiOuceNUpiDgdKYhzkHcw4utDkY4DzMOZhzcKEphTkYKJ15OJ9zsJhMFSIiIiIiIiKi6CqmJSREREREREREVKQYwCAiIiIiIiKiyGMAg4iIiIiIiIgijwEMIiIiIiIiIoo8BjCIiIiIiIiIKPIYwCCyISLbiMgnIjIkfnuT+O3asMdGRFTsOAcTEYWHczBFFQMYRDZU9VMAtwC4Nr7pWgAzVbU1vFEREZUGzsFEROHhHExRJaoa9hiIIktEKgC8CmAWgDMB7K6qneGOioioNHAOJiIKD+dgiqJ+YQ+AKMpUdZ2IXAjgHwAO56RNRJQ/nIOJiMLDOZiiiEtIiDI7EsDnAHYJeyBERCWIczARUXg4B1OkMIBB5EBEdgNwGIB9APxKRLYId0RERKWDczARUXg4B1MUMYBBZENEBKZ40Xmq2gbgBgC/C3dURESlgXMwEVF4OAdTVDGAQWTvTABtqvp4/PZ0ADuKyA9DHBMRUangHExEFB7OwRRJ7EJCRERERERERJHHDAwiIiIiIiIiijwGMIiIiIiIiIgo8hjAICIiIiIiIqLIYwCDiIiIiIiIiCKPAQwiIiIiIiIiijwGMIiIiIiIiIgo8hjAICIiIiIiIqLI+/9Mm8HJptiA9QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.metrics import r2_score\n", "\n", "# Generate random data with varying R-squared values\n", "np.random.seed(0)\n", "x = np.random.rand(200, 1)\n", "y1 = 3 * x + 1 + 0.5 * np.random.rand(200, 1) # High R-squared (close to 1)\n", "y2 = 3 * x + 1 + 1.5*np.random.rand(200, 1) # Medium R-squared\n", "y3 = 3 * x + 1 + 3*np.random.rand(200, 1) # Low R-squared (close to 0)\n", "\n", "# Fit linear regression models and calculate R-squared values\n", "reg1 = LinearRegression().fit(x, y1)\n", "reg2 = LinearRegression().fit(x, y2)\n", "reg3 = LinearRegression().fit(x, y3)\n", "\n", "r2_1 = r2_score(y1, reg1.predict(x))\n", "r2_2 = r2_score(y2, reg2.predict(x))\n", "r2_3 = r2_score(y3, reg3.predict(x))\n", "\n", "# Create subplots for each dataset\n", "fig, axes = plt.subplots(1, 3, figsize=(15, 5))\n", "\n", "# Plot the first dataset\n", "axes[0].scatter(x, y1, label=f'R^2 = {r2_1:.2f}', c='blue')\n", "axes[0].plot(x, reg1.predict(x), color='blue')\n", "axes[0].set_title(f\"High R-squared (R^2 = {r2_1:.2f})\")\n", "axes[0].set_xlabel('X')\n", "axes[0].set_ylabel('Y')\n", "\n", "# Plot the second dataset\n", "axes[1].scatter(x, y2, label=f'R^2 = {r2_2:.2f}', c='green')\n", "axes[1].plot(x, reg2.predict(x), color='green')\n", "axes[1].set_title(f\"Medium R-squared (R^2 = {r2_2:.2f})\")\n", "axes[1].set_xlabel('X')\n", "axes[1].set_ylabel('Y')\n", "\n", "# Plot the third dataset\n", "axes[2].scatter(x, y3, label=f'R^2 = {r2_3:.2f}', c='red')\n", "axes[2].plot(x, reg3.predict(x), color='red')\n", "axes[2].set_title(f\"Low R-squared (R^2 = {r2_3:.2f})\")\n", "axes[2].set_xlabel('X')\n", "axes[2].set_ylabel('Y')\n", "\n", "plt.tight_layout()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The interpretation of the $R^2$ is related to the one of the Pearson's $\\rho$ correlation coefficient. Indeed, both scores are independent of the slope of the regression line, but quantify how liner the relationship between $X$ and $Y$ is. In practice, it can be shown that:\n", "\n", "$$R^2 = \\rho^2$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The $R^2$ value in our example of regressing `mpg` from `horsepower` is:\n", "\n", "$$R^2 = 0.61$$\n", "\n", "Which indicates that $61\\%$ of the variance of the $Y$ variable is explained by the model." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multiple Linear Regression\n", "\n", "In the example above, we have seen that about $61\\%$ of the variance in $Y$ was explained by the model. One may wonder why about $39\\%$ of the variance could not be explained. Some common reasons may be:\n", "* There is stochasticity in the data which prevents us to learn an accurate function to predict $Y$ from $X$;\n", "* The relationship between $X$ and $Y$ is far from linear, so we cannot predict $Y$ accurately;\n", "* The prediction of $Y$ also depends on other variables.\n", "\n", "While in general the unexplained variance is due to a combination of the aforementioned factors, the third one is often very common and relatively easy to fix. In our case, we are trying to predict `mpg` from `horsepower`. However, we can easily imagine how other variables may contribute to the estimation of `mpg`. For instance, two cars with the same `horsepower` but different `weight` may have different values of `mpg`. We can hence try to find a model with **also uses `weight` to predict `mpg`**. This is simply done by adding an additional coefficient for the new variable:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight$$\n", "\n", "The obtained model is called **multiple linear regression**. If we fit this model (we will see how to estimate coefficients in this case), we obtain the following $R^2$ value:\n", "\n", "$$R^2=0.71$$\n", "\n", "An increment of $+0.1$!\n", "\n", "In general, we can include as many variables as we think is relevant to add and define the following model:\n", "\n", "$$Y = \\beta_0 + \\beta_1 X_1 + \\ldots + \\beta_n X_n$$\n", "\n", "For instance, the following model:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight + \\beta_3 model\\_year$$\n", "\n", "Has an $R^2$ value of:\n", "\n", "$$R^2=0.808$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Geometrical Interpretation\n", "\n", "The multiple regression model based on two variable has a geometrical interpretation. Indeed, the equation:\n", "\n", "$$Z = \\beta_0 + \\beta_1 X + \\beta_2 Y$$\n", "\n", "identifies a plane in the 3D space. We can visualize the plane identified by the $mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight$ model as follows:" ] }, { "cell_type": "code", "execution_count": 200, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqoAAAKqCAYAAADyhXxqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d3wkd33///zMVm3Rqpz6Vfvs853P9vmaAVOMTTWm95IAgXyTH6EkIQkQQoAAwYSSONQUQg8dAhhTHIjpxrhwuupr1lXd6aRdSdvLzOf3x+zMrXSrvmVG+jwfjwN52+czs7Mzr3mX10dIKVEoFAqFQqFQKJyG1uwJKBQKhUKhUCgU1VBCVaFQKBQKhULhSJRQVSgUCoVCoVA4EiVUFQqFQqFQKBSORAlVhUKhUCgUCoUjUUJVoVAoFAqFQuFIlFBVKOqIEEIKITY2YBwhhPiMECIhhLivjuO8SwjxxVmef7kQ4sfz/KxXCSF+WbvZgRBirRAiJYTw1PJzVyJCiB8IIV5Zp89+ihDif+rx2U5GCPERIcSfNnseCoWbUEJVsaIQQnxRCDEshJgUQhwWQry24rmbhBBGWeikhBCnhRBfE0LsmuXz1pfFqPWeISHEWxcxr6WKtscCTwZWSyl3z/D5UgjxkWmPP6f8+GcXOmDFtnutx6SUX5JSPmUR81/o2PdUfncV45+UUkaklHq95zAX5X2ul4+LSSHEHiHEbc2e13yRUj5dSvm5On38PwK3Vz5Qvtk6LoQ4sJAPqnYcLvD9N5Xf/61pj19XfvyeisekECJd/k7PlIWnp+L5lwghflt+zUj579cJIUT5JR8E3i6E8C9mrgrFSkQJVcVK4/3AeillK/As4L1CiB0Vz5+VUkaAKPAo4BDwCyHELXN8blv5fS8F/l4I8bQ6zH021gFDUsr0LK85Brx42gX9D4HDdZ3ZCmAWkfSb8nHRBnwC+IoQoq0O47smgly+8YtJKe+d9tTjgW7gstluDuvEBeAxQojOisdeSfXfxnXl7/QW4GXAHwMIId4M3IEpRnuBHuBPgRsBP4CUchjznPKs+myGQrH8UEJVsaKQUu6XUuat/yz/u7zK66SU8rSU8u+B/wQ+MM/P/w2wH9g6/TkhREwI8XkhxAUhxAkhxN8JITQhxGbgU8Cjy5Ga8WqfLYToF0J8VwgRF0IcFUJYF8jXlOdovf/dM0zvHLAXeGr5fR3AY4DvVoxxkxDi9LRxh4QQT6ryeT8v//94edxHT48MlyNQbyxHykaFEB8UQlQ97wghrhJC3F3evoeFEC+aYTtmZHp0rRx5fY8Q4ldCiKQQ4sdCiFUVr3+UEOLXQojxcsTzpornXi2EOFh+33EhxJ9M309CiLcIIc4Bn5ltXlJKA/gCEAauKH9GQAjxISHESSHEeSHEp4QQLRVj/I0wo/9nhRCvFRVlJEKIzwohPimEuEsIkQaeWD4+vlk+vh4RQryx4rN2CyHuF2Zk97woR9aFEEFhZhnGyvvgd0KInop999ry31r5eD1RjhR+XggRm7bPX1nellEhxNtn2R1PB35W5fFXAt8B7ir/bTP9GBRTS1CqHYczzncGCsD/AC8pf74HeBHwpZneIKU8BPwC2Fr+7H8AXiel/IaUMlk+hzwkpXx5xTkH4B7gGbPMRaFQVKCEqmLFIYT4hBAigxnZGMa8MM7Gt4DtQojwHJ8rhBA3AlcDD1V5yUeBGHAZ8ATMaOarpZQHMSMvvymnrdtmGOLLwGmgH3gB8I9CiFuklJ+e9v53zjLNz5fHBfOi/B0gP/PLZ+Xx5f9vK4/7mxle91xgJ7AdeDbwR9NfUN63dwP/jRlVeynwCSHE1YucWyUvA15d/lw/8FflMQeA7wPvBTrKj39TCNFVft8IcBvQWn7/Pwshtld8bm/5feuA/zfbBMrC59VAEThRfvgDwJXANmAjMAD8ffn1TwP+EnhS+bknzLBd78OM/v8a+B6wp/w5twB/LoR4avm1dwB3lDMJlwNfKz/+Ssxjcg3QiXkcZauM9aryvydiHr8R4GPTXvNYYFN57L8X5g1YNa4BHq58QAgRwjymv1T+9xIx//R4teNwPvOdTuVv46mYN5xnZ3qxEGIL8DjM3/qjgQDm72kuDgLXzeN1CoUCJVQVKxAp5eswL+6PwxShcwm1s4DATN/OxCgQx4xsvlVK+ZPKJ8tC5cXA28rRliHgw8AfzGfOQog1mELgLVLKnJTy9+Wx5vX+Cr4N3FSOAP0h5sW53nxAShmXUp4E/gVThE7nNszShc9IKUtSygeBb2KKl6XyGSnlYSllFlOgbSs//grgLinlXVJKQ0p5N3A/cCuAlPL7Uspj5cjYz4AfYx4zFgbwTillvvzZ1XiUMCPkOeBDwCuklCNCCIGZMv6L8r5JYtZtvqT8vheV571fSpkBqkXJvyOl/FU5WnsN0CWl/AcpZUFKeRz4j4rPKwIbhRCrpJSpirR7EVOgbpRS6lLKB6SUk1XGejnwESnlcSllCngbppisLHl4t5QyK6XcgymYZxJjbUBy2mPPw/wd/hi4E/CytKjjfOY7BSnlr4EOIcQmZv9tPCiESGDeGPwnZjR9FTAqpSxZL6qI1GeFEI+veH+S2c8lCoWiAiVUFSuS8kX5l8Bq4P+b4+UDmCUC47O8ZpWUsl1KuVlK+a/VnseM5p2oeOxE+bPnQz9gCZrFvB+AsqD6PvB35Tn/aiHvXySnKv4+gbkt01kH3FC+sI+Xxd3LMaOWS+Vcxd8ZzOiaNeYLp435WKAPQAjxdCHEvcIsRRjHFLCrKj7rgpQyN8fY95Yj5O2YJRaW0O0CQsADFWP/sPw4mPuocr9V/l3tsXVA/7Rt+VvMOkmA12BGbw+V0/tWU9cXgB9h1s6eFUL8kxDCV2Wsfi49dr0Vnw8z7+fpJDBvFCt5JfC18k1KHvMGcimOA/OZbzW+ALweMxL77Rles738W79cSvl35RuFMWCVmNpY+Jjydz/G1GttlNnPJQqFooJFdUkqFMsIL1VqVKfxXODBORqV5mIUM3q1DrC6mtcCZ8p/yznefxYz2hOtEKuV718Inwd+SvUoXRpTQAF2JLiryutg7jlbrMFMo4I552rp1FPAz6SUT57nZ9aCU8AXpJR/PP0JIUQAM6L7h5iRy6Iw7ZRExcvmu/1IKVNCiNcBx4QQ/4UZccwCV0spq32Hw5g3URZrqn3stG15REp5xQzjHwFeKsz64OcB3xBCdJaP6XcD7xZCrMcsg3kY+PS0jziLeexarAVKwPlp85wPg5iiGQAhxGrgZmC3EOL55YdDQLAcAR5l2nHJ1BuYat/DbPOdjS8AR4HPSykzQog5Xm7zG8yI8LMxj5vZ2Iz5/SsUinmgIqqKFYMQoluY9jERIYSnXL/3UkzRNv21QggxIIR4J/BazOjUoinbJX0NeJ8QIiqEWIdZg2g1hJwHVs9UlyelPIVZh/j+cgPMtZhRshmbPWbhZ5hWVh+t8txhTIHwjHJk7e8wa++qcQEz/X3ZHOP9tRCivVy+8Cbgq1VecydwpRDiD4QQvvK/XbPUOQJ4y/vC+lctEjgbXwSeKYR4avl4CAqzSWo1ZvQ7UN7GkhDi6cCSbLeklGOYqeK/L0fh/gOz7rUbzJrZiprSrwGvFkJsLtdv/v0cH38fMCnM5q6W8vZsFeXueSHEK4QQXeVxx8vv0YUQTxRCXFO+IZnEvJmqZu31ZeAvhBAbhBARzDKFr1amuhfAXUytuf0DzONuE2ZZxjZMIXuai2Uiv8dM3fuEEDuZWhJS7Thc1HyllI+U5zZbM1i1941jCv5PCCFeUD7HaEKIbZgNdJU8AfjBQj5foVjJKKGqWElIzDT/acz044eAP5dSVjZA9AshUkAK+B1m7d9NUsp5mdjPwRswI0PHgV9iNg79V/m5n2JGHc8JIUZneP9LgfWY0aJvY9ZH3r3QSZRrLn8ipYxXeW4CeB2moDpTnu/p6a8rvzaD2czzq3K6+VEzDPkd4AFMsfF9Lo3WUY4SPwWzpvIsZhr5A8wskgE+iRmVtP7N2nlfZcxTmBGwv8UUO6eAvwa08nzeiCkYE5iNS9+d4aMWwr8At5ZvNN6CGb27VwgxCfwvplhDSvkD4F+B/yu/xmpUq1pPXb4ReiamyHsEM4L/n5iNUgBPA/aXj+07gJeUyxZ6gW9gitSDmDcx1RZ0+C/MaOPPy5+fwzyeF0y5/nhCCHFD+aFXAp+QUp6r/IfphGGl/9+BmflIYArC/674vGrH4aLnK6X8pZRyxiaqWd73T5g3n3+D2Yh3Hvg3zO/51wBCiD5gC6bDgEKhmAdCynlnrxQKhWJBCCEkcIWU8miz5+JmypHlfUBgkVFMRyGEeAqmldNzmj2XRiKE+DBwTEr5iWbPRaFwC0qoKhSKuqGE6uIRQjwXMwIdBj4HGCtN2CkUCoVK/SsUCoUz+RPMkoRjmHWjc7lTKBQKxbJDRVQVCoVCoVAoFI5ERVQVCoVCoVAoFI5kLh9VFW5VKBQKhUKhUMzFvI2HF4KKqCoUCoVCoVAoHIkSqgqFQqFQKBQKR6KEqkKhUCgUCoXCkSihqlAoFAqFQqFwJEqoKhQKhUKhUCgciRKqCoVCoVAoFApHooSqQqFQKBQKhcKRKKGqUCgUCoVCoXAkSqgqFAqFQqFQKByJEqoKhUKhUCgUCkeihKpCoVAoFAqFwpEooapQKBQKhUKhcCRKqCoUCoVCoVAoHIkSqgqFQqFQKBQKR6KEqkKhUCgUCoXCkSihqlAoFAqFQqFwJEqoKhQKhUKhUCgciRKqCoVCoVAoFApHooSqQqFQKBQKhcKRKKGqUCgUCoVCoXAkSqgqFAqFQqFQKByJEqoKhUKhUCgUCkeihKpCoVAoFAqFwpEooapQKBQKhUKhcCRKqCoUCoVCoVAoHIkSqgqFQqFQKBQKR6KEqkKhUCgUCoXCkSihqlAoFAqFQqFwJEqoKhQKhUKhUCgciRKqCoVCoVAoFApHooSqQqFQKBQKhcKRKKGqUCgUCoVCoXAkSqgqFAqFQqFQKByJEqoKhUKhUCgUCkeihKpCoVAoFAqFwpEooapQKBQKhUKhcCRKqCoUCoVCoVAoHIkSqgqFQqFQKBQKR6KEqkKhUCgUCoXCkSihqlAoFAqFQqFwJEqoKhQKhUKhUCgciRKqCoVCoVAoFApHooSqQqFQKBQKhcKRKKGqUCgUCoVCoXAkSqgqFAqFQqFQKByJEqoKhUKhUCgUCkeihKpCoVAoFAqFwpEooapQKBQKhUKhcCRKqCoUCoVCoVAoHIkSqgqFYt7ouk6hUMAwjGZPRaFQKBQrAG+zJ6BQKJyPlJJSqUQ+n6dYLCKEQNM0vF4vPp8Pj8eDpqn7XoVCoVDUFiGlnO35WZ9UKBTLH8MwKBaLGIaBlNIWqtZzFkq4KhQKxYpG1OVDlVBVKBTVkFKi6zrFYhEwhaj139NFqJTS/mehaRo+nw+v16uEq0KhUCx/lFBVKBSNwYqc6rqOEMKOoM4kVKu9f7pw9Xg8drTV6/Xan6lQKBSKZUFdTuqqRlWhUEzBMAwKhQJSyikidSFMf5+UEsMwyOVy9mOWcLUirkq4KhQKhWI6SqgqFArgYsNUqVSym6VqhRKuCoVCoVgMSqgqFAqklLbt1GKjqAtBCVeFQqFQzAclVBWKFY4VRV1Kqn+pzCRcs9ksQggmJycJBoO0trYq4apQKBQrCCVUFYoVSj1T/UvFEq7WnBKJBJFIBJ/PZwtUFXFVKBSK5Y8SqgrFCqTSG7VZUdSFYM3R6zVPWdMjrgBer9f+p4SrQqFQLA+UUFUoVhDVvFEXQjPFX6XV1fSIq7VdpVLJfo21+IDX60XTNCVcFQqFwoUooapQrBBm8kZ1A3PNtVqNa6VwtaKx1j8lXBUKhcIdKKGqUKwAauGN6iaqCddSqWRHkpVwVSgUCneghKpCsYxxcsPUQhBCMMcqenO+XwlXhUKhcB9KqCoUyxTLl9QSaW4XXksRqtOpJlyLxeIlwtVa8lUJV4VCoWgO7gyvKBSKWdF1nWw2y3333bcsRGojFiDweDz2PyEExWKRTCZDMplkcnKSTCZjL4pQS9GsUCgUiplREVWFYhkxPdUPze3UdyuWcLWwVu7K5/OA6Zbg8/nsiOtyuBlQKBQKJ6KEqkKxTKjmjbpcIn/N3pbZhKtV+yuEIBAI2DWuCoVCoVg6SqgqFC5nujeqiu7Vn0rhagnovXv3sn79ekKhEJqmXVLjqlAoFIqFo4SqQuFipqf6l6tAbXZEdTYqSywqRWmhUKBQKAAo4apQKBSLRAlVhcKlNMsbdbmK4Vph7Z/KiKtVKlApXK1Vs5RwVSgUiplRQlWhcBmVqX43e6MuBCdHVOeimhWWlJJ8Pn9Jc5bl46puBhQKhcJECVWFwkVYkbnKhimFu5iPcPV4PHaZgBKuCoViJaOEqkLhElbaMqgrhWrC1VqswcISrlapgPruFQrFSkEJVYXC4ThtGVRLKDcSIQSGYTR0zGahhKtCoVBcRAlVhcLBODHV74Q5rCSUcFUoFCsZJVQVCodSKpUc543arDm4uZmq1swkXLPZ7BTHASVcFQrFckAJVYXCYawUb1RFbbCOEaskpJpwtdwElHBVKBRuQwlVhcJBVFsGVeGeiKoT5lhNuFp2ZqlUimKxSHd3tx1xtZZ/VSgUCieihKpC4QCmL4Pa7IYpxcJxqtirFK6FQoFMJoOu65RKJfv5ylIBJVwVCoWTUEJVoWgyUkqKxSK6rqso6iw4IVrpdizHhsobIesmqVK4VpYKKOGqUCiaiRKqCkUTaYQ3ajPspGqN2+fvFKodC9Was6Y38inhqlAomoUSqgpFE2iUN6pV2+l2YeGWGtXlQDXhWiwWLxGu1spZSrgqFIp6ooSqQtFgGumNqgSeYqlYNawW1YRrpRWWEq4KhaKWKKGqUDSQUqnEyMgIiUSCyy+/vO4X9OUkVJfLdjSTWkTXqwnXQqFAPp8HzEZAS7h6vV5Vd61QKJaEEqoKRQOoTPVbfzfi4q1p2rIQeEroOJfZhKtV1lJZKqCEq0KhWAhKqCoUdWa6N2ojxeNyiqgqakMjoviWcLWOvUKhQKFQALhEuCorNoVCMRtKqCoUdWImb9RGikchBIZhNGSseqIEd21o9D6sXNK1cnwlXBUKxXxRQlWhqAOzeaNqmtYw8agEnsJJVBOuVqlApXCd3pylUChWLkqoKhQ1Zi5v1EZHVJeDUF0u29FsnGZVVs0KS0rJoUOHiMVidHR0KOGqUKxwlFBVKGrEfL1RVURVoahOpXC1RKmUknw+b7sKWMu9ejwe21VAoVAsX5RQVShqwEK8UVVEdXEsl+1oNm4QdtZ3XS3iahgGuVzOfswSrlbE1Q3bp1Ao5o8SqgrFErEapua7DKoSqgtHiY/a4LTU/2xUm6cSrgrFykMJVYVikSx2GVSV+lcoZme+gloJV4Vi+aOEqkKxCKZ7oy7k4qciqgtnuWxHs3FLRHWx85xJuGaz2Sm1r0q4KhTuQQlVhWIBTPdGXcwqO0qoKhSzUytBbf0+rWxHNeFqLfWqhKtC4UyUUFUo5sn0VP9iL2huT/0340KuBHftcIMQq1fkt5pwtW48K4WrFXHVNM0V+0uhWM4ooapQzIO5vFEXgoqoKpqFW46FRpUozCRcS6WSPQclXBWK5qKEqkIxC9MjLrUwG3d7RLUZLJftUMyPZn3X1WpcLeFqPV9ZKqCEq0JRf5RQVShmYCHeqAuhkRc2JfAUlbilmQqcUaJQTbiWSiW7Rl3XdXRdJxaLKeGqUNQJJVQViirUMtXfTKyVfWpJM8SOW/e/YnE4VVBPPxckk0nOnTvHFVdcYT9vlQpYK2s5cTsUCjehhKpCUcFivVGdzHKJqC6X7WgmThWA03HTPDVNw+Px2P9dLBanuIJUWmEp4apQLBwlVBWKMvVK9TeTekRUm4EqYVhZuE2oWgghbNFqPV8oFMjn8/Y5xRKuXq932ZxnFIp6ooSqQgHk83nGxsZob29fVhePegg8wzCmXIwV7sINx7abhOps85yvcLVKBZbTuUehqBVKqCpWNFaqP5fLcfz4cXbt2tXsKdUUIUTNHAaklJw4cYITJ07g8XiIxWJ0dHTQ1taGz+eryRiK+uKmqLQbBNtCBXWlcLW+i0KhQKFQAMwMyPQaV4VipaOEqmLFUrkM6nJJkU+nVhHVYrHIvn37CAQC3HDDDRiGQTKZJB6Pc/LkSaSUtLW10dHRQSwWq3nEVaX+VxaNsm9bKlaZ0GKoXNIVlHBVKGZCCVXFimP6MqhWM4RbLo4LoRYCb2Jign379nH55ZfT29tLoVBACEF7ezvt7e0AlEolxsfHGRsb49ixY3g8Htrb2+no6CAajaoLrENwS0od3BNRrdWxPV/hOr05S6FY7iihqlhRWF25uq5PqQdTEdVLkVJy8uRJzp49y/XXX08oFJrxtV6vl1WrVrFq1SrAvLgmEgnOnj1LMpkkEAjYwjUcDi9YhKiI6srCLYK6nvOsJlyllOTzefL5PKCEq2JloISqYsUwmzfqchVCi92uylT/7t27F5zK9/v99PT00NPTA0A2myWRSHDixAlSqRThcNiOyLa0tLhClCgah1uE6lJS/wul2uID04Wrx+OxywQsVwGFwu0ooapY9jjVG7URF+PFNFNNTEywf/9+NmzYQF9fX03m0dLSQktLC/39/UgpSafTJBIJjh49Si6XIxqN2sI1EAhU3Y7leCPRaNwiAN00z2adT6oJV8MwyOVy9mOWcLUirm7YpwrFdJRQVSxrnOqNagmvRgjV+Qo8KSWnTp3izJkzXHfddYTD4brNKRKJEIlEWLNmjd2YlUgkOHDgAKVSiVgsZgtXr1edplYabrkpaaZQnc5cwjWdTuPxeGhra1PCVeEq1BVAsWyxoqhOXAa1URHC+Y5TLBbZv38/Pp9vUan+paBpGrFYjFgsxvr169F1nYmJCRKJBCdPngQgHA6Tz+fRdV15uC4Bt0QqwT3NVE6d5/Rz3sTEBJqmEQwG7cdUxFXhBpRQVSw7nJrqr0TTtIYY589HqE5OTrJv3z7Wr19Pf39/XeczHzweDx0dHXR0dACmiB4ZGSGRSPDggw/i9XrtaKtyFFieOFkAVtLIGtWlIqXE4/FMac4yDINsNjulcUsJV4XTUEJVsayo9EZ1WhS1EidEVBuV6l8qPp+Pjo4O4vE411xzDfl8foqjQDAYtIXrYhwFFM7DLd+hk1L/c2H5RVtY50frsWrC1VrqVQlXRTNRQlWxLKjmjepkmi1US6US+/btw+v1NjzVvxgqtyMQCNDb20tvby9SSttRYGhoiHQ6TTgcpqOjw3YUUFzELZFKt+Cm/Tmf5V6nC1frnFopXC1XASVcFY1CCVWF65nJG9XJWKn/elNNqC411e+kDnwhBKFQiFAoxMDAgO0oEI/HOXz4MPl8nmg0agtXv9/f7Ckr5oFTjq+5cJNQnR5RnYuZhGupVLJfYwlXr9eLpmmu2RcKd6GEqsLVzOaNuhgadeFpRkRVSsnp06c5ffo01157LZFIpO7j14r57q9KR4G1a9dOWer1zJkz6LpOLBajo6PD7n5eSbhJWLkBN9WoLlSoTqeaq0ClcBVCTCkVUMJVUStW1llasWyoR8NUoyyjrLEaEVG1VtwqlUrs378fj8fjilR/rah0FNiwYYPtKBCPxxkaGkIIQVtbGx0dHbS2tq6Y/eJ03CJw3FSjWutzWzXhWiqV7PIrJVwVtUIJVYXrqJc3qpWOb8SFp1FLtgohyOVy3Hfffaxbt46BgYG6j1kPahWBruYoMD4+zsjICEePHrUdBTo6OohGows+ttyQslZioXa4KUJd73NbNeFaLBYvEa5WjasSror5ooSqwlVYxf318EZtVN0oNCb1L6XkwoULjI2NsXv3blel+huFz+ejq6uLrq4uANtR4PTp06RSKdtRoKOjg1AoNGczitNxg5B2E0qozowQYkqGoppwrbTCUsJVMRNKqCpcQSO8URsV5YT6C9VSqcSBAwcoFot0d3e7XqQ2qqZ3JkeB48ePk8lkiEQithWWchRQNFr8LYVmz7WacC0UCuTzeTvoYAlXr9frmsZYRf1RQlXheBrljdqoulGob/Q2mUyyd+9e1q1bRyQS4dSpU3UZZ7lTzVEglUqRSCRsR4HW1lZbuLoFdfGvHW6KqDptrrMJV8MwSCQS9Pf326UCSriuXJRQVTiW6d6o9T5RLYfU/+nTpzl58iTXXHMN0WiUycnJZZHudYIllhCCaDRKNBq1HQUmJydJJBKcOXOGdDoNQHd3t2MdBZq9D5cbThN/s9HsiOpcVArXXC7H8PAwq1atolAoAOb5eXqNq2Jl4LwzqUKBeQFIJBIIIWhpaVlWllFQe1FspfoBdu/ebYskJwi85YqmabS1tdHW1saGDRvYt28fra2tjI+P244CVrQ1Fos55sLqFmHlBlaSPVUjqbbcK0ChUFDCdQWihKrCcVjeqMPDw0QiEUKhUEPGdWtENZVKMTg4yNq1axkYGJhy4VRCtXFYwtWqBy4WiyQSCUZGRjhy5Ah+v98WrotxFKgF6lioLW6yp3KTUK223CughOsKRQlVhWOYvmSfx+NpmHAEdzZTnTlzhhMnTtip/nqN02zcuB0+n4/u7m66u7sBM51pOQokk0lCoZAtXOdyFFA4Ezel/t0017lEdTXhatW4VgrX6a4CCneihKrCEVTzRm1kcxO4q5lK13UOHDiAYRhTUv3TqYfAc8vFzmkEg0H6+vro6+tDSkkmk5niKBCNRm3hGgwG6zIHN4kVN+Cm1L+bvntd1xe0+EY1D1cpJfl8nnw+D5ii1oq2Wq4CCneghKqi6cy0DGojU/GNHm8pAjKVSrF3715Wr17N6tWr5/T2XA5C1Y0R1dkQQhAOhwmHw6xevdp2FIjH4xw6dIhCoUAsFrOFq8/na/aUG4abvmc3pf7dJFTrsdyrYRjkcjn7MUu4WhFXt+yblYgSqoqmMZc3qqZp9jrSjcANQvXs2bMMDQ3NmOqv1Tiz4SYh4RYqHQXWrVuHYRhMTEyQSCQ4deoUUkra2trsxqylOAo4/YLsJkHlprm6iVrX0yrh6m6UUFU0hfksg9rImlFwdte/ruscPHgQXddnTfVPZ7lEIpfLdswXTdOm+LOWSiUmJiaIx+M88sgjduNWR0cHra2t876ou2EfumGOFm4Sqm6ZJzRnuVclXJ2LEqqKhlMqlebljapS/yYLSfUvZRyFc/F6vXR2dtLZ2QmY3c7j4+OcO3eOw4cP4/f76ejooL29nUgk4vqLqlvm7yah6iZ0XW/4cq/VhGs2m53SuKWEa3NQQlXRMKan+uf6oS9noappGrquz/k6K9W/detWWltbFzVOPYSqukA3F7/fX9VR4OTJk6RSKdtRoKOjY4oPsRu+NzfMsRI3zdUtNNtKy7o+WXNQwrW5KKGqaAiLWQZ1vmKuVjQy+jjXWFaqv1QqLSjVX43lEFFVF4HZmclR4OjRo+RyOSKRCO3t7Q39PS0WtwlVRe0xDMNRK7vNJVyLxSKlUon29nYlXOuAc44ExbJk+jKoC7lLboaPqhNS/+l0msHBQQYGBlizZs2STniNjkormk81R4FkMkkikWBycpK9e/fajVlOdBRQQrX2uO1mtdkR1bmYLlwnJye5cOECLS0t9musxQe8Xi+apqljegkooaqoG1JKisUiuq7PO4paSTNS/42KOM20bcPDwzzyyCOLTvVPR50cFUIIWltbaW1tZXJykssuu4xCoVDVUaCtrW1B/pX1QAnV2uO2fep0oTodwzAuWfJV13XbtUYIgdfrtf8p4bowlFBV1IWZvFEXQjOEaqPssKZHVHVdt/0zd+3aVdMol9uiKYr6Us1RYHx8nHg8zvHjx/F4PPbzC3EUqBVuE1VuwI3Cz03znb5AQbXmrOlNxEq4zh8lVBU1ZS5v1IWwnFemqhSqVqq/v7+ftWvX1vSEpU5+ikqqiUCv18uqVatYtWoVgB1ttRwFAoGALVwb4Sigbqxqj9vEf6O7/pfKXCtpKeG6NJRQVdSM+XijLoRG+6g2uuvfMAzOnTvHsWPH2Lp1K7FYrCFjLxV1Al3e+P1+enp66OnpASCbzU5xFAiHw7ZwrXQUqCXqGKstbotQWql0t7DQ/VtNuBaLxUuEq7Xk60oXrkqoKmqCFUVdSqp/Os1I/TdKGEspGR0dJZPJsHv3bsc1tCiWLwv9bba0tNDS0kJ/fz9SStLp9BRHgWg0agvXQCCw5Pm5LfrnBtwoVN00X13X8fv9i36/EGKKMK8mXK3GLK/XW7NrrFtQQlWxJGqZ6p9Oo4Vqo1L/mUyGhx9+GJ/Px7Zt21bUCUfRXJZ6IyaEIBKJEIlEWLNmDYZh2I4CBw4coFQqEYvF7MasxdyAKaFae6wsl1two1CtZQS4mnAtFArk83nAvDb6fD474rrchasSqopFsxhv1IWwHA3/rVT/+vXrmZiYWNYnF4UzqeUxp2kasViMWCzG+vXr0XWdiYkJu1RASmlHW2Ox2Lwu5m4Rqm6qpZVSukr4uU2oNmLJ12rCtVAoAObvcHqpwHJCCVXFglmKN+pCaEZEtV4XH8MwePjhh8lms+zevZtMJsP4+HhdxlIoZqLe4srj8dDR0UFHRwdglgQlEglGR0c5duwYXq/XFq7RaLTqucMtAtAtghrcJ/yWWzNVrakUrtbvxRKuH/zgB7n55pu55ZZbGjafeqOEqmJBLNUbdSEsl2aqTCbD4OAgvb29XHXVVXaJhDLiVyx3vF4vXV1ddHV1AebFNB6Pc/bsWZLJJIFAgI6ODtrb2wmHw/b5xA0CUAnV+uG2ZqpGC9VKKpd0BRgdHV12PQ9KqCrmTS28UZ1MPcTj+fPnOXr0KFdffTVtbW32441crlWhsGi2uPL7/fT29tLb2wuYjgLxeJyhoSHS6TThcJiWlha11GuNUTWq9cVJ87V+R8sJJVQVc2I1TB09epRoNGpHR5YbtRSPlan+Xbt2XdIRqoSqQmE6CgwMDDAwMGA7Cpw9e5bJyUnuu+8+21Ggo6NjSV3V9cBN4s9tNapuugmA5kZUp5NOp4lEIs2eRk1RQlUxK5XeqFZt6nKlVhFVK9Xf09Njp/qrjaWEqqIZOFUAWI4C3d3dAGzcuNF2FNi/f7/tKNDR0UFbWxteb3MvX24Sf06K+C1HnCRUU6kU0Wi02dOoKUqoKmbEapiy7m49Hs+yrqushVAdGRnhyJEjbNmyxV6ishqNXnVLoQB3NCpZ55vZHAWGhoYQQtDW1rYgR4F6zNMNuCn660acdCOQyWSUUFUsf2byRtU0bdlHVBd7ITcMg8OHD5NOp6um+qfj5tS/uuAp6slMAnC6o0CxWGR8fPwSR4GOjg4ikUjdhYObxJ+ThNRyxEn7N5PJ0NLS0uxp1BQlVBVTmM0bdbkL1cVGObPZLIODg3R3d7Np06Z5Xbwa3fXvpuiPon644TiY7w2cz+eb4iiQz+dJJBKcOXOGZDJJMBi0rbAqHQVqOU+niJO5cNNc3YpTfldSSseUIdQKJVQVwKXeqNW6+j0ej/18o+fWiJPAYsTjfFP902lkRNUpJ1CFYr4s5pgNBAK2o4CUkmw2a5cJWA0mlnCtRcTJDaLfwkkRv7lwa6bJCSzXfaeEquKSVP9MJ99mRFQt8diIO8SFpP4Nw+DIkSOkUql5pfqrjaUiqgrFpdTiWBVCEAqFCIVCtqNAKpUikUhw+PBh8vk8ra2ttnBdjKOAm35TbvIlVdHfpbEcrSOVUF3hLMQbtRkm9Y0UqvONclqp/q6uLrZv376ok0IjI6rKYUBh4QZxVY85CiGIRqNEo1HWrl2LYRhMTk7apQK6rtuNWfN1FHBTlFLNdWUgpVyW53olVFcolan+yoap2WhmRNUpXLhwgcOHDy841T+dRooFNzduKVYejRDTmqbR1tZGW1sbGzZsQNd1xsfHpzgKWNHWWCw241KvThf9Fm6KUrop+gvOSrfn83mCwWCzp1FzlFBdgVR6oy4kTdAMeyqnCFUr1Z9MJheV6m8mygpLYeEGcdWMC7/H46Gzs5POzk7AdBRIJBJ2DbrP57OXeo1Go/bNn9P3pYWbopS6rrtmruAsD9XluCoVKKG64ljKMqjNTP03k1wux+DgIJ2dnezYscM1FycLFVFVuAknRP98Ph/d3d324gP5fJ54PM7p06dJJpO0tLQQCATshVCcfk5QVlr1w0kR4FQqpYSqwr3M5I26EFZi6t9K9W/evNn2b3QbSqgqKnG6YHHisRoIBOjr66Ovr892FDh16hQTExPcd999RCIRO+LqxNSrE8T/fHGbUHVSBHg5Lp8KSqiuCBab6p/OSkr9G4bB0aNHmZycZOfOnQQCgYbPoVYooapwG04W05ajQEdHB36/n/Xr19uOAocOHaJQKNDa2mov9eqEMiE3iT83zRVU6r8RKKG6zCmVSrN6oy6ElZL6d3uqfzr1EKpu3ycK5+KGVDowpXyqmqOAVSpgGAaxWIyOjg5isdi8HAVqjZvEn5MilPPBSal/FVFVuIr5eqMuhJUQUS2VSjzwwANcddVVdmOF21ER1cah9vPScYtQnUn8VToKgHlOmZiYIJFI8Mgjj9jPz+YoUI+5umGfgrOE33xwkrBWNaoK1zDbMqhLYTnXqEopOXr0KPl8nsc97nGOrDNbLLUWqhcuXOD8+fN2TZ7P56vZZ7sZtwgBp+OWesr5Cmqv1zuro4Df76e9vZ2Ojg4ikUhdjiO37FNwV/QXnJf6VxFVhaOZvgxqrX/szYjMNUKo5nI59u7da68J7oSaslpSq+9NSsmRI0eYnJxk9erVjI+Pc+rUKaSUtudkW1tbXS8ybom2KRaPW6LSiz0WpzsK5HI5EokEp06dIplMEgqF7N9TKBSqyfHuJvHnprmCs+abSqWUUFU4FyklxWIRXdfrtoRaMwRCvYXq6OgoDz/8sJ3qHxsbc9SJpxbUQqgWCgX27NlDe3s7119/PcVi0XZBKJVKJBIJRkdHOXbsmO052dHRQTgcVsJSsWDccMzU6qYpGAxOcRTIZDIkEgmOHz9OJpMhGo3aEdfFNnW66ZzmprmCsyKqmUyGgYGBZk+j5iihugxYijeq06mXULVS/ePj41O6+htdE9uICOFSher4+Dj79+/nyiuvpKur65J6N6/XS1dXF11dXYAZIYrH4wwNDdmpKEu4utk9QdEY3BI1Nwyj5o1RQgjC4TDhcJjVq1cjpSSZTJJIJDh48CDFYpHW1lY74jrfshu31agqobo4MpmMqlFVOItaeKM6nXoIx3w+z+DgIG1tbezcuXPKCbyR5Q2NWt1G07RFbZOUkpMnTzI8PMz27dtpaWkB5o52BYNB+vv76e/vR0pJKpUiHo9z4MABSqWS3QE93zXVLdy2GpBicbjlO27UTWZrayutra2sW7cOwzDsxiyr7MZqzGpra5tRMLmpRlXX9aY4IyyWetywLJZUKkU0Gm32NGqOM/auYsHUyhvV6dS6gWtsbIxDhw6xadMmVq1aVXW8RkVUrbEacQFZqFAtlUrs378fr9fLrl27Fh0xqLTuWbduHbquMzExYUdcNU2z05rRaNQ1F1NF/VBCdWas30t7eztg/k7Hx8eJx+McP34cj8djP9/a2mr/ntwWUXVKhHI+OC2iqmpUFY6gVCoxOTnJkSNHuO6661xzAloMmqbZzWFLQUrJsWPHiMfj7NixY8au/sVGHxdDo6K3Cx0nnU4zODjI2rVra17v5PF47DIAMGtfE4kEZ8+etZemtIRrS0tL06LdiubhFqHqhBS11+tl1apV9k239Xs6d+4chw8fJhAI0N7e3vRlqBeCE/brQnCSUFWG/4qmU5nqtyKNzTihN/JCUosI5/RU/2wnQSFEw07qjRJeCxHf586d4/jx42zdupXW1tY6zwz8fj89PT309PRMaSQ5evQouVyOaDQ6Rdgqlj9uEapOnGfl7wkgm82SSCQoFArcd999hMNhO+I6/UbQKbhNqDppvul0WqX+Fc1jujeq1+ttyl2yJRwbdQe5VKE6V6q/1uMthEaNNR/xbRgGhw8fJpPJsGvXrqZ4o05vJDEMg2Qyaa/wk0qlOH78OJ2dnXW3wVI0D7dEzZ0oVKfT0tJCS0sLp0+fZteuXWQyGeLxuH0jaDU6tre3O6bR0UnCbz44LaKqUv+KhjOTN2ozzPfBTN028oe5WDEnpeT48eOMjY3NmuqvNt5KS/3n83n27NlDZ2cn119/vWMuvpqmEYvFiMVibNiwgQceeIDW1lZlg7UCcMN36QahWknljeCaNWswDKNqo6PVmNWshTycJPzmg5PmqyKqioYzmzdqo22UmjXuYsbL5/Ps3buX1tbWOVP901mOqf/ZLqaJRIIDBw64YslYIQQdHR12WlPZYC1P3CIA3RT5q7Y/NU2zHQXWr1+PrutMTk4Sj8c5efKk7SjQ0dFBLBZrmBhz034FZ803m80uq1UVLZRQdShzeaM260TudKEaj8c5ePCg7flZ7/GWQjNT/1JKTpw4wfnz5xcUcW4m04/5mWywLL/JxdpgKZqLW4SqW+Y5XyodA+Cio4CVwbCer7dDh5OE33xwUkQVar8ipRNQZ2+H4XRvVCv13yjmK+asVP/o6OiShFcjhWqzUv+lUol9+/bh9/vZtWuX446xxaBssJYPbhGAbprnYpjJUcBy6LAcBWpdeuM2oeoUOy23HI+LQQlVB+EGb1QnRlQLhQKDg4NEo9ElC69GWiA1qh62cptSqRSDg4OsX7+e/v7+uo9dSxby3cxlgxUMBu3nndr9vFJxywXXLd6ktdqfMzkKWKU3lqOA9ZtaLG4Uqk45Dtzy21koSqg6BKthyunLoDpNqFo1lotN9S90vFrSqHpYS+ANDw/zyCOPcM011yzLgvvZmG6Dlc1mp3Q/V9pgNauJRGHiloutW1Z7qpeQshwFrNKbdDpNIpHgyJEj9m/KKiVYSM24ruuu2K+VOOF4dYtbxmJQQrXJLDXV3+iTusfjcYRQlVLyyCOPcOHChSnLe9ZrvHrQyOjt2bNn8Xq97N6927X1mrXaX0IIQqEQoVCoqg1Ws5pIFCZuueAqQX0RIQSRSIRIJGI7CiSTSTuQUOko0N7ePuc5yG1C1Qlks1lCoVCzp1EX3HnFWiZM90Zd6Emv0Z6m1pjNrlEtFArs3buXSCRS8xrLRorHRkRUc7kcJ0+eJBqNsm3bNldcWBvNdBus6U0klg1We3s7kUhE7cMG4IZ97Bah2oxUeuVvynIUmJiYIJFIcPLkSQDa2tpob29XN4M1YrmuSgVKqDaF6d6oi031W9HNRgvVZkZUrTv0K664gu7u7rqPV0/qXaNqLXbQ3d1NKBRyxUV1Nhp1EzG9icSywTp58iSpVErZYNUZJQBrixPmOb1mvFgsTrkZ9Hq9drTVLRF1p5FKpZRQVdSG6an+pZyQrehmI2vqmpX6l1IyNDTEyMhITVP91cZrVMS4XsLLKouwHBBGR0ebsjjEcmEmG6zKlGZHR4er1lN3Mm4Rqm6Zp5OafSx8Ph9dXV12X0E+n7ebHTOZDIODg7ZwdfJiHk76zauIqqImLDXVP51GW0VB41P/Vnr8wQcfJBwO191OSdM0SqVS3T5/+li1FqrFYpF9+/bR0tJiL3bQyHKGeuKE7ZjNBisej5PJZFi1apWywVoCbhGAbpqn04/DQCBAb28vvb29JJNJNm7cOMVRIBKJ2MK1XkGKxeAUaypYvsunghKqDaEy1V9Lb9RmrE7VaKE6MTFBOp1m48aNti1KPWn0ylS1HCuZTLJ3714uu+wyent7p4zTbIG3XKlMaRaLRXp6eigWi8oGawm45Vh1YqSyGk5I/c8XS/xbzY4DAwO2o0A8Hufw4cPk83nbpaO9vR2/39+0+TrJ7F9FVBWLpp7eqM2KqFq1tfXESvWfP3+eUCjUEJEK7u36P3v2LENDQ1x77bWX3FU3yq+13rhBcFuNV3PZYDX7Aut03CAA3RCpBHcK1UoqHQXWrl07xaXjzJkz6LpuN2Y1ehU6J+1bFVFVLIq5lkFdKs0Qqo0Ys1gssnfvXlpaWti9ezf33ntvXcerpNGG/0sVxYZh2EuGzmY95XSBtxyZzQbrzJkzGIahbLCq4KaUuhvm6ZbIL8xP+E136Zi+Cp0Qwv5dtba21vV35aSIqtXouRxRQrUONGoZ1Gal/us55vj4OPv3729Yqn86boqoZrNZBgcH6enpYd26dTNejJpxnCguRdlgzQ+3CEBQkd9as5gI5UyOAiMjIxw9etR2FLDqxmv5nTlJqGYyGSVUFfOjkcugNiv1Xw/RI6XkxIkTnDt3juuvv75pxsVuWZlqdHSUhx9+mC1bttDe3j7nOLWmGRdoN6T+F8J8bLCsC2wwGGzybBuHm4SqG3BSenouarEqVTVHAWsxj2QySUtLi/27Wqptn5P2bTqdprOzs9nTqAtKqNaQUqm0ZG/UhbBcUv9Wp3owGGT37t1N/eE3OvW/0H0ppeT48ePE43F27tw5Lx/PRjaIKRZPNRusRCLBoUOHKBaLtg1Wo+vwGo0SqrXFban/WkcoA4EAfX199PX12XXjiUSC48eP21HIxd4QOimiqpqpFLNSS2/UhbAcUv8TExPs27ePyy+/fEqn+nQadfFycuq/WCwyODhIJBJhx44d8xb0yyUSuVy2Yz5U2mCtXbv2kjo8TdOmpDOdEtWpBUqo1hYnRf3mot5zreYoUHlDWCgUaG1ttW8I52p4dJJQTaVSRKPRZk+jLiihukQMw2B4eNi+cDTyBOvxeBrSgV9JrYSclJKTJ08yPDw8Z6q/kUvFOlWoTk5O2oJ+obW7K0ngLVem1+EVCgXbIH252WCpY7W2LPca1aUw/YbQMAwmJydJJBKcPn16TkcBJ90EqBpVxSVUeqOm02k0TbMvIo3C4/GQy+UaPuZShZyV6g8EAvNK9TdSqDqx6//06dOcOnWK6667blGpnXpsUzOiXkpwX8Tv99PT07NsbbDcLLSdhpPE1Fw0e66aptHW1kZbW5vtKDA+Pm4vPiCEsBceiMVijoqoqtS/YgpSSorFIrquI4TA5/NRKBQaPg83Gv5PTEywf//+S0zp5xqzUdvppIiqruscPHgQwzDYvXv3ok+ISuAtb+Zrg+WWddRV6r+2OGn1pLlotlCdjsfjobOz025SKhaLJBIJRkZGOHLkCLqu09raSiQSqbmjwEJJp9Mq9a8wqeaN2ujVmiya1Uy1GCEnpeTUqVOcOXNmwZHB5SpUZxvLWu+6v7+fNWvWLOkEqITqymImG6yxsTEymQwPPfSQXSbgRBssJVRri5tS/7Xo+q8nPp+P7u5uuru7AThy5AhSSttRIBQK2RHXpToKLBRl+K+Y1Ru1GYKxWeMuRpQXi0X279+Pz+dbVGSw0eKxUaJuJgF54cIFDh8+zNVXX01bW1vdxnEby2U7Go1lg9XR0cHk5CSbN28mkUg42gZLCdXa4bQo5Wy4KfoL5nHa2dlJR0cHUkoymcwUR4FoNGoL13r/tpRQXeHM5Y3q9XqbIlSbkfpfqFiwmoA2bNhAX1/fosZ0i7fpYsaq3JdSSo4ePcrExAS7du2qWW1hrQWedfw3OvKlxEttCAaDU+x6pnc9W2UC7e3tTbHBUjcjtcVtQtUtc4WpwloIQTgcJhwOs3r1aqSUJJPJKb+tWCxm/7Z8Pl9N55LP5+dlV+hGlFCdAyuKOtsyqCsp9T9fsbCUVP90nJKOr+dYhUKBwcFBYrEYO3bsqKkoq0ckslnRTSViastMNliJRIITJ04ghLDLBJabDdZScNNx6DYfVTcdY7OVKgghaG1tpbW1lXXr1mEYhv3bOnXqFFLKKY4CtYgku2nfLQQlVGdgIcugrqTU/3wolUrs27cPr9e7pCYgi+We+re8ZK+44gq79qke4yhWNvOJgM/XBqueNXhuEFVuEn9uqlE1DMNVi1kspOvfsrC0VhK0asfj8TjHjx/H4/HYz7e2ti7oO1vudd3uOSIaiGEYFIvFeS+DupJS/3NhpfrXr19Pf39/TT7TSZ34tSaZTHLgwIG6Lhu7XITqctkONzGTDdbx48fJZrOut8FaLG4Tf26Zq5PsnubDUmpqpy+hXCgUGB8f59y5cxw+fJhAIGAL1/k0PS5nsaqEagWV3qgw/zD6Skr9z4TV+Xj69GmuvfbamhZ1O1GQLxVd1zl27BiFQoEbb7yxridnJfAUsPQL2XxtsDo6OojFYos+pt1wrLpJFLhJqLpprlBblwK/3z/FUSCXyxGPx+2mx1AoZN8UTl/Uw00R/sWghGqZ6d6oC/nSV3pEtVQqsX//fjweT01S/dNxynbWinQ6zeDgIF1dXXi93rpHEJaLUF0u27FcmMkGa3R0lGPHjuH1eh1tg7UU3CRU3TRXNwrVep2/g8Eg/f399Pf3T3EUsBb18Pl83Hvvvdx66610dHQsqQ9E13V27tzJwMAAd955J/F4nBe/+MUMDQ2xfv16vva1r9klC83APUdEHTEMg3w+vyiRCo3tFJ8+brOwBEMymeS+++6jq6uLrVu31uVHu5yE6sjICL///e/ZsmWLfQKqN42su1WsXKxU5pVXXsmuXbvYvHkzfr+fkydPct9997Fv3z7Onj0752p6bhBVbhJUaq71o1E3AZajwOrVq7n22mvZtWsX3d3dnD17lle/+tU84QlP4MKFC3z7298mkUgs+PPvuOMONm/ebP/37bffzi233MKRI0e45ZZbuP3222u5OQtmRUdUF9IwNRtuOLHWEqvUYXh4uC6p/mrjuV2oGobB0aNHSSaTtvVUNpttyHYtl0jkctmOZtHoyNp0G6x0Ok08HneMDdZSUFHK+uCmuVo04zgQQjAwMMB73vMeAPbv389b3vIWHnjgAT7ykY9QKpV4whOewC233MKNN944a//D6dOn+f73v8/b3/52PvKRjwDwne98h3vuuQeAV77yldx000184AMfqPt2zYS7zg41ZC5vVMXMaJrGvn376pbqrzaem4VqPp9ncHCQ9vZ2tm/fbh9rjRJezYr4rzSUkJ4ZIQSRSIRIJDKjDZa16IAbjlUlVOuD01emciqlUol169bx3ve+FzCbmn/+859z11138cMf/pAPf/jDM773z//8z/mnf/onksmk/dj58+dt3/O+vj5GRkbquwFzsCKFqtUwNZs3qqI6yWSSyclJNm7cyPr16xsyZrOa1WpBIpHgwIEDXHnllXR1dU15rlECfLkIqOWyHc3EKee66TZY1hrq586dI5vNMjg4WHcbrKXgpuYVt4lqN3X9O4V0Oj2lRrW1tZXbbruN2267bdb33XnnnXR3d7Njxw47gupEVpRQrVWq32k06kR0+vRpTp48SSwWq4vf50xommY7MbgFKSUnT55keHiY7du309LScslrGhlRVQJP4eRjoHINdetG2Mk2WMqeqj64aa5OYrpQnS+/+tWv+O53v8tdd91FLpdjcnKSV7ziFfT09DA8PExfXx/Dw8MNvd5XY8UcEYZhUCgUbJFaa2HXzIaqel+ASqUSg4ODxONxdu/eTSAQaOi2NiP1v5R9au2vVCrF7t27q4pUcLdQdUuERjEVt3xvlgXWNddcw86dO+nv7yeTybBv3z7uv/9+jh49Sjweb1qmxU1RSjfN1U1C1UlR9XQ6vag+kfe///2cPn2aoaEhvvKVr3DzzTfzxS9+kWc961l87nOfA+Bzn/scz372s2s95QWx7COq071R65XqtyyqGv0js7xU6zVuKpVicHCQtWvXsnr1aqDxqfhGC1VL2C3mOEmlUuzdu5e1a9cyMDAw62sbmfpfDqjI8NJw675zog2Wm8Sfm+bqNqHqlLkuVqjOxFvf+lZe9KIX8elPf5q1a9fy9a9/vWafvRiWtVCdnuqv54/VEm8+n69uY1TDEqr1GPfMmTOcOHGCa665hmg0aj/eaOHYrPEWehI6d+4cx48fZ+vWrbS2ts75eiW8FIpLmc9KgJUr+uTz+SnG6OFw2BauwWCwLnN0kkhZTrippMJJq2jVQqjedNNN3HTTTQB0dnbyk5/8pAYzqw3LVqgudBnUpdKsVaI8Hk/NRZyu6xw4cAApJbt3777EOqYeY85GM4TqQgSkYRgcPnyYTCbDrl275n3T4JYoh1NQwn7pOP2YW8z3GwgEZrXBisVidn1rrWyw3BSldMs83YbThGpPT0+zp1E3lp1QrUz1N7JhqpmrU9VyXCt1vWbNGgYGBqqe5FZC6n++4+VyOQYHB1m1ahWbNm1SFwWFY1kJIn+6DZZhGExMTBCPxy+xwWptbV309cFNQlVRH5wUVa916t9pLCuh2kxv1GZZKNUyknv27FmGhoYuSfVPZ6Wk/uciHo9z8OBBrrrqKjo7Oxsws5WNiqguHaeLq1oLQE3T7EUFYKoN1uHDhwkGg7ZwXYgNlhKqCqdFVJVQdQGGYXDmzBkMw6Cnp6fhJ5Fmpf5rIZB1XefgwYPoul411V9tTCcKx1qON5sgklIyNDTEyMgIO3bsqFsdnEJRS9wg8ustACttsKSUZLPZS2ywLOE6mw2Wk6JpiubgNKG6GHsqt+B6oVrZMFUsFikUCk25021W6n+p9aJWqn/16tWsXr16Xvuu0aLcSan/UqnE3r17CQQC7Nq1S12sFIoa0shIpRCCUChkW2EZhkEymSQej7Nv3z4Mw6CtrY2Ojg5isdgUUeKWiKobbk7cipNuVlRE1cFMT/V7vV6y2WxT5uLG1L+V6p9vl7rFcq9RnWk8y6pr/fr19Pf3N2w+ChOV+l8abhBXzfx+F2KD5SQPzdlww3du4ZZ9auG0iOps5Xpux7VC1YqgwkVvVK/XS6lUasp8mpn6X6iIs1L9pVJpXqn+amM2cqUoJ6T+h4eHeeSRR+as31XUDyVUlz9OElaz2WCNj4/j9/tt8erU8h8n7c+5cFKEcj44TaiqiKqDmM0btVliEcyTWqFQaPi4C93mdDrN4OAgAwMDrFmzZlEnsZWU+jcMg4cffphcLrcoUa9QOAk3iBanzrHSBuv06dP2Sof1tMFaKm4Sf26aKzhrvplMRglVpzCXN2ozhWozU//zjW5aUcGFpvqnUykcv/AFjfe/30uxCH/4hzpvf7tOrX+7zUr953I59uzZQ3d3N1dddZVjL6DNIJ/PAzhi3XXF/HBDNNpNEcBgMEh/f39dbbCWipPE1Fy4aa5AUxb4mYlCoUAgEGj2NOqGa4SqVY8628oVzWpoguYa/luiYSZ0XefQoUMUi8VLooK6Dnfc4eGb39RoaYG3vrXEk540+wXNEnI/+IHGX/6ll0IBhIB//VcP4TD85V/Wdj80OuWraRrj4+McOnSIzZs309HR0bCx3cDZs2d55JFH7N9he3s7nZ2dRKPRul5oVOp/+eMWoTp9nvWywVoqbhJ/bporOCv1v9xxjVC1Iqiz/cA9Hk/TalSdavg/V6r/jjs8fOxjGn6/KVr/9E99fPWrRXbsmFkQWE4DX/+6Rj4PHq9ESigUBF/9qlYXodoopJSMj49TKBTYuXNnQ2rP3HJxtlbgymaz7NixAyEEpVKJRCLB2bNnSSaTtLS00NHRQWdnp2Pr9lYqbjjO3DBHmFtUVdpggZmaTSQSC7bBWipu2Z/gPqHqlPmuhJt31whVmDsFvFIjqjONa609f/XVVxOLxaq+5lvf0vD5QHiL+LyC1KSXH/9YY8eOmbfFEsdtbRIhoKAXMKSBjxbc3GdULBbZu3cvhmFw+eWXN0RoWVHCRlxMljJOoVBgz549dHR0sGnTJnRdt1Nflb6UmUzGXr6yWCwSi8Xo7Oykra1tydEHFVFd/rhFWC10npYN1sDAAFJKJicnbRssXdftaGwtfieVOEVMzQe3RSidNl83/G4Wi6uE6lwsZOnLWtOsGtVq4t0wDA4dOkQ+n59z7flQyIyknsmeJuRtoUX0MldNtjXmG9+o8/Wve4iPa0hD0BKBf/iH5kS0l0oymWTv3r1cdtllZLPZhgkia1/W+2KyFEE8MTHBvn37uPLKK+nq6pp1jHA4TDgcZs2aNei6zsTEBGNjYxw/ftzukO7s7CQcDi/rE6ticbjlRmQpgloIUdUGy1p4oNIGKxKJLOl34iah6qa5gnOEqq7rrtpvi2HZCdVm0UzD/8pxM5kMg4OD9PX1sXnz5jn3ydveVuKP/9iHzLaS17ysWQ0vetHs22Gl/tevh1//usDL3v199p87xk9ufxNbt7rjQlPJmTNnOHHiBNdeey2RSIShoaGGXTAbFSVc7Dhnz57lxIkTbNu27ZKVT+a6WHs8HvuCCxftfYaGhmzfP+v5+aQ/VUR1abglWumGOdZSVM1mg5VKpQiHw7abQEtLy4I+e7aeDqfhNqHqlPkud2sqWGZCtZk0O/UvJfz852M8/PBZnvGMLQwMzK+r/4lPlHz960Wee/tX6Ij6uOt9r6anZ/b3VEaP16yBR73kHg4NfpatW9+41M1pKIZhcPDgwUuazBrpMuBUoWrZcllR+VrY7VTa+0gpSSaTjI2N2asAWTV7sVjMERcAReNxi5iu5zyn/07S6TTxeJzDhw+Tz+cXZIPlJhN9pwi/+eKUiGo6nSYUCjV7GnXFVULVyT+4Zhr+Fwo6z3temt/8potAoJd/+RfB975X4PLL5/cZ118vWX/bf9PibaGn59XzGrNSyAW8AXKl3GI3oSlks1n27NlDX18fa9euvaSDt1HfZaNE8UKEaj6fZ3BwkM7OzrrZcgkhaG1tpbW11U5/JhIJzp8/z5EjRwgGg3aZwEKjSIrquEEEumGO0Lh5CiGIRCJEIpFF2WC5Sfy5LYXtJKGqIqoupBknu2bVxxYKBb73vRbuvbeVQMCDEBCPw5/9mY8f/vBSf9W77xb87ncaAwOSl77UwMq4Br1Bcvr8xOZ0Uf68q57HVZ1X1X2/1+rzR0dHefjhh9myZYttJ1NJI1PMTouozrcetdZ4vV66urro6upCSkk2m70kigQo0brMcZNQbYaomssGKxAI2OU0oVDIVULVMAxHCL/54pR9m0qllFB1G5aIavTKIM04uZ4/f56jR49y4cI6SiUP0pOnqBcI+aIcP37pfD7yEQ8f+YiHQgF8PvjGNyTf/nYRrxfeuOuNGHJ+Qnu66Nneu53tvdtrtl3VsCKPSzmRSSk5duwYiUSCnTt3zmiQ3MjUv5MiqmfOnOHkyZNcf/31TU0lCSHsLunVq1fbUaQTJ04wNjbG6OioHW1darPJSsPp+8otQtUpKfXZbLAymQw+nw+/30+hUHD84hxOEX7zxSn1vyr17zDmc2Lwer2USiXHLGFXD6z6wWw2y65du/jVr4YIBCBTKpAppvEaUXbvnip+CgX40Ic8eL0QDoOUsGeP4Je/FNx0k+TWjbfOe/zp38P59HmOxo+yq38Xfk99ToZLFaqFQoG9e/cSiUTYsWPHrCcYTdNWVETVcokoFAo1q0etJVYUKZfLUSqV6OnpmdJsEolEbOHq9ItxM3FDI5pbhKpT5zndBmtoaMjOktTTBqsWGIbhuHOPG1CpfxfSzGVUG0Emk2Hv3r1TlvW88cZREgmdT/2nF9DYsMHgYx+bahOVy5niVAqDC5kxIr4IAU8LmYwAJCcnThLPxtnWu23Bc/reke/x+h++nuN/dpz+aH9NtnM6S4k8WifqjRs30jNXpxiNLeNotlDN5/Ps2bOHrq6ueblEVH5es/D7/fT29tLb24uUklQqNaUpq62tjY6ODtra2hwR8VDMHzeIaXCuUK1ECEEgEGDVqlWsXr26qg2WVd8ajUabvj1ui6g6BctBZTmz7ISqFVFtFvU8gY2MjHDkyBGuvvpq2tra7MeFgPe/X6flpn/nH396Bz985/20habeYbW2wvbtkgceEJSKkrwuiLTBjh2mILv917dz19G7GHrD0ILnFfSYxvjzrXFdDIsVqqdPn+bUqVNV7ZVqPdZiaGbq3xLwmzZtsq1xnEy1bRBCEI1GiUajrF+/3r4YX7hwgaNHj9o1e1ZTVrMvxs3EDeIKnF+eAO4RVZXznMkG6/Tp0ySTySXZYNV6ror5k06n531tcyuuEqrzOYE1M6Jar1WGrKUr0+k0u3btmjG92bUKaB+iSBa4NBXwxS8Wef0b4Zv/m6J7dZ5v/FevbUXV4m0hW8ouan5BrylU86X8ot4/HxYq6HRd5+DBgxiGwe7duxeU5loJ9lSWgG92PWqtmX4xtpqyjh49Si6Xo7W1lc7OznlZ+ygaj1vE9HKY53xtsNra2mZdNKZWuKnr30mR/3Q6TWvr/Owo3cqyO1M3U6hapv+1/LFls1kGBwfp7u5m06ZNs54cg94gAkG2WF1wtrfDFz8v+eYHNvLyG/+Wa675+ynvXazFlCVU62lRtRDxaC160N/fz5o1axZ8QVnOXf9WParlHeu0OrXZWMy+amlpYWBggIGBAQzDYHJykrGxMU6cOGHXvnZ2djoi9Vlv3CCu3DBHcM885xulXKoNVq3m6pbzkZO+/3Q6zcDAQLOnUVeWnVBtZurfEsm1uvu0Uv0z2ShVIqXklde+kldd+6pZf0BCiKqiNOgNktfzGNJAE/M7CVk/VicJ1QsXLnD48OFLyiPqMVYtaGTqP5/Pc+DAgQXXoy4XNE2jra3NPi4KhQKJROKS1GdnZ+eMjhCK+uIkATAbbpnnYtPpC7XBqsW+cFPq3ykeqqCaqRyH01P/tTKKNwyDI0eOkEqlZk31W1iRpvn+yJ+84clsaNsw5bEWn1mTlCvlCPnmTgVXduFf230tX3nuV7ii44p5jb8Y5hJ0UkqOHj3KxMTEvPbZUsaqJY2KqBaLRfbv38/VV19NZ2dn3cerB7XeV36/n56eHnp6eqakPg8cOECpVKKtrY3Ozk5isZhjLkrLHSelVGfDLaKqVjZa022wrJIaywZrocshzzRXN+xTcFb0VwlVF+LxeJoWUbVS/0vBSvV3dXWxffv2BYnzw/HD/Mt9/8KbH/XmWUXj15//9Useu23jbayPrcenzS8a7PF47B9rd7ib52x6zrzet1hmE4+FQoHBwUFisRg7duxY8om5kan/RlhhnT59momJCVeL1HozPfWp6zrj4+OMjo5y7NgxfD6fHW2dKYLk9AibG6KAbpgjuGue9RB/lSU11nLI8XjctsGqdN6Yr6Bzk1B1Uj1tJpNRzVRuw+v1ks/Xr6lnNpYazbXS1rOl+vN5+OAHPfz614LLL5e84x26Pe6FzAU+O/hZXrTlRQuObl616iquWnXVvF9vRY99Ph/pQppfnf4VW7u2Ntyeanx8nP3799d0JaVGR1TrNZZhGBw8eJBSqUR3d7frPUYbeQPh8Xjo7Oy0hX0ul7MjSNlslmg0ajdlNaLRZCXhFgHohnk2QvxVLoe8fv16+yZvoTZYTopSzoWTUv9qZSqHsVxT/1aqP5lMzpm2fs1rvPzkJxqGAQ88AL/6lcbHP+7FMAw7ZT9TM5XFs7/2bPoifXzq1k/Zj42kR9h3YR839N9A2D/33VmlmBtODfOsrz2LzzzzM7z06pfOZ5MXzHTxKKXk1KlTnDlzpuad68sh9Z/L5dizZw89PT2sW7eOQ4cO1XyMlUQwGKS/v5/+/n4MwyCZTDI2NsapU6cAaG9vJ5/POzp17QZx5YY5gnNWppqLZkQpp9/kVbPBsoRrpQ2Wk6KUc+Gk6K/yUXUhtUi/N3LsXC7H4OAgq1atmjNtnUjA3Xdr+HzgKX9zFy4I9u9vZetWnRav+aOfy2ZqNDOKZOoF9ZenfsnL/udl3P9H97O1e+uc87ZS/wABr9l40qhmKl3X2b9/P5qm1aVzvZErU80mitNpmJyE7m5YyCYmEgkOHDjAVVddZV8sGrmIwXJH0zRisRixWAy42GgyMjLCgQMHpqyUFQwGmzxbd+EWoQruiPw6QVBXs8FKJBKX2GC5Sag6KaKqUv8OZK4IVDNrVBcazbVS/Zs3b6ajo2PO11vnG93QSeTiRPxRWnxBPB5T7AR95kUxU8zM+jlBb/CSqKvduT9P0/7K6HEjfVTT6TSDg4OsWbOG1atX12UsJ6xM9d//rfGRj5gnwv5+ySc+UWI+m2tFmbdv3z4lWlHryG0zLn6NTP0vBKvRJJFI0Nvbi9frJR6P2zZgsViMzs5ORy5b6TSUUK0tTlmP3qKyFnzNmjVTbLDS6TQPPfSQ7TYQi8UcNfdKnCRUVTOVC3FD6t8wDI4ePcrk5CQ7d+6ctxVOWxvcdpvBnd8XoPsplQR9ayXbtmXR9Sghf4ioP3pJtHQ6Lb4WJnITUx6zxOZcZQMWlZFAe2WqOkdUx8fHGRoaYuvWrXY0q15jNVOo7t0r+NCHPMRi4PPBmTOCv/kbL//93zPfgBmGwYEDBzAMg127dl1yEnWqyFtuCCEIh8OEw2HWrFmDrutMTEwwNjZm1+tZ0dZwONxQseMGEeiGOboJJ6Woq1FpgxWPx7n22mtJJBKcP3+eI0eO1MUGqxY4KfpbKpVc338wF8tOqDY79V8oFGZ9jZXq7+zsXFSH+qc+VeKfPlLkPV/6GTuu6+Mb/3odFy6YArk30suFv7ww52e0eFs4Vzp3yWMwf7E5RahaIneRK1vNhWEYjIyMkMvl2L17d91/lM1O/R87JhAC8jLJSHKSvo5+DhwQSHkxql7J9HrUmTrS3S5U3bgNHo/HvtDCxXq9oaEhu7ZsqbY+ywm3fb9Ox+lCdTqNsMGqBW5q/FoOuE6oujn1Pzo6ysMPPzyldnCh+Hzwlr8WvEc+h5sf+w7a268jHl9YFPnG1TeyPrZ+ymOVQvXoUcEvfiHo7IRbbzWottJk5bZ6NS/fe/H32Ni+cVHbNBv5fJ7BwUG8Xi/9/f11PzlJCffco3HnnQMMD2vcdptBPYesVmbQ1yeREuKZcYYmjxMy+hgYqC5SrXrUucpH3CjyliPT6/Wspqx9+/ZhGIbdZFKvtKdTIlKz4YY5ugUn1KguhXrYYNUCXdcdsQSzdU5383c8H5q/p2uME1P/lhn9+Pj4glL9M+HVvPg0nx3BrIzKvfp7r+bJG57My7a+bMb3//kNf37JY5e1X8a3X/Btkgcfw+5XmnY7QsA110juvrvIdAeeyjGFEDx5w5OXtE3VsETYpk2bKJVKpNPpmo8xnX//d43/+i8PmUwPP/+5h//9X8G//qteVazXAk3TLrmx2r1b8sIXGvzb50OQbcPbafCBD0x9n+V6cPbs2UvqUauxHITqctiGSiptfTZs2ECpVJqS9gwGg3aZwFzf73xww75zWk2l21lO+7NWNli1QNd1lQFpIMtOqDbzzqJa2UEul2Pv3r20t7ezc+fOms3vzY96M48eeDQwVZzfeeROukJdswrVarQGWnn6xqez/kl+MpmLc9y7F772NY2Xv3xq1G96yvquo3fRHe5mZ9/OxW6SjZSSkydPMjw8bIuwkZGRuteN5nLw2c966OqSJJNF2tokv/+9xr59Btu21eciXy2iKgS89a06pc138b6ffIzPvfXbXDlw0SPWqkeVUlatR51pHDcIFbezlH3s9Xrp6uqiq6sLKaWd9qzsjraaspwQzakHqka1trgt9b8QqtlgTV8SuZoNVi1wSuq/WCwu23NBJa7bQiefxKZHc2uR6p+Jdz3+XfbflVG5Fm/LnLWi7/nFe/j07z/N0BuG7McKeoEfHfsRY/HnARf3cT4P585dus+nb+vrf/h6nnLZU5YsVEulEvv378fr9bJ79277JNuITvxi0Uz9F2We348/xGbfZrxaH3OUHS+JmQSkENC3PgUD9xNpLdqPW/Wovb29rF27dt6/ByVU3YUQglAoRCgUYvXq1XZ39NjYGENDQ2iaZkdbI5HIvI4DN4hAN8zRTbhlf9bi3BQIBOjt7aW3t3dGGyyrcWupi3Q4pes/nU7X1EPcqbhOqDoZSzDWOtVfjcn8JIY0aAuatTlWE1fQG5zTnkqXOufT56ecxHKlHC/81gvZsPkEp/avoVQyH/f54MYbLxWI08scAt7AvK2tZiKVSjE4OMi6desYGBiY8lylb2u9iETghhsMfvErD/m8RnzMwxX9ks2b6yfwZnMY8Arz51k0TKEaj8c5ePDgvO3MKlkOQnU5bMNiqeyOBnPZ4Hg8zsmTJ+2VaSzh6uaU5Er9fuuJG4RqrSO/s9lgVS7SsVgbLKdEqleCNRUsY6HajDtJr9dLsVjk/vvvp62traap/unc9IWbuLLjSr7yvK9MiW62+Frm7Nxv8bYgkRT0gm3WbzVTPf/vv8rPbn8zv7vfwOPT+fCHBY961KUXD03TKBYvRvqC3uCSfFTPnTvH8ePHueaaa6qustGITnwh4H3v03n/h3Mc+GaStVvO8anb26nnoh+zia/nX/V8blp3E/2Rfk6cOMHw8DA7duxYlIn8ShZ5yxG/3z8lepRKpaY0ZVU2mVReUJ0uWpZTTaVi/tTb7mn6jV7lIh2LscFyUkRVCVWXYkWpGn0gTUxMMD4+zvXXX8+qVavqOlbIFyJTMiOnldHGNa1riPpnV1aVK1hZQtWredGEhic6xi9+UeSyO67iSRufwB8949+qfsb0CGfQE1yUj6phGBw+fJhMJsOuXbtmTMk0yts0EoG/eUueDweewzNv/gBr1myu63izCchoIErIG+LAgQMA865HXeg4bmE5bEM9EEIQjUaJRqOsX7+eUqnE+Pg4o6OjHD161L4ISykdv/+cPj9wxxzdRqOv1/O1wWpvb6+aEXWSUF3uq1KBC4XqfCICVoSxUQeSlJJjx44Rj8cJhUJ1F6lgik0rxV+Zhr/zxXfO/V7fRaHaRhtg7tcWbwu5oik2gwGN/Cyp/Kqp/wUK1crlYzdt2jTrd9tIE36/x0ydFvQ6FqeWmW27Bs8O8m+/+Ddes+01XH/l9UuKhtVD5Dk9OrdS8Xq9rFq1yj4PWRfhs2fPks/nyeVydHZ20t7e7shGDKcfV26p+3QTzU6lz2SDdeDAAUql0iU2WM2er0UqlVJC1a14vd6GrdZg+Xxaqf5777237mOCKTbj2TiwcEuuzas286prX2ULMvszKxqxLm+/nI7gzHWQ0wXWx5/2cbza/A8nq95yvo1m8131qxb4PX5u7LyRy9ouq/tYMwnIeDzOD+//IZ9+5NP88RP+eMkXxkYuC1svVER1cVgXYY/HYzeVjI2NceLECTsl2tnZWXdLn/ngBhHohjm6DacIP5ifDVY2myWTyeD3+5t6LKjUv4tplJfq2NgYhw4dYtOmTQ2JolYS8oY4XTwNTBVxt//6dk5PnuZjT/vYjO997JrH8tg1j73k8W+84Bt0hUwbpO+9+Huzjj899X9119XzmreUkqGhIUZGRhZUb9nIiKpH8/Dere/lhk031H2s6eLLsuY6d+4cm67YBAcuNlMthWp+rYqVhxCCtrY22traALMpa7qlj9WUVY8m0Llwgwh0k4m+W27snCRUp1PNBuuBBx7g7NmzHD58mFAoZNe31toGay6UUHUo8zlBWBHVeiGl5Pjx44yNjS26uWWpvOTqlzCWHQOmisb9F/az5/yeOd9fbUWLRw08at7jV4rjQgH+9Sv7GRlP8ecvuIH+/urvKZVK7N27l2AwyK5du2Y8MUkJ//3fGt//vkZXl+Sv/1qnu7txQhUuCuN6nzwrBbiu6+zfvx9N09i1axc/OfETAErG0o/l5RCNdIs4cCrVRKDf76enp4eenh7b0me2lGcz5ug0VMNX7XFKzed8CAQC+Hw+rr76aqSUZDKZS/yOa2WDNRdKqLqYekZU8/k8e/fupbW1lZ07dzbthPWcTc+x/67c3qA3aDdZzcT/Df0fz/jqM/jxy348JbL6w2M/xOfxccv6W3jHz97BeG6cjz71o1U/wxJY2Sw885k+fjd4OUWjwNf/2c+3v128xCA/mUyyd+9eNmzYQF9f36zz+9CHPHz4wx6KRbMT//vf9/CLX5QaKlRfdu/LeEn6Jbzv5vfVdRxLQGazWfbs2cPAwABr1qwBLrWnWuo4td5/zRAVbhfbTqbS0mft2rWXpDx9Pp8dbZ1PZ/RicMP36wYxDe6K/Do5ojobQgjC4TDhcHiKDVYikbBtsKybvXosi5xOp2vu0e5ElFBdAFZd5ZVXXklXV9eMr2vEiWw8N048F+eytsumROUqG6Jmwu/xY0jjkoUB3vfL9xELxrhl/S0cGj3EiYkTM36GFcX90pc09u8X5hoBQpLJwF/8hZf/+7+L4urs2bMMDQ3NaD01nY9+1INhgFVinEzCXXf52LKlcUI1XUozkZ+o+zhCCHK5HA8++CBbtmyx7VMAfB7zbtypEdVGXwSXQ1S42SzkO5ue8szlcrZozWazRKNRuymrVpEjN4hAtwhAN0V+3SpUpzNfG6z29nbC4fCSj6N0Os26detqMXVH4zqh2ozU/0JS/ZbfZ71PZB+690Pccd8dJP8mOUWYV9pWzYTV9T9d0Aa9Fy2mKv+uhpX6Hx4WlEpgCB1DGvh8cO6c+RrDMDh06BD5fJ7du3fPu8NY181IaiI3TtAbwC9a0PXGihSv5qVQqm/Xv5SS4eFhkskkN9544yXH1e7+3Zx50xla/a1LHqvWIs8NF2rFVJb6/QeDQfr7++nv78cwDJLJJGNjY1MM1K2mrKWIDqcfW24RgG4Sf26a60KYyQZraGiIdDo9pw3WXKjUv4upZUS1UCiwd+9eIpHIvFL91tj1/tGFfCGKRpGSUZrSbb86upqN7RtnFcuVPqpTHq9wEgh6g7MuxWpFcR/1KINPfcpDJi/BgFIJHvtYaS/12d3dzebNmxd08XnlK3X+6788oHsoSY1YDG691eDkyXl/xJLxab662lNZ9ahSStra2qre/Pg9fjpbapPWUdFIRS3RNI1YLEYsFgMuRo7Onj1LMpmkpaXFLhNYSA2/GyKqbpgjuEv8uWmuSzmPLtQGay6Uj6qLsWxYlkoikeDAgQNzpvqnj63ret2LqG2xWcwSDVxMp79+1+t5/a7Xz/reoNe8cEwXopWm/XNFVK3U/5OfLHnrW0u87V1e0D085jEGf/u3IzzwwOKW+gR4z3t0Ojvh7/99P2v6W/j2J7ewejUNF6p5fenHUDWy2Sy///3vWb16NV1dXezfv7/q686lzvGx+z/GS7a8hK3dW5c05nIQqsthG5pJPQVWZeSossHk0KFDFItFYrEYnZ2dc16A3SAC3TBHcE+JAtR/ZapaUqv9OpcNlsfjsd0EZrKOy2QyKqLqROab+k+n04seQ0rJI488woULF9i+ffuCLCc8Hk9DbIBCvhAAmVJmilCdDx3BDv5sx5+xqXPTlMeDvotR1PWx9Zc8X0llc84b3mBwdst7+eff/Cvvf/HvuHBhgp07dy7a3sbjgTe/Wedf/c/l5itu46qrPr6oz1kKN/XexObe2q9KZVmaXX311bS1tVEoFGZscopn43zo3g9xfe/1SqgqXMP0BhNd15mYmGBsbMz2obSirdPr9NwgAt0wR3BPiQKY4q8Rvue1oF6raFWzwaq0jrNssAKBgG2HmUqlFiVUc7kcj3/848nn85RKJV7wghfw7ne/m3g8zotf/GKGhoZYv349X/va16b0TTQL1wnV+bCU1H9lqn82C6XZxm5Ed7odFS1OjYp+/8j3+cBvPsDXn/91esI9Vd8bC8b48JM/fMnj//D4f7DT3W9+1Jt586PePOP400/UnS1t4C2QyqVq5obg9/jJl+oT1ZyLN215E6tXr67Z51X6x1aK+NkEpFXSUdRr0/XvdqG6HLah2TRDYFVGhsC8AFer07OWeXW6CHRLmtot8wR3zbVRVlqBQIDe3l56e3unZCne8Y53cO+993LttdcyMTGxKK0TCAT46U9/SiQSoVgs8tjHPpanP/3pfOtb3+KWW27hrW99K7fffju33347H/jAB+qwdQvDlUJ1rguW1+td1JdnpfqvuOIKu/h5oTRqsYFHDTyKO55yB23BtimPj+fHue/sfaQKqRmFqpSSXCmHEMIWvADr29Yvai7JZJKjJ44S88foWdtTsxPOy7a+jMvbLq/JZy2UWto56brOvn378Pl8l9z8zLaQgddj/jyd2vWvcBdOEYGBQIC+vj76+vrsOr2xsTH27dtHOp1GCEFvb29d7HxqgVP241y4KfXvNqHa6LlWZik++clPksvl+NnPfsZ73vMeXvva1+LxeHjiE5/Ik5/8ZB796EfPGZ22rOjArC8vFosIIfjOd77DPffcA8ArX/lKbrrpJkcIVXccGQtkoel3K9V/+PBhtm/fvmiRupixF8umzk38yfY/sYWqJawqa1dno/Mjnbz/1++f8thvz/yWTz3wKQC+sv8rPOozjyJdmL2E4syZM+zdu5dtl29jojBh2lTViHc//t384bV/WLsPXACv+83reOH3Xrjkz8lkMtx33310dnayZcuWS05ws0ZUa+yj6nahuhy2QTEVq05vw4YNbN++nVgsRiQSYWRkhPvvv5/BwUFOnz5NNjv7+ayRuEWoui3176a5NntxgmAwyFOf+lQ8Hg+/+MUv+P73v8+OHTv46le/yg033MAznvEMcrnZbSp1XWfbtm10d3fz5Cc/mRtuuIHz58/bPud9fX2MjIw0YnPmxJUR1blYSFTTSvWHw+FFpfqrjd2I1H+6kOZo4igb2jbQGmi1t9mqXZ2tY18IUdVv9QfHfsAHfv0B/mT7n5DIJfj9+d+TKWUI+y/tKjTN/rOMjo6ye/duTjxseq7WsgFJSoku9SmuBg27SAhmbSabD6Ojozz88MN2PWrVYWYRX073UVW4CzcILE3T6OzsZM2aNfZCGNNX/bGasuZrd1dr3CKq3DJPcIb4my9OWkXLMAy8Xi9tbW0897nP5bnPfS4Ap06dmtNtw+Px8Pvf/57x8XGe+9znsm/fvkZMeVG4UqjWKvU/Pj7O/v37l5Tqn06jUv+DI4M88YtP5Hsv+h5PvuzJdgp5po7+6bR4Wy61p/K2IJEU9AIBr1lDWU2sWasoeTwerr32WoQQnBw3W/KPjB3h8vbapOuf9KUn4dW8/OhlPwIufu+NuNj6NN+cfrQzYdWjXrhwYc6mstm2pTfcy+RfT04R6otlOQjV5bANitmp/H0LIQiFQoRCIVavXm2v+jM2NsbQ0BCaptlNWZFIpGEi3A2CH9wlVN3W9e+Euc52LrRWN5wPbW1t3HTTTfzwhz+kp6eH4eFh+vr6GB4erpkuWirN39t1YK70u5Xqf/jhh7n++utr+mU0KvU/3QvVEsirWlbxqIFH2c/PRGWHv/1YWeTmSjn7/dOF6oULF3jwwQfZtGnTlDqYgmE2YV3IXljCVk3F7/FPidDOVs9Za/yaf1E+qqVSiT179pDNZpfkfADmhdrv8aOJpf9MlchTuIHZRKC16s/GjRvZuXMnW7duJRgMcvLkSe677z7279/P8PAwhUL9F+pwi1B1wzzBOeJvPjgpogqLa5C8cOEC4+PjgBl4+t///V+uuuoqnvWsZ/G5z30OgM997nM8+9nPruVUF40rI6pzYa0OVY1iscjevXtpaWmpSap/Oh6Pp+4nSqiwpypm7HF1XWdr91bu+YN75nx/i7flEhFaKX6DnouiFcyT87Fjx0gkErYAs4Sjx+Mh7DPLA1KFlP154+Pwl3/p5be/FaxeDf/yLyU2b56/WAp4A1OWMW2kUPV5fAuuDc1kMuzZs4e1a9cyMDCw5DkU9AJv+clbuPWKW3nyhicv6bOUUFW4QWAtZI5+v39KV3QqlbKbsgzDmGKeXsvzvBv2I6ga1XrhNKG6GIaHh3nlK1+JrusYhsGLXvQibrvtNh796Efzohe9iE9/+tOsXbuWr3/9682eKuBSobrYk4SV6t+4cSM9PdU74pdKo1L/01P8CxVx/9/2/4/u8NRIcuVn9kZ6edyaxxHwBOw63mg0ys6dO+39XylUt/dtB2BD2wb7817+ch/33y/weODCBbjtNh+//W2BsgXcnAQ8gaZFVB/X9ziu6rhq3q+36lG3bt1KNBrjzjs17rlHEInAK15hsHHjwkWilJJPPvhJeiO9Sxaqs928uQUltpc/ixWBQgii0SjRaJT169dTKpUYHx9ndHSUo0eP2musd3Z20tLSsiSh6RZR5ZZ5gprrYigUCov2nr322mt56KGHLnm8s7OTn/zkJ0udWs1xpVBdKFJKTpw4wblz57j++usJhUJ1G6vRhv9Wd78lkEfSIzzty0/jbTe+jRdunrlr/XU7X3fJY8/Z9ByesO4JDEQH2NC2gbtffjcTExP87ne/qyru02k///VfGoWCh95regHQDVOkT0zA/fcLvD6QUsfnFxSLGvfdp3HrrfMTm36Pf0rUt5FC9YUbXzivi5lVRjI6OmpHmr/1LY1Pf1qjo8NcTettb/Pwz/9cYqG2rLVsprLm6mbcEMVyMm6IBNbqGPV6vaxatco2Rreaso4ePUoul6O1tZXOzk7a29sX3JTlhv0IzhFU88FNNaq6rjetka+SVCpVVy3jJJq/t+tMsVhk3759BINBdu/eXfcfQ6O6/lsDrfzHM/6D3f27AVPE6bqOR/NwYPQAI+nZbSXGc+MU9MKUqGproJXWQKv936dPn+bUqVNs27btkvWE43F4wxu2Mj4exDAEwnsVsec+m+HUMABWaaZhGCRyccL+CC3eFlpa5n8huu2K27i2+1r7vxspVBHMudhAqVRi3759BAKBKYsc/OAHGt3doPlzBMMa5874eeghjdWrFzZ3TWgIRE3sqZZDRBXcL7YVc1MPEVi5xrphGExOTjI2NsaJEycQQtjR1pmWqqzETULVDfME93X9L6X3oFak0+kVsXwquFSozufHJ4QgkUhw8OBBLrvsMnp7exsws8al/v0eP39wzR9MGdcwDCJe88C1aldn4pXffSUXMhf49at+bT92YuIEX97/ZV581YvZ9/A+3nz/m/nXp//rJSIV4Ctf0Rgd9RONmiftdEZj4vt/Q/C1BwEIBuENb9D52Mc1KLZgeARXXyd57GPnLzRevOXFU/67UTcBAO+9/738z/H/YeTN1QX/bPWofj/kcvDdY9/gsvYNDMgbWewNuM/jc5U9lT45SfH8eYrnzlEaHSWwcSMtW7YgXHIRWs64QWA1Yo6aptHW1mZbxhUKhSlLVYbDYVu4VhMkbolUSildI/7ccGxaOOX7V0LV5UgpKRaLHDp0iG3btjU0PN6o1D+YBv2dLZ1s7NhoC+Sl2FOdnDjJu37+LiLjEbau3crJ9EnTxL8Kk5MCw5BMFpLkSlna/Ksg30pOv5iqf/vbda66OscrPvYxnrx7G59/5834fPPfvnwpT7qYpqPFXHqxoV3/Hv+MkcwLFy5w+PBhtm7dSiwWu+T5l79c5/3v9yCTfUwW2rl+Czz60dXnvW+f4Lvf7WdoSOOpTzUoL/NsE/LW5tit5UpbYP7GSvE4pQsXKAwPUzp3jtLICNIwED4feioFhkH24EGS99xDeMcOQtdfj9YyuxvFXNugIqrLm2YIFr/fT09PDz09PUgpSafTxONxDhw4QKlUmtKU5fF4XCOqnCKo5osb9ik4p5kqnU5XDSItR5adULVS/YZhcN111zW8hqORUb/nfP05vGTLS/jnp/yzLVRtM/85zOqDvuAlq1flkuZ7egZ62LDGbIqaaYWrW24x+OhHBZk85A2dkhBw1Xf5zekDvHbbawEQAp77bA0e/luue+w7CAZvXtD2vfsX7+YTD3yC8b8aL39ebcXWbAS8gUuEqpSS48ePE4/H2bVr14yF7I95jOQf/1HnKf/0E9b3reODb7mSan7/v/614F3v8jA52cX993v43vc0Pv7xEuUl0QE49xfnarI9SxF50jAojY5SOH+e4vnzlMbGyJ04QSljRu21YBDh96Nns2AYkM0ifD60aBQjk0FPJpm85x5Sv/41LVu3Etq1C990Ra5Q0PzImrW0ZCQSYe3atei6zvj4OPF4nOPHj+Pz+dA0jVgs1vS5zoXbhKpbUEK18SwroToxMcH+/fu57LLLGlvPWEGjUv9gNlRZpvRWjSrAUy57ypTu+2pUitlHHoH//M84pyd6IbweLaDZVlV5Pc/PfiZ4xzu8TEzAM55h8K536ezaJXnHO87w3n/xk53M8sKXZvlU7F2MZqaKUY/mwat5p0Ra54vf4ydfytsXhIbaU2k+SrKEIQ00oVEqldi7dy/BYJAdO3bMeQG45hpJ+43fYHX/Ljo7X1P1NZ/5jIdIBPz+AqtWSU6dEvz85xrPeU7tt3G+QlXqOoULFygND1M4d47i8DB6MmmuEpZM2q8rAGPpNAFdJ1Qs4vP5EF6vKU6zWWShgD4xgfB68XR0IKRE6jrZAwdI//73BC+/nPDu3QTWrav5Niiq43RhBc6rQfZ4PHR2dtJZvrHK5XIcPnyYCxcucP78eaLRqN2U5VtIuqgBuKlG1U045QYglUqp1L+Tmf7jk1Jy6tQpzp49y3XXXUc4HGZ0dLRhgrGSRqb+g97gFMN/y7/1q8/76pzvtVL/e/eWuPVWL5lMF/lCD8gDfNsY5MnvMYXq0OEw73+rj1IJvF74/Oc9FIvwwQ/q3HJLmtOXfYIPPfgh3vcXY3zqn4tVI7kffepHuab7mgVvX8ATQCIpGkXT+L6BQtVamauoFynlTRP/9evX09/fX/X1UsLhw4JMBjZtkoRCc9eX5vPmPv35ud+yWl/NKrGN/LT+rb/637/i6q6refV1r17S9lQTeUaxSPHcOTNSeuECxdOnKV64gNR1tHAYoWlTxKkWCCCCQSbOnWN8dJT2jg6KQpAoFCjG4wQCAcLFIqHWVjyhEBgGejKJHo+b749EwOMBwyB35Ai5I0fw9fYS3rVL1bEqbJwsroLBINFolEgkQmdnJ8lkkrGxMU6dOgVAe3u73ZTVbDHjJh9VN+GkiKoSqi6hWCyyf/9+fD4fu3btsg+gRgrGShoZ9Ql5Q5fYU82XZ135LPqD/bz97ZNks91ksxqmBgzw7U/uZMfqEk+//OmM7b2OfB5aQjqGNPD5fHz3ux4++EHTTsSvmelvAwOf5mNn385LxnrVta/mq1/V+NgPNbq7JW96k858/PCtett8Kd9wobq7dzevueI1jI6OMnRsiGuuuYbW1taqr9V1+JM/8fKTn2h4PNDWJvnmN4v8xe6/YFVoZtPYZzzD4N/+TaOQ9TEpffS3w+7dU7fv2w9/m8n85JKFqpHPI4eHSd57r9noND5OcWwMI3Ox6c4TDqO1tKCnUhjpNFBO6wcCGMkkRj5PfHiYfKnE6i1bMIpFwl4vbYaBns9TMAzSk5MkhofRNI2WlhbCq1bhDwQwUimMlLkYhNbSYpYKJJMUz51j/HvfI/XrXxO67jpC1103Yx2riqguDTdEVMHZQhWYkuGJxWJ2nXqxWCSRSHD27FmSySQtLS12U9Zc667XA6dE/pYbThKqzUr9CyF4xStewRe+8AXAdMDp6+tjdHT0TinlbUKIVwEfBM4AfuCfpZT/UX7v04B/AFqBHPAw8NdSypMzjedqoTo5Ocm+ffvYsGEDfX19U57zer1Niag28iTb4jOjol/8osY//3MPut7J3/6txpd4Jt3hbv7jGf9R9X1SSi4TlxH0Bfm1txNdL4tUIQEBUvDRO/wcP/5tPpPSuMsDyUKKZGGS7sAawmHJ5CR85CM93Lv/j1nXfQXpjEHQG6zagPTW943wxU/1ITAtkn7wA43/+7/inMb/AY8Z1czreaJEGypUH93/aDqSHZw9dXbWelSAb35T4+67NYJBsy73/Hl485u9fOMbr5p1jBe+0MDrhdf+c4JIl+CD772KDdMqNnzawrv+9XSa4vnz5IeH7RR+aXISOTrKRG8v0grbCoEnGgUp0VMp9ApxqgUClJJJjFwOYRgQDjN87hz+SIT+SASZTJph5EgEWSpBoYAf8IdCdHZ1oRsGqZER4mfOUCoWCbS2EmprI2AYaFKCYeBpbQUhMDIZSmNjTP70pyR/8QtC11xDeNcuvC6rY3W6wFLUhpkEv8/no7u7m+7ubqSUZDIZ4vE4hw4dolgsEovF6OjooL29vSFCxy1C1W03n07Zr+l0um4LF81FOBxm3759ZLNZWlpauPvuuxkYGGB0dLTyZV+VUr5eCNEN7BdCfBfoAj4KPEtKeRBACPEsYD2w/ITqyZMnOXPmjJ3qn04ja0WbxXtvei+//MEAf/kOL4WCREoPr3+9RvcrtqLfsKfqe3RdZ//+/aT1NK2XtfL8F0h+9rPyk9L8H69XYOnB5z3P4BOfkBw94YNCBAKSP/1Tncc9zsepU21oWhs+3yv501cbdD21m9HM6CVjfvzjAi8TdEU6AMH4uOk1+gd/MLvovGHgBt71+HfZkdVGCdVSqcSBwwcYz43z1Mc9FZ939tqzY8cExSJIb5qCXiASaOfIETiTPIMhDda0rqn6Pk2D5z/f4C2n38p16x7N1Vdf2mzm1byz+qiWJifN9P3wMKVEgvzJk+gTplOD8HrRwmGMbBZ0HZFKIQsFUyDqOno6baf27ShnJoPwekFKtHAYzeslG49z/vhxYrEYrcEgWjCI4fEgUyn0yUnz/RWlAkY6jQBaV60i1tKC1HXy+bwZbU0m0YJBWjweWrxe/H4/QtPwtLYiCwWMXI70gw+SeeghAhs3LriOVeFu3CBa5iNUhBCEw2HC4TBr1qxB13UmJiYYGxvjkUcewev12tHWcDhcl5sct9SoOkX4zRcnRVSbmfp/+tOfzve//31e8IIX8OUvf5mXvvSl7Nlzqe6QUo4IIY4B64A3AP9oidTy89+dayxXCtV8Pk86nWb37t0zHjDNiqg2ksevfTzv/x8fhQJoHpCGJJ+H+K+fQ8/2ey95fTqdZnBwkDVr1vCLc7/gzf/1Zk6/8Qx/+UgX73mfBoYArYDXr/Ga12js/PROnnLZU7j77n/kj9//K743+HP++llv4Z3vjDA+DiDw+STBIPzudxq+nV1411Y5pKQHNMnp5Cmi/igB2piP3tzRt4MdfTvs/26EUE2n0+zZs4ffZH7DO+5/B4e3H2ZtbO2s79myReLzQaaYI1lI4fO1ccMNkj/8zh/i0Tz8+GU/nvX9Xs1LQS9Ufc7n8aEbumkHlUhQLDc4Fc6dozQxYTYtVdaR+v14YzFK6TSyVDIbmiwhGAiY0dOyuPTEYqZaNgzQdYxMBk0IhKaZHf2lEulsltGxMXo3bCDg9WJksxffHw6DEGapQCaDFgzibW8HzPpXmclg5PMIr5dQOEwAkMEguq6TyWYZLxYpTk4SAFrKqVJvNAqALBYpDg8zceedaK2thLZtw79pkyuEjFNxS+rf6SxmP3o8Hjo6OugoW3rk83ni8ThDQ0Ok02mi0aj9/GKXxaw2TzcIQLcJVaf8jpotVF/ykpfwD//wD9x2220MDg7yR3/0R1VfJ4S4DLgMOApcDXxooWO5UqgGg0E2b94862s8Hg/F4tJX9FksjTiYB88PkmEtUnaXm5gkPkL4A6VLPFLPnz/P0aNH7VrL4KgZpcyVsrz97Qb3t72d//2vx1FMtbLjqRd4+9ufyWc/mWA0M0pbG9z8ogN8r/193PGRdzE+bmZ9AQoFGE1O0hYKE9GCVbv7Vz3me8R/+UKkEaBg+Ghvhyc/eW7BmS1mGcmM0BvuJeANoGlaXb7T8XH48Y814vFJ+voO8sQnbuXQkUMA81oV6pnPNPj1r3X+4/N+MHxs2AAf/nCJV/+ff04/W4BHr3o0V/ddbf93pR3UrmMalx08y9mjH8LI5/FEIkjDsGtIYVodaaGAUSggPB48ra3ohQIyl0MWCuD14mlvRwhBaXLSjrxaTVIYBoau2++fNAwmk0n6envxFosYxaI5PqY7gCxfXLRIBOHxmNHUrLm9wuvFE42ilx0ASpZgjkbRSiWiHg9RQIZCFH0+0tksE5OTaMkkLT4foUiEYDBIKZmEiQkKp04hfvpTaG3F2LJlSX6sCufiBAEwF7U4twcCAfr6+ujr60NKaTdlWdaK7e3tdHR0EIvFFi3i3CIA3bQqlZPIZDJNtae69tprGRoa4stf/jK33nprtZe8WAjxWCAP/ImUMl75uxFCdAI/AULAv0spZxSwrhSq8zlJeDwecrmFWyLVAmu5ynqfdO/43R0MXZMi+OC3KaTNdG1LFK561p2cLwskwzA4cuQIqVSK3bt32xYqlv2U1aXfe9koLS9/BcXCJJdd+yo07ZlTFgUIeoNgaJw942FqUEuA7uXKrZMc9D/E7850MJ31z/k84bYcJ363lbUDYb750euZoXl+Cnc/cjcv+taLuPdV97Ktd1tdIqoXLsCtt/o4f17HMCK0tj6Gb3+7ZNfHzhTprETT4AMf0Ck+6g7+7bdf5KfvHcTrNaOhyUJy1vdKXecNq17GWhEh8YMfUJqYoHDyJEa5jvTvI8/DE41iFApmNLQcPfWEQuD1muIwl4NczhaHslBA+HxIIRAeD1o0ahrxp9PoiYQ552AQLRQyo6H5POTzCI8HbyyGns0ycuYMhmHQ19ODv6PDjGQaBhSLyFwO4fcjwTb2By7aU2UyyGJxijiVpRJGNmvWvAYCeDs6kICRSuEvFPD7fHT29qJrGqkLF0icO0exWCQQDhPq6CAIiFQKjhzh/Ogooa1bCe3erfxYF4BTIkGz4YaIea0FoBCC1tZWWltb2bBhA6VSiUQiwcjICEeOHCEYDNplAi0LuEFzi1DVdd0V87Rwym+o2RFVgGc961n81V/9Fffccw9jY2PTn/6qlPL10x7bD2wH9kgpx4BtQoi/AmbdEFcK1fng9Xqb0vUPFx0HapXCmYkWbwty9d388IdFXvqOu4lnL3D3v7yMe3K9DI3fTD6fZ3BwkI6ODrZv3z7lB2YJVUuIbu3ayp5ze3jw/IOki2a0LugN2uvdP3bNY/ngoz/L2zQzmiqlAZRPLmt/ySve0M5f/NNHOKOH+ekmwc03X7zgtPj8dN/8FTLbh7jx8qdxxRWfnNf2WbWpVpS2HkL14x8XnDlTIhKR+Hw+Uil43/s8POtv5haqhQL86EcaiQTs2CFpX5VHbzuMx2M2pfk0H0X9YkTWKBYpjoxQPHvW9Cg9dw49ncY4c4aJlhb85ZsI4fOZgrFC8F3S+JTJ2I9JjwdNSjOamkqBlKaQLBTsCCeYaXdPNGqK01zOFI0+H95o1BxL1ynmcpy9cIFwRwed7e0YqRQly14qFELzepFSInM5c4EJnw8tEjG9U4vFi6UG0ShS10HTEJoGZRErwBTX5TlpwSBaNGruh1zOrG2NxWjr70dPp8mn02TGxhjP5xGRCIVAgKKmkT14kMzgIIENG8w61vXra3hUKBQzU2/B7/V66erqoqurCykl2WyWeDzO4cOHyefzU5qyvLOszaxqVOuDU26mnCBU/+iP/ohYLMY111zDPffcM5+3/BPwbSHEvRV1qnOuyuRaoTqXVU0zm6katTqVZfh//fWSR/2/L/Kz4z/jmmteyjW8gUQiwf3338+mTZtYVaW9vsU3Vaj+2c4/Y1f/Lp7xlWfY6e7KiOqDd2/i0+/fwsVdKgAJ/iTs/Hfe+bovoSevRBeSP/xDH//xHyWe/nRzH7zlMW/BkAav+8HrbOE7H/weP0j41f9F2J/X6O0NcsUV1Zd0XQypVIp9+3J4PD2k9AmKhSKt3m5GRi76qM4kVItF+IM/8PLQQ2bjmccjePQfbzGfM4p4iwadYwWMkxPEv/Mds9lpdBQJFyOMZWuoHx77NlpLkFfd8P8wkskp0cj/Hf0NoqRzS//jkbpuRk3b2sw60okJu15Uejx4IhEzdZ/P22l9K1VvpFKIXA49mUT4/WgtLchiEWGJY6+XosfD8IkTdEQihD0e9MlJM3JrpfUzGQyw369PTJjitFhE+P1mlLRc7yrzeYxCAU84jFEqXVqq4PfbgtmKBmuRCEYuhywWzaavcJhQNErIMDCSSUrFIsOJBImxMfKFgrnYwOQkmcOHCfT1Ed69W/mxKupOIyPTQghCoRChUIjVq1djGIbdlHXixAk0TbOjrZFIZMq8VI1q7XFSVsIJhv+rV6/mTW9607xfL6XcK4R4E/B5IUQUGMPs9n/nbO9zrVCdi2Y2UzXKwzXoNZdBlVIS8oXIG+YqTidOnOD8+fNs3759xlTR1q6tfPxpH2dd7GJH9e7+3axuXV3u/oenXv5U/B4/P/2p4C/f7KGklwiHvaRSAnwpPP4i+nWfhhOPI5/T8LeUzBWMdPjHf/Rw5ZUGGzbATetuAuBlW1+Gd3Qbd98tuPJKyVzN3H4tAD+4gw8/cjUePGhaJy97WZH3v3/p+25kZISjR4/y/Ofv4IEHPKQLJQpGgTCCpzzFYFPnJv7fZf+P/mj1GoWf/ETjoYcE4TAEZJqWzDCpfx/g1O1fIvG5L1I4e5aXJ1aRL0XIHDiAJxw20/GFwtRmJE0zm6Xy2YsrOUWjGMUims/H0OEhRElHu+LpCMOw3wtm45QWidiNU3bktbXVFsJ6KoXQNLzt7chEAk8sZs9BaBrC58PI5UjG4yTicXp6emjp6DAjt+m0GbnlYh2rkUzazVda+cIoi0WMdNqMvAphbpfPB4XCFMurauJURKNQLJpOA5TLB4JBOzpr4YlE8AHa+fN0lU/OBSFIZotMnB9BnD9Py8MPE+nvp/2GGwhv26bqWKfhpIvsTDh9ftDc/ahpGu3t7bSXmxYLhQLxeJyTJ0/awsUSrm4RgG6ZJzhrrplMhmi5+bTRpMqe2JXcdNNNSClvA5BSfhb4bLX3Sim/D3x/IeMtW6HaLMN/a+xGiOSQL4QudYpGkedvfj6t6Vb27NnD5x75HF858RWGbxie8b2rW1fzmm0Xl/b89O8/zT/+6h/57at+S1uwDYC/e+zfAfDmN2vkcjppRokFY7R5WxgX51n/mndx9VUp7vvSH5IUgpKhYxiSZBoGBwVPf7qPxz5W8pfvO8B4aQTtZ+/m3//Tw6c9EsMQfPSjJW67bebI8/BQGxx4AZ5WnbBfUCwafP7z3fzN3xiUz9MLRkrJ0aNHmZiYYOfOnTz60X7Gxkq8858EsuTj5a/SeeMbdYS4nJetfRkD0akrE1h2ULl7z3FDaoTW9AmyxTSd/gjkc+T2m9+7FgxyxbrrzQhpWUTa3ffFotk9n04jPB4KYR9FoZsiMp83RaQQ4PPhMwQyXzIFIhU2UpOTUxunYjH0fB4KBWSphObzoZW7+kvj45QSCYTVnd/SgiiVbDGYSCTICsHAxo2IfN6sO60YS+o6msdjZjD8fjyBgFlvapUVCIEWjdrOAVPe7/NNqaPVIhGE3w+GgSwUTD9WQEQi9n6xqHQVsD4Tvx9PLEbiTIrf/NZHPNVGuLWXGx9bxMcoiRMnOH/kCIFvfYvW7dvpuflmWprkNahYOE5Jq86Gk8SK3++nt7eX3t5epJSkUim7KSuVSnH8+HE6Ojpoa2tzzJyn46T9ORdOmmsmkyEUmjNrvixwrVBVqX94yZaXcOPqG/EIDzesugG9Vaerq4tVqVUkHk5QMkp4tepfca6UY9+FfayPrWdVaBW5Uo4zyTOs/uhqfvCSH/DE9U+0X9vWBkIDDEjmk7R6WqDtBLHLD/H2az5J8T3beN7zvGSSASgEMCR0d0vCYfj5zzWOv/9Bjrd+Ae2LN+PzSTTN9B1905u8POUpBWYq5Q2V+mkLBUFIzqWGaQ92oGkak5MsSqgWi0UGBweJRqPs2LHDjoq8/vUG+y9/Kz869iPe9/rjAGQLBYbPPczY7714JzMUTp0ya0ozGTS/n8uMEL1GllIpha6nkIaH2Fr47um7eWrv4wnkYGLiPDlKDHRfZtaAlhuShN+Px+8HISiNjxPOSvKyiJHJ4AmFzI76sogMliAegLwnwm//L8PoaJ62WJ7dN3pp6zXT6prXa6bcMf1MMQxKExPk8+aKpf6wGQ2VZ85cTNVrGlo0ytkTJ/AaBn2dnWi6jtbebq5aUCxi5PMYExNmJDgUMpukSiVKuZz9fopFs97VEtKhEMLrpZRMmg1cUuKJxUyngXTaXp1KaJo5V78fI5e7GGUuR0unL0AgAgFzv0xMoBcNfv6bFrJ6kM5oikK6xL0/gqc8LUDrZZdhFArkJifJPPQQB37zGxgYIPaYx9B93XVEo9G6RsOcLrTcELF0Ok6NTAshiEajRKNR1q9fz29/+1va2toYHR3l6NGjBAKBKU1ZTtkGp/iSzgcnzVVK6Zi51BvXCtW5WAmp//Vt61nftp5z586x5+E9jMgRntT/JEKnzbusbDFLNFA9NXBy4iSP/dxj+cwzP8NLr36pXZMJ8N/7/psnrn8if3rXn/K74d9x52sf4LNfkKRGghhSwx8T8MR3ctOam0gX0my/PsuXvwzPetPvSB+7nlXRADKYYLKgIYiRPL2WXG8H+fwIRrFEwOOnLdhOMe9hfBy6u6tv36O2xeiM+hgbL5Ar5ckagp6uIgMDCz9sU6kUg4ODXHbZZfT29k55ThoG0aRO76k04z/+McVEgkcO3cePfv1xYltexBUdV5jRvfJJwSgUaPcVePazPHz5B2HySYPN60qs3r6Pu4fu44lrnkCoNcY9+3/MvrGD/H3XO8xoajB4seGpjCcYpBAKUEpnp3bKlyOvGhreTImf3JXn3GQ7oTCciusk/rfAs582gS+gIcNhMzqZy6HnchQK8JuHwpy74MNfTLJlS4FNm/JmWj4Ww8hmKeXzDA8NEevooK293Uz1T0xcdAUIBNBaWjAqIq+W5ZVlzG+LU2vfSInQNDOiGwiglZdOleXfodA0tNZWcznXfP7iYgNlixUjnTZLFTwePG1tUP4smcuZgtnrBSFIJ3IUU5LWcJJEJkVLuJd8UiOVTOHzmp/Z0tFBixBmhNbnI/OrXzH0m9+QXb2a8NatrOrurqlnpRtwuoh2C04VqtMRQrBq1Sq7R8Fqyjp69Ci5XI7W1lY6OzvnbMqqN06KUs6FU4TqSvstL1uhqmlaU4VqI8Y+MX6Cb9z3DXa37Wavby9/95u/4zk3PWdKR/9MQtXqqLeapaz3APz85M8BMKTBeG6cvj74wnePc/PbPoFHj/KjD7ybbPuHiHliXP3pqwn/PMztN9/Ouj/9JAe++Fr8p9/EhWwCr/DSrrXRveECj4T2gfRglAxSegq/0UZPl2Q2d6ForMT7P/UIb//LLsYfCbD2qgne/dYzeL1bFrSfzp8/z7Fjx7jmmmuIhEIUrK778+cpDg9TSibZduICraejJH/7WwA8+SKpIJR85gnUju5V1GquW6PzlGf9jv955Ac89Unv5NBYiPR50EsF9IkJ/LpAR0fPZJiMl0ilCoTDko7VUTAMu9P9Ck8v+c5uU0RWRF61QABfeweMh5iIG6wKj5HP54m2hJnMRplIFej0lsxopOUAoOvseyBL/GyWrliWkvBz/+EQbX1FCAZBSrK5HCPj4/R0dhIAdHP1BrSWFjSfz1w61bKs8nrxRqNmqt+qbfX7zeVNSyVkWXRa4pRyWQCGgZ7LmZZXra2msLXqc4Uwm7zK7gFIadbmWpHXyUl7TsLrRQuFMKQ0m79SKXwtbRS8bRT1BI8kjrBRanhLMYIdYbSIACHMVr9ys5gWCBAqFAiVSjA0RPHMGSY3bOBMXx8Eg7S3t9PZ2Ulra6srBMhScPr2OX1+4B5hNX1ftrS0MDAwwMDAAIZhMDk5aTdlCSHsaGu9sw7Tccv+BOfN1Q2/l1rgWqE61xfUzC+wEan/XC7HV375Fd65753c/0f3Ez1tCtJMKWN39GeKmRnfb70mVzStnyqFal7P26+xuvT7ez1ww8dBeNi8+V286+ffJV/M4xEe0sU0E/kJ4tk4POEf2HT/G7mwJ0RJajz+qQZ9T/89v3jwCNtf80ke+M/XQilIa1eRL31JMtvNaTwb50W/2sybbn8Td/zuDt7x7K/Tkx2Y+Q3T0AsFjvz2tyRPnGBjOExm/34mLlwAKHeY5zm8N8/5EUF72w7+YNuj8URMEepBI5IDI5/D039RWAKmiCyLGjERJKBDcWyUYDKHZoDh96GXBMV4lMBYG8cOS371UDsemcNbyrN9e4orrpR2DeiW/l1EWltN3y+PB28gYHbup1I8p+9J5Dvgq3uCjFPgRHwvG2LrCRQNvB5h17Ua5Y5+vF5OJzvwdMCp7BkiIku4VGB8xEOoA8bPn2dibIz+3l68TE21W3WnWrmrv5ROmxFSw0CEQnZZgpFMUhobM/0PW1oQLS3ISj/Wyg7+QoFSWZxqZXstYZ3oi0UIBGxXAcug9xLLq3LjlycaBb8fv8/ghmvG+dn9GhPFAS7kV3HzLo2QyGAkDbRg0BTM+fxFwezz2R6vvmIR3+HDRB95BP/mzeRDIc6cOcOhQ4eIRCJ0dnYuy2irG6Iwbpmj2wWCpmm0tbXR1tYGmE1ZiUSC06dPk0wmCYfDtnANBAKzf9gScZr4mw0VUW0OrhWqTqbeqf94PM7BgwdZP7Ae9plRUStCmilkuKrzKl593attMVqN6T6qa1rX8NTLnsqPjv/IFqpBT9B+vifcw/Ovej7fPPRNdEPnziN3UtSL+DU/WT1LrpQj4o9Ayzn+53+KPOmjbyNPiv/88//m9t/4KBkl1u4a5HTPozl7Ic2/v+arbFl/4yXzKhTMhnEhsE33ZdmGoCiLM94AGLkcheFhc4nR0VFyZ89yenAQv89Hb2cnxWAQLRCwo5X6xAS//KXG/QdieISBX08zNFTkGc/Io/m8eFpjZHxQDPpMsSblxfXsy16lAFHDT/uq1WY0MuWhpQjZ0SQ/uLuNY+dugsI1fG8fbFg/gSfoJ6t18su9BmuuKhIyTBsprVRCGobZYV+uAbV9Uw2DAGm2bcnw4O9LGPkORrOdPOoqSaxNgq4jgkE85WipPjFBlz/OhVHB6fTDREP99MkI4aBZVpAuFlmzaRPCMMyGLqvxKRg0u+1LJXN7dd1M1be0oOfzdtMTcHE/jI9fXInK5zMjn9bSrcmkuU8iEUT5+5HpNNIw7Pcb5WiqtN7f0mIvFmDV0VqlBtaiAtLnw9PayuXXgh48xvCeH/GYq57A5k2bEP5Idcur6R6vbW3mPISgdOwY4sABetev57KdOyl2dU1ZIci6WK+EaKtifiwHoTodv99PT08PPT09SClJp9PE43EOHDhAqVSira3NbsqqtVAzDKOppQcLwSlCNZ/PEwwGmz2NhuGOo8NleDwe8vn5+4XOFyklQ0NDjIyMsGPHDgrnTI/PbClLyGfWpaYLaW4YuIEbBm6Y9bOmC9Vd/bv40nO+xM1fvJlTE6cACPpMoSqlpMXXwlsf81aeecUzATieOI7f48ev+ckbeXKlHP3Rfo4mjuLxSDrWXOB8+jyaBi/a/CJ29u3kawe+RokshEcpkitvE5w+DSdOCP7u77ycOCHo6pJ87GMlrt1uClUhBNt6thH1RzFSZmSzeO7cRWE6NnYxoiglhUKB8yMjdK5ZQyQYtFdEMioia5mxNAf2SzpbkggB53WN3zySZ2cmRn+3gWdykmAJSphLilZ2o1s+okYqxcb2jWxs3wgSzkUiFINe9twf4sKIxOstMKEHyGU78MWTiODD9IR7CJdCZNNBwt1+KBT42amfcOLgCf7iMW82u/dzObuG87dn7uVkYYQX3/gKPKtGefihB3j8Ji+P3rIWT0vQFJGVNa+hENtu9PKzH6bxXgjhKeqs2WwgIpPIlI+e7m5kOg0+n+l7KiWyVIJ8ntL4+EXBmc+bNbOFwhTRrKfTtieqneov15UiJSIUMh0CcjnTJ7Zsb+WJRBDWSljTyyhSqYvitFyfKi2zcl3HKJXwBIMXV9cqN15FVnlJdZ0lFCvMKE6NdBrR0jJlsQGrrICyq4AslcgdPUru6FF8PT1079rFuuuuo2QYJBIJzp49y6FDhwiHw3R2dtLZ2enaaKuTBZZbBKBb5rlYhBBEIhEikQhr165F13XGx8eJx+McP34cn89n38CFQqEl7wtd1+seta0VTon+ptPpFdPxDy4WqvP9cTTjpFKP1H+pVGLv3r0Eg0F27dqFpmm2OM0Ws4S85t+pfAop4bOf1fjBDzS6uyV/8zc6a9dOm6Pm4XPP+hzXdF1jPxbxR7h5/c18Zf9XALih/wb++Po/NiOaEs6nz7OzbycezYNX81IySrSIFjzCQ66U45b1t/Dzkz+noBcIeoP28qwbOzaysWMjqUKKiD/CF3/6EJ9672a+5vFw7JjgkUc0RkbA64U1ayQTE/Ca13j5yU/9hHPQdS7HjzbcTv6+sxz/3V0Md3WZ5vblukkLLRAgVSgwduECPd3d+KXEyGZtm6NSKsUv/8/gV7/TyRutSOFhVTjHePIIYY+fkK5TTPvQvBFaPEEe1b6bddoq8zMqUuSyUEAv20J5YzFK+Twen4+rWrfyD098L1/6IuheLy16goDPQC/GKaQMRrQsAZ+fdh9EvBn0pDnnYshPKa0jdd30QvV6zRpQw2D4TJIT8UcwkpP09xSQPXvpbL8cWeihVMhfIiL1TIYW4ElP8/PQbx6kw99Jf49Be6yPuNTNxQKkRJ+cvLjiVDCImGZZJTQNbyxmi3S9oqsfnw8MA8MwzAis14sIBOxoKDCzZVW5g18v18GKUgkRDqOVha7MZEwhafmxSgml0lR7qtZWcz75ApE8GOXIq3UjghCIYBARCpllEZVCPhKBQGCqYLYsv5JJiufPM37nnSR//nPCO3ey6tpr6e7uvsT6x1qP3Yq2OuHiNRdOTxe6SQC6ZZ61wOPx2DdoYJadWaI1m80SjUbtpixrie6F4BTxNx+cElF1gtl/I3GtUJ0PVlNTo9MKtU79J5NJ9u7dy4YNG+jr67Mfr4yK7ujbwduufhv9oX5e97YzfObfWgl7W9HwcdddHu6+u8Dll0/93BdvebH99/4L+3nSl57EHU+5w/ZPvXXjrdy68VbAvIg886vP5GVbX8bHnvoxvJqXTCnDC9a8gCPGEbb1bOOuo3cBcHLyJJ++7dNowjz5nBg/yYc/mWDf/74A5IsJHYXfAum0IJuFri6JoUNQj+M/N8QVrWO0Js5z9D2neckRje5Tg6S3rAVNM1PLHR22ub23tRWj7L954exZCoUCq1evNh/PZs1In8cDQrDncCv/d5+PEBP4tSz5HORGJBlfC0apFc13krZomtKEjs/r56reHXS39ZKMF/jxtzKMjAhaVsV41nMEqzrNEoJHzh3ih/t/RCz+x4ycCBDSsrR3SAJFwQQGedFCW8BDOFQgkvXja8lw0zN7CbaXRW+phAeNSb9hmvKXTfJL5XWTvVKQ8xim8CvpRHNgGGXP1VzOrGUti0hPKAReL1LXCXq9eMNjFKRB/+WX4ZeSRDqNPj6OsESgpk3xOBU+n30DYDsQ+P14OjsvLtGayyEzGTOaWl4sAMMwhfs0n9jpllV6Om27A2iRiFk+kE4jrUUMyqJb83qnilvr/cmkuYhAuaGrs+8y/iD8p6xq6TIFsq6bNlblml2LKZZX1QRzLocmJZ7WVtNpoFhETyaZ/OlPSf7iF4S2biW8ezfRcqPJ+vXrKZVKxOP/P3v/HSfJfZ934u9v5ercPXnDbMTmxSYsMhGIxCyKOUgUJSpYlmSdeDpJtn+WZdpHS5YlWz7pfjpbpERS0jGJYiZBkEQgkQgCm7ABG2fj5OnpVLnqe39Ud8/MYkEEIuyQ+PyD1wuz3V0d66nn84QZRkdHeeqpp8hms4RhSBjOVeZejnM5A6zLHUgvpnkpPRKWZbFkyRKWLFlCkiQ0Gg2mp6c5ezbdxHUu4PL5/HMCoK8C1ec/l0N96ss5rwLVl/BxX4y5cOECIyMjXHnllU/7YF5RuYKHPvgQq0urKVkl3jr8VipWhS/9Qx6YRVEkrQY0m7B7t8Gf/mnEhz409wP2yPlHKBgFNvVtQhUqVa/KL37lF/mda36H/3TLfwIgjEM0RUOItLv+H578B/7NDf8GW7eJZMQ7l72T66+/HoCvHUvLJiacCdb1rOs+zkf++zj/8BcbyOsC34MokGwYmqQ/HiMrRylNT1BIpsiJOrLlkxMgZZZsweJ1699CWcvyvx76v7h26bXkjd7UHd/O6YzqdZIkYaxex8rlWNrXhyIESRu4KLbdZQVPPalgJ4JYVWmRwdRddC0go01RqcxwYejLaOX/DXyQUcRMc5QyFT75pV5mpgVFvUFwvsnn/xY++MsqdtEiDH0mDq8jaPpkMz6jfkR1vMJQxaE5IbCly+q1Bte9OeIvH/oMO7a9i76BpSlYy2YRmoYRJOScJA3l74C9drOUESRYXoxiGOQzg7xlw1tZllvSbbHSenrSDNUoSmOjHAdhGEzXahheTD5noHkeiRCQzSJsGzzvkikGAEiZgljS1yBuNomnp4lJmUc1k+mmAsSOA+3Iqo5xqrOWV3I5UBQ6sEiGIYqmITTt6ZFV+XwKbuflqSqZTHph0ikpME20YhHZaKRg2nHQ6gHLlAqKnr7HMo6fMfIK5oFT102ZVym7IDhptUg6SQOKkqYStI+ptWcPzt69mKtXk736asxVq9A0jf7+/i7b2mq1eOqppxgZGeH06dOXJdt6uQPBxcSoXu7zctWnKopCsVikWCwCaVZ1Ry7TaDSwbbsrE3gmTeViAqqXi5721dX/Ipnn8oP2SoX+vxir/yRJOHLkCEEQcPXVV1/yy2HrNjsHdwLp+v9w/TD5Zh5BASQ06m3dYPu1+sM/1Lj22pDNm9MT1ge//EGuX3Y9H3/zx7tmLFVR+dLRL/Fvb/i3fPbwZ/m1r/8aT/36U6worsBQDYIkwIs81ua2cfSf3se/+OQ21m+I+C8f1ejNpHl9QRzw5aNf5pGzjzGw7z/wnT9fzrrwOAPJOQrxGBk8xGSILeso0oAkQhghraAPULAjj6t2hlRMnx57K4GlM3L4H9gcNCkkBfxqg8lmDt3SKRYcxk6PUMnnyZpm2szUDpHvBN934pCssgDpkEQOmmwhRJbyihxTA59moH8rZ6ebxEiUXB6pKHzp7Be5rumQzFxLjy5xsFCsLIHfYnI0ZIkIUIVKs7GRkq3hRnVkOIMhVK7YVuCc/49MOxO87o7fwXUiTJmQiATCsFtNCqBoGjUzSdnQKFoQfp9kTBIZE/kRR49m8L0b8SxQsiko7TCvajaLaD/vybNnURSFD27/IEahiBJrqUTCcVLXez6PVNW0fKD9XwwjzT113dS81PksP1MqQBvcdo5XsW3Unp5u5JR0nNSw1F6rdxz4+P5cHmsnsqoDLtuPJYMgBbmqmsoaVDVNGpidRdTrJMUiSi6H05rlqdF9DBdWULLL3cirZL6Otl1d26l9TRwnBc+KskCqMN+41dU7t2+PECTNJv7ZswTj42g9PWS2bsXevBmhql1NXz6fp7+/n1wuR7VaZWxsjKNHj2Lbdnd1uli0eK/UvApUX5x5pcCfrusLLuAcx2FmZoYjR44QhiHFYpFKpUK5XO4yk4sJqF4uetpXGdWfoNE07RWpUf1xV/+e57Fv3z4GBgbYuHHjM/54B3HAJ/Z/gt1Du7F1mw8++EH+yvwr3vn+Pv76r1WQCqSJkmhGjBAahw+LLlCdryM1FBuqK8COOBYfoxk2u+C1+29UA8JUapD9+qcJ99icDKY4dibk3kcDPvCnJfpnwX1iLycPP8ypfwrwz/4pd0bgyCym76CrLSAFp5Eu8ChhKZNoSszqJTVGC19m6+YruXX3VuJmk1FnHCWyCLxeJrwSGbXMNz4m8NwWcSLpH3B55y+swFToGqa6a+x8nqjV6mocb9gFTzyep+4XUIjRNJ133FDnxDFQTZvVhRVQb5J0fDICgoIgkDpG4uL558kZBTyKmBUVRB1VCmxtCi8aZCKSJCKPJQzymks5rONqDRISVAlZPYPuBMSOs2D1vtwc5Ibsld0Wp9j3QagcOaZRO70RI3H4zJfzTJ5uEichmqJw2+0KW6/JL6hjjaKI8ZkZCn19FDptVW6C1CV6Tw80GqnRKAyRrVa6vlfVVE7RiXG6uOb14jrUZhOpKEhScJwIAb6/oFJVzWYhk0kjq1wX2gymks+nq/5oXvZrsZjqUIVIa1XbQFYoSvpvOpFV7ZxVJiZS5rRep+FW+dy5b/Ce9e+kJEtpa5hto1YqqXFqHmDtmMQIgoUJAPPBaecCIZulwz12TGJKJtOtgw2aTYLTp2ncdx+ZXbvI7tiR3nd7NE2jr6+Pvr6+SzqoO2xrsVh8WU/Qlztjebkf32KaywH8CSHIZrNks1mWL19OHMfUajVmZmY4deoUmqZRqVTwPO8VP9bnOpfL6v9VjepP0LySjOoLfdzp6WmOHDnCpk2bKD9LT2giE37r7t/iIzd/pKs3dUOX3/+3Dn995E/hnj9FoCH1GlFioyUaK1fOrf9szcaNXCYm4K1vHoKjjxMkKlz59zj/wsVSFwLVTntVtRby6AMRWR5jmRzDZoql1Sl6//px3qBAfeZuiqaCfm4ruhJjmyGKG5Gg0Ewq6FqDQmkclYB3vkblh417mZQt3n3dm/g/Hz1AbsmqVJNp23xq/xcw9v4M+bGf46k9Bkcig0jLoGgCkwYT4xmOPuGzeStp4H2SpMCro7G0bZRiESEl506FFDIBhjaBKwUZawlHHk+4csVGNtsrWbv0jgUA0pAKVjjLru0hD+4t4kWgKwrrNwn6+iVCFFDUEnLl18mMrKQYhMhEUlwesH5HiQcfUtBiiGo1ipkyv3vnH81lns4z8qxato0V8RaUbDatLfUDvvjNPKdOxJhyCBG9ibG4gZnXuOA06RU6999rsGnjHPPqeR5jZ8/S299PNp9HMQx+OPo4egKbs2sIp6cRjQayrw/VNImDYEHuqdoO9Z+/vldzOWQbOCidyKoO89pqEQdBuk7uGKfar/0CWUH733Z0nx3AB6TGqTYY7TKXHTa3A25tO62fjSLiWg2iKD3WKEKRFhKQbfmAIGV+mQdO1WJx7vGfCZwKgVYqpc+lXSyQeF4XyMetVjcea34ea9xs0rj/fpoPPYS9ZQuyp+dpNWsXO6ijKKJarTIxMcGxY8e6bGulUvmpipu51LwKVF+8uRxfS1VVqVQqVCoVII1YmpmZodVq8eSTT1IoFLp/v1xTNS6HCwB4lVH9iZqXq8r0Uo/7fFf/UkpOnjzJ9PQ0V1111XNaL5iqiUCkrv92AoATOpSsAr/5m/CpFe/B+/Qn8KMQic2v/mrMVVfNAdVO/NRv/qbGyRMCXTEJZQgH3seXvtBiwy1ts1ZtGrdxnI/Y7+DvH/m/EPKfeUvr20jRACFBCiKRR8sVSBxQhYLlJ2So47KEqpjF1hsoUYZc/hBy/VfIrMwx7oxz5XX/kSf3Oxiz5zESiVQg9ufYLePEJprj/TRViaoKEldBjVuowiNUbbyoxFPH6zz0cEIzSFi1TufNby1jWgpxrYZ0XWLXBSGYms6TqAbCdNDigIqRZWZa4YPv+sW55qV5IMu1FBxT4a1vzpFfXudLj93HlvVbeeN1WZJ6uhq23IBVSzNcfZ3DFx98iDia5drduxDuRnatvJ7PnPhnIpKuflKx7dTRDySOk7LA9Rp+EkG5jIxjLpyTjJ1oUrIgUDI4LZWg1UCzm+RlEyHy1JNeEsNFVwX1ZpPqzAxL1q7FsKzUINRqsfepBzB0kyuv24EMAoQQaUWppqW5qW0zUQcECsNII6sAwjAF1UGQ5quaZipXmNc4pRYK3Siti41TUbMJipKC2I5xynHmHPhCoGYyqXHqosirBeC2naeqlErIOE7rYpMkDdxVFBQJouV0H190ZAmXAKed6lbpeWCaafasECT1OtG8di5hGClLPI+d74DT+fepFAqpFlAI/BMnCL7/fRpr12LfcgvmqlWX/M5ezLY6jtO9OA3D8CVnWy838DJ/LkdwtVjncgFUP2pM02RoaIiJiQnWr19PEARPS9WoVCov++bhR83lxKhm2zr8n4ZZtED1ufygaZr2ijGqzwcgh2HIgQMHyGQyXHXVVc/5SymEwNZTVrSTAOAEaTPVf739v3L3ya2s/y8f5qsPn+DnXvNm/uj9v7ng9rZm44QOI/sVFAV0NOxkllIwwdQ3TmI7P+SdD0Hof5FpaynXODpLet/JUlfBXnGQidPbMRMPnZBMfoI1fR5Hz4FaKkKzBSu+hzGyHCMSuEofSbYFOz6PqbbIejYZJyIJQxRVRwYRmlD4l+s+QMkqdbWRSasHEUM+EiShgivyiDhEJD4CBRU4MpLBzGhkDIdzRxp8+wuSu+5KK0iVbLZrvBrINTAShao0CFAIAli2PI2EOtM6x2fPfp0PbP0AQ3Y/0vfJByqKHyCAtStaGOcfYulgGen0dgFNRQg+sPnnAMj2nGJSaaHkrk+BmKaDBLIWSSbLZx/7BDt7t7KuZ336OclkUPN59py4lwcvPMj/kf8/MHULTy0QqDFEVWr+OCQaoVzKTGDhSkkYFti8OkQJfSZrDr7vs6RUQvF9Yt+fA1aqgkzilImENOM0mwXfTxlFVU3ZZiFSJrfV6kZWqblcCtiC4OmArb2+T+p1pJQpwxnHKB0ddZyav4RhPM04tUBWMD8eqr1WT3wf4jjV3LYTDJJ5kVWiE/wfx+C5ZAKYni3yDw/2QKvJuisirrqqjqK1TV5BkMZnCYFoH5OQsqtB7Ty+0nn8i6QKC8BpOwFBJEn6+rVaXfAMgOcRnjrF9Ogoen8/2auv7upYn+n721mNdvIq57OtlmV1ta0vBtv6qpnqp2cWA1DtTJIkqKpKoVCgUCiwatWqp20eLMvqmrJs+5mLbF7quVyAquM4LF363FsaF/ssWqD6XOaVWv0r7Saj5zL1ep0nn3yS1atXMzg4+LwfK6NlFgDVToD/+IzDbdnfYv1wke9OfZrs0I4Ft5NS8kdbP0wyOcWnit9i4sIYuWQEE48WWdbELUqjTW7vu5aCr+JFIZ+7O8PE2a0MFiKKK0dwtGMk9eW0ci7FtSdYUnwt8hwU9QLVLNSXnuDdVwu+ct9+sraGOniQhq4SGGUKdoWB7CCJ4/DGwVuIhm5HL5UZVlNw0tFGukEPtagHhQRQUIkpZiJqiYkSK6werDIzLTCICBNJYlc4djrkLlpPW22v3+Jy7nxE7aBOlOhYS8rc9GbJHz/8/2NDdhX+1CTB9CRyqAeh61zXex3Ly8uJajWURNI0IdTbBoA2oImFgZa3IAqJcxYbMyvY2rcFKQTOrMeu3HpyvkLsz3Js6imW9q9mg22nQK1tqBK6QdOCRCEF1Pk6qpJhKqhQlxIrhrXDHi2/yVQjJL/E541vKDN64ULKSlQq3WiquNHoAisNhZalgGWhKkoa/6Ao3bSBuF6fW5NfnJs6X5vazhjtAjbTRCsUiOM4Bbiui4wiZCaDUNX0eUm5gHm9OBWgkywQu26XeVULha5xqfPvhKIg2sfbec2TVgslk0HRAhK3zN67l6KLOrFi8N0flnC1iFtvClL2NAxRDCONMJtvYJsXebUAnHakBnGMjKKuJIF221bcMa/lcnPVsZ1qXdPsZseGExNpHut995HdtYvMRTrWS42qqvT29tLb23tJI0qpVKKnp4dSqbRoQMjzmcsdSC+mSTqFGYtgLgWqL948uK7LzMwMR48exff9Baasl9OFf7lcADiO8yqj+pMyrxSj+lzn/PnznDlz5pLRU891bD1lRVVF5S9u/AvWFtby8MOCW3+miSV/kbyVQXntA8hl07T27yecmiI4e5ZwfJyhdnvWr912nr85beI1WwgEW1Y63LJNRcst4Y6+5cSNBp//vOD8KR8pXE77ffgTP4Pc+V+Jy5Nox99J4+Gb+O6FgLCsc/bCEW5bdTvX7toMIkHftocwTthW3oKlbWDbwLZuLNHJIz5f/KyK70M212DbG06zak2RirKc+74VEY8JCqJKKC18TCzhcsuNEY/5/0gll2dr/l189W6TMLyAGzapGDrZ3BwQSnwf0ZZRqBmLO98maC5/kCPnDvCBW34VxU+jk1xLIVQhlnEXeKzt3UTv0BLwfSzF5P0r3sJQZhlqpYLvSr76FcmJoyGef4Erd7m8++Z3Y4R0AWh16hwnnbPYlT6C+iyKBKWZrvvnh/QrqgYSZMZGtQoUbI93vNnhS99wUGZdvNIkb/35rYxMHOOrR7/ChoEdTI9dSWXZMvKZTMo4dkBvm0UmSYgyOsL30zV5NgvtQgGlrf8Sup7GTbUZ0vkJCTBXbtApNkAIYtdFui6R76cnw2w2zS5tx2kBKZvabu7qGJ86OlYp5Vy4fximDGcnI7WjA+2kAvh+uq6f78Bvg73EcSgaGa6u/BaPyhIFO8CIW5STGY7tUbj1ZjMFwEnyjJFXnWPFtpFBgNLWzirtY0rarGlnLhl5NQ/I02allZ4e0LRuTW39/vtptHWs2d270Xt7n/V7fSkjSrVaZWpqiuPHj78ghulyZywv9+ODxQOmX654qhdjng38CSHIZDJkMhmWLVtGkiRdU9bp06dRFKX7Xcjlci/pZ+hyYVRfNVMtknmu8VTBvKidy2XiOObw4cPEcczu3bt/rCvCu993N3kjD8Bb1ryF2kyTd7xtgnX1UXrYQ65RZ8kXVvHuSo2Zo18CUh2fmskwOnuehjvL2spafvtXHP7zdz+Pb8Y0yyGK8kvETgs/8hFGjoNnikRqjSiJyaoBdujjzmyAU6/DTiCjCyYOa2QKb6I2dBItX0hP5lKS8SWjzTHUZdewsnc9YRChC53atMenPp3FDQRSxCQNhwc+X6b2xkcYf6TMeD1HlNgYeOhqA90YxVJ60cp5FM8FRbBuhcOKHo9TYzaNKIOlZ3nTmxSEmqRrX11PWb55DnJdmaGRn0IvpN3wJhqGE6AmEGWtNHvVdZmqXyC2E4aH1qILwZXFcmoAmpnhwfsURo5nsbIKTtji+L4KG5YI9oT/zPbV17GhvC7VKfshzekxMlaehgWelgJBIUTKEWezKIZOJoCoNkvsxiAEy9bluSF7jC/t+wwWoIfLEbpO04Ki6KG/rw8TIGkXBQiRxkL5PvHMTKpDFW2tdJIQNxoIz0OpVFCz2S5DGtVqKTDsNGwpytND+dvVtED330rfTzW2lwjlT4IA2tpWpVAASNnNDlPZNqx1UgLijqxgXtlANxUgn09vE4YIIZAdzWubEe4XCSVmCfwWE7HKgF6goPpPc/AnrVYXnIpMJgWoUqaRVR3drK53wXH6D9NiBCll+lwvlio0mym47pQFtHXAXb2soqDkckhFIfE8nD17cPfuxVi1itzVV2OuXv2cv+fz2Vagq209evQoQRD8xLCtlztQXSxzuTB/z3Wez/uuKArlcrlrNg6CgJmZGc6cOdMFcB1T1osdJXW5AFXHcV4FqotlhBA/8gr3lVr9/6hxXZd9+/YxNDTE8PDwj/XDHAcBS+sawdgpZsYe5uDj32bmrMY11SF05gB6HOpcqPbTP+gggwAZBERBwA/HfsiexhH+3eDvYRBgFc5gIHHVClq5TNWr8if3/xlvW/EmimInLRnQFBoiaqEhMFt5cjJCagYtNY8pGjCzFtU7zvnRY/xg6glu3fB6dizdzakTX+acM8rnH/kSG8vrUDSNkQMtsvIDaCImTiIirYIbV5i50EOrkZBTZrBsjRkvTxJnycQ+ph6x53tNJmd+ntFSTGtjmXf9YswXH9jDwTMH+MCtP8PgyhKJNw9wuO4Ck82MO4PtS8JGHS2Txbc1YpKUUU2ilGnUdb45+z2WNyu8y+pBIjnbOEexZwklPcu5cwF5zcEPHGJFpSUKHDx9gWPmUVYUhknMZcwaMdN6yKTqssrqIxsKRNsc1FmxAxhuRKyAzGcRkZpWqdbraH6EY6Qy11jGSD9hyBxg44adZPP9qRHLdbstTIploeRyXYPUu5e/cUF7lxAiXeu33ftqx5gEaUFCm3mVUbSQSTQMFNvuMq/xPOY1aTv9kyBAVRTUUil14reNYnjeHEtrmun/v8g4FTebC4xTaqGQAsB2xquM0vcERUG0Wl1gGYiE6tBRhHUlSUslG4coSsDVt2ZQMumqP3bduciqtplMthlooWkpy6qqc7KEi6tfLwKnMo4Rmpa2YOl6WpbQyWOt1ZD5fPoaXFxgMI+N9U+eJDh/Hn1wEHvLFjKbN6f3+TymwzB12NbZ2dku22qaZlfb+krq+Z7vLAZGdbEAwMVynC/GGIbB4OAgg4ODC6qODx48SBzHXVPWi3ERd7m8rq+6/n+C5pXKUe3MxT+8k5OTHD16lM2bN1MqlZ7XfSWeRzA2Rjg6mv53bIyoWuVA6zjS89la2sA9ez5Dwb8CTbyJpiyi42HioxIxMX0AohULdIi60JBBiGrbyGyWlq1guTGaHxJVq6ixSywg0uCGGxO+c39CLvJBVSkt7+HqXTdy95dCoqgOcR20Ag1ytPSYuhnz8OQedi+/lk39m/js6S9zfuIEeQ/qM6NkjRyJFdKQRRRZQyHCSJoIGRFoPo0ki6nO4jFDzpI0fIva4GlE/UaCpk9vThA68IW/q/OLv24xuKbBIe8g+fzr5oDUPOOODIK05lNVWb50I4dbZ5C5DIpmoKMS6ypr+teTCZQuuMiF4NmpWShqNvjUvk9y0/BreM2KmzErBSbPJnjhKLqMMaTDyeQksxb4GQ2h62S8hIIPseciSip9Vg+2YnZX7Ccu5Ni7VyF0NrNlKMZoBWC2I5V8H7vcQyXXiyUMZpothvIreZOdIaxViSJ9TtcZRamj/iLTU6aVFghE9XoqfygUoFhEEQLp+2kTlqqmMVRR1GVegQWa1yQIUna6zabGvo+iqsSd6KpsNmWtL2ZeLxXqPy9Av6MhVtrygU6O6oJ/K2X34gqAdp5q0mziuXUePvFFXnun5MCxCucnRnnza69j5RUSSHXJCJHe38WRVR2T1EXMbeK0EwQ6Ga9CdFMG4kYjBbeaRuR56evu+3Pgus2wXvxcZTt1olNgIFSVqF4nOH2a4PRpmvffT2bnTrI7dz6rjvVSc3EXe0fb2tHzddjWy123uBiA6mI4RlhcGtUXc4QQ5PP5BVXHF1/EzZfMvJDX6HJ4XVutFvl8/pU+jJdtfqKB6ivJqHYMVR3W98SJE1SrVXbv3v2sGXFxs5mC0YkJgvPnCcfGCKozTLpTFHoGyQqru8bcf/whgiRk+/DVJJaBos5QyCaIZh0JOORQdJ8x41EUc116TG3GUNgWqp+ufwFWiB4mM02apK+ZhkrOh9hzuPG1OQ4n3+Ps8TqVos4bX7OGrx7/Oq3cz+PWetBIwUl2xVepz46jrVDTVXqrhWMIch5oWYWmCbauIqVEs6bYvmWMfftMGuTICjDXfQ96Rqn0aoxPlXFiCxsXe+hxKoNH0aubEKZJHYuc6eM4ktmxFoYX42uQZG0ISM08nfVvqZSyiXGMiGPMQGJHECcxSRCwq7iJslVm+8D2FExks2mOplBRvDT/UzVNHEsQkjJ9t98W8w+fNpj0+oiShNW9s2T7j+E2QDRdlBU2ou3Ulp5HVKvx61f/JmomQ+w4nDwa8e1vuWgqtGQ//tRdzGyF5RXZXX+vLq/hw9t/iwunTpFVLErZLJ/84Re5Yuk23lq8c2GL1bz8VwCShAOt49SDJjcOXJ02MjUaJAClNFUhajRS9rYNnDvM6wKjl2nOMa9SplWlQQC5XJoIcBHzeilt6nwQKMMwvc9yOWU421FatFrpqjybTZlv152TFcxLBaATpaWqiEKBhgFqj8Jy8yiTZx5l5eob0sd6puN6hjzVjpZZLZdTcFurddMSFMNAWBYiDOfkEu14qiQIkB3mNAgQxWIqg1CULsjGMOaA/DPlsT7wQJrHunXrc9axPtPM1/N12NaZmRlmZ2c5fPgwfX199PT0XHYVjItB/7lYgOpi0qi+lKNp2gLJTMeUdfz4cTzPW5DdejlUoz7XabVar5qpFstczqv/+RFVBw4cIJ/Pc9VVVz3tRy6anU2B6Pg40dQU/tmzc2CjszKNY9zI5W+e+F+8fs3r2Dm0KwUmQmBpFlGQgoJspOCaMT/361k++Xch49Mq2NMMX/tdPMsFXe8CGwA7AFeTiFwW2XK4sn8rT00/xVhrHDWTwVSzJKTr8LjV4s3Xruc/a39OobScaaWXce882U3/A+PCFtywl5t2b+S+yYextCF0J8QOIbRUvj32IBJQgJwPliLwMoKWD9fcGdIYOsq+E2P0eNcwXl2PfmwJv/SWKt95qMqhsxdQyxO0VjyG4g2gSoGIHMKgRkPNgboEK99grb2WD1rvxYxJ2S1VhbbBJ+5kZFoWGAZ1r4YAnOokhlXitk1v6moxO2t3hCC0DRKSrkteEyqRBlo2S0Vx+aV3NfnY976OLx2uv3oHT9R04iYkSQogr+nZzr6pAyl4hgWh948dK+HpkpzZIh82UIOEg0/YLF9uQxyDlDiTk0xMTNA3PEw2l+PU+YOEvks0OwPL0harJAhQFCWNcprXoJQ0Ghwb2cNYc4zrC1tTJq8N/DoNXhdHMHWYV61S4fSIYPSsT87wWLNyBsPWUsAax12DUpIk6eOpalqx2tamdp3+7cQF2ifMp4Fp5hqnuqx3h9G9qLq1w7x2V+uui6jXyLUvShQEWiLnVvWWlcoK5mlmhaqiFQpE7fYraANGw0jLCuZHVpkmIpvtyhrmP68uS1yvg66jViopY+q64HlpVFcbXCdBkL5ezxR51QbMcVvf6p84gX/iRBpvddVVz0vH+ky/Qx221XVdhoeHaTab3RP1fG3rK629WwwgcLEAwMtlRX25jW3bLF26lKVLl5IkCfV6nenpac6cOYMQosu25vP5S34WL5eLqVcZ1Z+geSVX/6qqMjs7y7Fjx7jiiivo6+sjmplJQenoKNH0NOHkJFG1uvB2+TxqLtc1InVO3GauSMuAMEm7yTsn5Hfu+kCqnUsS4qyFdEMqZoNf+lWH//zYn5MNoFRYQ9NLT6yKaaa6ukYDTdGwQvBqM9iZAsXepfT4M2zq3wqAomg4tqCVTXMoy4lNX6CzMi5Rd2dpGWBEISz7Afb0FbTG1hCM3ky9p8SY0c5BbbbI+KBmMxT7hzlxuoHWWonphGQYJUwCCpUqmQdX40UWQ2aeaLSPb95XYOddoxx87IuoqsEqvRdHNBhaD0eP5iHy8BKFO28OyfVkyLKCcrQ0jTbq5IaqampmaTNmndV43Y1onr2Lr47muGJYcNVVLdy4yf996OPcueEN7OrfCYCRCJQwSn+w4phcoCC8oMuo5QYKqEvHWS6ybC2v5amxPaiqilYqIXSdwfwQf3TjH6IYBlIIPvnkp1il9HL9kuvIRQ6ZWHCuWUOQoAYRQegR11JA5AjBU2PHeHDiXhiD9215P6EuqBqShiVS0NYOsCeXI7lIVyo0jTBrEDpy7nPkedDbmwKj9ppetjNLpRDdbNCD+wP27RVgWvgyz5nTDW67NUJGFzGv8w1KbdZStH/IZbuqVDHNVH4xPxpqfqh/hyG9KGM1ad+2w7xGtRpJs5mywvV6aqgKTQSgtFw22CvIr8unhqxmc04f2171075gTaII2mkD85MK4BJ5rp1osw6QbjOqwkoNd6LN2sft7FmZJIhMJr1Amhd5NeXkObzXQwYRq1bVWTYsUrAdxwhFSTW4YQiWlTarteO5vOPHU8C6e3eax/oiMD6WZVEqlbru6dnZWaanpzl58iS6ri/Qtr4SoPFyB6qLZaW+WIDqKwn8FEWhVCp1ZXhBEFCtVjl37hyNRoNsNtsFri+2KevHHdd1F5X+/Medn2ig+koxqkkc44+OcuzAAdaUSnD8OOOtFrHrLjgxQrumErprzq6+bR5ThZQoXoAZQcvWODFZwanHrBn2yHS0d4aBrpp4UQukxIgEOR/y2TJxLoM3k4K37glY19m85hqWlYex8iWEbnDw5JMcqR7m3+14T9rJ7ji8eeAWlihDPHT+YTwD1g9sYUfvlUy0Jsj7gC5onHgT1vnNPCENzPgmGiPwrcM5Gr1vJ7omAy0TY0aSm65gPfJrtJQKceLQP3gtSdWjODFA5PWTFHNoaoRlQnW0RTgpCTQI9IRbl+7kn099jTdeN8nAaoOvH3wI3Rvm8e9dyQ8fgA2bPZZtPcGaZZuxNSs9/jh+ml41bLpMPPQaMtOCc3aJkVGbu48fZOmuewiaDaLqLEneRc1kuLZnN4aidKOIElPHtVVQlPTCoF7HjgRulhQgmQZ2ocLNwzeTRBHH3XPsOfEIP7PiDeiqzszoKXI9aV7p9l0O588nWF6ClNBSNFbuACkEM5OTeL5PeaCHkek6QsL++lHKIkPRB9ULUu1jm3m9lK5URhG2E0Mco7V1pdh2CnbazKvSZtijTouaECi5PE8cFpQKTVTVAzyqszqTbo6hcmsh89rTQxLH3banpFZLNZwdqcC8aCg1m03d7xeDwPb6XNG0NK+0fXEhYAH730kFYHy8+9oThjgGRJbOssJylrEc6XkpMFXVFFi6LnG12nXgMy8FAdr62vZ7fHGeauL73XQAoetpQ1dH19qeBd9TzyNpNBD5fHp7x2FmIuJ7DzhgZUl0kzP7JDfpdZbL2e7jd95LOd+41Y68CicmmP3a12i0dayZHTu60WsvZOaDrE6sT6fS8uK1aLFYpKenh3K5/LKwrYuFUb3cjxEWz3FeToDaMAwGBgYYGBhASkmr1WJmZoZDhw4RRRGlUok4ji8b5//l8rq9HPMqUH2RJ45jDj75JNH0NEvrdcIzZxb8Xclmu+5jYEEeo6Lr3Hvw6+SNLDuWX5OuKkul1HzSamFJncf/fiOPNGpE6ARqjl95f8yK5REyCLij9zqmtBnUYhGjpdKb6eGaoWs4Uz/DeORRN6GkZVHaa+JioJLPL0fVDWLfZ2zsJInrcPbsEU4fXspjT1YwlTsoX+1wzcZhHjn/CN8f3cOW4V3oSXqyVPwi2oVdBKqG6+dQCckkDQpKi/z0ZvqbcMo4QQuf0z/cRE7Y5KyYhAyTk72cPnWBNSv66DNVtKTBuVYVw1qCSZ5C7xBLW8sZnzmHRKbOeM9heU+LLC04uxbXMAmFxZ4nJD8YP8+H3lxiMDfYfT2jNiCRUYQwDMZaFpOtAop6hoLWRBEu1bEiQWji6alutaNDXGoPYZbLaU6o5/HOVW8mZ+RRNA3RXoO/add7+dvH/4bvHP46d665k1iIVDogJdWJMxy58CRv2vhWTC2DIlSI2ve9ROUt78vzD994EhE7uL2PkS29nfGWQC8UWGrbnJsZody+rnl84nG2DexASggmyxzfU6enX1Be2o6K8ryn6UrDrInjM7e6VpRulStAQsq8avn8XIVso4EeKQQZk8cn93JFpgeTJSRRPAeq2tFUseumq9BO2kCz+YwMaWcDINoreQEpo+v7EIZgGCmj205CgIXr+86qnCTpakszwO/u/jAZO48rU3lMJVLmGPW2q39B2UBbTiOlXFDdKkwTxbZTM1iSpDWrUQSm2dWhXuo7vIBR7qzi2pIkJZvl7DGNWA0oaLOQSGxV5/hIlhVr1IXVsfPA6QLAXC6nx5EkNB9+ONWxbtlC9uqrn7eO9dnYq4vXoh1t66lTp9B1vcsuZTKZlwQELQZwtRiOEVIAuBg0l5cTUJ0/QghyuRy5XK7bGjczM8P4+DhPPPHEy/J9eKa5XOQHL+dc/p/kHzHP9uF4Pg1RL8Y4jsO+fftYtmwZ2lVXURocJFOv03z4YbwTJ7onR5h3YqrXUXQ9ZbqEYE/jCJVcHzviq56m5WueeSNqoweDEE2EqPEsn/usyu9/pIj0PJbklyCaqRFE1XV+9bW/RytosFlezZ/c/3/y6JF7uGP1nWnwejs+B+iaacKMjhvBx7+xh9zoEjS1hiclX/xOgXeXYlTVwNPgu6fv5ablN1E3oRLkyYoWlmrhEHQNXBoROcXHcxPsMEYJEyabRWzTpBlMo6JgxyFCFFCXufi9LZpT/cgogOYsmzcLhvtLvMt8G7O1Cb5w5AvkI0hkjJYvEVS3YEgFXbho0iEQGo2ZncRa0AWpUogFms3EcaAhyCcRs8LgrBeyxBQIwPBSTW1gKF3phYBUt6jraJUK6yqVFEz5PknbMT+YGyAOAoLAoSRtvnD4nxgqD/OadbcjJjQEEDUaJIZk3dIrKeV6oM3OLc1Jytv3MevXiVvTTJ0aYf3gBvJt1lMtFghUMGJ4z8qfIUnggZHXMRNcy30nJaoiueOOOktXGmi9vV3XfOJ5RDMzmEFCIhOI45ThdBwSKVF6erogvhP03wGWie+zcqPOgSMqoa8yq+RZWsnSm6sTz7Yv+toGKdqg92kVq/Mc9fPX93H73yWel7Kp2SyJlHMMKXS11/G89X33fj0P2Vl3KQpaPk+pHY/10Nn7efj8w/zrm/5wzjjVNps9DTQ3m+lxVSqpQcz3wfNSB38b3EqYO65nALeKaaY1sVGUMq9tplm1rPTCIQjQPQU1UjjcHMUJmmzNbMRMmiSteKHUwHURcdxt55JRhGy1iKenuyYzoappHuvevbj79r2gPNbnOhezrZ7ndSUCruu+JM1AiwEEXq7A6uJ59Thf3FFVlWKxSC6XY/v27Xiex8zMTPf7kM/nu9sHvV0c8lLP5f5deTFnUQPVy2k6ncRbtmyhWCxy9OhR4jjGWrkSa+VKwokJGo88gnv0aBeUEsdzer22U7oQqqgNp7uu7rBBMorI1nOExDQpokkXi4DATwPLhW0zkcxynAmWW2tIfJ8nDt/LN058kw+/9t+i6gZREoGUKePHQsMKUpIPFBohuFM7UJQcphIxHbRQYp/7HpvAuvIMUoHa5HncxKBw8iqWV5YyYpvMejl0mggEWepoYUJVV6jmxlivbGTv+D6S4jmmJ4YIVAtFqFixR2SMUxvz8AY/z8qhn+Pg6WlyuUnuuP0OotosZqyyYmgj7kmBiEAmEQVfYSCvcW4yjx/FxIAms2j6SaJISSszL2LnOkaaIdXDyNYxZ1VMfHwlgxxqEpsu+JAEPkiJVi6nMU7t1z+ameFM7TR6Ls+y4jBxGCLjmKMje9DiBM9WORNOcGr2FIZqENVqqEKlYUKctVAzRdbFG8hKI+2db7vAbR88N8IOIDfQR2nJku7qXmm5aAk0TYgNnfpZm0yjSLkXdLOE68F3H3R5/1CrmxmrZjIo7UD/1624k7u4AxlFqIUCI2NP0qxNcXPmlhQYtYsfpJQIUl0pYchVV+noZsj5ByfprxjcdaOJaaqoueIC5jVJkoWO/Lbm9WLmlfaxKZaFyOe7zy/6Ecxr50IOSI1OjtPVmXac+lES8YMLj7JycANRxiKBpxmnEs9L1+pxnLr32/cZ12rd4+oC4Y5m9hJpBZ3Nh5rPI1UVIeVc3qyipGUBQXqh1jHjqYUCKzdEjJwKUKcVjFjHszOs3wkozfQ3oH2ftD8PHeNftyyg/Vznm8w6UiH/5En8kycxli4ls2MH9qZNP1LH+uMAQcuyFrCttVqN6elpRkZG0DStq239cdilxQBUF8MxwuIBgIvlOGFh2L9lWSxZsoQlS5aQJAmNRoPp6WnOnj0LQLlc7pqyXuzn9yqj+uo875FScuzYMer1+oLoqYtlB3p/P5W3vIWoXqf56KO09uyZC6Rvd6JrxSIYBmEYLmCDutmn2fMkU1cgiAiw8MmSsxNkUkU2m+w/+T32ju3ltetfg6ppPDH2OAI4cW4/mhfgVtIGnQ571ZUdZDII0yTIWDRD0DUXK2jSSDykVLGTJl5wHmf6AlkfWtNb+MZjV2CFg4xeCJHGaQxbEsjlBHEWW5nFKghmV3+SqryKK5fdijiXx7ri22QaN5NxewCBP/wYhSuWga+AkmD3PkZWHCbOZNHL72B64gx/9dhfsmtoJ1nfYPz0LXzxyDb6SypvvHkZX54MabU8WomNYUXI4W8SR7cvqALtsGAdN78iBLe9x+Ufv3QavVVk3WaT2pKHmAkkq1duoy8/kIKlVgtZq6VmnEKBxHH45sm76bEqvH3jO1LQZRg8duSHhHGI0vI46O1hUvdZaqsohQKiZpDzIWk2wK7w/+77B7YV1vH6tW8gCgKEprFyYAuF6QusziQMGqU0FaBteDOiBv2VZUSK5MunvsbK4I1Y1jCRN8pU8wxLcktptVTUQhEZXLT+NwzMYrGbZBDX65yZPcXe4CivLf9sCqp8n2h2tms6S5IkZV7dJltWx/zT1HcZXHcX2fzKBTFWattMpUiJ7LjnbTu9QGg0SOJ5zOt8JvJHMa+2jVappExmp8Sgs/5uxyjJJEE4TqodzWZJIo8Hzn4PXTUwooBIAVEoQBimBrb28SmWNVcR257O+xdfIrIqaZvU4lYrLQsol9MmrUajCxg7OlbZNkPF9TpEEUqlgqLrKeiu17EF3PL6LKcfHCdyW9x+6zbKxQgZplm7nQtU4NKRV6T6Z0jBaew43dcKUk17cP48wfnzNO67j8yOHWR27vyxdKzPNhc3A/m+v4BtLRQKXXbp+bCti+EEvFiA6mI5zjiOFw1QfSZQrSgKxWKRYrEIQBiGVKtVLly4QKPRwLbtrkzAakcW/jjz02akgkUOVF/pL2IQBOzbt49SqcSuXbsWHM8z6WO1QoHSHXdQeM1raD7+OM3HHpuLRarVsNCYNsPUjBGGaaQSgKaRbPkByexOMrUYQZrA9HPvjFHttF1HUzRiGXcB6JRs0TThfGOUIA7BdXGmmzyyv0y9qbD+ipgNq9N2IxyHKzLLOFU7hTp8L+qxVegeqDIEU5DZcp6qk5pu1GM3kLPqVHEIRQ6agyRbv0Tc9w8ICeHUapYOvZbpqg/1FrWJc2h1j9j0aV7zKWwnhy5CTMWH+hsx8v00TYhEev9akLqx9VKZqg33zTxB8dg7yI8vI2O7TI2a/L//pPLOt07x/QMjTLWmecu1m/nUmUlCe17He4cFa7cPdVa0mWgSsfZbeCps3fbLNKrDtIwerlt2/dxaO4qQs3WeeFRl5FQLoSnUhraSW3kOoJ2zKogyFjVH4pqCUqxQcMFs+RAEGFaGjJlBJqk7PBMr+KbSzTCdHB1lVdLHVWs3Mt5sUulZ0mXEZBBQzvTwG9f+K+JWi/90339AL50mdDXqeoJLQr4pGF4WE9drcwxgexVOFKWfn3bMigwCBowKV8YriavVVFeayaRAbb7prNPK1GpiRqC2XMRgex3eYV7DMGUj2yH9Xb214yxgMpMgWHgx1DZ6pf84ngOg7VSADgOu2DZqPn9JEMnUVLqub7WQsY9jgJ+zCEMIVZCtlNXv1KFK3yfu3O/8soEOaNa0bnUrQqRGM8sCy0qlDc1mtyxAMU2UQmFhk1YnsspPmfik2SRpg1vZrmjN+D6D/SeQ4TSVnteRNFOWt1NA0bl94vtzbG67+pV2WxekgLXDxHe1tZ0LqbakofG979F8+OFL6lhfKvBimuYCdqkT+XP69GlUVe2epLNtbe8zzWIAV6/GU724kyTJZWFMei7zXE1Uuq7T399Pf38/UspuAceRI0cIw3CBbOaFPPeftgxVWORA9bmMEOIl+dLOzs5y8OBB1q1bR19f39P+/mxGLsWyKNxwA/lrr8U5cIDGo4+moezZDMJxU9OIbac6uTYTtFQUsW/9Z25Z+iEaLY0VfXUMgy6Lplo2dSMhEaBIsGKFloQobzM7CzWp8LG/UWjU6yQxHPyBzs132Vy/M0JGEWtyK7g2P83+4BC3vd/hu98/RsufYmDFDGVVp45CmM3gRwW8ZpEozqETogkDN7bRQzD3vg9mV3B4r4YQ/5JzpWP4wRPMBrNU7Ao5H9AdmqZEDSBKYgzVQJHgWyrFgeXM1CeQYYjqepRdiBE0Jjeja9WUeRUuXqvF1w48xvIrYybOP8mKgev51dwH6FErKTNVLHbD1WlHKQldT/NT69OYEZhRCmy2r7wWoesEsw3qNYnZqpPJwIFjZfYctenLuIRSo7b/JtyRGl8fK3PjdSEFt0nGjekLDFYbQ0wrLr7WLhLwPDaaw2y6/vfSiw7X5Ze2/RKq0Hj4u00eOZBBN9fw2jt9bL2Z6kdbrbnVbhtcRW0TlGsphIVZwpV3Y5y+CTXSGNgguPnNOUic1DWvKCmgm9/I1GmKUhQ2L7+abW0gMJ/dVPP5NCUhitLbaBp6pYe1q3fSWx5OkwXazKtoO+c7gDhJEtSO6akNeuevvpMoQkAXgHfzRecxiU9jXueZidR8fq66tePUr1QQUqI0qmQCMBouUomJ21/xp5UNdI71ourWJIpQdD39nAiRMq/tVXv3ezoPYM9PK1Byua4sJ3HdtNyhUEgvDIKAuB07p7SjrBIEeiRT0H1xduz816sDhNqGrk5KQ0eeA3MJCJ3IrG717DztuXfkCP7Jk+iDg2R27MBas+a5/bD9mHNx5E+HbR0ZGaHVanXZ1mcKWL/cgeqr8VQv7iyW44QXxv4KIchms2Sz2W7dca1W65oUNU17zhdynWk2mz9V9anwUwBUO1mqz9YG9VxHSsnZs2e5cOECO3bseMZ2F1VV8Tur/R8xQlXJbt9OZts2RvZ+nzdnFDIT9e5JEeZihzSh4scBgyWHwdLCrnQBaLqBFJBkLAwzg6pq2A6YTZ+SC0vCG3mkVUSVLXQlREYhD94dcv0O0IpFrDCPrhi8YdVdrMpDzxVHmPDP0rR7KWeXELRi1hmDnNKbtLwiGhEmHkiVXMvAiHdRrW5DISGDiyo1Ru65grXvb9Ay4bZV1/Gtw18jNgSxTEg08C0N3cyQCcByQt6+9h1EMjWV6H768VSlpKS0CIk5F4YU1PS9bPjjWK0iARHZ/iFWMpTGJHleGknUrgeN22aiDmsVJTFNC1abSyiYRUKnyfRMwv/8dJMkGSAvVK65QefUWYlpxDhCMFPTMX0fddpi/4N1nnwINu7MEa7NYqgmVw3u4r7T96FHkC33pqvpVhrnlEiJYtsUCyv49jcDHro3QCfAJeBzn4xRr/0yH1hzPZDKMWo1qDo22AFfPPrnxElELgYRhDT7T5EZGsOJXO645Y+wRIQM0vakuB0T1RnFNFEsK2XskwTZapGoKurQUPexZBSl8VC5XNfEkzSbxNUq717y+gW5uxczryKKnhY3pRSLqR6Udmap5yFsOwWh882BF4fnX4p5bbeJqZlMGgnmp0x10s4tFYZK04QEybr8agrCBslChrKj7SwUkIqCSJLuc0RR0k2F73crdoGFoLl9Edhpt4qbTUTbLCEsC2Hb6TE1GlCvp+1nlQpKB9y2Lwi2DF5JS4/TzOMOS9w26cl2+kHSbKbvU/s1kFGUstfMSQ3ijlyiA047ZQFqGpsmdD29aCGN94rrdbyjR9H7+pCFAnLDBniZzB7wzGzrmTNnUBSlq23NZrOLhlG93I8RFg8AXCzHCS8O+9vZMHRMir7vMzMz072Qy+fz3b8/E2Z5lVFdZPNcfjBezIiqKIo4dOgQiqKwe/fuH/mhfb6PK4TgXU98mFW9q/jUG/+cxsMP4z31FFLKLmM6Gk7TEKm2UTGM7gmno7czxwR5D/zZaTTdw1YtwkovmWyqnckpeexklgiYlVkskSASt8uCTfuz3NvYy+9v+l1yWokBu484CtjVs4vT4QSxIuize5kwDNSgTpwkOCILakDGL1JQBghoAhJH5JBSRUQxSq4fCVjCwNfhyr4tuLOTrC6vYYXWQw8ZkoxJptRPRk+Bf1yvo0iJa0Ai4Pods+z7YRYjEgSaRTNThcHTbBr6OdZWrsCZHOPw1GGWDVxBb6YX2dGlzgNWHWNMj1Ei58G1K3YzOLSGLxz+Jx792naE30POapLVczz4iM2SngZaEFDzx5CNIRJ0nCRPUfdARpw56mK1VuOvOIJaLKKoKomAN6x+PYquM6q0+ObIt3hj3030Rj08cvphfvj9q/BlH75MsGQLESkoRzcjV6WxSyeeCrj/7hBJQBzHTGe34639PoapEFgaRgQFqeJLiOOIJGgb5ObpR4ki4raWs9MOpeXzPHbqXh6f2sO/XfpH6Wd0Xu88HeNZpw0tSYhbrQW5u1o+PweU2nWsaqmUalDCMNVVtjNL5TzmNb6IyezKDeaxnkkcpyazTs5r+zOdNJsLNK9kMmnklOMgPY+cD1JTWLJkHYOtpSnz2mym8oFcLg3lbzS6ek9hGKm21Pd/ZCoApOxvurKI0/c2ilJWWde7ALv7fc9mwfNSNvwicJs0m6wrrkmfk64js9lUXtFoELVBt5rNQjaL7KRTXHT7+eBUKZVSvS7zZBjtuLROHnPn+Lt5rJOTsH8/U+fPk9+9+yXXsV5qLsW2zj9J67qOYRhEUXTZRistFqC6WI5zMQHVlyI/1TRNhoaGGBoaQkrZNWU9+eSTJElCuVymUqlQLBa7r9OrQPUncF4soNpqtdi/fz/Lly9n2bJlL8njZvQMp2ZP8S/3/ns+9s6PEU5P03z0UdyjR0FRsLMlYqeanrB1vetSBsBx2FDZAKttbLsAUcyKfHqcJTVL0wR1aAJFWUUSgkZIrFks32iilVLQYAQJZQfOnT1IdvkO7tzylu5JexObeN3gLXzuWzFTrQpWkrK4GW0SgFWrljFQHObUsSKCBF0GGLjEikXi22R8OLw3ZN3kb1Co5nj9zTkqA2aac5ok/PqGD2LrNuf8CY41R7il9xoUTWPH0E4eG3+CwV1Vvuc9QG5yCSt7KpyxvgXVMrY2wOqhHmrTo3zl6Fd4ffw6KkO7FoTfd0PxhUArl7HMMHXS6wr+bBXbl9CooGgeIvaINZVMHLN8KGB/s4DTLKNLganEaLJKIlVaskjWDFG8LeSyD/PxvR/jXevezpWrr4cgJHJc3NkJzp05hNN3LdUo4vHJvcTRVVhxA4nEJUOERnZmGSRVonqD73w3h8zlMXRQgwbm6Hqs8hF6BgQFq4gUsKayFq12Og2Xz1XS1fJ88EcKfISmpXWeqpoCRplQJ219kvMTES61/gc++sSfc9Wyq7lz4DUpiPP9bnyUjGPiapVoZgYhRMre2nYKTueD0Pns5MVtT3GqtZZt5pW21KXLvLru0zSvwnGIWy3UbBZTVfntq38Hw8pQ92rU4jpLS8sRnp+u+TsAOZNJ2chGo8ucClW99Pq9WEyfX5KA76clBrqObBcAEEUp83qRrCButRCOg1IudzWjXeY1k6EVtoicmZT17fxGzHttLgbz3erWMETJZtMIu7acI56d7epYUZSuNhbmtWtdVGAg8nmoVhG6jrNvH60f/hBr3bpUx3oJ6dLLMfNP0kmScPr0aarVKnv37u3GY/X09JDL5S4b0LVYgNWrx/niz0tt/BJCUCgUKBQKrFq1iiiKqFarTExM8JWvfIVPf/rT3HrrrQwNDb2g1f/Zs2f5wAc+wNjYGIqi8Ku/+qv89m//NjMzM7z73e9mZGSElStX8tnPfrZrlLxc5iceqL4YNarj4+OcOHGCLVu2UCgUntNtXghQtXWb883z/OOT/8jfvPFv0Ht6KL/hDRRuvpnmD37A8v0DnJ0Xft5JCog9D+n75LQMQ7IAYRpH9LrNb00zK02DK1sneLD2da5957t48O4+RH2Czett3vg6jWg2lReIXIGk2cfX9+xBFxZbBjbRUkJcEdGbZLhwHkYORpj6GVrxUiJM1LCMrtSZ3p/nrBzHUgReUkAlRiCxVZfvf6aHpHIbByZ20GcIJs57HDle5b3vjSlWTMxcke+ffJStS7dzwR3nnpP3cNOS69GsLG9cfjvXlq7kO6e+QyF3lrh4DKm9geh7H0KTCf/4lMb2649xze4eGhaEItXxxY6DYlmopRJCCA6cewI9iFkr1xA5VfQYPnPsn2HFm1CFSsY6h+JVaGoqcWxQAIYGIlatOMdXD++lNrmZeHIdTScGBKrSQgdK5QwzCJSmix0KHjhxD4GMuHbJ+9m3ZwmMXs+ZwgwblugYhkVQikkmdHQCFCJAp0GJMJMQJSpK4JDR64xNj2NlBnAUi0xoccOSnawpruHh6Dv09Q3zlivfmbKbHeClaakTPEm6q+TYcVL3u5qGy+uxJOtD7LQ4N1Wg2RL0ZZuMySfQFZ2NA5vnWqzimJCIiCRlJlU1bbFqSwuSJEnrfqVM81iDgMj3u81SeF76OW02U1DY/uGTUYT0PKI28ypyuTTWqi1NgIsqVudrXvN5pGWlmaK6nhqVskUU0+TRI9/igZF7+d1rfhdN1RdqU+clISwA9a0Wqm1Dx2RVq3X14J2yAdq1qV02c74rv5MA0F7VEwTpBWSHadW0brLB3Uf/mWl3ml+78XfmwO2lwGUco0qJ0tYZS8eZY0k7wN8wLn37+WUBponIZhFJkhrrms2u4aujY3X27cPZtw9z1SqyV1/9sulYLzWKomDbNqqqMjw8TBAEXYlAs9ns5lRWKpWXLafyUvMqU/nizuXS8vRc5uU2fmmaRl9fH319fVxxxRXs3LmTr33ta3zsYx/j3Llz+L7PXXfdxa233kq+UzbyLPf3Z3/2Z+zcuZNGo8GuXbu44447+Lu/+ztuu+02/uAP/oA//uM/5o//+I/5kz/5k5fhGT73WdRA9aVe/SdJwrFjx2g2m+zevft5/UC+IEZVy6QRQUj82MfSUse/ms1SvPVWTjq72Pvdk2ilEtHs7NMig+IgSHVz7RMvIu2EF0DWB7XlcX/1/88Nd13Pd8YeYtuuX+Hes3vZNbiLYgQPfKZMNPbLBBjce8Zh9c/D90a/w57ZQ7x9+/v49ukJGmzDUByGSlUazYgoKhIZGtW6RJV96EqILqrEUiO0s2TNEBlI9HPXoJszuIlCQzHBMfnLB+/l+t0qdy2/jf2je4kMlWVmP1kfglYD1Y8IQo9K/zBcSF97PdQZf3Q9GdWkSoIKPHhfho3rQbQNWWq5PBdx1AZWD564Fy2X54q+DUgpu2aqWIFta6+n+MYZvv3lACtUMKTL5t1llm/VaNZB80cZXHaB4YbKfQ/ZxLKEpY5hm32s33iE+yfrxNk849Q5UT2J2lrKF+9t4oU6jn89jzYybHqvQmJplDY8wUz1DTRCAwOfkjVOFCd894s2PX0KajFLrd6kGTQwyJGVLYL8LGFGR9NNNvaspyexkXGM1tPTBaWyHfKPEGj5PLLtYJ/PYkY5m3ASvvsdhZMnUkY1ULJ4q2v0DV9gy9prUyax0zaFgtacB8jaJqK41UoBcRtY6rkcQteJ6vUuE4llpb33bed80mFeDSNd3V/MAM/LB13AvJbLqdmpDbBEB2wlCVGjwQNn7mNVaTVCCBoWYOgQzdXKdipOo2YTpX2SUXK5tDa11VpQqtGpU03mlxjMSwXo1qeqarcsgDbo6+bFZrMpuG3reTuyglBXwV1YkdypeRWGAUmStmMZRhfcpi96u/43SpMwFjyvjg62XRagFYupljcIUnbc97t5rELX089Do4HoAN726+2fOoV/6hR6by+Za64hs3nzj8xjfalmfjyVYRgLVqIdbeu5c2nqRkfb+nKzrYsFqC6W41wsgBpSUP1ieV2e7yiKwpYtW9iyZQvLly9namqK66+/nm9961t89KMfJZPJcMcdd/De976XlStXXvI+Ot8ngHw+z8aNGzl//jxf+tKXuO+++wD4hV/4BW655ZZXgerLPS8UqPq+z759++jp6WHnzp3P+0v/Qlf/UZKyv62w1QWqnXlsai8/7Ksx+Bu/gXv4cJoU0GikoCSKEGGYrnnjuKtrhfQ8X68OU50x0fRjAFghtGbGeWjsMVYt28qRxzSmxgWSEFVRmGoOcPfDKtn1JmoQMjt+hmrrh5T1bTgswwsSiDw0IjQPElSalDCkgyGaqFLFFpN4gSDRl1FzQhQRoSUeWZogLEIUZppThG4LVcLUxAgbli/HLvem8UARfHzPx6hYFTRVo2XCKnUjsyKLZmfJRAFREtEUWb791OPkfFAaqRHo4hO8Fpooswkyiin1LcXXUqCaBAG9SYb+zb1MW9/jviP72dy3jls3XYdX85COk76XeNTKD2DuPkx/vJ0xt8673/JrfP/kUWbcKkOqxfnRY4xHVZRzb6YkbWJDkMhZiDPsfdJC7VMpFk+wZnOdvUeqSMBNlhHHkvHJGhOTARk7ZnBJzKnGIDnLZOmOQyTFIo+ee4SpvirvuvHXOHHhIJ/84d/wpiveTMkqpaAym+2acS5V6CCjCNMJURsD7DvbQy6boKpgRiGtg1ciBs+nulTHSdfbvk82EARmCrSiNpMvZ2fTbN/2ayuDIF0/tx9PaBpJvY50nHStnSRpqcC8tinh+5c0UwlVTRlwRenKEzqaV2XeqitxnFTPahrcM/0or9dNdFTyXvp+qsVK150tVBXiOE0maGteF6QNzPuMXJwK0HndpOelwLITe1avE7e1pUpbMxs3GilAbTQgl3uarEAPY1wrTaNQSJMJEtftvnaJ46TfW9ed08x2wv47eartY4hbrW4CgJLPd8F1NK8sQM3n5/Jg24w0to2SzSLnFxi0wS3ti4ba175Gs5PHumvXy6pjfSZwJYRYkFMZBAEzMzOvCNu6WIDVYjrOy1WPfPFcLpmvrVaLUqnErbfeyq233gqkW9977rmH6enpZwSq82dkZIQ9e/ZwzTXXMD4+3gWwQ0NDTExMvJSH/4JmcXxCfox5Iav/arXKoUOHWL9+Pb3Ps0+7My8EqH5w2wcpmAU+vu/jOKFDj92z4O+rSqt4fPRxEILM5s1kNm/GO3kyNV6dPAmA8H2iRgOrWETRdYJag698WTB2eiNGvJqQG5gdmmBt7xRGJkegQpgEjM5kcBWDnFJFw0PImOZ5KK9TqOoRwrTArnLTazzu+YZCmAialNAIsXBQSMhSw5cmNbWATLJkpUSVdXLhNJrlUWtVSESM0GdAa5EvHOX02BTTK2/FLJSwsdnSt5nhwnLwPJRiL64heMo9y9q+K8CBm1ds50sP2bS8EKJRTMVGyIix1l5cGzyzvZqRaXaplPDAYwXOPPYOrMTh7knBdbcHBCr4GnjZNBg+bja5c2AHT47ch1JyUilE23BzV9+NSODR+gG8qsQoTqI2zmOENVShULMhayTIQo5EQCZwUeMWVelgE2KKADxJxpe4muRN78mz5x8/g3Dz5M68HsVUqMYqimoivIj+YQNW/BVXrXs9Nw2/HSklf3nvH+OIceKeabxmjYP+Ge7Unx41tcDw1AZ/WqkEQlDuWcbyCyphUoXQZ9QJ6c/0ghSIQBDV613tZux5KEJBdVOgJXQ9zU0NAlTTTIGSlKnrvf1ad6cTnO95iCBImUYp0ebphpMwRLblGUomgyBti+o2M+n6XHJCJ1CftFhAZLPgOBAE5H2QSKJChroFSj6XAmrfT7Nfk2Rude66l46Gop2x2gGBbeZVzWbT/F3HIZlfFjA/j3We8Yl5yQlxrYYwzW6JQWioWLUkvZ/2ql621/Lz81Q7kVcdcKlks0iR1vx2QHfHlBU3m90Itqfl115CIyw9DwEo5XJ6/I1GV+rQSRUQUhK3WjS+/32ajzyCvXnzy6pjfS6EgGEYDA4OMjg4uMCA0mFbO9rWfDtD+MWcV5nKF3cWy3HC5ZP56jjO03DJwMAAP/dzP/ecbt9sNnn729/Of//v//05Sxlf6fmJB6rPBzBKKTl9+jTj4+Ps3Lnzx2p/eCFA9fZVt9PwG3zjxDcIk/Bpf9/ct5nPHf4cYRJitCOarNWrsVavJhgbo/nIIyhTU+mJyXVJXJdTZ02OjWaJDZ9WpJDEBiceXsfv/sZGZpImRgxJrc5wX4OzTykIoeCKXkTkMzjooqOR80CPElomOFhpFrpwCBxJIAvUSAF1jjoWLiVdYlYmmG5UcOMyJT3BcQ0ytEBCkJTYettprlz2Wj536LPErSZ95IhNHbVU4s/u/S9cu+Ra3pi/i0Kk4UoYzA5ybvQYQVDlhmuPcd8DeTyZJZB59NWfRbEa/KvNv0LWyHb1hXG9zuHjJvsPKAgrwkngqXNFco9Ok2+/NUq9iTpkdwGUJhTUlpvqOzMZCAKW5vsB2D++D0vRsXoGqIbnUHJZVFWj6MLOvnWoUiABre8w+rmNZAKPRGZpyj6MvMubVr4LOwOyUcMaPMd0lJCc/lkSNELhkkUQCYswUbBkjNpyukAqMjVapuCPH/pjVhZXkvMgcT2mxDKaTUnZalIspSH/ajaLVBRog9UO09ar5Mn2j3L6SZfAraOoPkmSISn4uLmwa5LqyEnefd2vYKsWwsp3u+eFEGBZ3VV4Zy4GT0+rIfW81BCkqmnGbVvz2n1+SURkGhhKBjVw0mOfX7HaTjDAdZGui9bWvLYMkKRZqjm/vT4WqcHokmkDHRCpKKkONI5TANgGmIqupyv1+SCwk1EaRen3an7Na0cbGoZpM1WphJbNpk1yrVaq2wWkAN9sX1jMMzkp801s7ddMa7v6IXX1S89Lc1rnsalxG3TPz3NdoOVNkvT9ESIFArkctOOtREezq+spaL9E5FWHzXX27cM9fBhz9Woy27a9pDrWFwICLzaghGHYBa2NRoNcLtdlW1+Mte2rQPXFncuFpXwuc7noaX8c138Yhrz97W/n/e9/P29729uAFOSOjo4yNDTE6Ogo/f39L+bhviizqIHqc/nB0DSNYF6MzDNNFEU8+eSTGIbB7t27f+wvzwsBqmPNMYaLw5z6zVOX/Lsu0rVWw2/Qk1nIthqDg1Te+lZGh4awzp1DvXABKSWtQKJLh5xhouhZWq1xFFdB+hqq76Im4Nkau2+0OH/eZ2QkwRY1+gbgljdmacW7WJIfoiXTE26QKNQpoisZDKWKEaeMjG0Lqr6Ba8Zcc7XDa6/P8eDZ7/LAqYeYefgjBOhYzKIgMeOAtckGMqVpZm0IchbSMlF8n3h2lp9d8Qb6KsuQQYCmqJgR5AOFUqbCFye+wwqjj/y1DnK0j1xzB7PVdTTKgoHK8jTAXVUhSVBMkwuTNrbSxBAJiSrIilnGJy0aS2CIAssLy7oyib9/6jMohQK3rbmLml9DFQYySVJQpCjEJy3MxgCvMW/kpvXbIE7AtEgmNnJ65CbqTgO7vJ2+HS7XbMvy1W+eJZ7NUbBrHNoDh4728773RdhFhTs3vZkv7P8Mpb5zXBgdRhcSQ/EwDZXNK0KevJBjXLT46A/+lB09WzBDie74eCKmqodEAg7szzNySkUoAilL3H6bZNVgvcvydRuOkoTEcXDcGkcnH2D1roT9j29C94v0LAnJDt9P7IVpXJWmQZKQuC5Dfo4kSpBqmK702+BpfpZqF7zNY3WFbSODIGUZIX0vbBtEm7Vtf2YVRUGvVIg9jx8ceYz7HmqxPnMNRjbLVder9GfT7FaCAMU00ySHjra1HahvxhBZOqvz6/lZPYfSckmEukD2MD9iSymVII7T59jOT1XaQdud1y3u6GPzeeIO89rJY+3cr+fNNUa1Exbk7CxJvU50iVSAq4tb8XLeQqNYpz42k0ld+W2Ws3Nh0dGx0r7w7JYgZDJzJQjteC0ln1/YmhRFXZ1p1E6+EK0WSm9vaijrgNP5FwNtcCqDAGEYqJbVvejwjhzBO3IEvbeX7O7d2Fu3vug61hej9UnX9UuyrQcOHADoZlQWCoUXBDgXSzPVYgLUlwP4ey5zuYDqFxr4L6XkQx/6EBs3buTDH/5w9/+/5S1v4ROf+AR/8Ad/wCc+8Ql+5md+5sU83BdlFjVQhRSs/qiOaFVVn3X132w22b9/PytXrmTJkiUvynEpivK8u6v/557/yUcf/CjO7zso4ulfiCenngRgpDbyNKDaGa1Uwlqzhko2S/Pxx1k6+hgGIUoiKCsRmihTXqHxJ0/8V94yfBe3Dt9MWJvFz1R5+8/3UZtNiF2fyqCFoilYSR89mV6emjlKf5KlvzRCUSyHWKGm6XhxgQxVJIJcZoxoy99R2ngLRvkmemf7WJXbymlchIhpUSKWoEmJF7TQnICSmxo6hKHh+ylQ2F7Z0n0+K4e3cOHY/WT0DK5Xp6hliPSISFlK89Sd+EoOVYC2dxMnV0es3Wqmusc2k9Vn+5yMdMzScvTEw2sElPIeeQ8GewdZPXxlCrQ6VZUxtPSY/7LnL3nfip9lIKoQVavUanDsO9cy7dzEF45muHJTgaGbXZonM8RnbmMqZ5DVsuQn72CbJ1h/RYMv9jjMtiBbVMlqBvXqBF/66gQfePcVlOwSr19xO+7gIerfPQuzK1GLvbzp9TZLlzT48JLf5omxJ9gfBviWSuRpBJZK6ArKVolRr8Hh870M5B006SNjlYe/LbDfXuXBqUd47cB1lPXighrZg8FpEiC0RrC2fx9Pg6H1b+bqJe9F1uayRj/71OdZtWQTV5WvhCBAui6SdoFAm5kkSebAWz5PIgRKm5GVrVb62TfN7oq9+72YV0LQAUESOH58LW50jnxJEKHx0EM6t9+WIYo1xFSLQibVpdJsovT0oBoGcbOJFoPW8ujtLdO/evmcLrPZTEsyymUkaSWtdF3imZk5g5GqpoaiDkPa1rF2mNdoHoibz1DJIEilEJ34sw7zmiSpZlRVF6QCKJkMa/NXdu+3EwcmhUhNf50oLSFSPW/b1d+VFVwEbqNOu1Wl0pUPJK6bst4d0D2vbKSbHTs29rTq107ObifyrtPUNV/KsSCPdWqK2W98g8YDD6Q61p07u+D9x53n+3v5bHMptnVmZobz589z5MiRF8S2LiZN5WIBqpcD+Hsuc7mAasdxXhBQffDBB/nUpz7F1q1b2b59OwAf/ehH+YM/+APe9a538bGPfYzh4WE+97nPvchH/OPP4vjG/RjzbMzm6Ogop06dYuvWrc8p4uGlnE7Y/c9+9mf5w5v+kF1Duxb8fU05XbslMnnG++g8X8W2Kdx4I9uuvZbJpQe4+89/gNaaZs1Khd2vmeRjB1uEtkZfbphP7v8UK5dvISugmI0QRRNUJV0Bdx5bH+L96z+I1HXe/V7BQ98Hb8RDU0NCoVKTebTBb6GaTWQUI+OYrWuuZfXQdfzZAxG616JIgBQSqWisvTKDbJvF4tDnHUtfj+uqPLivxOzMDGtWtFi3KkveUdGcLOMi5ldv/V30SOGvf/CXxMd2kk1CYjMkiVvoUuOJxxRWrZiro5RhyOYtLmfORkxM1EmEwKzk2fWaFvc/BlXh4kQuVps90hSduFrj2Jk9FFyQcYhsZ3B+5ws+ZpihoI7j4/HDI8tZtsZFTq0iqzrUw9PYpTUoWobj52O2b6tju1AQM7huA0crIAgZrdaIHYdv7P08jhJx9arXEG/4KqqE2694A2sHdqQ6TMNgR/ZGvjp6L7pU0IKEsXgUXarYXkJZ9iC984xJh4koZHPPemIvZHa2ypGRx7m2so2+nuUpQxZFSCBIAlom1G14ff/ruOf4N1HrTcxCgFqogKIQNRqcmTlFScsjcxtT3WMcp+Yo3yfy/dQ0ZaRs83xAJjuGpbZLv6N/VHO5LqsrfT+Nv2ozlonvE2PQrCUI1eOC16AnZ6PUPe79qiTwQ2KpklsusFbcz6pokLDZRGoawjT5gzv/E7Qcal6NGfc8K3vWotp2V/MatZnXS67ZuShtoMMKG0aqQ5UyBYGOk2a9dv5tO0kivmh933HVy3bZAKSre6FpzLgzhNJjILd0gaHraWUDl5IVtOPClGw2TS5oB/t3Uh7UbBZhmim7PV/uYBjp853fulUqpdm6bamDDMMUnF6qLODiyKt51a1JGKaygIMHMYaHye7ejf5jrgxfahZQ13UGBgYYGBhASkmz2VwQrt7Rtv4otnWxMJWLZRYTUL2cVv8vBKjeeOONz3gx+J3vfOfHPayXdH7igaqmaZcEqkmS8NRTT+F53vOOnnqpZubESjj8Vu6eeIoP7Tj/NKA6rFwF53ZTm8rCMxC/qqp2V7SQRgrd8Zs7uP03tuMcOcp9X/5LWq2ElgVh4BP5DYSEKJ5bb3aqWztMjj87y/joKNlsllI2S1yAJddOcehUFqk7hMLE0iPcs3cRr3oCXTe7TJ4J3HGzyj3fL0LkY+GxY2dEr1UjlgX+xc3/OwU1Szgb88+fVmk5DaqB4P7He1mx6wijBzZjhFs5ctBixe0aG3earCttYibTzzkhMeMqcRLjiH58NQPUFph7jGKWN79HYXxUIoVKf1+MiBIiFc7Xz3Lv/i/TCJrEMsZUDWYUj0PuCAAyiZHNJk9NlDh0qgBIFKVKrERoScy58ZiGJqgmFllZo9U4iRYXOT19CiV7LQNrFBoTGoQhalRFxjm8gTGEtZNEJkjPZ+aUQ3T6Juo6TC2vpODNdfm/v//n5HOV9IcxCBnI9BE3Rwn8iOmkSXlZmYnjHnqokknq+DWHQm8Jo2Lha/BE7TDDg+tB09IO+yii5JvkWyZFU8Wu2Gn9qKZycPIg3qjLrqGrEIaBY6tEQiJI3eiKbUO78i+u1eYAjaLMAb12dW1n/a/Y9lwOaiMtOFAy2Tk5QDvHlCThwpSJM2Vg+Uu5MOuiLR3FqS1DsS2WlBqIJGZqJKZPDlLcNYRRLKZaS1UFmRqsDtUO8K3DX+F3d/yr7gWfksl0q0znr7mVNpPYYV6FYXTjpjpRX92GLSvL2KRO3IopFFvk83JB7un8++3oQDvNXkn7tQD49sEvM+tW+dC2D13aOAXdMoW4nd4gSKtfhaKkgLHDcnZkBRc3abWlAvMjvhTbTg1vcQyTk92LBzoX5UlyyfraBVKDbJbY99P3Tso0K9cwupKIqFpN81hXriR79dWYa9a8YDD3coFAIQT5fJ58Ps/KlSsJw5BqtcqFCxc4cuQI2Wy2G4E1n219Fai+uLPYgOrlcKydqtWfpln0QPWFrP49z2Pfvn309/ezYcOGy+KH56MfVflff/mzENwKUuHuvuO85V/P/f3uuwX//rdug+ZGfvmby/noRxTe976nM6uKolwSmAshyG5cz/u/9il+c/07GZjdQF6afP6HT2LXr+O4SFh+g4mWsbptUYnv49VqTM7MoA3m+fqxb3Jz9rX02AN8+cC3MMS78IVGRdOwRBNFetAyiANvAUu0e1fMsiVVZmYExcEsw8Opbk8VCj0ih2pYfP1QlZFmiV6rhZHUMeIWtUdXks9mqGkzFBTJvd9V6Otz2GluwLtxkE+cVjGjJsgIjVmuuTJiIqkzHdXZ2LMeVai4jYDR0w6abbFspYp0miAlmQAUIfB1QX9lFTQdam4VO5DoboSnQ2AbnD1q8egemwSFIJAkyTKEUmNAqVNUa/RsmOXYEQU36KdgDJEkZwkHHiSub+KtVy3lP57/HtrYdWQSj4G1J6iWDyCUN0GxyOi+zcwevQlTBlhCcHgKNhYVlg/p2JrNaPUMahzh2z79gysR0wazF6rkEp0blm9j/PUa9zxQpDWrU1jRw123R0y76Xs/4Ux0W7kApqYEI4evwpkdYmY84WA0Qs6Hgpphr3OMamOS7f07GT2nIKdW4xRzTOkBuhdSnPd56gTJJ/NNU7Sd8DCnvQxDhGWhFItEccAf3fNvuL3vdsqNa2iGJktWmKzoT3CaCYd+0KCnb4wToxmKRg/OVEQh72NbHmPNKWKjCIlOLruVwQFjTleqqnx93z+xojCMHrhoCSTZDIi2/MNxSGRCLWmRzfdg+nHXZCQsK2WuL4qb6qzlo1aLOIjY8z2H6owgMouQJFy1pUFvbwrilPZ9dDJemZ5OZQC2nebbtssCABJV4NpKKgu4uD42itLfIE1DJskcYLzI1T/fVDY/skqoagou2xcVaqmU5qk6zhzgVBSkrqO0jXDz3zehKKmWd14xgshmEVLOXVDEMeh6KqHwPOI2q7wgj3VkBH9k5AXrWF9JEKjrOv39/fT391+SbS2Xy/T09Fw2YOUnZRYTUL1cVv+vVqj+BM7Fq//p6WmOHDnChg0b6Om5tM7zxZzn8uN74gT89V+rqKoEJYYEPvs/dvKffwMKBWg24cMf1oiSJmgesdLiIx/p4eabA5YuXXhfzyZ1sDWbZl+W//4/9vIXH6ny1JFvsSZ6isdHBdOnQ97+Dh/FSCsXqxMTNF2XZWvXMtUa59jMMbavvIaBQJIzRtEUDyNKsLQs9biMZ49gay5RvHC1CjA01GTJUoFixQhNRxSLRDLmB0e+w3BhmOp4nUyUIEQZRylgJw4iUbHVWtrgZBTw4hzV2RqWFXGo9iWW79KYPrubGc9DLH2ENVt+nmZD477jD/LtQ1/hF7b9AZ/5eELgKUgZ0N/n8/b36JhFm1iAgkB4PjcN70IMGByoP8Wx1mkcEyIf4iTixKkyaCb9xRlmpyWxFCieYMPVsPPmYU6db8Dmz2JXV/PadT/LiHmIh2tTKduoqKhLHqW84SRSUymUVzF1OiZxHKzJPKUTu3HRcVSNvPTwGgqP3dtg6dskSi5HIxjFiBL6zApjF04wUhuhmVXI9w6xYtkmlvf5zMqv8/D5x3jXGz6K9EKqrbTMwHDSla5i2zjTLZ54IiEvPDL6BIFYxr4jgwxt6sXIFcBViBL45JdVxs4J9PA2Th9W+cct/8TKZTl+duf7u21Mss1ECk1LV97NZro2bgM3tR19FDca6b/3PJIkJk40Dj2xkXKooGkhI0dDWjtVBlflSVSPckmQ8fYxXNiEqi5nYKnB8eNw3jtF1m3SwzL8zCSO24sZpuBbAo9P70UUclT0DIoE2WiQ6Eka6wS0GtP8t31/xZvWv4VrB69GUdVUzzk/bmoek9jVgCoKM36JqXpIT8kDGriJyZOne7ltXbzQQNbJeW2zp5diKNVIYnsp6NSKxe4JOgnD1Oh1cX0sdF/jrvFpHrglSbqZq51Ugk6SAu163IvBrWgD1wVGs1YL2iwzqooIwxTgV6tpQkOnBGH+48+vfp3XjoVhpJ+FIKB+//3UH3iA7PPQsV4ubOXFbGsURczMzDA6OsrU1BSzs7OEYUilUsE0zVf6cBf1XC7r9OcylwuofpVR/QmcTo6qlJKRkREmJibYtWsXlmU9+41/zOkYqp7tx3d0VKDrEkUalESZWa8KSsLUlEqhAJOTKTGWsVUIwDAEqpScPy9YunQhm6woCmH49GirztiajRu5uC78yV8PMKO8iT3Ga9itH8K5cJJraz7DS0PGTp5EJgnL16wB30fzI7QE4nod1Upo5R2Gr3uY6Ue3EoU5Vg81ecMbSzzh38bSnrVpLI5ldTMpO+aVuF5PMzCBMA74+plvc8eGN1Je4nH+8DKU0CefeIRkSDIlat4ZTC0hIxPcxKEwlOfTZ75LI5ilVDC55kaLh849TKRArArydhFbs6EVcd+XG7QcDewieuIyPh6w74chO3cFCAF1M6FptEPPpWQr6zlg/4CmEvPWFa9nhTHIOeFhRTWMjIHSE+LWHAaXjnLnrauJazUGcoOIXp3APMiWK9/G2FhMXEtQcjm+cvQLadyVE+BGDll9GRGS01GdMxcEGgq2bIFMCJQMoczgBnWQCXYg0SJJzYYrVl/FkYNfwEl8iq6G1nS5UDtHM2xx4/IbuW7ZdV0n/rmJAdxjb2da0xgphgwPB7RaKp5WgMwsLc8Aw0V3NWSoU8iUmZo8g3duGf4pD6FWifQMzaSAeeRm5JLH5ti3zkrbcVLGLkm6jFqHwWRe9JFSKHD49AFC3yM7M4hsSDJLMyRCwXQbHDqQsHJ5jUTatJJhZqMWTlRgRd7l6o1N6hMKp2YLSJHQs3qaRyf/F1tnf5nB/lXdFXmvViTvg2oImhaomSxmrkzSbuUSukEiQDRaRJl6+l0UoltYkDjOgixU0alYTRIiPyLRLMZpMeNMsc4awGv4xDNxyrwWCgtzXoMgDfS3rIVmqEwGJ6fSUtRugxeQ1scKgUySp0Vpde93vis/jtNwfkVBtvNUUZT0/trM+dPSCuaD2/ZvXux5XeZVKKkWvZMTu6CJ6+Lbt4+za9DL57ssML5PUq8jNC0F3W02uZvHumlTmsf6I3SslwtQvXg0TeuyrceOHSOTyRAEAYcOHSKO4y7bWigULgsgAy++Me2lmssF/D2XuVw+n77v/9RdIC16oPpsH5zO6n/v3r1YlvWiRE891+k89rM5SjdskIAgDjWyhkq9FWAXI5YtSxmawcGUrAm89MMZhxposGLF03+Mno1RtTQLN3I5cQJqNSAu4ooiD0crOV4OePuSBzl7/gvkNI1isZjq4oRAL5Tw9DTvUpDGRUXGYdzrHuE9q3+J1YPL0TIl7hR3pSYNKVE0bcFJFBa6vjWpYUQwO3mOTG8WZ/tXGJ74AH7Vwxw4yBuvv4aPfSZDK9JQ1CzXbW8ymPMpuRCEEec1h5uKg3AOtASC2RnGvCrn5CyOEjNbA1ON8bwLBKg4YgkTXoRaTEg0lbyXoHshnzv4WS7MnuE3t/wK793w7vRA2yfnK7ac4bHv53AaIWrooqktNl6vpgwSkDEM3r3xnZyYeAqRzaJLQc6DqDbLVZn1rF+3jLPRNI+eeoA7Vt/JtuxdfO3vI8TsjTTCIUxcjDhAxBGqGrJ2exGtArFloCWCoitJZmdpOTVcHQgi9ozvxYt8Rmqn+O2bfj81zdTrnD4FJx+xKSU2TlLmWw+VeUMxpqccoQct8ooCCIzYBFmn6Y3hz0yRJDH1uIyFiU6LjAjJmSGBWMXrtq8AP436EopCFAv2H80xPqlRMets2ZJgWZBIySH3JAY66zLDJEHIgSci7nncpEGeYuZmdEVnujbCiDPF5oFrcCKNTLlBT8Hj1OOSUlBiys2yaplOs3manVsDzhbuoZytsPqKK/nh3jTcf75L/9dv/X0AHjv7MFYI0nchV0YkCSIM0aKInE+aAFAqpSxiGBLOzqaVrm2DUuy6iHaRgbAsFE2jFLrYkYvqqvQYA8w4GVavVUDU57Sp81hLII06M4w06L8dN5U4DplmjBvEqVErSdJQ/otqXhdEaV1cHxsEKZOdyaRs5rzmOcUwEG1wfHFagQxDiOP0YkJV5+pj58lChKahzM9TnVfLPL+6VbEstEqle5HQrdZtM/e0zVndPNaOjtbzcPbvx9m/H3P1arK7d2OuXv203+7LBQg822QyGcrlMitWrCCKIqrVKmNjYxw9ehTbtrva1p82MPFCZjEB1ctpftpes0UPVJ9tWq0WjUaDlStXdmvCXq55rlmqvb3wiU+EfOhDOs2mYN3yEn//9xGGkZ5IbBv+n/8n4pd+BahnSQz4s7+IGBh4/o9p6zZe6PFXf6WmzYltmWsUQcPViTfoXPEL/xprdJTGww8Tjo+DlKiOhxWCb6YGmg0rdjLjzyKnaxiRJJIJ//GBf88WezWvX/M6bM0mYS4ap+N0TjprSE1Dz5UIFdg7vo+rVl1PUjzBL7zd4q+f+CZjM6e5b+xxittd7HAZv7D7XfStSFuHFKEiJOQ9IAhpmaAkKYgeqZ5kZvIsgQLxQMDYTAVTlxQUQSGaYWUlgSRHoggs1eJn1r2Frxz9CmGrgWNA3sgRN5tMtiaw/Qbj8hEq1/SjTeykqfgc1P6Jq1b/cnocbZPKsdN7ODZzjDuX3EyfVmJ4yQZEJsNysRyAidP3oYQJSqbA178Ddf8cCQIFHx8bDwudmPVLmly1rkk0A0UsXFuBIOHbxx4gemo3uZleYnSqfSM4liCRJxkZe4rjs8d57eY3ceiCTZKVqEKnLJrkmeXUUZPlt+ls2RLzg8dVsi0LTU+oDe8hMSWnaiOoCHLmWVQCajIFF5HMs3qtwMYjEWkcU+K6PHRvxOkRgeNK9tYtAvV6qAABAABJREFUvvJgQu+mL/Pu67fz5b2fIWdk2XDzv+bUGY1DRxwU20PDpaTuwlUFLW8cw58inK6xbRNEnsr52RLLrpji0OgxVvUmTJzKUV9msWb9CsT4l9F0lz3HHwAJspRHzVdSBtd10zB8TeOKvg28d9N7sDV7AQA0Mblu2XUsswfSaCsh0Mpl4jBMmUlgrHqOvRN7uWbFjRRivasLtXTBrpvzHDogiZsOVyxvsXppgqLPMa+Q1qEK24ZcLv2st8s2IAWRSrHI7mXX4AfuwiKEdsZq4jjpBiKXQ9H19HviOHP1sW2TlZQSeXEqQLNJEgQwr91KdkoMIC000PVujmrnmC8Gt1Mjdc6PqiiZIiuWhWR1dy5Kq11dGtdq3cQDxTBSU9p8TXJbQtCtfm000sasdjsXQUAwMoJ/8uQldayLgQW8GFhpmkZfXx99fX1pbnWrxczMDIcOHSKKoi7bWiwWXzZwsVgAP7wKVJ/vLIbvyEsxP9FA9cKFC4yMjGDb9ssOUuH5hf7feKPkyJGAZrPbxLhgrr1W8tXvjLPpv97J7/3M7/G6Gz54yftRFGWB6//i+dRbPoWlW/zWxwWVCszWE6JARQjJlVfOcNttV6ayiN5eslu34p04QePRR0nGL2CVKpgyZX7efsVbuffcA1wYPY4iJdL1UJseB7zDGFMl3rz09jRTsx2NIzSt63SGlFlFCBJdRbWyDGYGuL64lWh2lsE4SzVSmPH78UaXo4kIwZxxJ7J0PCkwfI1lhWVYAfRWlmD29JP4BYJzYMSwZdNBqudL1GdX4eh5rrmywfoNkkfvbWI+9EvUlQyPmr34arqxnpgYIVNaiZLJ8N8e/5/ctOwmKvllrMpkWL8NDtTHOXWySey0kEZqYJFI9swexlcjEIKNPRvZ2LMRXA81k+HBI+fY952teK1tfLw6y7lZhUAIYr+fDC4CFzIT9BVy5Pr70PKpdvB1q+6i2prmhHOK0fO7cGf60F2BGmYxa8s4NiXw19Y4LWb4/rmHec2y15CLPaZcSaia9Nsl4hZYwiOuuwyv0pmwpnhy38PoWZ2inCUIoC58Cn1LibLTWMZp3P3D6DLBqIwxtOM0B06HbO7bTFyr4QeCYxeKuKFHdaaBpSfYfsLswWs5tiEk0RR8TSA0jYlxAZZNRhkgH9To0WcxCzDLGPsnm2y61mDTcp/zZ2LCap18n87mVdcTN1sousr9Z77J4SSLZ2s4GY1afRYjAVmtEYeZlAnNZtM1dBRRiBQKpbWouVzX0Z84Dirw2nWvS5MPINVQeh5KFKG0Y7PqjUkeP/0wG3NryJeGEbkc0nUhisgrda7ZNlexmnRaoqRMjWWaliYetFppGUGSoFQqcwxpG0QOF4ZT3Wy74jRxHERb0yvaRQhJo5Fe3GkaSiZDIsTCsoF5qQBdk1Q7SktK2dWXyjieiwRrPz4AhoFaKDwN3FaDAg/+IEY1NBKhcvq04OabVXIimUsJYKEs4WnguGPyatfixtkyx48rtEZnyedmWbEywSraqa55Xh7r2Nfv5+Hqbo4quzGKPbzrXZIX2Fr9ssyPAoFCCHK5HLlcjuHh4S7bOjExwbFjx7psa6VSeV7Ss3PnBFNTgnxesmqV5Nlw3WIDf4sFVF9Ox3k5HcvLMT+RQDVJEo4cOUIQBFx99dX84Ac/eEWO4/m2UwmRpsa85wvv4eqlV/Phaz684O+D5QK/98Z3cPWqTS/4MTf1pbe98UbJk0/CkkEV3w8IAoX3vS/Pxb+f1po1WGvWEIyO8u9WrMY9fDg9AboumuMTq+DbWpfBMWJQmulaUisW05YfVe02HqEoqKaZnqxdl1KssyW7ju2VzewavgaSJDVjja2HE3dgIqmLDJ/8fJEPvKNGuQxakrqnr1i1jYElaxGPp+DOaLjYDR8poGkCekjvVffTGz3Ce7e+GzNn8uSxPE/saSFVB104PP5AjpnoXTiqw9cnc/ziOzQynkcp0GlOzbBhYCOrBgbSXNjCOrZu/98XsMQdI5GlKN3WoNjzUA2D2Zpg/70riOIqkVbl/PEWilvAkkUgwidDiEHGEfiGx3Bfg7gpUGwbRdd579b387G9f8v4oSGEDvVGL2gR+bhFFh/l6HaMTefwdZAZmy1bIk6fjQmnWzQyWfLlHtZv84G07jRyLxBnZ6nnirx304f42A//GiWIyEfgBLB5V42k8klqjRrDA6s4PDpDNlfmyjXXpTFOJFhRg1ZToNm9eFISJxJXJEydDdnQv4FzwQRJGJJTPOKmwvJyFqVQ5HtnzrJp2GftxnGOnbqHFQPrue/BPo6NBdQnZjkzkWXJcjCsXvJ9Kqez0xRbMb95xS8ghOBE/RR/630G2TYsddb/qmkiLIuZyXOMN0ZZFa5CtzIpiyclo9Oneer4fnYMbCdvF9PVtxBdp3oQwMiZQZoXbuGMlWdgS4IWN9KCg1wudfpqWje6qgMA5jvyO2ty2sc03z3f+ZxMeFPEcZWlhWWobQ1nN+i/82+LxXTzMK9OdcH6vdVKGcpSKS0L6JQYtJlXkcuBpkEUXVJWQFtzKjQtZUPbDvbjexMsPcQq6CBDnGmX80cTrliXzNURd/JcO7KEeRedHdCutrNc40aTQ08qNJsCI28x1jRwjtS5cquLmJfHGjZc9jzko0QPsq28jxMnlvLF1m7+t/9Q5jJIC7zkPB+28mK21XGcrpk3DMPnxLbu3atw330qWppyx5YtCbffHj+NyJg/iw2oLoa5XJjMJEl+6kAq/AQA1YvfNNd12b9/PwMDA2zcuPEVfVNfSI0qwBNjT5Aznu6SzegZPnLzR36sx7zn5D3U/Bof/vA7OHky5qtfFSiKxs//PHzwg898O2NoiJ63vY2oWqXx6KP82cd+jTgI0GOoTl3g+19dSuP0n6ARcGTDGd6yM+07l0GQ1ju2gSlA5Hnd9eev3vjb6H6cZp+2T65H9m+hdXI7duISCxU9F+L5KnuOFrnjTlitL2NdeZiV+VWcPjxKNHoNM7aB4wvUduWqGUEsJKX+ZSiuj65D4vucP5YQmzlqcRYRmkjXxNYaGNo4wZTB1+/J8obX1hBSkNF1xifOEWh1Nq3YQeK61GcCoiigUAiohlW+NnY/TQNQUh3nnpMPcc/Jb/Frr/kdxs/oaFFM0QxARrTiAi4FTAJ0Qkw8TFwidAJTZcu2tLpSaBoPnn+Ik9MnCDMqmnDISxuNGsiIQOTwDI3Y8RBSJRNA3Gowa1c5vvJrqGYfK5fs4sYrbQpFG8WqEMYhX3/425gxFJs6937lPMn0eziZy7Jq7UlKhsdN5V3Qcvlm8gCBBopQUIOImbN1Dh8zCLQclRUJI1MKMgwgniXRFBAhFi1kApYXM3HG5fuPF5mZhvPnW/T1xWSUUXqGG6xach2bT2zkL/7WQ0QCu69Oq3QWGmvQpwJu2C7ZskVy9khEkFHQiyWSZpNlmSX8xhUfoFcvpmvzznrc91GE4Hg0ymfOfJ7rnZ1ssFewIdwIpC1u3xh/gDiJuGXFLQvqXyM/4omHfaoTgpwP58YKqGYPN9yQtj3FrouIIshmSdouewClLTdQ5+s66/UUxPX2prmj7dpXkgSh69xz6ns0GlP82uZf6n6nutFQjcbCzUOx2DUzJZ63IE0hqlaR7YrVZ0wFmOfKn2/okvk8aqmU5sfWaulvY5t5VYnZe+Y+MprNYHY3sQWIxsJs3HZBQzcLVwiUTtHAPM1sqGSo+iaFbBXPnySv2zQdG1/PpZ+TKELGMR5ZalIlm29Smz3FUHyO+KEnOf+3qxl87e4fK4/1xZ7xccE3v6ly9Gg/N9xgctddXZ/ocxohBNlslmw2y/DwMHEcL2BbLcvqals7bGsYwoMPqixZImlfK3H4sMKOHQm9vc8MnBbT6n+xzOUSS+Y4DplM5pU+jJd9Fj1QnT9TU1M89dRTbNq0iXK5vOBvr8SX94UC1YyewQmdS/5typlCV3SKVvGSf3+21f/f7P0bjleP89qB1/LBDx7mP/yHTVQq5acxqZeat3/+7dyy4hZ+63W/xb0jfSw71YRjVb738A5mzmTI0EIAk0fW88B3PK7fnZ7Yu+Bg3gm0A0yr9VH++czXeffW9zMgCpw4a+Oc34QEPGykMCl4DbJ2DdGSxLWEFYXVlFYO8N+++Cnyx96P4V8PSP5uFHa+rUyogJ5AHPi89Yo3pKtaIdJVbraFEdQpyxZhJPCkTVZPUxIsw2Pm9Awzk5O43jr2fvP1KKGPMFqU31Nn336FHxzpRxUxPeWEW19f5czZg2QEOCbIKKKiF9nWsxW14WIoAlcUKFgWS40cJ6oBOTFDIi2a5NEI0XWFKNEZXlJDMVRU2yb2fWYnznN6/BAKCsU1B5g9eQcRAi32sYwmvWTIrjL55/G7MdW0rUxGEYE+Qbxygr7NW/4/9v47yq77Pu9GP7/dzz59+gxm0HshAKKwk6JEieqyZMmSLXdbcW9vnFzHjpM36zo3N/H1jf36jePEceKi2LJsWRatYskSKbGTIEGiEHUADAbT62m7l9/7xz5zAJCgCBaJpKzvWlpaHJw5Zc7Z+zz7+T6FYlHrMHFJmiAFOCbkJ3fRnC2S12tYgc3pI1txNx+jVqtTu9RN4dR7mDPLRGsvEhY9PvmZKqnvo9IARVJaM4c7NkxEiKH46EadwQ3wlcUZKprFV76sokUtRnqgGeZYCgyCzc8SFzcwerQLdyYk0ccxkhRz0aZYUJD5UXSrwE137+KZQxHNI/cQqAZ/N/s0A5tcfD1FcXxWVVZnGsw2oENK4kYDWW9QceH4pcMs9NfYPryX1PfR/IhCAImmdNbeK/Wvjq8x63ej96akiUG14NOYqOPMCQp9BRRNQ6RpFvckJXqhAKpK1GwioohkaQllxaAkRFaUIUQGLleY13apgeVFeLG8CmSn13D609ZrKrkc0rIywHxFnanavu1KHetVqQAr2tBWC8U0O9rQlWQD0WyStloZQF6R5TQarBsSPD5fohkX0WMVzXQZqiSZAa0NZFkxcCUJtMP+Oy1jtMsGFCXbMgQuWhCwhMPXZh7lLf03YSplVEWiGlkSSBoEqL6DEag48SKPLp5gk36QQqRw9usXOfYPF1G7u9n10f0M37WzU5zwekytBv/tv+mkKfi+4CtfsVAUwTvf+fLP7Sujqio9PT309PR02NalpaUO21qpVMjnu4njPhaDWX734d/lB3b8AF3iBl6iEfy7jOq3YL6bofr6zncEUJVScv78eRYXF9m/f/8L3JYrgPHb3dH8qoBqfG2guv2/bedHdv0Iv33Pb7+ix7Q0i4bX4OzZsy87puup6acYKAwAkCaDjK1SOV4cY8fX3sUm8RSmzBjRAg1OHoU73no50gYpr+qdl6qKjCKOzpxjyl8g8FsolV6WGjp5WSPVa4iwBNIniHUULc/mHU0gJY58njz1AIzdRZMSiT6LIUMct0w0voM7ttzDly98lZ7u1R1GKExCjs4d5VKfw8V4E3ZUQE1Vikqd7mLCeFimHtoMlwImgiW0Z+8mwaem6oignz/76zxq4tFjLIKApcUCjz3Yg+gCIaE3yZG4Lv1961jVtxE8j1WrUtYPNpicFDSUIg4e0ggRUkcNUnQi4tTGUGN2rptD+kXiNM3ATt7C1VLMMEXvGmNH96OcOZdSX9iFhWDTBo3tt5ocPQKBBjU9xnE88o4BaohSayLzKUqpROI4KJHsMM3u0hBNy8WSkmJBJ6knhM0qXzw/xcmT/ZjmEpIYcWo9oR6Thgm5oomZRLTcmMb8FO/9gMsXT47jJ3WMwkkM9d2Ey0usG3grx8Mqdi5iKWpQ0GOUZoh66l5Oz5XpjgJ6qhE9bkjstQgpMlS+mZml58hVpznzbJNzJxWCfIqiSk6eLjKlzSCql3CDJns33o7mt1isz9Btd2OqZsbq5XMkYR61MUjq9tIY8Cn15YnMHAQFUkdkbGCxmK3+owjhOJj+IiVToW/kTmLFwPWaCJl0Lq6UNrDEdTuNbYZtZ6H+cZzli7bBr2z/rxPgv5I3WyiQKCKrdV1Zybf1piRZEgBp2ml8WmFTV2bltlc2Tl0VI9WOghKGgdo+93nzddJ6gGmCamayAmZmOuD2SllBb6/LLXsanH90lqTUy813lamWsg1IfGWeqhAZs9xmbpV2Nmp6RVmAYprkSiZDGyWHT6doXhG/obN+p4qJQ9Jqvy4hsLvybNghOHRIw55ZT0Oo+LbN9GGLnRsaaEsuj/3h49x84hDV3Vuw9+27rjzW13rGxxVcV9A75LDs1xgZrPL44+arAqpXzpVs68jISIdtXVpaIE1rPP1MwHRtkZnphHXrJV1d33wN/V2g+trPGyXv9ZXWp77Z500PVKMo4vDhwxQKBfbv33/NA3QlS/XNAlRzWu5FGVVbe3EQ+1KPmSQJftPHi7xXFNNlqiZuEPKzP6ty/K//CklCMvA456w9HA9vYZ12ku3pw3SnU+QseZUJRKoqtE+gMk2RnodQVU4tnsL2IfZcUtOjN+cjVI0Wkn5Tx22FqFqdj747ZHhIQSmUecY5zomlo0TJHgwlRQqbRmxQlRqi5VMJVco+DOs9/OPcI8w0p/jgyLv48rkvM1waxtz2BEm0FTf02R29k+WZCv1pEcUyeNfHKvzh418lYitFI0SJ6gitQeCvRWg2pqyDTCmpLYI5yS98z6/ymbOfY4s5jBACzcu+iBXbRjEM3v19ktGzkqDhc2T+fk4cX0Ma9FMRORSgWm1wz9tTzHKm2yOKQEpMP8YMwdPBMUCxGjRUE6EmIASiGjPaOkUxgJtW3cQ/PHo/Syf24/ifQNdDnO4GaV9EWqshFAWtVGLv2pt5ZuxxUuqoiYWrmzhqN3NNH0OswamXyIsZyrkCsWoTRi2Slo2dNHBbDZaEiq71k6Qm+VJAV/9xFtxFmhZsWruP5thnIZdQUZeJvYSlcIE4XoUepeileUpaRGuxArkyQ5VVRFrKwmKE8EK0wUnUTZOcm3gLS6GBHqwhX3DoqpYYUHu45J7Bay2xPHuRMI3449FP8dO7P8GI2ovfCDj3YC/yzCdoYqOW5vl6qLL/Njh9eA3NmbdyqrmaDVrE+vUZ2EQIiv1F+tcmTF/w0TWfOPYZWa+R7y9cLjJoNjPtcZudlO2kAYIAFAW9WCRJU9x6HX9piZKmQT6ftTi1HfGy0UBIiZtTM6CsKB1ts2jvdFeY1yQMr4qWSj3vBcxr4jhZlJbI9MzY9lVVrOfPKZyfKpCqBr35Bju3h+hhiO8pHD1XIXJChno9Ble1UG0brVploArG5DGG7AFKYhOpr6Pk8y+UFVyZP7ty4blSdtBu/UqaTXqKKgMjTY57F9iwaS0b+nOkUQb8WZFtOA5r+uH8uohnZ2FNf4DndmMoKRenYfMOiJc96hcDtNYjWR7rjh3kDxxAv1bkyTUmTWF5WZCmUK1KXslXQPYWSR6eeJivjX2V36j+e14icfBVzZVs65o18N//9gSf/qKGZkwzMhJy8WKR7u5uKpXKNc/hbxYd4xtF93k980ZZ/bdare8yqm/G8X2fVatWMTAw8KK3eaWA8dXOK33cnX07CeLgBT+PIlDmdzGtdhFFXNNw8GKrf8/zOHLkCCW7REz8ig66nJ7j1FduY+LvVRQ9JEojmDxI96aLTB7fxvlkO+fZzrBxkU/95ENoxkwWqRMEpI6TBZQbRpY1mabUFmOSB78H2ejl08dLfPwDAWvXxqzacJHkdDeakYeeFLH1z1iz+RcyzR+gqjqOpqBVR7HmyuS1BC/1sTSD6gbJoeUZcHqptTz82iL1+gz6tiKOCQJAjdg4GHKyOcbA+vOsXVxHt2qzatDH0nyqNFgQKrHWRxqNo0oVWzgoQKrmiBUL3Cb9Awml1ORHN3wEaZmodhaIL8OQ45eeJox89q6+ic1bcqStmO2bb+dL/V/m+KV/4I7Nd7Fh9Qi9Ms/TU4eJF2IemrjEQtrgZ277ZRYWBmid/BFEouEPjvOsvkgwvY28MQEInnt6hOWxU/gDMJk0qJ24GRkL8vosfdYIDz1q0z28wJZCD6hqlmtrGDRUA1VPyM8NkFNiWosJOSWgQQF1eYA0loiCz7bSamppH8VNeU4fTYjDFkJGqKKJt+E0bu4G3JxK4rdjwhpNrAQOLx3h4++4ky99CfKhRIkCekaKNO1+ikKjUI1pLC6g5RWSXA9b9knEpq8wM3sItbmaiXMhF5cjNCXGdqoUuwRdicJz4wdoxR5z/SbVnph8AHg+SiXPocMac1MRgZqiqiGB10UzLvPg1wMs1aeozVHVbU6d66NnjUlZb2bMZ6vJ7i3Q15en0VIo6y0GBkNSv80WCgFt09NKxapimhlL3a4ZTup1Wq0W9ShiaMMGlCDg+NRh8nqBtT2bkO283UhTyDWz6lStWMxAb5JkbO0VTV9XAUPoNGxBpkmVcZzJDTSNpH3blVHzeebmFcbGXKplD6F4LNV0RqeLrB9qcvRoBcWWqHqOsekc+9WINX2XZQWJApFtZDWvKzmxz5cVNBoIXUfr6iIFZBtwImUnT/XUWY3p8ZRlH7TFLYQ3lFByNqnndpq3RPtCTqYpmrWEpS/hSI8ZV7LerjC+PEphLqVb2YxaLKJY4dV5rGvWkD94EHPjxhcFZUkCX/+6yvnzAkURdHdL3vGOmJcr8duwIWV4WPL4E2VoDDM3p/JDP/QS+/fXaEwT9t9Zh+k/4UPf+0HuHN5NrVZjYWGB0dFRTNPsaFtz7c+alPINAapeat4sgBq+u/p/vedND1RLpVLnAH2xeT2BahC8EHC+1PzeO37vBT9rteATn9BYeOwPeFA1+eGHNP7oj2KevwVYacO6clacptu3b6fP68OLvZf9nAAs1WJ+dB1pCraRI4xVnChCjcv88R/P8LnP9SE1lx//+Zh9N30f0fw8zccewz1+HCCL8bnCmPGX/8MnqvWjkaC2HD77NwY/+YtlBvdNcLL6WX5s37/gaO0Rnhpfyr7U2kyOc2GIwvFbAImr2NiaDnKU3bc5LE5rTD54K74w+ePRApv39hFp51EVFSnAt3UaIZBIDD/moee+wA/v+CHun/0CB7iNHep6zEKLrjXPEl66AS+18ITNB9+jcGE04fyFAFWEKKUCt78/5IHag0xMn2V88Ty/dPCXuO/cF4gsjZnFiySBz56BvR2TzIkZwfFv7Cd0d3H/1EWOb32Mn7zpJ3hg6Sm6lDK6ZeC5ITPnWswe2YighiGapBNrUbQ+CmIZ2yoSKBZxGENrECs6R226RhjZhLmYsqgiciaNVoOZZZ9t/fkM1LRajJ8fp/TcuyAs4JfniJ1VWBKMrinykUd3dZaL0z1cqs/SJSSlPNxxMGDDOotPfVkljFJu21vnoeAY/lQ/N6k7+YZ9iMBvMdOcxkiyD+qqPYL3/yj8wf33scF/PwUUVhcG8TG51IKDbzWoJZfo1ZtsWV3iD04dzWKZFtZgWwklfZkoFjSSEmkrwZp0oValEOR59oludt1t4WqQFmykUJmdjMnn82hRQK8RoiUaml8nCGHN9rX4tYQ+NQdBiDvvUxpSOoYlJYoYGZEITSDl5fY0ecVxeyULuLJ6p716X5ycxG+1GOzvR5USpauLvT13kzhOViHbbCKF4M51dxO6LaSURI2sIUvJ5VAMIzNTXak3rVYzHS6Z7ll6XnaR1q5/pR079XzmNXEcWvMKWDbTcomwtcxAaTPLdZi3LZqpxppChJq0iCScOw7r3nu55nVPZTtlo5Ixp9cydLVlQmm9Tvw84J62WsgoYn42ZmJcx6wUWTydojSGOfwVC+XGgN23V1CUTHYhfT+LsjIM7EqAICX2Ywz1HG5rHy1DpekV2bgqoaQ1SDzwlQIShXwe4uVlavfdh1IokD9wAHvXrhfoWM+dE5w7JxgelgghmZkRPPOMkpnlXsaYJnziExHP6k9z7NjX+amf+gSbN3/7QEuYZFsaQzVQVbUDTIGOtvXMmTMEQUClUsGyrDcFAHyjgL/rme+u/l/fedMD1es5IDVNe1MxqteaP/xDlWPHBJrtoCoBx46t4g//UOVXf/XF719KycWLF5mdne3oUX/5pl/mJ/b+xCt6Djv7dnJurcO5E5DTihhKgOM0GRpZ4vbbNT72sZiP/e0P86+On+UdNz2N3ttL1/vfT/nuu2k+8QTO4cNZxmUUcelkg4U5nZasIohRQh1bhZlLPl26DaZLueCTm0sQUdKRETz0VJETT9+GJRsIRVLO+xSMkJH3jrKu+yD3/YlBqNaIlRgRaxz/+ttJzFv50rykUNDpKZhElJlx52iYklwI9bjBxMIFthTXQ349Yd6kMfxVevrGcZc8bt9+Azv33cKuW1TmZhKiWpPTzhcZm9V4+MI/4pkCTQM/9rmwOAqAoZnUTMmlYJYRs5+l+Zj7Pr1ElMY09QLMHyQ1u7l/1TdQmg5GroCwspXw9ERKRc+hKw3mvRjHEiitHnR1iXXFVUw1J1h2Q1r9IZoGrlxAV0zUJGGwOszpxhyGDMkljYzxApYbGheO3Y253I2ueliJC9YYfuMGwsW9aMkijZYKxQnkyFPs2rWJmnmS4/NLHBw8wI5b/oE5Z5bNe76fLx2GYrnMlq7NLJ5Z4EjrKKdrl0hMEzVMCD0PS/rEpVkGbmhSO7GN+Vqd2K2xc63Ozg0av/n0H3Hv4FvYrt6KFaYM5QZYP3iQYw2bnqFFZuYaWEGFqCE47RZxxGpi4aI3S5x+PMUaAClTRBJR0ANEDpx6Qt0PMLRBitJlcCAkWnbYUhggUnLUUp1csYVqZ4BL6HqWr/o8wxIrNaSOA3HcYQEV24Z21JOMIuYnJkDTGNq6FZEkpK0WyfJydt9XZJaKNGVE7UIWqpmuNI4zg5vrZmDNtrMAfykzANe+D3WF1ZXysvv+RZhXtVAgBexehfCSxmx9nCVnjpKxjUG7iQhirDjg4uIM571Fbhu8CzV0rqqPvWvne0lbrSxqTsoMHOdyV8kKgE582rUiq8LFEJWIsXPTLHuCXM8wESUmp5v0na4zMJDdr2LbnTzXraUS6l2SB48kREnAnh0+C3MPMLz6RnYdXIdEcPwY1OYilNih3Geyc3eW15QuLlL/h3+g+eCD5PfuvUrHWq8Lcjn46thXqQd13jn8vdRqrwzAWRb0bDmLGXyD9eu/vSvrslnmnrX30J3rfsG/2baNbdsMDw+TJAm1Wo2pqSlqtRpBENDV1UV3d/cb0in+ZtLSvlFW/98Fqt/Bs1Jl+no87isBqv/x0f/IVy98lX/8+D92fnbmjMAwYEgbQAgFPcp+9mKTJAnPPfccqqpepUfttXvptXtf/osB/vi9f4xzN3zkkuTECUEqBZQmuP2HHiRJ3gWAqZn4sX/V76nFIpV77qF0xx04Tz+Nc+wYJ5+ICEnIiyaCFF9UiYOInOozH0fkA3Cbywg7h2NCIhOWFzWOPOZiixRfmCTCQrg+jogZGz/Ozvy7ccOIIDTI0UKPY6CFVJY4f36AZukDVDbMcEv5Vj4z/rcUJ3aQuP2cUPuyJqs0i8nSU4VAh7Tb4b0bD7C5a7gTfN5lCtSNRf7ykSMM+z0oEvK+RAKJbeJqCvbELkKvSqEwwxe0v+fn3/ovmbgocGSIrs9RIUJqLcKZYc41DhElIXESUvIs1DBB7yniCRjIQ9WqMDut03AEjhzk6eMCs1sS2BfRe58llyo09YjubU/gHd+O34xQmw7KqkMoPZuy3nXP4/ChlIKrkiYGLVnGSD00VSFO8wjhEQiNNOkhryyS2ucZ7lrk6OghmqnHLVvehlQVwiREC2L+/b5/hWKaTEeLFOwSAuiy89zQv5unF48w6TcJa8vkIjD9OW7dcY7ZpsZAXw/deQ9kwqZwB7NHNvGPYxXcdIiq5bNm0OfkkYjpxW6Wm+vxNEFPJUbUXaqqoG410fQenLqC0mUhWg6p6nHj7QW++kACxjyiqTDUvcRdt6v0rC7wpa8t8szEIuur69m3I6BSVTJ3ejNb/6+MckWYvlgxHLUZyzQMCVshC5MCNIVqxeLs4kl6sBko9iLr9U7uKlLy3x/5PVaXRnjH+ns7wPLS7ChJ6DEiVmdVpH19SCmJm02k5xG7LigKwrYRhpE56ldapFZaqJ7PvFYqyDTNmFffR4YhfV05Vo8IFo+WqaYqFbXOpvUS7CLK4YTQNckFKn7N5YYDFmpJzbKOTZMkjkBTM3Nau5jgyr+PeH7ZQHvVv1IyQJJQ6LbwDZsFLyCNJ9GcmFxhGaH34wkLROMFhrCCb7BnTZ4Lrc9yPrjErrcc4G8enKTQvwtadaYmBMtzecpdGkoA9bmAiTMeI+suG8pS16X5yGUdq33gAL29Axw+LHh25iiz7jQ3Fz7Mhg0vj029cqI0QhXqtx2w7Onfw99+6G9f8nYrbCtALpdj1apVLC4uMjo6iu/7VCqVjrb1jcAOvpmA6huF/f3u6v87eN5sGtV5d54jc0eu+tmuXSmPPqrSXcxA5qIDN9xw7ZNumqYcOnSIVatWMTIyctW/HZk9wlfOf4Wf3fez5I2X/4HP5+G++yKeeUZwYnaUnzp8Gyeie0jTe4EsVeD5QHVlFNOkeOutFG66iaUjJ9AKT6A5DqCQl3VKRVi1Kc+hUxmD1Qqa3Ny1h/2Vnei5PI3EIFZiXKGDAEtExImKUEBP6xx9ooH0NIoyJpEFmhSxFQdLU7HNmNXOVjaJPMWBQdwH3guTvcTS5MR8iaDyUdwtC4hcjo+s/h7+6omHkMuCdFXEUXOUW6o3X47VajSwIwXfVnAMsAMQUuHoNwTK479OPa4g9QBLNNhY0oiXlsiFAk2Ar1h0K+AHMbZeJxeCp0tOx5McFBWkTNm4qsFTRpMjM4K8NsJiQ6DqLiaLWNIidAz0vV9EeAnM7ibvVhgZGWToAzH9ps2fP/NZRK6OaK1CFj0UO8/JMY3A1YjRIQWZmHhOLz2liFKuSRAl9BRdWkmJcyZgmihCQcSZrnK4sIrDjZM8tXSMe1e9BYC/O/1Zpp0Z/BwEMiIXpVhOyAPnP8eP3PgTfGLol2lNz+O0luixc5gyRZrd1Jsm8tT30kgkrakmTe+tnNx9P0rpEaRxL7psUFUW0DUDJzRBMVCSlEG1Dx2fcpfOjTs/Qk/7WOgttNi25ywnTz1CqEd84N5/RtmwSQOfTdvP8tToV/iBA/+MQd1GhpCEIajq1evt5xUIpK7baU/zI5WvfKNIsy7R4wapaHCu7zPcu+1tDJc3dpz3K+aihghomjJz6icJRBHPtc7RiBqsGdqeMa/tsHzVMFCq1QywJgnScUilZNEr8vRTCknTZXAwQFEDTl+qoBga+/bGbFjVIqnVMkNV27xFGCJ9j+1rPNYNrUKaNjlaiDSBqMHenfM8PO3gLNTZf1eBwYGEsOGhGwKE4P96+LfZWFrHuze8G89XkLkSeStGeldEaVkWwjCyJIkVQ5dpQruhq4DD3o2C8QstamEvnt7AtlxEUKakZbFiHXAbx6S+Tw2PyXgK1wTTEySLS1Q8UNSM2XY8l5zwGJ+9QKpq9JV20PIdZBRm1a2ahtbdnUkifB/32DHco0cprFnDgYGb+V/Hi6QBbNqUsmvXKweqH9z8QUpO6Q2/Vl/RqOZyOYaHhxkeHiZNU2q1GouLi5w/fx5d16/Str4er+nNBFS/u/p/fedND1Svd/X/ZmJUc/oLXf+f+ETKc88JHn00O7Bvvz3lJ3/yhSfdxcVFXNfl4MGDVCqVF/z7U9NP8Zvf+E0+tuNjLxuo/sYDv8Ho8ih/9aG/4sAByTq3Asc9yma5Y+CyNOuaRrArR6gq9/z0DfzZI3spt86y3nmUnuQi73hHStpqYUcSXwcvp2GVqtkqMk3pyrloqp6ZIVwPmYQIAVv3HuV4rPD0ORu7FOPVQSWiQJ1CXkEprMHxAkzVYTpX47888ndoU79MrPqoJFS0ZfTFQaKpBfyiwz98dYDpibdiJg3uPxvhb/w0+yvbMfJFaOv53rf5/aBonHimi8b0TRCUOJQoWHGIxTLEEJoxT5/s4/bba6xdl1IuzOPUc/hakRYpPev+AUUoVGQOJ2xxw46b2WHdjN1VYcNdRxk/9Bzqwi3k1M2kuoEag2mADGMMX2Nd8M95cm6ZnFJjeXwVpdRk311NwmId1TRR8gXUUomTz0mc5QCkClLDpoWiRJils/TkN1Pszio//SWHcjVkkBKN2ZDZi7twgoDpAbhp3R2cCS6Rt8v83dRXOdC3lx9e92F+/9DvY8pMS3nSv0Rq6EhSiGLiuTrVUpWuoSH8ZhOnVmNmbIzDJ/qoxT0UihoGHlawQDK6kZpyDktAZbXG7DmfnKmgxwmmrVALipT6Ekq6Q1cVbqyOoOpqJ0vV8HT0whRWCvgemJmuVFUgL120yEEp93RW9yJJrgr/l0mSfc4UJcsIlTK7reNw+nBCsKzQlU+ohxI37COd34bYcjmqSS0WSeM4Y0JRkVLJ8lXb7O3be24GuJxjKgTxSltUGGYGqVKJ1PNoLoU8dn+YVbSWqzx+UkF4LdauqiNjwaFvaNjvyjPY7WVGxWswrzk9hLQNyNuZ0tbyMgPqcRb1o4TeO/n85w2UAPp6E264oQ5SEuQMnjqSY+J8BLh0d0tuudvGzGuZ+UVVkXGcJReoakeCkB3Y2d9hVUGyvvUNas+kSK+CE/Wz8aYCPX3Nzvm6U0nruoxPnOALo19gV2UnStcwVqnKuze8i1XmIEmzSbFqMVW3mWhNoyHoStdQGrZQq/nM0NZoEC8uApkEQsnns9axixcZ4CLviz7HiWGFu2772VeVx3rHyB1YM99+/ed9Z+/j177+a3zx+77I2vLal7z9tQCgoih0dXXR1dUFZObapaWlDttaLpfp7u6mWq1+2wDZmw2ovhGeq+M49F9n4sV30rzpger1zJuJUX3qKcGn/vnPE099gh84ovC7/zmlry/TSP3X/5owNZXd39AQV9XoXalHtW2bcvnahQA5LTOevRjr+c1mojnBsbljnf+OGz2oZ76HenoT7sZMt2Wp1nWZtW64QfJH/yPhv//3TYThJt56zyV2248STE4RB1sRUyGtosGUGOdY8wx3dO+nUtJ5210J99/vkhQMZpOUrQcP0TccoZ4T5NI65YKNYVfwgiZu3cAlh+IkqGnK4C0nmPNmKHoKimiSygAEREofvppgkufECcH81AI5bZZAN6h5NvbkwSwwv+1SVctlRqpVjj1WJz8pwZgBRyeRRVwq5EQdFchJBTWeJZE2+e4iXQf+GmdUYU/PzRR7W/Svu5FHZw6RCIu3lm6jLy1QULJoJD2vEfecxw3zqDMj5FIPF0kjKaNpy8jYwF8wKBhTxIpKXNY4M2txUNERiuCOrn3s69oJQnDqqI9tJiShxCQgwsCVeXKlKTZvXs3YGQ0hwDFqTPd9lp/Z8ov84/1FWnVJlDo88EiBt1gKP7jue1l2FvmvJ77EBq2PkbU30zASbFdBJilps8nm4hpuWH0T40vzjDrH2VLcTpeU5CoVrGoVoojz5x0ib4x64rKEgm1uIlBdpBKixR5DNmhDZSYXbPS0RU8xZsuWBoqmUeivsGmXzyXnAn1hCXspOx4EglCDXMhl7aaikBRyhFr2pXilHlOx7awEJE0z3XQYZuBJyqyRCjrr/1pSJlE9xmsX0HSNAoMk7hCNtAi6njU1KQpJInjmWB73+NtZ0HTOhS3WrZeZhOAa7K1iWSw2DGbOOeg6rN0SYRZyLEd5AiWhrC4RuPPkohKtxKSmqVixj67AzGidvnyKViwi2vFWqedBEKAWi52EgNRxMs1r+2SRaArSrfLc0wHloo+wDSbrNvqZJkJK4otlLk7F2H0lkILJhuDYcZ8bd7QykKcomcygDfSFomRAP44zQ1dbzyvzEm/TU+BINg7vZvPGzaSRnhUbtP8OSQJxLIhMA0+HbaVtrO5fg+IF7Bk52GFuB3ojml7Ek9PdCKHTP6wxUG6SLJOB43y+UyTSkUusML+tFrmWx65TIfN//Mfktm/H3rsXtVh82ee/S41LTHgTHOBA52dLS3DkiEoYwrZtKatXv/b61XpQZ6I5gSKuDyhdDwBckQasWrWqw7YuLS1x4cIFdF2/Stv6rQLmbxSW8nomTVOMb2Um2XXOdxnVN/EIIb5pJpumaYRX6K2+XfNyger0dObs910bzDmePiz4mZ/R+MxnMjZYCFi16oW/lyQJx48fR9M0Dhw4wKFDh65ZcBDH8Nh9O+DL/5lPagV+/RcyR+v1Tk7LESQZW3r6tODHf1wjvfRbPPhQiX/xYIm/+Rv43m3fy86+ndd1fwcOSA4cWGG6B4Hv5ff/PzW+8fA3qDYqPDmV59KleU7l72f/TTvI9/Sw/QaXcnkGVS3wmfE/IV/uQymux7VCKkMey/MDGFqClepUhw12bJ9Dui5bthb53+e+StdCH760wZIYjomiJmhhwPqqxt17D/DQYzm89CKRgK5CP61wCTfqRZYKSD/q9JtfqJ3nufP9VLs2Me8eRVfAkBGqDEnRaZHHSGrkimPY5hpS18UoW9RWH2XdzgPsyG1Dpimj4RFaXsREbp4hOczc8hxdYj1n7u9HnfsorVIds7qAWu9HkxJLqXPT3TWCwTt59pLEoUyPbhE5E9SbCrCNfruPvJbr6BlVRcdXy8SqhyYd9FSiE5BM7edCpZu73y3JFzUenX+UsbE5xi9K4lSlYNUIwyYFzeXLXx/DXfclfujATxIrsOgucv+hp8k/+z2ESYGTrX7i0lF0w8b281T7uvnvY4cwu7sZdocRVxyfW/YU+IdnXIpxihASNXERqcLUuf2sN1MWFlMM1WewCzbuyLH3RijacZs5XGJycZI/fe5P+YH9P84mJWPVVNcnF0J/zxr0UhkZZCC0Nj+BmsAlpc5geXMGTD0vW5ur6lUB8let/9vtT6QpXcY0Y02dZUMhdjW0RpVAX8XZxwr0tyQ7D2iknseZoxFz44KCMQ+5AY6cq5Av1enrSV/A3qa+z6VJla98VUNQJEXh1JkW997jogdgRCqXRIuxxhgbxY3oMmBm4RiGnkdnM1vyMciAuNlEsW1EqZTVsTYaHeOTUDJWVwZBpgv1PDZaq/ArQ4RxCSeZwPc9us0+5hcNGj1g+b10WTlazTGSJCJvrWNhWe/EzHWMU1cA76TZpFYTBGqRQhFKJYGyYFAVOTzLp3CFjjXxfYSiMO+WOfZMggg9akmFnJED00IpFIgDjxl3ih6lLwNKqsqWDR69C4+T03NsXrsWtVDMIsauBKe5XJZg0Gp12sHUUgmvaKB7gnhpiebDD9N67DFy27eTP3jwuvNYAX7zod/k0PghPnjnB4Gsseov/kInyUq8OHZM5UMfil5zs1XH9a9cH1B6ubFPz2dbfd/vSAQ8z+uwrZVK5TXNIn+zMapvBFD9XY3qd/C8WcxUx48LkgRKBQXfLVAup5w4odNq8YIYqpVxXZcjR44wMjLC8PAwcO0sVSnh539e5e+/tBO8Qf7nxV7OH9H40z+NuZ5zxcMPC772W7/KzPzP8uuTKhMTgiCUSHuORHcZG+vl7/5O4Qd/8CAHhw5e92u+cubm4I8/3YsceBsX9QpvN138c8/CliJxFHQYHLMrT940iJY0XFOwJr8KK4YNtz5HYXqY2TEHuxAwvPYEI/3ddA0OInSd+Mn1jD/7PqxUAIIw16CrMsSaHo973qmi502GV0seOZTDI6HX1yi2LNBCWjPLWJUSWvsL+tGJR6kFW8hFJSpGnqDLwl+wsHWfJE0wpEvYfxax8x/Ryv8vkkaDHdZaznlH0Ryfh9ynGM4P8Z5N7+WTxz7J7Pw5joeSx2un2T79b/GdFkqUozA+QqxK+vY5nGw8xi++7R5WlSscHpvGW1yEYCtLCpTNZbS+49hyFT+1/cf5s3OfxmxW2F3cwu5dMRfP15FqwnKSAww0IyE16/g1jye+ofCB79d49Kn7sSJ44tIjlIKbWVdcy2i9zInZEF3rJ7QVPv35JxGz9/DEbBV3xkSaPrHZYnRaoC/cytO5L3Fj3x7MKKsu1RwfpT9z168Av95Ci9KWvyFeuJXQr2LFdaS5jKnmSNUyq7YEWGaLohhjcFBFcfIkaS6r4E1TRBP0BESzBT0Zwy0b2Ur33aveihWCUsq0hHI5O6nrTZfUrmegzrIyd/vz1v9pOwqqE0GlqizHMV1rE3YZ/cTPqLQaUOoJqDNGIbeac6fzDPbVqVQFs80yZjmmL+0lb1jYaZ16U2VwfYHE97OItbaLf2oxx19/xkALGlgm9PZJGjWF8cUyG1b79PdHzF+Q5L0cRtVClCwayyUSX2PGeJbhbTswi90kQdCpSJVSgq4jCoWsbCBJkFdIE7AsNnUNUYoET007jKUOl1oT3G5soMtqUnRTKsoiUawwl7RIwxpr4356e9LLxqnnVbcq1SrHj8CZ0wI99VHTkD036dy74Z3c03cbv/fE/5+cn52L1FIJ6fs49ZDnnmiRt0Ep55mYtnHm9/FE4zCPnXicd6+5lz888kd8dO372dW1HchAt19IMVXRqV+GLIlBqGomo8hOfiiFAsrKz1yXHxv50GXQ3o7bco8dwz127LryWFcmTmI0cfkrc3RUIQhgeDgDpvW65KmnVNavf22/a66Mp7qeebU5qpZlXcW21ut1FhcXuXDhApqmdbStr5ZtfbMB1TfCc/0uo/odPG+W1X+lkjWplM0KFatCGIKuS14sJnZhYYHTp0+zY8eOq/So13rciQn42tdU7ELKYtrAyld54gmD0VHB5s3fnAE4dw5+7dc00tAgtSa4/36FWg16eyU0IW8UUBLJ/DzMOrNcqF1g/+B+NOXlfbyaTVBVQFPwlRyni7s5Lm7DWvWn/ERPGVUvZ5WTy8skaYohNNIoYpXegyYUzNDn9n1NooMq/+PIXzLhBuyqfILU87jwnE/98EcIsLFoEGGReGVu/cA8N23P82dn/pLh+V7esup2hjecYuK5tcwHCi3RjVHXuO8zOh//gQQjyYBNZJso684RNjbgt0zqyTL9g/1s2qQzE57ENx9gOZnGiAySRgO1UCBuZmBqdGmUZ2aeQVd1/tU9/45F1aMZ1lkHmLUicRhTiwepNddgSQczCZk5BJXyeo4fUVEOBBw7XEaoAXn7IiQWXtpNakpcT2DnJFOz59hgDKIM7mPNDpW3Ifjc5x1sdx4Vk1izCHM1Jt0xZLQFZy7BDCWuAZfyz7C9cYDzowZR0EBTBI4s4h/5BHHJwVVrSKcLtaUQ5cdRZUJOnQevAo7gi6Of56fu+BUCDSQyY93CMAMUuRKPfT0gPP9WpGEgcnWcOE9gaAxqKl1GAzOEWw+oYIzgJQmtuTkWFxbQdJ18Pk89yON4IzSXDWQlIWm1WNu3mR+765foy/VCyyNtpzSsNfrxTCjmM7boyqpP5QrWNGk2kYBWqSDbFauz4+MoacpQby8j++GGbTm++NmQUsWj4K4hn+vBD8sEcQNkQlmrM78sWNe/mwSNsQuw8FzM2KTPnm0xA+ss0iDAWQ54+mEFLWrSIGLOs2hNRfRXTJJ6AxFJbn17gYVDJ5gZf5r33HMjphnz+/cfQTNMDPk0RrCapH0xquYLTM+q1Kea5PMpA4NNhKogisVMDhBF4HmZuatUoKuQsmomZPp0Qjkw0SsuO28u4M/cRL9Soqk1WTip0pLdFFYX2baz1nkPlXw+M0+lKdJ1qY/XuHhcpdpjIxQD6QQcfSqiv+qhGDr/xz3/9gXtVq5Swjc0YqPB0vJ5bNVDCwq0/CnSqE4aBhQCUGg3YbUZYcuLMU2ZrfqFyLSy7WYvxTQRup4B6STJcnkVJdP9BkGmHb4iykuS6YWj6WnqX/4y6qOPktu5E/uGG15UxxqmIapQSVN45hmFr31NZWxM8PmZ/8mEe45/uee3+FaULUVppgG+XqCapulrxnwqikK1WqXa1jkHQXAV21oqlTra1pf7mG8moPpGcv1/F6i+SeelVv+vF1C9Vvj+N5t9+yR3351y//0KMjMN8+/+XcLzjw8pJWNjY8zPz7N//37M5+3vr/V6wxAURWJpOTZ1bUYRCkEiuB5FxPHjCkkC1bKB3yrT2ytZWBDU6wL8CjEFUiQHDkj+9tTf8iv/+CtM/OIEPXbPdb92gJER6O6GiWkLUhWnYVKqJJzcMkvyfe+i0ijTfPRRRLtT/T2Dd2dB/jmLm7e8lbVaH47jsLy0RJcwWdRC1HKZs8/5fPrzNgECnQjQSYSOJR2+/vgRCmWbxsI0y6WMnevaOs3EyVV0VWOkP4ml51lw+xmdCNm+PnM7q0IlNpssb/vfqI0R8l6Tdx28g8+f/wzSksSWjhOBGmXvQ9JqcWb8WXwdltSAFEhlwqOjD9D06zQsmG2sIayZJL6PuizoFi4eCi1ZpiAbCLeX1PP42lenGZtVCMzMGKW2bPQoRo5t46/uqxBv/xuaFkSG0jHarBs2KPf5zJ2zINXJG4to1AhkDk8vYJgJ3XYP0l0Apc7u233+7tP96LkU1Uww5TKKp6FqEUJzqegqvtNHLtCJtCYeBYRuYCoRyBSaDj+29Qeodq9CMewsoN6yOPSY4Ox5Az8Xk5MCfa4b3fYpGSkbqxtY8gr05j3AhzAkB9gDA4hcjqBW4/QJj8ePaEj/Th5eGEEmJfZubmL6ktrCRT594X/wYzf/LJVclaTVQpMKq0UVXYqrtJQyCEjCMAM9up5JAlqZkz5JEmZrNQqVCqV2NWjSaKACpcESjZpkIK9kbbdhnUIe1EqFLftTFh9WqC8FOMsenmNxPjjBctPAWRjmLWqDSgUcWSRSBeXqIsGcgpBLOH4eXyvTt9pBKWRa0HJPjdi5SLVLkLaaFIoXyWkWrpOgFksIdKTvc/IZj9OnFTBsAmmxfr7O/oNKtlnJ50mlpDbns3gp5tD4F7gYHeEXb/nnjObHqU2d5o6bt2OkIXf235KBuNUpo+IIcqKKIdZzcryLnTdIjKTt/necDksbqRpCCXFak0w2J1nftxMvKvLU9IMs+pO8c/07O01Wst3aZjktzEAwn8xzbOkEd1QPctNgF4vhcziqiizkiVRQJVeZ1X7i1l9kZf2zUsEMXK6f9X2EqnaY23Ql/1WI7HVJmRm/FAVBO3Krba5LGg3CyUmaDz2EvWcP+X37XqBjjZIITdF44AGVb3xDRdclk5Mqk829pCM1ajWFu++OeC3HdUFeOsDt8a+zMGNRWP3Sv/OtbHwyTZOhoSGGhoZI05RGo8Hi4iIXL15EVdWOtjXfNgy+1PN8swDVN9Lq/7tA9Tt0Xi/X/8sdRYHf+72EBx5ImZ8X7Ngh2bXraqC7okfVdZ39+/df80BXVfUFq/+1a2HTJsnJkwLDyMT/69bJl2RTAQqF7DbDxWFGSsO0WrB+vWR0VMD8dpaFwtA2jwMHVM6cykDzKzFrGQb80R9F/OKvhpx/Ik//phq/8Bvj/NjDHkEaYe/Ygb1jB82HHkIeO8bqxeyAPT3xLI+e+iqrtn2cmogZ2rgJ98lxnPoS/rLL4UMKCEEOB43sc6DLgASFpcIsS2lPxpS0V8FGCo4sUdTylMwepF7ADwVx2u5qlxLbT/G8iLJMcK2TuIUUUTEQigppgr7YTb41QFBsoJXLxM0mCFATCJOAlgVSpMx5CyhuRPnMe1hqrUNJRphQKojQARljiZScUidGI1D7sIsus5MmhjmF5vTjK71E0RC6IjDNBYyowcLTw+S3PUmkikw8F8c8fH8MCyqyME0zGCCq96DnA0yRsmPPOJqxmjDdgBsUSe1JSpWQnlwDqQsuektUFFAokBcRN/RsJVEMTngQ+SaqXiInJL2bn2PCWcNS3IWTmGwY3gVAGgSZ4UgIZs45VHOSobRt4CoW8FIFxY1oLKfYZoNtG9OOljNxXRRNQwCqXeH4eC+V7jkK8zP0WgXOPBVTUJdRu1OeWzyNEzokTos0yeQGKTnKVoW8ls8ilXI51K4uBBDXah194woYClyX2YkJKtUqeVXNWLliMbtdknBgR4Onn1KYdctohsrNbwkplDLNa04I7r67QG1J8PgDkmLRI2w4mFamEZ6eb1GphFhpEy1SGVhVRVo6p8YEmq7w7ntcqvkQIQxkFKGGEVYEaaOJYpo4lsBMBYoky4HVbWKjwIkxhUpXiDQMClIyPm2xNdIokBUWXLoY8cgjKSK3ninXRhZ90iCgoCyhFpaxejJg57p1DF+gm3mm5zfT8nUi32XmbIA/J7npNtBKJdJ2ZmvSaJBXQZolFgKHBXeBgeWAnopgkllO+udoTn6JG+wNbIk2d4xPxd4cmza5zDybkndyiO4Ct91Z4LPHQJeQNhuoKaTFQifVYSUCTLFtaBvFZBS9eAnCih44TbOEAiEyfe0KuG02WaE/ha5flcfaevRRnCeeeIGONU5jVGnwhS+onD2r0HKgWpFIkaBZAR/+cMS6da8dpep58MlPanhLd/JW7U4+9ReCj3wkYsOGb/4Y3y4AqCgKlUqls81bYVvHxsZwHIdyudzRvl6LbX2jgL/rme+u/l/f+ScBVF8vRvWVjKLA294mgReejK6lR732fSgveL2qCn/+5zG/9VtZw9XWrZJ/828SrsfIeMcdkr17U555JjtQNQ16eiS6DlrfKAW9wPx8P5/6lMJccRBOvZ/jz8HwLS/rpQOwZg383388z6Y/2MNPvusP+MiuH+Z7blrG1C6zxvrq1ajr1jGzdBLvyUMQFmlZ0IhabKiu5fOflYyN3oWe1vjkuZS8nWDLOoatMueWMfAxCVDL5yl0P4MM7iLK6Xg6CNPk7TvfTzJhcPJoSoKN70Z0ay5reiVpJo0jtQyaqURtVUkvHsRKDCY1iJ1hGtPbMWfWggwo5IZ4+rDgxhuLmN19iNo5CqFCqY3jlS6FlrcOo76egh2iRU0G7WXq6Cz5FSzhoiYhukhYPwiJKOPbLRoDD5M/8S5sJw+yTrmooXYNZCBnsYCWgtbK6jbVUomxqYRC3qfRUtDMSZK4j1qwDjSXJ5/Kc+msxJ0/QE4mODq4GyQHDyQ8/qRCf2qjCoO5ag09tXAdCCOfntI00+YzNJ11CKOGnNhP3FDRRcLnZhXe/SGFqpUBPNmm7q1ijvlGjpHKOoRMqUtw+x4ltCJu3LqD3mKTYlcuAxaKgtoO4o8bDXwXrFDFLiisG9hPQbdJiOku9zHvn+Tk4klcQ2F2aRlhC/KlEk7Y4oh3gbcULUC5zAjSdobregZCpcSdn2d+bo6+deuwTJPUcZBxTNxoZG1MpkmxIrnjrS0ibxlNA8U0UKxcdrylKYrfpMsGs1qg0VTZ0bsTAdTqdXQlY17LZcm2A3DscEiX7mFVz2DvOMVAz4chvay/3LZ6H909GYUmw5CPrHoXo43zjIbTCNNCLZQIPYmSxrhJwDMTT7OrOMJS0+f/vv9v+bV7fgZXqDz4BPRUwTQ8mvESc/M7OT/XTXOpizjJZ1mvuo5vaiBjvJkmRg10cYGpUGWkdyvL8y5uMyKftkFgqYSMY0xcbr7R4QuPJzTiVZj9ZW7c5fPApYCSJznbOELv5h625XKZia19YTCwNocyAWlNQ7LEqYvHCFWJb2qYXb1s6t1CJVAyLWwujxebPDL6AL2lIjf07UYxDMQ1NLNXlSC0q2VXdKxpGGbgdKWswLaz9ziKsjzWKwoeFE0jGB/HHx1F7+sjf/Agv7T/Fzn89Bj3Pali2AFP1x5gnb8XPygztO3wawpSAc6fV1hcVFi9OiMdmk3Jgw+qbNjwzUmXV6tRfaXzYmzr+Pg4iqJ0tK0rbOtrKVH4Vs8bZfXvui7FV5BY8WafN8en5CXmpVYMbxZG9ZvNih51586dLxo9tTIvBsyrVfid33n5gN0w4Hd/N+GRR1KaTcGOHSk/9VM6pgn9Rj+GouMG8KlPKRw/fQ94u/jZh4f59V9Trpn1+lJjaVnFZRAHaIr2Aq3rilnsP539I87Ks/yzG36Ai9NwqnacQm0Xly7ElLVlvCRiOSyhGB5CRGhKQn+uTpwI4oJGKygjTn+E+moHTc0qGRVVRVFU3nFrg6JQOHrCIVQnuP19/XSNDHeYmLcP3kmjIfmzBxRaUR5btnjkK7142hqSME+qesT5JcpayGNfCdk6nFD1VYSEKG8SNsBYHmTsG/vIL6ukkUGqF6la3eiKxDYT3nJPi0cP5XB9m3w+pVquI1tNNq89y9Jykx/7iQG+9NhZ5p9ZS0+lB1VI5hdC3KQHMfoRQiOEddnaupgzmXaqNLUGMmxhxnkqxhxSb5HEGxi9aGLkHRQ1YUj0c/pxje/5/jw9I5KFiZRiIWVUPIY738/EchFV85kMxlCnd2MrTfLuTpZafejlsxhKgIj7OHR/yDveBUq5nEUaBQEH93p87WshDV8lUMsMDXio6xrEasT6tTEy0hCalgGQK5ujTJN8wSRfdPAcjf68xHMisPOUh+DSqQLJ6HsQSYFTzhbK+yO8+jKXZk5R8mHywnMMrD6YGa/az6VTS6rruGnK4uIi/QMD6GkKUqJVq0ghSOr1rIp2Rd9aLGLq8WXX+zUKBHZtbPHIIyoLWokIjWIpYXhNO6Qf2LK5wNCggr+UcOz4FylpWV3qlffRLW26c2uymlfDYH1xFxVviOHKGowkAySmljBQ9ZmYCSkEEkfNoXeZrB3qp9losLjYIq+tIs4ZnFkaRdMMEn+QQ08IbPMtbNbvZXnWpVoIqEgNKSVezqK3uo3G8gSTy6N06wWgG7VcRCg+Mo4hzQxWaqlEd1Gyc89TTJz7Mrfs6sG2q9xzwwfxm3X+4Infw3BDUs/LZBZk6QonngmIlhVaRYcxP+XhJxrs39ZNTtUoBwof2/PDyCTBr7kce8qn1YLzzY146yQ39CsZ6AzDTFbQPh+mvp+Z46RELRQ67OmKLlkYRsayr4DTFXBbKmVRZYqSvbYwzFjbJCH1PFqjFznzjUsIo4vu3AB9XRFTtRBiGwSksYpZeOlIvpc7cQxCSH77id9mrD7G/++O/0J0HcqCN8JK/Vps69LSUodtLZVKpGna0b6+0eeNwv6GYfgCqd8/hfmOAKovNa83oyqlfMWaISklFy5cYGFh4Zp61GvNtVz/r3YMA+6++zLTu2dPyuc+p9BV6SJNoZkEHDumYJUSiB0MM+a3f9vmAx8I6X2Zja1ls8yfvO9P2De4j1lnlv/06H/i47s+zo0DN3ZeXxRFKKlC022y5tYdHDoHhYEB+p99G4FyCFsLMLUEU2mQhoIPfrzAU4dSklQwPaOSsETMAoHbx5mHDLbeNIOuaySuy4XaBU61LvDud76f0toj/P3YfXQVf5ikUcoyOHM5qqrK+bM6QeyhmDVCp4ykhB7XyYkapAIt0gi0GpGyGi/1kEhUCYOyyI7BH+Qfj2ylEbsgFlHiPH7dIN9vMtcSrF2bsHvbEnu2Z9Sr60KkFbDzcHgsQCxDt9QZGJhkfssCzfmPEC03SVMoFsbR9SJzE7uY3p4wVHW48/aQz/79NJbr4qdFfMWkK5+iK0UIfAQRLkUiJaDP1HFaKmmrxUgvrNmQRR9tTj/M8YvPcvLEp9jTdwMzD21Fmk0U2cISkE+bmKlFuWsNKXkc14E06Rib1GKR7nzKe75PYX5eQcenvyvAKH8sY7/aTGeSCaqvAm0r0Ui33qbx2DMFlmY8imWN2+8UyFRy7PgQoaiTM2ahuZpTh0xuuqnK/MJOnIkuRlt5uqIJbFvFzucp9PaitQPna0tLOHHMqs2bsy+jK5z00F4Nt0PkZZrlxY7VxhiP5rh7/duI2wkCcb3ekRYMdsFbrAazk3U0DYbXqthdNqkrIc6itvICisM5wvEUXTNhJYVAUVCr1Qyop2kGrBsNRlsXyZe62VrdDElC2mZe99+ZxzxeoGvyBkolyfbtKWH8NlpSsmbrek6OmyzVferOLP36HgpKlaFqA12T+F7IiaOCt7yr3NHvFmTA2t6QU1PDBFpKo2GybZuGnZPIVEe1rOy2K7IJIDE0mlbWJiXjGCMGVTFpWdn2ASCNogx05yvMOBpmboyS51FkHjMRbKzeyfYN1awEof3azowXqEU61VKTG4urWJ5TWPJt+gZV0nYbWLy01NGhrrCkV+WpmmZmllu5qNB11HIZITOjX9pqIWVm0gKQadr5/VTLceiIhb/cIkwmqC1e4GZxkdOVKheMAvmufrqH4IO77315J7nrmJGRFMNQadZM0sBmdlbh3ntfmnD5VmpUX+mYpsng4CCDg4OkaUqz2eTcuXOMj48zMzPT0bYWCoU33HOHNwb4/6c8/ySA6uv5wV8Bja/kaiyOY44fP45pmi+qR73WfDuA+b/+1wljY4LjxwVSwt69Nc6f70czc4yoq8npBoGULC2JLB3gZYyhGnxsx8cAOLd8jv/y9H/hxsEbrwKq09M1xh7eg9tcTWvPCEzvZi5ex+C9t/Kfv3IrW42jrHGfxG35bFmXsnrQY/jegKlakc//fYJCi5aQ5I1ltNYAd2/4EPlK5tCfaU1zeOwx3j50J4qu07IgViSqbYOeZUqOtyY555j0mYMELBCmKYqoIYXElRWUNITYJfZiBis1iibkyz24s5mJSvM2omFALqQuTFQlwvYktDy2DknuvjPJvjjbZg/blkALItg8dANmpZunZw+T1/LctcPilg0hX/pqlYYjmG3kKCqSYrrE7OmUoZt0hjYVufVdx/j84cewlARx/l4KxmqEaRGnLSDFwsVMAhrxWlatMVBLEWkQkDYaSCmpuS5BFJEKEEIhlwZATKAbqIUS6WICUqUqoNl0GNxtoZSyz72QshOsX7BtCmslScvNgvVXooYKhUyPuGKOaUdHKYUCaZIghKBU0njHOxJSX6LkVGQQsDAVoEUBBaWOqucxukrUlyRPPBESLmnkE5+Ws5GJ5dXcNLKA53vMTE93oqKEEPSXy4hWi5XLu07e6YruMYoy1rSt0bxQv8DjU0/wljVvQatUMkd9s4n0PBIvY9e6B/N0D4msCYuYtF1CsLJelr5P6nm8o/c2CpV+lK4uRByTum4W0k/b8GOapFHEl07dx1BhiBsG9rJx+AZEFCGDAC1y2LsFxA0mWBbzs7NIVWWwVALf4647VL58f4g2U0AjYG1vHVd6NGJJv1Ei9OPOe1ALCkxPKxyZmCJQQA0t+laF7NmnELsuRBFxe7XspnmarooZt7BiwYgooygqkVGiuegTRhEiyIGmoZZKHVMaEqxIRbUGOKJdoBEHqFKg+y0I85mJSUqSVovmQoCdUzjhzFHKlSlqNt58g9iUl8sG2pFTV0VWtRvkVljzlb8jSZKZ5q4At8KyMsb8Gg1fSzM+wWJIuUvjKzNn0G2D4XQ1q5eO8WF3BiW3yA/+q/dx08Gffvkn0ZeYri74+Mdj/uuFSag7vOc9Mbt3vzQB8Xqt/q93FEWhXC5TLpepVCoUi8WORKDValEqlTraVv1VNIm9lvNG0Ki+HGP2d9r8kwCqr+esgMaXC1RX9KirV69m1bVS/q/jMb+VU6nApz8dMz2dlQY8++xZ/uW/7MfzNEp2CceBYhFGRl7ZwfXQ+EMMFYcw1YxBXikaSNOU8+dn+LVf28i58Z/BCXx+5r5hVPuvuWhH/PkJlY99XPIXf3EjJ/W93L7nFO9+90OkyzUArLSFHimkdhctpclao4pJAS3xSOoewjCQhTyBCmk+h9KyURNIU5nF33geaRhyavoYY94FqvrP0giGSFTQw5RiUVBRmyzXJA5FMFzufa+PbpcZVlaTKlDqGuL42bMo4TB9loGupjjRAoXuQX7i5zSUMIRUXN2kdEUOaVUt4Fnd/N7sXzNUGKDo6tzi30JZ+PiOYHN1A8fqF/GcOlvNYodJsospzaHzWBHs6D1L41g/sRMSqUXW7lY5ejbAjB2Gh5a4e59O6moo+TxxHDM3NcUXxr9CMLEbufhhzi+VibqfRJ/diZn4LNVniUQ3jeYQqBb79qQc2OuQNmKEYWRgII755PFPUtDzfM+WD3aC9R848QX80OMd69+Rvd5cBm5Ism54maaZEcayMoOV4yCANGrrXqtFQkWCVNhe2YDpB4SpyqJfot4KiWo7qMcVZmcFiVqka1UXZcdhdnISyC5kp+bmsEqlLGXAsrKsNDLQg6qSNLPmJhnHiFwON6fi6ZKw1UBzs9OoWFn/t8Ftp4HqeVFYcaOBYlko1SpCCG7V7spY1qWlDMi2Y6WubLFS22aq5bDBp5/7FP9HYQhTs1ArlUx3maYkjsPc+DjPto5xLDjLr97wCwDYosXtt8xzOP9Zdq79IRaeLpFLcxQ1qDUl63eUEPmIsYs6h59KWJzymfc0RA4q3RfxlvfhzDkUigKlWiUJAqbO+zzzbHZMxkqODVtv56cO7uXSjM1jj2vU5yVeWsSQH6UWh8TlRiY7bjOcm7e0OHZcZ7PYSEl0s+/mEo/4f8pzZ20+tPv7M1lBsUi+V2V5osXM4lGUwiry+k7svhLC8DqGLrg6cip1XYRpXr6AaLU62uTn56l2wG0+nxUmtFpZpJfnoeTzyIJJaMK52jFEa4683ktfP+Sr51kcO8ZbN0sGDk8wu7iW8s23Xlce68uZ/n6Jtfs+tOYke/b8X9f1O28W9m/leRqG0WFbpZQdbevExARAR9v6erOtbxSm943yPL6d8x0BVN/Ib9wrAY3z8/OcOXPmuvSo15pvxer/2o9zuSnLthP+5/+M+emf1pifFwwOSv7bf4ux7Vd23+/79Pv4mb0/x+qL/wr+9k/5q1M7uOs3I5aWnuWxxwaZmipiFWZp+QpxJBBOL8bASS5cENx4Y8rjj0f4PnR3b0RRNhJcukTzscfoOnOGbdtSjj0XU/AVPGHxlncV+fLM37AY1vmxPT+GnmQr+oQUPUzIRZDEIfFKOHypBJZBai6x4dbDaKd6mVxcxFB24QclZLiMGKyRlJ5FKU5RGvwYwjBYOOVRuLSNi5HDufALhNoPEHo7SPxsRb5910VmzgukqmJ3dWEDRtvxLqXMmCZFYXlxkonZUcoeaKlLjRi1XGbHXo/5ryQ0l2NkLYRinY27hxBKliOpplnFaKAoREPLjMrf4SeG/xn95RjXhQtTF2nEeRKtjOtKTDMmXFpidm6OYn8/81+7A2WpiiZaRJcKCGU78dbTOBc3YvhFzJ7TlPEZLOxn/YYimq4gQ67KUW0YMQqZ0G4lWH/KmWWeFvfm8yialoG8VlbZKTQtA+xXVqC2AW7aBn55pcnBrSnPnL2TIMmRhCG7Dhp84YsKaWgTKj6pZzB9YZHj4yfYJ7d1XlPZtjMXu5QEQYAbBNTCECUMsS2LgqZh2HbGvLWBjLfoMvdsDqu2jxMDEXu2VjqpAFc1ULVX6Wn7taulUtZv7zjZOr/dcvZ7x/6QXQN7eGvfLVcxyVeyumkQYHspQUmhFoFaLqMECWlb8ypNk+mlJfK5HKoLstHqGOlkGCIdSS5JKWkN1t6q8cxJGyeAdVsitq1tEDdSnjpsg+7gJy6WUUf3iuzcMILQ+giTJsg4Y41TeOZ0BaMiMXRIUDh3OkQNU776qA6eSxpFlAo+VX2EsGkzXUsZql5mOAeHdQr9FVqLFkZOpXdA5/HHPNBUaOuCAbYMw9FGjsZsD11+nnUbIqpGgIyu/vvIdvyZWi4j2ua7uM1KC1XtpBWkLwZuHQdhGJmGWQjwPFLHoaI6FBWDS55NkOaRXp4NA3UmNAe3Z4qh1b188vifUzxT4sOXJtH7+7FvvBF7584XzWN9uROn8XXXp8KbB6hei8ARQnTYVsg0mUtLSx22tVgs0t3d/YZiW79d80ZgdV+v+Y4Aqtc7r0Yr+krn5QDVFT3q4uIiBw4ceMXdwqqqEgTBK/rdVzN79kgeeywiCMCyXt19marJE5+5lb/7ehmaN3JsYZAPfSjlU59ah6rmSRJBr91LpKkECiBtRkoj5FLJ+LhCsZhypTnSHBnBHBkhWljgbXueoPurz/LHTz5MUmgxxXo8r8VCvEjqeWiRREshrtfoMar8+IFfoL/YBWEMUuItNFg8MUhj4W6eS5fJbXkG15ng7i0puwu38Id/NUtrtp/84n4UJeVoOaar1ORLX+unFX2AsxdDqICx7S/YnfwSh48rtESRxUWb7t0mRtHADUPqjkPQamEJga3r5HI5FEXhyNRhvnRyHL2xH98KCMonSOp1ynnB2z9YYGYyYfq5ZxkYUjBZizCsLIfUKaOefif51gBTR1TyQ3W6b1UxsfnqVwOGit2k7igi7OKBx3t497scFqYn6OrqQnoKyVI3rq0SpnmKlkmpNURJP8mitUBL6KS6QIkSTD1mZrTBSPfzVuhJQs6TKIbMmEdAAaSmkGtmrVAUCsgkASmvMiop7WzMFb2qDIIMyBYKyChi50Gdp+Xn6FFHOLBuB6oFOZqERJSkJCddmmrC16dPMKRV6OrqwlaUrGqzrU3MqSp2Tw9CVQk9D9f3mZ+fJ3EcLMvCtm0Uo8iXHuxiaXIDREs8+w2dQuCwYfsVrKmUyCTJgI9hdAoFaAPtzvq//TqcxhKj8RHeNnTH5fanNCVutS7HaQnBj9/4Uzxy8ji1hZjWbIueoW7SMCRqtTqRWoVqlcA1SKRyedUuBGq1SlopoBWL9OdC3nlrljmqFAqkrorfSqnXLjITn6LbvptFV2ALHyMxEUmdnJUlFsgkIY4U0ihG0+ocW7rAquoGXNfhK4/XKAuBIwTLQsVppVRzLl1xSmteogxaYBiZq94wKFspRT1FyZnIMMD0E2wlk36s1KGaosX+PR5fb32DkVV72LRna/Y5aAdNr0RTIWUHgMLVkVMyioifF1mVOg6p7yNyOdRqNQPHtVrH7LZSEys8j507QsafWMIgwFg7w9ptu5k9p2OH0KdVaOTAsE0UyyKanaX+pS/R/PrXszzW/ftfkMf6cmf/wH6mnKnrvv0bUaN6rbkeQG0YBgMDAwwMDCClpNlsXsW2rmhbi8Xim+I1v5r5p1qfCv+EgOqr0Yq+mrleoBrHMceOHcOyLPbt2/eqrpxeT/OYEK8epM7PA6c+wNEv3sm6QSBsopk2UbSakydz7NtXR9NSZGxStAVOAyL7ElGq4rqC3btf/LXrPT10vfc97Di4gwv/+v/N9imFmlNGFwqmE2Xr5lKBSIMkTdCESs5LUKwEtVgkDBL+8i8EF+Z3k0Y+y9MJS2sU0rLEnUxpdbuk82Xy2gKBphBi8/RTNoYqsDSHQrpMmpZpzd2OpYeMtixCAVLGnBmt8BXL5P3vbJEH8vk80rYJwhAXWF5cRI1jjj0LhUu3IpWEhqiS1oZIbwWhSPJmyKatJnF9hqAwhIyiLG8SuPhoGT3eRT03ma2wL97J0iWP1DLxKZIrC3pknbwtcBt1xi/MsX7HZkzLorXooFPDSlxWlYYIlTzzQcSUO8mq8hrkZIxlCOYVA1cWsHLe1VWX5TIIgZ9T0aDDmE3WC8wcPQBeg/Mlybp17RVxoZDpCT0v+/820FAKmTt+peRjhW2tJQ5jzSepVFvk9Y2EXkCxZJIYXXSHFoYaMVFbQIYOfatWkSuViH0f1bIyt3cYZhpGRSFuNFClpKgoFKtVxPAwnuvSmp9n7DmX1myAbjZY1GLUgs6x51Q27sqYwI4+sl3fuTJXRWGtAEgyVg87R8ksk8YxIo5RSiWALJmgnTYgJYyeqXDhwlaSZTj0mMa+GxsUiiFzjQb9q1djpCmXzkVMPr4Bxx/kUKWbG2+MUIMW3aHOv97xix0AmLQbnFbY21xPEbUyAxMlNqxOaZ718KWNb1TZvy8lXw06IM4oFCh3KSzPSprNGSLRTSg0FpWEqqqiBQldSkwrdFlKDXq0AnZfSqqmSMfJAIVhZEz2iv5XCDwTbCv7SkrbOl+h66i2TW9vmWpv2yGuKCi6nl0AtaURcAXTfo3IKRmGmS5YysvgloxNvSpP9co81nqdel3hsaNVaq0uhOeiNF2EKti87gCl/hGUVJBzIgokyCTJLkA8L0sLeOwxnCefxNq2jcLBg+gDA6/kdMifv//PX9btXwuNarMJDz6oMj8vWLdOctttCa91ktTLZX4zjXqJUqnEunXriKKoA1qbzSaFQqHDtr5SkueNPN8Fqm/yuZ4rqVeqFX21cz2g0XEcjh49ypo1axgaGnrVj/ntWv1/K+b8efj4x3VaE/8GuVzmnCPYunoHxWKeWk0gRMLu3Sn//J9f4pOf3EAcS3bsinh2qk5jcRUffW/KD/3QS7/2ctcAjX0b+ey6cQqim3UXPZJ6gkxT9tib2HPLv0YtFpmdm+KJpcPs6zrIKgpcOB2xsGxhmiFqOo+BTXz6Ngr5DRwZ7aOxroIUHoqAVbkquqLT8nSaMo+lRURBN2HShZAK8eRtzMgKSupRlCmK4jH6rE/6lhitdJmJtEwTC+jq7SVUDZa+mEMxx5FComopUWuYxaDEwIAgrteRQUDBB0MEGUAyDJJmk4U5g958jbjlE2oGYZJneVljYB1osUvDbaAUVtFMq4Rpk5GBLrQ2ULJNAzkyT3RpANeFJHEY6F7mTHGRs+kDlOfuJXYL5GKFUqXB5j1V1LKeaS+9y5Wm6+wR1DYgXJxPeexBD9NLqWPxxPEKQtRZty7tOMqVtoGNtgN+BbiusKC0Y+eW5ycQUUJdj1FsGwOXG3aEHDsWI4VCLcoje+YJuzysSiVj09qRRCvABMi0ic/TBEvHwQLskREaiY466jBQ2kQlSpARNISOHwToKyAMXsCaXhmFpeRyGaOXpsgkQTNMtHIFtVQiaTQQKwD3ivX/woTL3KWAqrnAbK6OWi7z7PEWWzbM0d/fj2VZLLYsnjyjoprnKSRzLFxY5mQCu2/Jk8YZY30lAFRyOf7wkd+lW6/woa0fYnjDeU44EZ7WhRh4jlUD57j34HtRDRWhFzL9dtslf3AXPJrmsLxdWLrJ22/LcepUhaUaTClVWgvQkjq9+Sm2rVYYGTBB0bLnIWUmh2jrcYkiUt/HDFIs/bKZyXVSZqY10jDiw2t+lHK/3fl70pZNrGSkJq1WR0qywoam7bzUKzN55Yq0oj2ineKRtloviKyKvJAjR2I0NUYpBjhJAK0DLE441MU4f3fiU3x8z4/QMqFf1a8Njn0f78QJggsXMIaGsPfsedk61pe7CXy1q/8whD//c52FBUGxKBkdVVhehu/5nteW/Hi1z1PX9WuyrceOHQNeO7b1jcJQ/1MN+4fvEKB6PbOSpfrtvtJ6KaC6okfdtWsXpTaT8q1+zG/VvBbSit/+bZVmEzS7hUgWCep9LC4WiOPMBXvnndnJ7bbbavzMz2TgYmq+xfrf/GXed9OP81s/+v1cz1OwNIut3VuZbE4ytiZPunsrhx88z68ODGRmHUUhjSJi3+Gx2cfo7xpkIC2QBAJLuhSVlLCwipllDSP1UNUQ22yyPG4iUWnEPXSTo+FrVPoNSmnKxLhNEJroBJiKA/oSuBqqJmlIGx0VEXosL0OXuGzyQGTOcUVRSFKDOCgTMsz6gT7S8BIL0mH67BlkUyFfrZKvVhkoDlLSC1cBJEo28zPTENloqUaMQOmyKQ53seeAy31fXUYAtpVy91ssCv1dWXZoHCPDkNv2zjPXL6goq3GSkxwN/zeGU0bTHT7ykUEuzCSML09z5/YEM2mSLJE5vvNZKxRxzDuH7wYy3eBkvQSaRy4nII6p6HUuTJlsvNHKAGIb5OK6nQzMFfarY1RqM5WiIRCA4WWuecW22XGTStcITE46qOkkY+oo5yKy19OWxlxLU/p8yUHq+yhtvexgX4xhm4SxRUE0CaKELVvq1KZrBICZz2MDdi4HbdZUKRSydbPnsRw1mHcvsrmyEU3LzHm2l2IaEcvjdRqeSaHLzIoSViQDQKzliU2NAX2AollGxC5zLYW7t2xFk5l+tzHukQsFSb5MYBrYtsrCfHKVYWjls0QUkSQJrpZi5bPXqekR5b5HeN9td4GxG2EeQDruVdpbUSjwySN/ysz8Be5Zdw+/ctMe1LyNME3y/SmHHwtQ5DIjFVizCwYHeqlqKYQBhAG6ZUH7IkDGcXZhRQY4V/VsZbhvCITAmW/xxFMGTmKgxzEXJOzb36RcabPQUpI4Tke3PLtkMTaVQ1dCNm/XKSftrNc2W74C0OFqV/+V+mm1VEIGAS1H4ZEvaywvqszOKmzYEJA6c6w2bLrSmDC1mTMcEgFqnGK6EZp59YWJjGOEaWYXZe330T97Fv/sWbSuLvL792Pv3n1dOtbVf7AaTWhc+NkLL31i49UDwJkZwdycYGAoIEwjVq+2eeYZlXe9K+G1jPB8LYmja7GtS0tLrwnb+kYJ+2+1Wt9lVL/T5/UCby/2uFJKzp8/z9LS0qvSo76cx/xWjqIorwlQnZ0V6HpKv+jHHDBpGlkL1nveI/npn07o7gbHucwYnzsHP/fzZTjzH/ncY6spjan823+bcD3n6VjGSCRhErJr4AaWb67R/4FPcOTJL/Hlv/4d3mXsRhUKuRBEy0HptRjeaqJ83SEKFTQtJhdFxGi0GrtQPJ9S1aJn5wT+BQM/NggqM9zzDpP5c3kWJlIgyELCrQqlkonjSpCCEgGiXTEZaCmSJoqedb6vsEFxqvKZ/+FiNsFIu1lsSsyuHrzcJJu39UMS4Dab1Obm2F+6iXx3N7GUaEJAkrBr/zTH/mIIGeWwpEcl51EMfZKlJTasFSh7H8Hy8nxgz3vI55NsPX0FM3jb6lthNaDUeeBMSv1LP4sSFrClw6Sq89ZbVcSGm1ALhcvMV7s16PkMo4wizKhOmloM9t0IQuI3AiqKR7LsZSAxn89c/2F4GVC017YrwHcFiJcL3Xh5DVnI4o3SICB1HDTZZPVqjZ58iUtnBJafdjSQtFfg4kqJwhVfBKJt7KINOtIwJCc87r0bnji8wNjyIvtuWceNmwoQGZcNWVFEvdFABAF2pULBstAVBTWX47nJp/n6iX/gX978qxhqdsx7lmBxcZjPP6GCiJEyZveNCntuydz/aRRRLGagK9H60YVHY67O9rUWipNFaimFAkYFZOqyyuphlYCWKyn2lRGG0wFrimWhrWgy63VyfkpeZNKKoYGN7NXa54323/z5f++4UWd07jSuYuDaFoplZmDRdTFVlTVbLCamJb63RHSkSJemoazLQRsYEkUQRQhVxejtzc5TYUh9fp59xmYGymtIhWBqUhK5Eb3lOlIoNOIioxcD9pUvx0hh2rihzsyM4KmnFGzVJU0k45MWb7/TI2/GV7v62yB9xdW/IitI2hW/UkrSVPLFf8yxOJdQMlwKAi6dSZktB/QW+wj8mIIZMDlxGgQopRI3jtxMd64rexzDQBpG9pm6grntbDbaua/1r3yF5kMPZTrWffsyo92LnafS+GUBpVfLACpKdj14ePYZPnXiL/n1W/4NQnRfFwHwcuZbafrSdZ3+/n76+/uRUtJqtVhcXOT48eOkadphW0ul0kv+rd4oYf/fBapv8nk5q/9v91zrcVf0qLlc7lXrUa81r8fqf6W29dW+lptucnnmGZXe3i4URSPNw//5f6a8971XtBS1QTHAb/2WhucC+QVy5Qpf+cogd9+d8pa3vHQs1pfPfZnuXDfburfxib2f4BN7PwHAXI/Gv+l+mDve8StM/vks6fm3c641wNaSTz7v85GPGnz5wTzLMz6BYhIhUYWHjBWWGjo/uWcdg2/1Ob98hr987i9J5Y8wXR9gw06Pk88toKV5DOFiBODaNlJVKYgmkWJhFRR6uhMULYdyhaYR4MRxwdyiRZDTUH0HDZPEUbnptvPkrA0o+TK5FfOIEHhxzLzjEEcRtqYRLPiUdAeskFRIurp28vQzEWtX1Tl9aglldBuR0GjuKlGwE2Rb/5k4DoptZ2t4wJurcfKBHsqeROLjyjJfe1THk2O84/aejv5SKRQuu/XbuszPnPs7XFPhR3f9CGs2e1y4EOLNhiAgsQps3WMC7lW6VLWdoyo9r1OXKYVAW6nLlJKyr7NB6aVfFEEIZJoyOzuLYRhUi0WEqvKOGz5E5GTAZYVhWylwWOmE79Rumiaoana75wHZakGwJj7DoZN/w2DPj0E81GFN7XyefDtSK3QcvDRlfmKCxPexLAvZahGroBZL4IeQptxRupnjT2/HKtuouoriN3nqSI71O6CYN9AsCzuKuGnnMk895RP4sH5jgR37bIjdToFAfwn6VttMzBiYSRNdl+zaEWSvz7Y7t1vRzgpNw7EEXVp2zI4o3cTGIE01pmJXiVutzu+otg2axsKsj376nZRji3OTvWx4q2BwTZmk2eTShZTPfn6ZZtTENSTb16Q8+4xCtephmF6WnKBpnc9UvLQEQDOOaUURAwMDKFGW3ZsIg8gqcLF1kjByGcltJA2ytAOAwJc883hEq9biwoSFkrPo6U1QSWnU60yOS7bdeEVqwpUMfJvlRIjsQieKwDCQUcTFsxHzY00sK2XWVRHksGQLs1WmEc7QvWWM0tC9+FMpvg6KULh15LYMoLYzcDvnqXa0WdpqXbXZkLkiBNln3HvuObwTJzBGRl5Ux5rI5AXtfN9sXq1GdXBQsnFjyjOP5KDVz9xkjve84/rqtl/OfLvSCYQQFItFisUia9euJYoilpeXmZqa4tSpU+Tz+U4E1rUIozdKioLrut9d/X+nj6Zpbwig6jgOR44cYe3ata+JHvV6HvPbMaqqvmpwPDU1xS23jFOrHeTv/15D0+Dnfz7hPe+5+n6vBOITE4JSSbJD20nZLOMuwdycYKVB65uNpVn80K4f4j+89T9c9XNdzdZxn//GJu772nuYDrZz66UpWveN84M/LBhYAz/0UY8nH0v4x4dzmH4LJQlRhEpRqzPYnaIWSyhhBuySNMamAbFg754hLl7ScRYbqH0+H71H8vjXC8zP5ujq1nnP3TX0KEVGkHheh9FKWy18T6IkET1GQpzXiZQyYbjAOecYaO/KVqhtUHLfkb/AiFLeu+l9pGmK5/ucnajgeTY5pUlXWZAXdYIGnLjg8tChDQROttf73N/EvP/DOqtGMlCQ1GqkzSZ/ffKvcSOHD2z+ORpRDpk2EKjkZQBpyBPHbR7K/X/5pW0/SY/dk0VMGQZaV1enOjPwXaQTkSwvY+dt3vqeHBNnHdIU+vvrFHPtL/h2FJRoB79LIbLMUCE6utcVc49aKCB0nR+94ccACJaWmJubozQwQLFQyAB3HGPGYGr5jktcCJExtfU6QlUR+XzGoEr5Qk3pSitVG/A8OPs4TQuknev03su2i3yl2UgDikJQ7O1FyedxGw3CpQgjgenRs5TKXRR6e9nRdzOnTItYTZmsj9OX60aqOu58jbzMPudSSkK1yf47DCqmiRAx+FcXCIgg4MBB2NiQxJFNpUtBD5sk9SvA05Xr/zjOjIIqqKUSy4uLfPb0Z/mg+r3M5IvousmGro0k9TpJs0mjAfd9RsVp7EAoEaGX8vRjIXcZPonQePx4iUSZR+gO/UoPQa2A118mtFJMtX65yUpRsosPz2Npbo4gCBjo60PL5zM9crPJQE/C+LkmOWsdcdFmuSXYt7ZJtLyMEIIz5wssOyZnWg8i4k1Y9V6eck+R6y4xrKxB4F9dJKGq2fsdBJkOuM3YyzTN3q/2RdH4fIlYV0hYxA8mKam9qHae5ppvoOQWyfXtR4YhJAmyvfqXaUDSlpKsfHZX8lzhsh64tezx2OMF5hcUcrrJzbdrDHT7mY61Xsc7fhxz9WryBw9ibtrUIWBSmb5soPpqGFVVhY9+NOaoPMnXH3maj3xfwM03fmugwuuh/dR1nb6+Pvr6+l6Ube3q6qJUKnUImDcCo+o4DsVXmSDxZp1/MkBVVVXi+KXr574Vj7sSFTU3N8fo6Cg7d+58zfSoL/aYr8fq/5U+ppSSM2fO4Lout966nzvvVPj3/z5CCK65broSqO7cmfLkkwqr+1YTx+AJ2LDhpUGq64I6dTNTpV6Su+APDv8+v/P473Du5851VrKf/9QqyiXJ2SjmbOUm5vz3cxOPc0PyJKnvUy4ILDlPavsYuWFiP2Sg1+PY7BGeO36C20ZuxTMgtnS27xJ84/E8rXpIqZzSPejzVPE/A9/H939gbed5CU1DyWfAVCZJh0FEURjeWiR9PCJJAgKhEcUSo3+eecUjSCOMxuVIMre1zLKlZl+crsvZM3kmjyvkkgQv6cFfUllujbNujcelsQFSqeHZOqmEbiKOPhYwWMr+xkouh2IYpEISpwk54WCnCYtpgUg1sGUTBdBchThKkZUiaqErc18HQYc5E4ZBYOvQaueoui4GsGHb1YH4qetezqtV1cxs43mdzFDFsrKVbbPZaTCCDCREScLMxATd3d3kFAXpuijFIkLTODFzjKXmHLek7YazQiHLzITMAX9lhNGKXnXFla4oWURWkqBoGk7qYwcg2iYs6fvZc78i5P/KrNe01cJSFG7ZfjfbowN0qWX8KGZmaopmY4lU2Y5bj5DRMqm0yWuCUkVBLReJmk1mJibI5/OU24ygYprErRZqO2JjBXgJKanoddAhceD4WY3ZeplqwWPHJh9dtvjTY3/CTLTE/rW3saN/FyUjYx4fmXuSpgXCMnno5JcoGEXWbuvO7rtc5slv+ERhRF6fw1BMmt4w+cTGcevEUYyJC2aRJFlLPl8gdRxy0SKGnyKKBkqpdLn0oF5ncXERadsMrlqFdN2MvQ4CtFKJrqrKfjNk9JhLmtbZsVXSu8rm6FGd1rzL8rJPteoyWFqDb5VpjqkIP4fRSDDKMcPbKqjFLOJMui4yTTvviQjDznHVMT61P2OmbLG6V/DspRg/7UbKKrtWe8wZi8gUVEXNYtYUk2qoYacaSjFbx6ZXaGYV0wTTzJIANI00DDn0mGCpKeguZeD0ia8J3vq2hFJf/vKF3Pg4wfg4WrVK/sAB7N27XzZQfS3GMGBw6xgsfIG9u9XXfO3/Rpnns61xHLO0tMT09DSnT58mn8+Ty+Ve76cJZEDVfqXB5G/y+Y4Aqm/01X8cx4yOjrK8vMz+/fu/5Yau12v1/0oeM4oijh49SqlUYs+ePZ338pttWq4Exb/xGwm/+quC0dHs937u5xL27fvmQHVqCn7kR3ScU/+Fv5KCBz/1MP/s30bMODOESdhpw0pTUFXBjV03UiwUmQ8U/K13Mvjem3GOHGHr40/w9cNHmJ8skVca5E14+/vzHG44nGye4/b8vSQKpHFE74DO3rvm+YsHPsPda29nZEjn9ImYRMnYrNRxXgBMO133cYxiWawqwrvep3LfP+RotVpsX1cj3nA/sZMSOU2sal/2vB0HRSjoXpR9cZo2Dz1toqgNUlyILWJpEFFkz70h448mGNESI4aGqqp4iYavWaA0Ol3zie+TpCZNJcbMKeza4/LYQyYy1WjJCughedPBdPPEizWS0MyMVOVyR98ow5Ccl9BCXv3zICCJogxo6XqnRz5tSwiEpqEWCp1Q/RdjOz/91J9RpMBbb3gv1kodq++Ttpm10zPHOdk4yy19+zvgEa5gcB3nhXrVlcKFdgkBUiLzeYQEVQLR894v3+/kvHayXotFZBShaBrFNCUvddB1coUiZV3n98/+OQPrR0lH7yYKt5OqkptvrqEJg2DRZ2Z2lu6REWzDyCKw2ikIQtMuR161j4cVVh1N55EvO5y74LMYnqes9zO72Mfb7/GZaE6DbbKuso5NpfWd+0inLIqz62gUFHwNjJyWAfkkIa7V8ZoaqV0iF66iokvCSCGOJLmeMlEiELLFjlUh09OCsOUQ6QX23RZjms5VpiVRLDI1NoahKFRtGwGoXZnGM6rVOtrOqq1w89syQ2DshTxyv0ermTHoC55Go9lky+YB0pxkfFBnwmtS6Te548aEXLxEspy9t0o+/6KpAFe1W1UqbNirMFNPMYunMEPBcK9k7y0KR58BNQXLT5BRhCjkwc+R03KdixORy2UtbGQXPrLVAkVBahpxmLC0kFIt1VhqLWHm+wmjHM1GnXz+siwBw8iOiTSl+fDDNB98kB+ob0Ffu+ubntOunNeKpfTjLFlh5Xz4T2E0TbuKbXUch4mJCZaXl3nqqaeoVqsdbeu3Ww7gOM63lOB6I893BFC9nllx/b8eMz09TX9//7dEj3qtebOs/ldkEOvXr2fgZWQMXgmKe3rgf/2vmMVFyOXgerTm/+E/qExPg7CayDRh/swGTnzdBxPCJMTSLMpmmdvfNcGjn9uOouiEgUKpBLfemgGEwr595G+8Ec3+BMt//Tl+ZPNP0bdKxzIk2qIkFaAIQV+aRw0zMFaiRdJ9keL6W1matGF6D1O2wfp8A0W7ApgmSbbClzIzFbWZmbReZ9taKP3ABH967M84uP9HeXBCgJOtBztsXi5HZOukzSDLBU0hkQqeUkbqFkY4i5HmSXIX0V3B7r1DjE4VUXGQcQiRz3D5EjNzgkJPDxaCw08Kpp95C45U+PxyhYM3lbk0EZK4HhKPRX+WKMzTHPseHvL6ePutUK2+0EilIFDaLuiOWSpNSZvNDqDsrIavcFCv3I/SdmavGLKSKEKYJq045mQ0yc7yRvQ4JqnVMnbatrMYqChCixJyfpoxhMXLrHWHBbOsjAmDy4kDadoxwiBlBn5bLaxIsmCSyQUAcUXs0UpGp2hrZWWrhZQSWSwyuXyR6YUx9gzsRWmDbccSWIWY9+7TiSKPNA3wkpSpWo3I8yh1d6OragZ2c7mr8kOTMHxhFJbn4XkeFydzxOWIxnwNK1dkfkFlua7gG3Db0H7Wq/2EzToCwdmzBhdOHcT3FznV6iHJb8LaOIeiaZ2LgWpV4AnJ4mIPTiKJYsktG+oUkKDCpk0qJy9WqPZ5qGnATTfV6SlyVURaHEXMXrxIoVql0tWVseVXMpHPiwZbYbkdWWTRha5ikzitsXbY5vRYFxfrUFAddm9xmKh9idU92yn1bc/+7q7byW29KoZqhU3VdbTu7uy9abVIajW6dbjrdotnHxxDi+rs36+xyljD+sp6jrvnkYYOUnJX1wFuLt+Qvdeqml3QteO/OhdQitIxEypCoBQqNGOXc8tnWZskWEk/RtlGqehZPe8KuFXVjpFPRhG/br4PcVpl+XOfI3/wIMbg4Dc9v71WnfB3rb4LXdXfENFMr8cIISgUCvT09GAYBqtXr2Z5eZmZmRnOnDlDLpfraFvN1zIO4UXGcZyXXaf+nTLfMUB1JQD8xeb1aGtqtVqdD/SWLVu+bY97pdno2/mYLwccLywscPr06VcUy/X8E6cQGWC93jl/XmDbUKJIza8BCY2ZblgDYRqyo3cHs78yS5rC/1zt8YUvBGzaZPEzP5PQ13f18wjXDfClu2f50+/7MI1HH2Xi8VFOP7AVa3k1zzVK/Nw9/wKrlH3xei0dfWEtp79eYO5SFy3vHp6eN3GWLN79gewLkLbzP42i7EuLy2rbFeeyaGYXO9JxKYUqYxrIgg1xFoSf6fFUPCNrhqLZZPOQz5nTClEQ4cUF6rILM1rmoS/neftdMR96xzJHj2kEaoW9211GBnuIkgQ3CHjytODJY10k5hy5pMnSxQqjeszWLQFnx/tR0oR0LI9ZngN9BiUe4MGn+njfeyOUwO2wl8K26Vu1iVKUGZQ6wJRrG6+u9fO00ejoXgGSVoulmRl836cSKUhNRdh2BlLiuAN0lGKR2NCQ0MnLRNNQu7qyY6Xtik98vwNwhapmIPoaDG5Oy7FFX8OAKIFpouZyGVhZAUhJctlMkySI/4e9/46W5LzvO+FP5e6ujjffyXkGYTARAxCRJEgwipRFmTKt1SpLXiXL++57rPPuer3atX0kv2vpnJVeOciyVn7tlV5LXksyKTGIFEWC5CAQwAwGGEzOc/O9Hau6Kz3vH09V3eq+dwYDTMAAxHOOjojGRXd1VXX39/n+vgGIGg3OzZ7gC1NfZ8+mh6HnE3R98ktFAkXWf6qBj6pXUDodOs0ma8bHCXSd+atXCbpdcvk8hUKBQq2GZlmS/R04XyKKUBH4Wp6CGmIZeez8MHrHRThtCp6M8XLVgN8+9m/Ypm6h88In0JuCXFigblRodHcyulHWigKQy7H/cZ3e13vkQ48gVLjv3oideyzU2M2+a0fI2slFfF+hPFHE1ONGMiHk+8/nmZ6aopLPU1TVZSlHfF8H7TZkmFe1UkkzbpWeC9hcDQNenn2Zh+3d6E6I5QqEpTG0voLXitBVDcV15TnIMuXdLpHvoxWLqLouAWSrRbCwkB5Dcj4r+S7F2hEcfHJjT8oIqTBivaiyvbAFbWiIEVGTcpSEfbcseW/Em6IkT1WN9cOi2+XhB+o88+2ItjfBQm+URx4oMlzpENU7qKYp9c2xoS+bx5psQNxXX8V99VXMDRsoPvTQm85jfbPr0XWP8ui6R2/b879TVmIS1nWd0dFRRkdHU7Z1cXGR1157jSAIUra1UqncFkLqvcD/74Gl6zpOxpF5u1eiR922bRvz8/N37HXfrnWjo38hBBcuXGB2dpaDBw/ekZ3o4Nq3T/Bf/otCwShSF00EsH7HEvQko5osVYW/+3cDDhw4zb59+1Z9Ll3V8UIPY/16wg98ln/4m01KzpcZip7h1CkNzwv4+MebXLpq8Od/tR6//jSvuRuxijqKNYuVr3HmYp7pSw7jNTlqS40Z9rL2Lfv/1XyetgUREdsn7uW7nZOERCj5OCmg1WKzOopj2qlR6MmPWyw2W1y5YKBHChWtjm+08fNjfP07Fp/5vg4f+3iEkvdRtBwICzUIMB0HvaswbDr0VIOmPkpPKJy80ODqht/h/s2PMjMnWLvxYxhli3YTigUVx+3h9gzKQ0NSk1ivo7TbvL+yP30PqWEK+sbwiqYRtFrp44plyRpRIGi3EZ5HsLiIEIL5Tgcsi/FqFfWKguH6UpdaKEjTUDzOj1ot1CCilQe1VpPA1HEIY/2sViqh5nISGA0A3CSQPgEQQlWZWLcTTcgKUtHt9jO48b2R1SuquRxhq4UiwO7JfxdoFb7xvMXCxSeJZiq8iMue+zw6CJYWF5kYHUWP64CK4+Oots3C/BTfOv8tJqcnGCmMUqhUKA4PowohARiA55HLm2zdHHHp9YidhZ14TYWRMY/qWhv3DDx/9XkiEVLoRrhBjRmnAmabbqhSEjbCLeIrhozEirXABeADjyt4WhFDDdECJ5WFJKa/ki4ZTDWngNBkyL6q0l1YYGZmRlbX2tLQJmKZRJ8j3zQl6ymElLzk85DPU875bBhtcvysS6VjcnGpxNBYgaHRNoEX8tI3Wxzc9hDr12xGs22UGOCquVy6GQnqdYIkMkpR0EuldBM0qC0Ogd21e5igzGLYIqwUeWrLByi7JuHiIufq5+gacP/kHsJW6/qyAlVFq9WYHFJ4uHiVk9/6Kx7c8jj777kPNSfBbeR5MJDnGsXGr//92f83D2x7lI9u+RhRKPCnplj84z+WOtaDB8nv2YOakZPdKvA678zjhR5rSrfe9HuniZSbWavlqCZsa7FYZMOGDQRBwNLSErOzs5w6dSplW4eGhsjdbFVjvN4L/P8eWHfKTCWE4MyZM9TrdQ4ePIjv+8zMzNz21327140A1SiKePXVV1EUhYMHD75tkR//8B+GXLig8LXDeehW0ff8Zz7z/XtpvvJZTM1k0V3kl770S/zYnh/jscnHrvulWrEqjNljeIHH0aMm88EYU2ufZqG+kQ8ZTRZOf5ttnRm+8Y37MHQPjC5h1yByfDYNDVHQNXq9BoEToa7PsIf0A1MMQ4I2w0BVLVDANzVMIy8jmZptRN4gBNA03n//J1IzkNvpMD99Ac/diDGUp7PYpaSHKJ2t5CY0/MiijUbRCpad2fFSbZvSmEr0msNwcYgRoNUWmCMmbQsa4UXqRoOyeApbrVAZH8X3FTS3jul3Zeg/q5iLVgFxyeNKLpcypokhKwHvimWhlsv4jQYz09Pk83kqlQpaLoeTVwlj/jlyHFBV9GpVurC7XTQBRUcQLS1Jg1ise12hS41d8QnAFSCjsIRIR7y7jY0cvvosi2OL1Myq1BUmAHdQohAffyB0Ls+vp7FwgLl2hanzIWG9QT63gGmbXDovsK0Ott1gYnwcI47VCtptosDn/3zmtxjzD/Gtizrv2zLO9h3r6XU7TJ8/TxQE2KOj5FUVS1VRgoD3PeAwUraYrRcZyrfZuT1AcXqMUGDBcOhZJk6UJyeKFMyQ0M9TNG20MGDCLPCxzQckuM60aalhSC5qQbR8riLXlWwgsRnQNJdzdIFer8dsvc745s2YYSivc1YmEYaErouqqhLkJm1TsYY5WQceLdAsz3Lp6BSjgcOaEYepzhKV8nr8Hjw++jiVSk4eQ5yPGTQaKHEUmWEYKIUCgePIzU6igc7nUXVd6qJ7Ms/40Xs/zER5LXmzzPzcaS5dPMYBYxtKZTOqbfPiie/S6DW5x96csqGt2TaduRDTalKbkPcXQhA1GoRLSwCYeZ/28AylaoDweoReDG7jYoksuNWHhkAIOmpI5/Uaf/pMB1/Ns2WnzZ4dTYKlJRpf+cpyHuvBg9fNY32z63/+5v/M1y9+ndd++rVb9pzJuhWZ23dq3Yjrf5BtdRyHhYUFjh8/fsvY1vfiqd4F60ZG/7dbt+n7Pq+88gq2bXPgwAEURSGKorfFxHWn1xud316vx8svv8zExAQbNmx4W7+kSiX49/8+4I+ee47feulfsGGszAc2/30+sPlJAGY6M/zJ63/C4xse5/E1j18XgP/yoV/mFw/8IkII5PRXMJofZawwyomux2u5tTy27Y/wuoLhvINWGqLtNen2NLoMEXgRJaPD8LBYySrGrm5F12Wckmmimia1Xo5f3PnjVHNVztfPMWaPURtbj9KVuk0yDnZHUVhstSiWJuhFFoWCwlIjT1dRUVEw3RbQwBYhkTMQDYUEijvWw6VNNuevWOSiJuWiYOM9LY6cnCRaO0lTnaaSP87l14ex9SKGrvHgIzrWcDkFpglg+7OzX+BquMDP7fpxqbXs9Zad17FLP2HpAIhBR5Q0ZPV69DodZubnqa5Zg61pMq6q12O9PopdG0UbGkqlE0mElWIYPL3nB/hge5Uc1YwmMup0JDAtlUDXZexUJgpLzedRCgVac21em3uVh+qHqBbNfgY3ligAqNUqAKEX8pU/95m/VKXUu4cvfsmkkvMZLvtsV9aR03L0vB6LXp7t91Tke8roNkWxwImz67k8vw0zqHJh0ebrTZOPfsykFOt8Hceh6br0NA1L1ymoKkPjs7zgfImtmz6MNbxDRlKV1xNdcZi6tJ1eey1L6jpGdQcrr9F1QVFdtu2pMDYunfvZ5AOtUiHsdlF1PS1jUHRdhuknMoT42mnFIo7jMDc3x/jYGKbvL8etuS5KDEyFqsqcVlUlaDZRku/xgdE3XYcPbB/lyXs+xRe/WiCKWkyU1tGLckS6AjVBJCJEfO4Hr68IQ0SrJfWilQpRfI5FECA0DaVclsC71eJefQMXpy/gDNuEdk5mpqKA60p3vg6eKutZI89jZlrhhVeqCBSU0GPnhjbbtsXXz7alNKrVInQcij3QTFO+twyDr+bzqPEEImo206mBaGzg0twO7hlVsBWXc8egqOvs2peXbHC3S/vwYTovvkju3ntXj0p5C6sX9tIElJtd8/MK9bosb6lW755s0htZYRimk40bWYqiYNs2tm2zYcMGwjDsY1tzuVyqbX0zbGu73X4PqL7b1+0Gqu12m6NHj64wBr1daQN3el2PUW00Ghw7doxdu3YxPDx8h49s9aUo8LmHnuJzDz214t8lLlcv9K77voQQBEEgWSBV5cEHBQ88IHjpJfkFHKHhP/JbdPbtYe6J/46zR49xv/VthsQci4uCktZiaAgefzpHYRhCx0HL51ODkWpZy67u+BjCbhdTM1i3dheR47A0Xefcwhn8+hKGbspoJd/nS6/9OWecK3x6w2dYt3EjQaARqSpFv82WIVhaUggjcESB9z+lUCjK8W4CjrRkBNpuoxHx4acDlloaYWSzVFf52pcCio3vY/q7Q+TNvZzcMIO+59t8av33o4ZNomiRi69ewioUUqZPCQIi3yPwXZRSSWqpk/75pOJyEJwEgQR98ePdZpOZqSmGR0bIKwpaLocwDJQo4u/s+qyMq1pclKxmqdRnvNJ8H02V5ygZzQrPI/A8tEIBJZeTIL/TSRlWdF1GYcVAOTnWv776TZmjGv/YpuctyexMEgdigHtl3mZmMY9l91BFnSGzweK8hpYrMVrdRndpll4QsmnEgDBEq1QkNxyD/O5cnfzUPehll7DXxipYzF90mD0fMrZOxlUVdZ1isZg2ZLnAxfoCr/YucV+3yVi9ztyMzvQ3P4ba0qkrCmZhiqHxqyjtKsIuMT7UoWz72GPPcvZKni0Tu2QYfhCgxokM+D5KHJCfAP4wHnurxWJ6rpozM9SXlpjcvBkjl5NVtLlcei8rhtH3HHANMxUss5Oui54zeOihiGe/laPtmBhhh4O7e/z2N/4Zj69/nCfv+ag8pk5ndc1rGIIQaJYlExSSiDMhpMZUVTnhX+HL5/+Sn86PEQUuOR/I51FzsUbQD9ATA6RQOPo1h6pVx9AhEnDicoXJzT1srV9WMFrcxI/t+XGqpkyIUG1bJgMkqRLJBirerPrNOhuD+zGNHq0oItByFAoGM1d9tm9pyFSDchklltc4L72EOj3N/Pw89qFD5HbseMukQC/o3RLH/zPPaPzRH+koipRT/czP+GzffntqSX0fjh5VaTQUNmyI2Lbt5iUGN1uhqmkaIyMjjIyMpGzr4uIir7/+Or7vU61WGR4eplqtXhe8vzf6/x5Yt9P1PzMzw5kzZ9i9e/eKQN63E6jeyfHKtQDd1NQU586dY9++fXd1BtxXzn6Fz/3p5/jy3/0yu4Z3ActAdZCpF/EPWhRFfOXcV/i3R/4tv/vx36Waq/Kv/pXHF76gMTOjsHlXg8+88H/iR/+c/+2fhfyP/+Me/vL1vWzIn+IXPvtNNuYvyrG+pkEYSo2erqeaQJDAFF1HK5XSGKKe5/LqiedZX9nIku7R02G+u8Cakc3y+HSdmaBDM2gzUSqB46ADH3tS4Ut/UyRExy622LcvZPfuFvk8KEaGeYqiNB9MLRZTneKQ1cPz4Et/paEBbW8tBcVH7ZXxpjTUyGdsr0ArTsoK026XrufhtloseB6aYdBCRetohEt1SfwkuaWJ+/46RqrW7CyLnQ6Tu3ZhGoYMos9IFdRiUcZXxW79aOB5Xr/0EtOdaR7f8CRqPi8jkeKxf1IDmjRhpa7/zDg/AdBuo4d74h5KzQd4Lawy9oEhLF2+bsKKyzxcW372w5Cw45CLuljlNRRK61FDn0JeMF5qcOVSlyg3zP2H8kxuC8DrLScIxGUGYQi6iCiJDoEI0QsTBI5FFLVTaYGi66iVCiKKsKOIfLeL45UwQ/n5vHBukS/+ZQ29K9BDlY5WxvCKFMQclSGfTZuWWL9RoThm8y+e/Ws2KZvZot8vJSeahtD1NC82lUpkNMVktL1tIWh2u6zZsQPNMKQZLQ5GTuLEQk/qwbNa7CTGCk1LtZ6KrsvX932UXA5FVRnON/nQ44JuF3J5FbNaoHtBNkVlgWGSN6tY1vJUIn6ubMVpdmMWBj5/fey/oimgVsr4LS/eNAiEqqLYNq4J+a4sw/A8iEKTbs7k6OwRttprMH3wmhGltbGMod0m8n10o8DaNTslA93p0J5uMDerIhQY31ikUBB9KQhGrsDD9z7Bay86zDReowussR9ibFhBtSW7mzSNyZrlCAXwLl3Cu3TpmjrWG1m9sEdOvzl95cKCwh/9kc74uMA0odOB3/s9g3/8jzu3nFENQ/j93zc4dkzFMKRq5O/8HZ/3ve/mohpvZeB/lm1dv359yrbOz89z+vTplG0dGhpakd/6HlB9F6w3AmS3AzAKITh9+jTNZpMHH3wQwzBW/M3b4cCH5ff7ZkYWN/t6WaAqhODUqVO0Wi0OHTp0x47jzaw/fPUP+cnP/yRD+SF+9+O/S9tr0w266bjLC71UvpGsLEhVFIUr7Sv8xZm/wA1cqlSxLPiBH5D3WdsT8IJ8nvFx+Lf/1qPXA9PcgKL8ML2rV+kcPox74sQyY5qNt0lAYzaeqVKh15jlC2e/yJPrP8uZ7z5AMLeF73jDfN8HQG3XmZmZwfYh15MJAomMYMsWwY+MtWg2FUpDJtWxggSmQkh5AbEDO/5hJcN0JWPf7lSXSARoQqGm9FB0QT2oEQYa4eVtzM8JxnJB6oK2g4B8u02tYPP8c4K55z9IQ5j80VWVDz6yQKWSx4rP5aDsQDgOSqGAVqvRqNdpLi4yOT6O1ukQstJ49Scv/AFD+SE+eM8n+h4PYwnF6+E0322+yBP6U3Kcn7BXtg2WtTJHNWHxOp0UQIeqwZcOjzK3uBtNzHDllMY3O3Xe/wGBXrSJNK2v6jW5ZqNruxh6QNAJyRshS26OLfeZrN94nh27i5RMF9N0ET25YcD3+7Jec9Ucndo8hfYmVOEgGl2q5YjhjSW0nIxHino9qYWMwb+iaQjACqAkVObra+goRXzjLIaiUAhdDB9UhukoRarrQ6oTgtB1yXUjojAkisLlNIPM+D9hpLPyBCVmS5fqdZxWi4nhYbQ4oimK9aqDIFR43op607DXQ4vZWxGGUtvsS5McQIhkY/OlPFacPxy0mlgBRHYOtVCQqQsxOFUNQ24AY6Y3vaUzeuSsGYpyEV8DoYCpWxhWDr1UpNv1sSyfsNXC6HgIU5YYmI5LpRgyP9em3ppiydxELWdjx1MKVFVuODSN+vwVziycYvvQdvBLfP25Ifyujx64nHy9yyOPhpRGM9Wrnsf2bQYXL5d5/ew4ucihVm6we5OU6mixISzsdAg7HaIwhFwOLS5XCJaWaH7jGzgvv4y1fTv2/v03rGO9FaP/RkNOrxa8q7x86QiPr38c3y/Rbt9czetq69w5hePHVbZskb+3vR786Z/qPPywd1NqiNspU8iyrUCqbT158iSe5/HNb36TrVu38vTTT79ljepP/MRP8PnPf56xsTGOHTsGwOLiIj/0Qz/E+fPn2bRpE//pP/0narXaLX1vt3K9M0Qit2DdakbV931efPFFhBDs379/VZD6dq47HfqfjacKgoCXXnoJgP37998WkPpGmuQbWaqiEomIeWceBflN5oUemqKxtrSWglHoe51BkKooStoYk00LSJapmWyrbaNiVdLHLGtZQmatWcPQD/wA4z/7s9gHDsgYHOL4pGZT1oZWKvJxVZU/5IBqmLiKxZFvbEKZ17Ajj7mTgr/5osvU0hKz7U1c+vYHcF742/zV57u4Cy1Uw0ArlymWVdashcqQBDGqbaOXy6mJI2q1pB4zitDKZclEgfwxbDTImx5hrkSPErqqo0YmeqDT7VZoeqP86ZeqTJ1zJKir14nabdRCgfOzJY4c1dEtH9ucpzOvcOT1MZpRxOUrV5idnaW5sEAURejVKlqtRgSErRZzZ87QnppizcaNmLVayvZGjiPzWGO934w7x1K3LnV7nodeq6ENDUlzT7dLrt2j0pE5qlqlsvw8nY40CsVGrfTxuKNdHxqSqQOWRX3OZ+r1Rey6QdTYRqNXZnpaxenEVa+uKzWJSYxMbBwqWAFP/UCF4pohyOW5b3ubjZVXGLYsxtbUyJUlc5VcByVu5kruCbpdtt/zKuVNDRqmSnWzxYc/aaB35fUSvi+BmaJIlrjZlNKDQg7HjJtnewFD1hJaqBHZNbpajTZVAi9isnieqHOS+YUFZmd6uDPrOH20wdz0tNROxvrN5D4QnodaLKKWSuk9GrVazF2+TK/XY3J0FDU5h52OdN8nzxGG8jl8Xz5HoSCBta5LM10YpgY4wlAa2hxHntdicTlirNlECIFWLqPl8/ztB3+U+8cfkOA2/pCFbck4R81mek+rsS4w6nTk/WlZaQuaks8TRQGhAp4OahCxnmF+uPa3uGdoI3athlGt8umd388nN36UoF4n8j32PJpHL6sE3WEUVeOh9ynkqgXQ9b7P1awzx59c/SL1qMP5s6A6TUaKDqVRG0cpce6sPMeKoqAWi2iVCkbU5alD80xu+QbD24/w1KcL2EO5dBoQdjrpORSAEobyvJRKaLUaRBH+3Bztb3+b2d/5HZb+7M/wpqbe8Pvxp/f8ND+//+ff8O+ut0ZGBLoOlxcavDjzXWbnAyoVgW2Htxz8BYGCqsJLMy/xf7zwfxCpLr6vcLP81J2sUC0UCqxfv549e/awf/9+duzYwRe+8AUeffRR5ubm+N3f/V3Onj37pp7zx37sx/jiF7/Y99iv/dqv8dRTT3Hq1Cmeeuopfu3Xfu1Wvo1bvu4+mus2rVsBbJJ1LT3q3bTutOQgAcaO43DkyBE2btzImjW3PtZk8PVuSjsU5aE1AflFYpyKH/ooisKZnz/T97dCCML4ByABqVNT8Me/8Ti8+AV+fXqYf/o/QXZTamomR37qyBsehz40RPWjH6X0xBN0XniBzgsvSJNKMvqJQ9eJx5VzlzzsU48RNAQdMYLTGyFn9jh7JmTbtgpHD4dElkZbC7l0SeXZ51SefDpmTLOO6mxc26A2NDOCz47mDVPhEx8L+Pxfmiy1DHouFJQmebWLVp6nINZy5ESRj27LOOcdh7nzKqGWB3MU21vCMmBhRmVibAwmJ+l6Hq2pKRonT6KoKrZtUyiXWYrd4OPj4/L9Zww5iRRCeB6RquIWdBzbkA50102TAlJDlqZIkJOkCCSSikxDFkEgdaaqKvMvHWe5AtYwODVVpdl2UbWQIh2ipkpDmGiVPESd5RpVVUWrVkFRUuaxqi7ysUehpyjMzi0wVh7DMs1lqYNtpzrhtNJV0yRQFoKfePSnmZ6/wMaZIzy0foLy8CSRG8nnj7Wzg2y82Q3YYo5jlapsvK/C61dCfKdBpeegGyEPPFTg0CGLglIhikpcudLjO8+qNNr7MKOQw89YfOgDbfJ5TT63bS8zrEk5RaGAUFVmZmbQNY3RSkXqbDNVtH1ZtIWCnBQoioyo8ryUTY98X7LgA0UR2RgrzbIgl4MgSIPxFT/knqGdMvfWceSoPpt9GzOvg3mzSnxdo5gtVlQVzQn5wPjDfOfKYfxmi1lPYXLrVlTPk/dIr0etOCJH7Z2OLA7QVO47sMC3jM+zb3eVkqoQtuX3RHoMjoMIfYpd0IIIVy0jchGvLR0h0HNszN9HV7FRTKVPl65oGtZQmbA2T5E8WrdJFN8viqpK2UWcwUyhgNLryUra+Ps/NSt6HlG3u5zHun79dXWs37f9+97wu+uNVrkMP/uzPv/DrytQ30A+p/P3/p6Potx6lnLdugjbFrxyKWK+0ebKRZOHHwq5WZ7kTgLV7NI0jU9+8pN88pOfBOB973sfAL/0S7/E1atXeeKJJ/jYxz7GE088cd2a1yeeeILz58/3PfZnf/ZnfP3rXwfgR3/0R3n/+9/Pr//6r9+W93Er1rsGqL7R6P9WaTWnp6c5e/bsqnrUu2m92QD+m12aptHpdHjppZe4//77qVQqb/wf3cS6WaD6/PMK//jvfQhmvwJ6l5P3SqfyaswokLLxyZer68LP/ZzF6QsT0FvgW18v8g8WTP7dv/OuW/96vaUVCpSfeILiww/jHD1K+9lnU7e5iMfUJy4W+auvlWBpB46bQ1UEturS6ZVpB3kazTohKlbOphKoGPkC52Z1Hu81bhiYJpFBScSTiCL5Yxvf76NRix/9jNSbffObKhemChSqBWzVIOwBXYeoFfUZY0plAWFAxSwT5WosdVS2VurpaNsERoaHUTdupNds0l5a4sqFCzKvsFzGM00sAN+X4KfbXdbPdnu8fNgleu6jLOgGJ1yPXQeW46ESQ5YqoGPJiKv08UxDVpKWkJyHwTG38H06M00KBZ353hgWLiKCktXDCgVq0V42GSXMNKTnTnQ6tJtNaTCamMCwbdRYF5kC3NiRrqwClFXbZmJ0E2OFUSAGc3HWqwhDmZiQOPR1Ha1aZW2txk+NbpbvobzEYw+HnPrmeUbtdTy5b5gNG+JrHkc0nf+WQ7UkqPiz1HI1Gt4wR84usmFdm4KuU+h0MHM5CUJjbXXQbjMzM4NStMiPDqN4Sr+ONQb+SgzaEx2rVirJilboN/Fl4sr69MrxBjFpMkNV0XRdZpBGUapXzqZmJJubRIIhPE+awmKTmhLX0QpXllCEjQaqqvLoPR9h2+h9uIsukxOTaJ6HEjeXhb0eLy4cpdQpsN3ehBaDZdX3sQMwugFqRWrPw04Hul3U2NDl5y26Gmh2kXUb4NIFqPckcxsFLdbtCgibYjkdIbmmzSaqFxBVLVkIEj8fkMp7wngCoHQ6UCqtyGNN/lYgjZvh4iLNr3yF9je+QWHv3hU61pOLJ7ENm7Wlm2tD2rUr4uM/91d84yv/K/+vX/owY0WTxcVbD/6KRfj5n/c59puzMA9PfRA+/vGbn6LeDQkFQgh0XecXfuEX+IVf+AW63S7f+MY3+OIXv8h//I//kX//7//9m3q+mZkZJuOGs8nJSWZnZ2/HYd+y9a4Bqrd7ZTWX19KjvtF/fycjmd5KpenNrPn5eRYWFnjf+953ywKOr7duRtrQbsMv/ZKOiBTIL4FX4Hf/yR5+5H/6edaV1wHwI3/2Izy89mH+3r6/h67rvPzyy2lOXi6X48wZhdlZGBoKmUNhaCTgxAmLmRmFycll5v5Tf/wpPrH1E/zs/p+98fdmmhQPHsTev5/u66/TOnwYPx7VvfANl6oRMWP5RN0SOdEminII3SSXU/BUm55iMGYqTBoGjtthpCpA0Ae6rsWYoqoyHigDTMNY65ken2WhWxaa0ebgwYjFL7noPniqRTsq8PAuaVIRmRHkrkMKp853mbvalE1iFjz2iJDgIQ5+F8lIOAxpC8HYunXkVBXXdWnOz9ONIgzLopjPk3cctJgxPX5c5flXq3SNKUwEzx6GQq7FuvWiz5ClCLC8SBpqCgUp5ajXEddryIoNN8k5qpRdSnZIuejSCW2c0GLL3gBFqa+sgPV9+d7iKsxmq0VbCNZs2oQSM7hBrycBd9zxHrXbacaoYpqpia7nu/zBM/+Gh9Yc4p61+7ByNqLTWW74UpSUwY16PckoLy5KIGvbsojAcdg4GfDkQ1e5d3yIzWs3L+tE441QFxu/kGdX8XHMMMBvdBm1ckyMlnB6PRZnZwk8TzZk2Ta5oSGmL1+mVCzKjXtXgKamI2eRxGxlq2gTQ9bAuY0cJ9WKJmx3Uk+bFC4kbV9CCJREB5yA3oS9zdax5vNyoxXnvQrPQ+i6ZCvDULKOGaY3Yen9+RZqPWDN9h1oui5BMsT3keDrF/6ajdYE27euSwF5uTbBQ9vfz1BhCNX3EZ6HbpqQz0vtuWXhtzx0AaqqMzHuc2i3w+XvOJhRwL5DGmt3FPprXlVV3gOex/ft+Sy6bsr3PpBWAKT5sWQZ+fjcEEWSNdZ1lCiSTWqxcTNsNpfzWPfskXmslQo/9Kc/xN7xvfz+J37/hr+7rrV8XMg1KZhSSnS7wN/4uOC+j3+db635N/ytv/U/3JLnfLsY1eutXC7H008/zdNPP/12H8odWe8B1RtYvu9z9OhRyuUy+/fvf9OA81aMqd/sulOj/yiKOH78OK7rMjY2dkdAKtwcY3z1qoLnQaVkMBQNI3IRGhb//T2/wT3j8kv/m5e+SdEoEkUR+/fvp9vtMjc3x6uvvkoQBLRak/j+Vkarw7xv7SOEIbhCwbL65SXPX32encNvrT5XUVXy995L/t576Z0/T+vwYYLgPHrBYu3QJq60FfywSK6oMZxvQRixeSKgMalyZUrH0yrkVYeHHupClGHg4rGncByU2OynGIb8kRMiNSGl5zp2TyfMX+oyNwzW7CjxFB1eeTnCFxEP7/HZsrOIoioSeMQ/4grwyY8qzLZLhK7PSMXFskhBWQJW3KUl5mZnGV27lnwMvEqVCnarhRACz/Nw6nUaQsjzA5w/X6WsN/EiQWSUCJUSly43WbdejtHVfB6tVuMjtb/NU0sf7q9uLRTk+DRpsLpGQ1bQaqEWCjzwRI2zCzrubJ2i1mbdcJt920LUvKwBTWOVMgUCQggWLl/G930mxsZQk3MdM4Oi3Zaj6gTgxpWbWQe8UipytTfPxeZFvnD6L/ipvT/FxMRWGVQfhkTZzFjLkmxcu83VxmX+8qW/5OPbPs7a8W3klSIf0T+6PF5XFJl+AIhul81rHI690mWm4XCpYbCmkOfAwR6q51FUFErr16NYFp35edpxVJhpmlCrERWL6IoiQXJi6ioWUS1r1fF/FGebZplXJQahwvOWjy953Pf7QWg2xip5jnhzpcSRT87iLIqmk68MpYAurT2NQW+YMK+x3KANnGxexi12WcNmqWPN5dKYLoTAcgN0Q+qIk+tVCU2eGnskNYWJIJBZvN0uihComkYU+OgRKG0HPzBZuzUPncOMKjXWjW8nbHSX261i9hchUMKQSXsCwXIRSHIelFxOShuCQOpVYy1uFGfcoihStxvnMfeB23hDmuaxPvssneefJ7drF/lFh9zaW/N9LhBYmpWmCNxOltLxHfL6tUfhb3bdDUDV9/1begzj4+NMTU0xOTnJ1NQUY9lu8LtwvWuA6o2Cxzf7AWm1Wrzyyits3bpV6uTewkpA450GqrebUfU8L2Ua161bx6VLl27r62XXoBv/zayRESHNuGGeXcO78Dw5FR8Z8YiEQEHBVE16YS/Vo+bzeTZs2MCGDRvwfZ/5+QXuv3+B556z0XUVVTX4oR+KiH/z02VoBkF48+Mna9MmrE2bMI8tcuq/PMta77uMWF26PZWSBkGos3GnzfB4kw9+MGRmxiPwlxgehdLYMtuEqkqwahiI+Ec9C9yAvirLQWCaAKCELSWKWL/DZt1ORY6evRZRkrc+wHSpimCi1ISSzBtN9IQAkefh+D7zjsOanTtRHSeNl4JlUGG221iWRQ0px3CjCM/QaXW6jNqjqIZB3Y0wh6toQxKMRZ2O1Ckgg9b7Av6vBXziTFu9WpVFBO02wnEwcfiBD8F8M4cwcozabXSVfud6kn0bg4K5eh2tXGbN6Chhq7UicSABuEqW5c6enzAkbLaJFHCLJo2WZM+iVkvWtcasW8oYxpIHRdfpFnSuuDMEkZ+WGSglG1U3wA/6amRV22b7AzbHX3VoLxoURBsdja89W+OzP9DDiJw0e1a3LLqmyZp77kHzPDr1On/66n+hSY9P7fxBCkJI/e0qCQpJNJSI9bfEiQJRzBArybVImP/VniMD4vVaTW68wjBNaFBzOTxh8h8O/zVEIf/tw5/AMOX9GMUlDn3taIWCTCyYn6ezuIgbzvMXp/6Gh8cOosEKkP0zB/47RBik10uJ81DVGBSGzaZkODWNKAjSTcl95W1sfOyXqZkVcHuIbhfTCaBiyNl1FEndbbxRwTDkZy0IeGX6KBWrwvrRrSimKUf9A9WrNJuosemN+PwQM9LpZylu0ora7fRaJMxtFASouo53+TKPPNtg08IF3E0nbiqPFeCXH/xlfvnBX07/+XYC1Z3DO/nw5g/fsudLzLNv5+p0OtiJQfMWrE996lP8wR/8Ab/yK7/CH/zBH/DpT3/6lj337VjvGqB6I0vXdcLwxt2GiR71gQceuKn8srcjS/V2a1RbrRZHjx5lx44djI6O0m6377gm9q2a44aG4B//45Bf/VWNWJ7Jz/8/5lj/exP81tO/Te7Vn2TuX/9Hvpqz+UKk88lP9r8vwzCYnJzg3/wb+MIXFF5/vcf4+DQ7d17g5ZdzjIyMMDo6imVZ6KqOH/m34i0D8OP/wOSfubs5duJRdqsv8ljhuwSuR63aY+u2LopQ0WoV1uTlOD1xEiimKfV8ib4vsxJgmuS3im5XskCGgVospsacBJgqxaKMj+p2l4PxYVkvGQOBxJUMA1FPSGCqJE5wVWXx4kU67TZrxsfRHAflWpWrGUCp6zolVeUDT1r86X8tM++C3qljW3OM5hrUL+QplMuYlQphu83rM69ysXmRp7c8vdJI5XlEyZhU06QjPFtEkGnI0gmYGOoCcce9vWzsirpdlDiwPxKCq+fOUVBVqrpOuLQkQVjyuokulZWsdRjX5epDQ5Jtrc+RC8BchMpilUCxUG17OTorwz6mhqIgQGm1ZdRStYJaqlBfuMJvf/Gf8YltH2fv2oN95yDqdAhDmG3Y6BN13NY0al4QNVVmLsOm+2oIVcVZWGD28mXZNuV5aMUiZi5HcCUg8lws36fV6zHnOJhRRME0KcQbda1cltrWYAAkl0rLhqPVQvqTQHxicB9rSyPXJYjZW7VYRM3liByH9mKXZ77psTT9AD3N4uueyROPeVgiw7zGGlvR7RIsLrLUbOLrOpPr1nHm7CnsHijdHqpdXMG8GqqOVh2SgEvISC+CAJHIG6C/0SvWg1s9sATQ86UxzTQZmdjMeG4EOh258YjNZiIMEcnEwbb5r1f/ir2lHVIzmnw+SyV5DIoi9aiuKxnUxPA2uIHqdPrArRrLAtSkha3bla8P4AeUF7os/ef/jF6tYj/44FvKY11t3U6g+jN7f4af2fszt/Q57wag+lYxyOc+9zm+/vWvMz8/z7p16/jVX/1VfuVXfoXPfvaz/N7v/R4bNmzgj//4j2/xEd/a9T0FVBPA+Eb6UiEEJ0+epNPpvCU96rVe906u2/maScHBnj170g/P2xGHdTOv9+lPRxw4EPFnz7/IP3r5x1j/vv8dLsFzX1nPc/+XgegW6QUF/pf/xaBUEjz55MrX0nX49KcFn/60CUwCk3Q6Hebm5njllVfkTjxScHrOLdEoLywscOrUKX71V++Pz/v7iboP03nxRTrPPy/BTcygKJYlqzczo9VkZc0mSYNS1iGdjviFkMcdm5ZEHAeVrlWAaZQZecMy0yh8H8WyZCxU0sHueQghWFxcJFBV1u3cmQKvlBVMwHLs2ha+j9A0CShVGe5ejjp85iMdpqcVFE1l3fYR8Ew69Tozly8DkC8WOeNN8dLCyxKoJixv7JxOgFCaFPAGDVnJ4yIICOMILiX+sY9aLXrz88zMzFCp1ahMTKQ97n0grFyWLKjvS5ARBOn7Er0eUcZIhSpot3Zw/vWHwbuHr83nePqpDuPr+zcZCcDVhoZoNuCFwy75S5/haF1j+NEGVCwcA0Dpy3pN3pPi9jBFl0LoMqvmMEqbcVqg0iBYWpKtOu02a7dvR01MePE1dy2VnqqngeZCCHwh6ADTnQ6K65JfWsK2bUzblqag+Lpmx/GpESrWLCe995EQaYUpsOymT9jUzL13/LiG63Ywc0vkFY1We5JTM8Ps2SPvrVSSYlko+Tzz09MQRYyVyxAEHNz+JPes24uC0p8VWygsb9ISo2OxKCPQYpPf9dIGriotzi6d4dG1jyA8H+G6fHbT96V/q8amOJBgOopZYtFuY3QDGDJRq1WpI4/vNQDiTFghBHS7UvJSKPSZrOh2Ux1rArCjbldKFOKNJELIjQvgaiGiGFfb1uvLOta9eykcOID+Jgyzf/DKH3B09ij/4ql/Ib8X7gKD0jtp3Qyj+od/+IerPv7Vr371Zg7pjq7vSaB6veV5HkePHqVSqbBv375bspN6tzCqQgjOnDlDvV5fAeDvtHnrVgDjdevg3qCBc+Ik3V4AjbUcObKVfB5sVcPSBBqCL39ZWxWorraSH+lNmzbh+z73nbkPO7A5fPgwtVqNkZERhoaG3vSX9OXLl5mammL//v1SExgvNZej9MgjFB96COfYMdqHDxPMz/f9twloDDud1BACK8fdQGp+QlWlsWcAmGZH+dcDplGc66lVq1Lj2WhIwJcck2mCZTF99iyGqjJWrcrnGmA6oyBACQKUYlFe82tUrhZzHlvtLhCCLx3h+Q0biIKAoN3GcRyClkNPjZjv9bDzeazYjZ0e06CRaiDKSCSPt9so+bzsp4/ZzOx5CkyT6bk5huN2mcTUkn0eEYYpwE0atcJmc7ktKXGpx0YzZzFi9NKTGIWIthoSaTrf+IbK3/pbXVkNGzPTUbeLcF16s4v8zZc02q5FJxdSr1s884zK/kc6FDo2gSGd+0FWcmBZGCND7DykcPibLranEi0uMTGkM7nVpt2YpxknFqhxY5QaP8erRyKWnnsMX8B/bEzjr3mWn9jxd1BcFxOolUqIsTHa7TZL8/P4MzNYuRx2sYg9OgoxiE+ipbRSCQwD4scWrp7jfOM8O9fvxS4WVzj6tYqsJE1irLwlFVEoM17ZixYFGF1Bb26RcElI9jY2l0XdLnOXLqFbFqPr16elALluSE4pphurKAjkdavXZWFBsYgSxdFgGV1zH/Mab6r0oSEZx+V5XDj1Hb5x/q95eOwAWt6Wm7xrvA9cF1UI9EoFoWk0zBANFX9hQeYi27bUwHoeYavF4qLCkZNDdN2IbWsDtm5zpNLHNFFsWwLTWPurKArEaRdJSkXyHhJw++kNH2MkP4JQNMJCBdOIUMKQznPP0XnuOXK7dmEfOoR5AzGEz159lq9f/HoKVFutiL/4i2Gmpiy2bIn4kR/xuVUhOj/6+R+lF/b4o0//0a15wrtgfS+3UsG7CKjeCKB8o9D/RI+6bdu2WyoufrsY1VsJHIMg4NixY+RyOQ4cOLDifN/pOKxbxeCamgnNSf75Lz8EJ/6MU84mqrbCvdvuRVFgdlahVHprEgPDMPjzz/05IBmEpaUl5ubmOHXqFIVCgdHRUUZGRvqA5+BK0ia63S779++/ps5Z0TTsPXsoPPAA3VOnaH/nO3gxm5jmTw6M+IkZUzVuMQqbzT4HfApMfV8yMtlR/iqMqZoZ5YeNhhwxJk81wNYGrsvM+fMUKxVqa9ak492ENU2zTDNawuSYsnFMfekFWV1nPI5V83nM4WHM4WFKi3mKiwp2FNGZnWUB0A2DgqJQKBTQr2GkihxHjk5rtRR0EzcBpX8fG7J6rsv8pUuMjo2Rr9UkcGm1JHPd6cgYqFjIHCwtpSAnPadxjmpSFAAStPn1kIliHj3nYmoCK19g0SngWx6q3+gDuFq5TH2qR7cbUM33mPB1imWVq60q9a9GMPcRjs1OMv5El433VuV1dJxUi/zgTuhELV4+67FnXcT99/o0p+dxHIc127enrWEiCAgaDc5etnn2tQLt/CwFv8PCK2WiRQ2xJZBMbcwqKq5LSdOobNqE0DQ68/O4nQ6Lr7+OmstRHBujWCigdbvLjGfMnl9dOskXTn+BieIEOXt8hY46bDTkJqdWQ1EUxtZ1mH6hxUhFECkmc5HN2JoWsAzKyOWYmZvDMk1qlYrUlRpGen2iVmu5yjY2qIWt1jLTOyC1SCO2bBlTlkS8pfKGYhHflJ9fpesReSGKYfAbR3+Hg5X7eHzNI1K7C1J3qygQM+sIge6HqIU8mmHIDVhijrRt2o2II0d8NLVNSY84NzNKWNS4d1esx11aQmiaTIAwDAlY4/OgZRu64vegmCZ7djzO1FX40lc88FrYJYWDjxewY3Oc+9pruK+9JvNYH3yQ3M6d1/wddgMXS0sc//BbvzXGqVNFRkYUXn9d5/RplX/+z3s3nXkKMN2ZxlDvrgKem13tdvuWalTfaetdA1RvZF0PMCad9DerR32zr3u7lqZp9DIM1s0s13V5+eWX2bBhA2vXrp6p904b/YMEgYZiwNf+CXNuHgoL1CoLLF5Yz4ULMlO8WhX88A/f/LVTVZXh4WGGh4cRQqQSgSNHZCFAAlrt2FwD0m167NgxbNtm9+7dN7QZUxSF/I4d5HfsoHf5Mu3Dh+mePClBaXwPJozpCmA6wOKtAKYJiEI2KKn5fN8oX1wHmKaskaYR5nJMnT/PULVKvlCQ7uZEFxdrJbOZr325rgMsbuq0B9kLn8+j1mooQhAMMJ2RqdOxIF8opAHZnufhhCGznQ6i0yGfy1Ho9SjUaui1mgSgddl2xTWY6OScuEHAousyvmYNhqYRxokDeq0mgUCz2f88gzrcBPjG0UFRbMgK2m1KxTwdfQjbEIzrDTy3y5DWxeiFqOWVVa+6UOjqFSq5ArsMmzCC9kwbY0OOhu0zUczzwrMRtfKSnBonTnPHAd/nA/cO84F7h8E0Wep08DxPlps4DphmmhQQNptMn3epai6CCNccoqeA2py4JlOYmPpK4+OUVBXR7dJrNnGWlpi5coXQMCgUi+SBnGVJnWYQ0Lbic4McvUe9XtpolTCb4dISAFt3FHCCHGePdVAJOLhzifVrFLSSDL4PHIfps2exi0WGNmyQkVeJ/CNjLlNMU+qVMxWrffmm7bZ8f3HTR5RIE5LSh2IxlX1E7Ta4XboGGJVqyrx69UW6ZV+e05ixT95Hwrj7rSZGADk3RNU09Fg2EvV6iE6Hxix0zRHa4hKd7hz3lvMsngOxUZWyApbbvNINaAKkk41sqSQZ2iDkwuttjp28xOzVKuMbyhSLArfh8eI32zz6aJjmsUadDr2Ll2ifuUR+coTiwQPkd+9eoWPtBT1yeo6ZGYXf+R2dr3zFYmIyRM/1mCwanD6tcfmywqZNN1/K4/ouZfvGamLfaN0tEoX3GNXvoZWYqbIrq0e9XZ30b9fo/1YAx6WlJV577TXuu+8+qtXqbX+9G103+3pJ05Su6DB3L/Zkj/XhBoZyOQqh4NFHQx5+OOLDHw6Jc5Hf0vrJL/wkFavCb3zoN9LHFEWhWCxSLBbZvHkznucxNzfHmTNncF2XWq1GpVLhwoULrF+//i03fFnr1mH94A/iLyzQeeEFnJdf7nPSp53r8Y/uIIuXZquSYUyzwDTryh8AbwlIGTTEuJ0O880mE5s2SRASRw4lLnhYJRFgME4oYTpjxjTJDw3qdZQsQzlwTKYPVV+XYCN2PZumiQHUhoYQuk6n06E+N8f87CxWLkehUKBQKqFXKn3GqzCO/lGLRULHobm4SLvdZs3GjRhJy5Lr9jn80XXZwR6Pl/t0uJk0hch1pdGsUkEoCqLTQfHmaZX+CDHzIYLcKKpp8uHHG6gqy6PnDGNeLAru39Lk2CmbUB0mjKBUrDOac9gV1BjWQnqiiBP52DjLetUMix66LvNXrqAYBpNbtqAYhgSIGZZQMU3MoSLeFYe1JflBme/5jG56IG0PU6KIoNFAjXWpCEFYry+zwJpGbmQE03WpeB5RFOG6Lm3fZ951MYMAp9uh2AMVBT3e7IWNxvL9PKgp7jrs3gK7d5qo+dwy89psEuk6045DdcMG7Lhutu/zkGTLZjYOimHIxIYk3zQuPUhKAhJgqcR1vmHm9fqAoQgpBCphu50Cw5YeYob0Ma8MsrSGyc888d+T8+L812YTTBNzZAQhBFa9he4sMqyFbBjegRMWyJtNgqRsYKCdKhzM3nXddFN6+rzJd14aQvQ0OnXB5e4SlTVzjI5sZrGuEATNNEVjul3lr79hIbpdhu06j5z/MpW/+Zu+PFaAbthF96v86q+azM4qhKHg4uWII9Mn+OCD4wgxwa0KxXED95bFU91NQPU9RvVdsG6EbdI0rW/0n+hRq9XqLdOjXut134lmqsuXL3P58mUOHDjwhvmod9oVeTNAVQiR3gdjxTE2b5onbNhsHxuVOeA5wec+F/L44zcPvM8unaVoXn8nbJoma9euZe3atYRhyJUrVzh+/DiGYbCwsICiKIyMjLxlU58xPEz1Ix+h9NhjdJ5/ns53v5v2qA+CkyTGJur1JDCNo3/CAcZUtSwJAuMGoWs5tUUYIno91EKBVrvNYqfD5NAQerdLGL/WYCLAag1DielLjSOjUqYzmyk5UB/aByhLJZ7Y8kGe2PCEfJ+qmvbXC8dJA+9twB4dRS0UcBoNOvU6S0tLaJpGoVikNDaGlpi9goCw22XRcfB0nTXbtoHjrBjDZw1Z4WqGrBisq8WiHPfGUU3J+UHToGjTqB7jkXs2sLNSwLY7GHkdtVCUYCY28ihCSECiquzZ32FivIXjtLFtwXdeKOBis75iEgURkd8mr4RpfWkYZ8mG7TbfWXiZL1/+Kj9/788zbOSWmekBnbLwPO7b5DF11mTWqaKFDtWiwhO75XXX481tFDPWfXKJ5Npm7kO1VEINQ2xVxY7PoafrnLpyFceEuYuXURsBhUKBXLmMYtt9IDS9n5KNju8RhYFkRzUNz3WZPnOG2tAQhSCQbVOZoP/V2r4i10Xp9VbogNP7NyODuZZZLmy1UEwTp2jQsTUUTUtB9j86+P9EL5VRvPCamlfF9xlW8mjVosxDDQLCVis125WGVbBDIqeC2whRlSb3HFTlBis+hqheRzFN9KEhmaPbbC5n78YAO+p0eP2ViGGrTmQq1DtVHK/B/Mw0VWuIvJ7DGh0CBVozbb7z5TZls41W1lnqVnnmcJuPfbg/j9U+dIiSWcLt7GBpSWFyXY+hyx6zsxY01zJ31eKjHwxZt+7WVJy7gUveuDVA9W7IUIX3GNV3DVAFCZauF1mUBW/NZpNXXnmF7du33/aw23caUI2iiBMnTuB5Hg8++OBd8UEdXG81RzUMwzQXT1EUJouT/Nd/vYaf+zmTxUUIQ/j0p0Mee+zWsMOGZhBEN56juri4yNWrVzl06BCFQoFWq8Xc3BwvvfQSmqal0VeFQuFNH4tm25Tf/36KjzyC8/LLtJ97Tv4wCyEd37mcDDaPIqJmU+ZUxkvN5VCzEVaxnjE1P8U/9CKOaFILBQkC4/FoY3oa13WZHB/HSMLuE8Z0tR/mBJjmctJdHEsVssA0AaDpa2fkBX3Vp0FA6LqpFi/J7Ewd/oMmsSgiarfJaRr2pk2IMKTXaOA4DtPnzxOZJoViEbtQoHH5MqqqMj48DI4jR71Z49U1DFlRpyMd5LEhK2pkdKYMMNphSOS2MQIVpWpQm8jLlIU44klL2poGkws0jclt5XT0/MiDDoe/06UZGfh6mUMHWhSLYVqKoMfsml+v05i+itHqUlN1qW2OGcXVdMoFOnzkwx6z8w2EVcAvz3CFDtu9Nek9pAyw99fMr2230fJ5OQYXgqBex/Q8Hh6+j33V7eTKQzgNWUPrx6y3XS5jj4zIc5uY1JLnALmhabXwfZ+ZmRlGN20iZxhSuzmQjxq22pw5GbGw0KY0VmDXAzV0XT6HyG5ABsxbyWeEWDcrMseh2racEDSbPFV9kMdLe1DijVLYbmNFBrRdxMBIPnIcGVFWqeCJgOdO/w1b2+sZs8f6WNrOwgILCwu8/8FxWl2LUM9R0lsUrBBcFzM2XUVBQFCv48dmSyWXS+PnyADsrl7BUlxemzvMkLkZpzNK3Zigo47w+AN1wiUJjlstC1eroGjzNDvz1HI1Wg2DwCpjKpK5dV97jd6ZM/zmhk8yve0B/tdvCc7UT3PSfoYdGz9O/UKHH/wRk5//b9Zwq7iOj2z+CPeP3n9LnutuAqrDw8Nv92G8betdBVTfaCWMaqJH3bt37x2h02+lXvTNvOZbAXKe53HkyBGGh4fZtWvX254fd631ZhlVIYTMEM2A1GRt2hTx//tPLhfOaxSLsGmTuOkvTSHgP/wHjaO//rtEocJvXNX5+38/uOZ4SwjBpUuXmJub48CBAyl7Wi6XKZfLbN26lW63y/z8PCdOnKDX6zE8PMzo6CiVSuVNXSfVNCkeOoR98CDu8eN0XngB7/LlfsY0MQi128txPNnYnZi1TJg8tViUm4ekvjO+3wWw6LpEqsrExIT8m2sA09B105B9FEWOdjOaTmIdZTqCz8YrZeth4x96JZ+X2te4mvTVq0c4sXiST+/49Ard67XyXsNOB61QwBobIycE5XodEUV0Oh2mr15FWBaFQoFOpyM3D9dig2MwmBqy6nWUwYasjIErCwbbjsJffyVEufDDvHxhiHWf1Fm/sSqPu9lcHl0zAIgzNZpqqcRoIeTpsoPj9MjZEfaIZFLTMbfrEgQBM/PzUC3jL6lp9Siuu+LaJ6UIWq1GAViXb6BELf7z63/FgrvAzsf+AYqi9EdNrcLIpvm1WfNcMvKOdby028x2Znlt7lUOTh6ksnUrQgic+XmcdpvFpSU028YuFilaVn+pgmniqyrTV64wNjqKFd87asZEhO8Tdjp8+6Uyx47r5LQe2ukOM+ddnnx/hJazUDIThFXrX7tdWU8aSzaidruf8bdt8koRs91eOYGIz0WQAPX4PvGXlhD1Op1ek786/SWsBz7DuLkudfo7jsOi47B2+3bodhmxeihGhGrH7K/j9Bn2zEpFyibabbnZ7HZlrWqhAI5DFATct7XB868UqYc18jmbkZEZGP4CH3loCLtWQLEswlaLnOZh+g1aosWJzgx7tTFMPULrtcAuyPcQbza6p05REaf4ZO9v+POLGzD8EdSagPf/b3zy+3+FWxDNmq4kWeBWrLtp9L9x48a3+zDetvU9B1QvX76MZVm3TY96rdd9J8RTtdttjh49estTD27HejPvLwGpSdlDFtTNOXNs+v9s4jee+g1+dv/P3rLj+8pXVH7zNw1UNSJSff7Df9Cp1QQ//uMrjzmKIk6ePEkQBOzbt++aX4y5XI5169axbt06wjBkYWEhlQmUSiVGR0cZHh6+4ftaUVUK991H4b776J49S/vwYXrnzsljyrb2ZEf8vk8UAx80LdUsZqOnkh/voN1mdnYWy7IYqlYlo5nRmIZx1qNeqcjHB8xGiq6jZoApq+R+iiTLs92WjmbblsCh2ZS623ipxSJXZ+u8Ovcqn97x6X7dqyo1gwqkzvzEHBPU66kUITkfkabRmp5maGiIYrFIr9fDCQLqjQZqHH2VDwJy5XI/6M40ZF3LkLWCYew4fPUrRa62h2kULjKqwDf/0uETnwwpFlnRhHVNdrrTQS0UyI/XyMfgIcvgqsUiXq/H9OXLdNpjnH8uh9ZZy19R4/2Pepi4y5KJJOs1vvapOSzOvA0VgaooK9MmMqYxxbZRK5W0yvVa7HZiYrrqzPD52a8zNXeeg5MHU+BfnJykiExiCDwPp9lkxnEILUsa4xQFJd7gTUxOkhsaWgbIyf0XX+v2dIMLrzaZLIKiglcqcX5WsKfeoFaTxzEYnxYmSQ4ZA5+I9aqD9+lq5Q4JyFUKBXnvJi7/bHarZRF4DbQIjI6HKPpopRKtRoOlpSUmJifRFAUl1o+HjUY60k+SCaIwlAxyck3y+b5jEJ4n27UUhZ339RBilqsvXmbtqIq9dZqLC1PkClpfHuvQBptdu7scfl7F6uZw7QKPfUhBK8X5rhmm+U/Pf55xUebJA4dwv/sMQ9MX2PXgh/h1+4/J6f/LDX1fvR3rbmJU39Oofg8sz/M4e/Ysuq6zd+/eO8oUvhNG/7Ozs5w+fZrdu3dTulWBdrdxqaqKnwEi11qJaUoIsQKkQhxPBXiRt9p//pbXN7+pouuCkpkjiHQKpuBrX9NWANUgCHjllVeoVqvsvE68y+DSNI2xsTHGxsYQQtBsNpmbm+P8+fMYhpFKBBJ3+xut3JYt5LZswZ+epnX4MO7x42nwfhTrHlGUZX1ewr6uom8NWy2CIGC22aQ8Noatqikw7aslbbVkicCNMKarAdNCQQKy2JzTV7maYcsUpLxA7/p0DeTINY6MCrNgZTVn/kB6gdduMzMzw/D4OMWRESkRUBRywLBlEek6Lcdhfn6eaHqafD5PoVAgb9v9RqpVDFl9DVnx+e7WO7RmHcaLAYFvkM8bOEGFRrtJsdgfMK/k87LqNYpWZ6ezgHsg3sldWGBudha9tJlnDxfRjNOoVoOFy12+/Xyepz5sLRuHMqAyq+UUvk+r4dOaWkODUTq+iW14hL0eWlzRKTQN0Wz2pTGoA0B2NXZ7qnGJK/Pn8QwZ3RRlzE7JdcqVy5jtNpVKJTVk1Xs9nF6Pgq7TdRw0y8KwbUQ+L8FwZvMgFB1XL6NEc1xYOMmG8kasqIQwC6ilGPTHJrhUbpEA0GtsQFaLThOeh4gBL6oqTVrZTUOW6U1KIkRIOweqKa9DY3aWZq/Hmp070VWVoNlESTZ4iT42lnxkNd/JpgzfX3EMxBW2qhBsuF/Daf8Nm9d8mHqvTjmQJkQtKTGI81/3HMpx1b7M5ZOH+dShtVSKOlGLtAAjbLWIul0uXz0JtU2YQxWK6+cxwpd4zDzIeONDaF9+Bu99T2BeI1HmzSw/9Fn722v5R4/+I37x4C/e9PO9mSbL27ne06i+i9a1NKqJHnXNmjW4rnvHx9l3s+tfCMG5c+dYWFjg4MGD1830vJF1KxqYbmTdyPvLgtTBcX+yTFW+3154a6UZIyMQBAqbxzYBsLAAo6P996bruhw9epRNmzYxPj7+ll9LURQqlQqVSoVt27bhui5zc3McP34c3/dTiUC5XH7Da2NMTDD0/d9P8P7303nxRZxXXpG6xwSYDo7ZB8fmUUS3Xmd2dpbh4WEK8fhdiX9Ms2H9SSRSojF9I8Y0DdlPHN9Z4LUKMwr9gEwBcr6UMeiJo77dXh0sD+heFU3DMwymp6fl+NgwUgNUtklK6fUoA+XRUZRCgU69TntpiYX5eQzTlKPpsbEU8CTMYQp8YgCWgEFdUYnyZXw8NlY2Eglouw0sQ6wwZHEdtnOFyS1Tk+tqGvNTU4xPTHDxYgQiQimNohs6xVzEwsUWYT1cPp9ZBjcjUWi1Fb74Fy6NhZ30hMb/vWjz/Z+xqdh+37VaofHM6kQz6QciTnVQKxV6LQsjhHyopGxhFsgmnfVJxJrS7coWK9dl89atRMiJ0fTlyxCG5AsFaciKI8jCdpu8EbB5tM7ZS9AISzScAhuGBRW7iyIKMgpL0+TrJEa3weO4xkg/8rzlnOF4Q0TyWzXgyE9ZT2tZbhAGPmoEql2gBbRcl4lqFaXdJqQfIIuM5EOL262S3Fs1TitIcpOToo+Vx9Ck4Eld+/s2P8jusT1E8VRDyedRVBW6XULHwWaBXH6a6pj8fok6nf42r3yeHgEmGiKK6BkqTk5hsrSGNeYwnDzH/MlzmOvWYR86RG7HDvn8b2E5gUM37N6y36Aoiu4KRtVxnPeA6rt5Xb16lfPnz7N3717CMOTChQt3/BjuVkY1yek0DIMDBw7c9M5RVdU7BlTfSIObNU1d730ljKofvjE7+2bWD/9wwJe+pDEzI/+5WIRf+IVlU1Wj0eC1117j3nvvpfImqghvZOXzeTZs2MCGDRsIgoCFhQUuXbpEq9WiUqkwMjLC8PDwdb+A9WqVygc/SOl976Pz3e/SfuGFlb3ymR9BkKylG4bMuy6TO3eie96y6Yo4W7VcXnblX0tjGkUErZYcT8Zj2bDRWOEa74uqGtA0pjFZ3S5EEVq5jFcu4Ooy0SDR4ypx/3zizr4WWO60WizW66zZsgUjn5dO9WyT1IARhihCtNsUdJ3i5s2StVxaotPpcOX0aZRcDrtaxS4U0F1XmsDilWXfFBHxgUMNvvFNlQWtiIgE929vMTwk0pxW1bbTRIE+tnOwCWuVhIfW0hKNWOOoGwb5Rhcz7DCqKqy1h+h0FYxqBcVoLbPmq2iVI9fl2Cs2i0ENtzRPzq+jdZu88ozgkUejfob7WhrPIEDxfcnSEuui221cF2ZetAlnHuETjzwuUxDCcFnmkM+DYRC1WmnaQ6vXoxkErNmyBcV1UYGqplFduxZyOdoLC9Tr9WVDVq2GXa3y2OMO4eEW58/Umdw2yVOPVzByYZ/8YwUIXSUeLLm/lXxenqckwzR5jkG9bzaxIAG9USRTHIpFIpHDCMCfWaCtaUyMj6PHm6SEeR1M3YiCABGGqIaBiKO0gmaT5Nt5RSZs5hhMQ7B/8gDjhTHKuTLFCVmjHLRay/dqfI91DVAVWbHcait4So7ykInux+dMCBw1QBTz0Otxn7UBo/Ag3XadIG9QsSqyTezyZbzLl9ErFQoHD1LYuxfVsq77XTe4uoHcQNyqeKq7ZfT/XuD/u3QlzvVut5vqUTudzh0HjHB3AtVut8vLL7/M2rVrWb9+/S15zUQ3eidGJddiVK9nmlptaaqGpmh44a0d/Y+MwB/+YY9nntEIAnj44ZCENJ2ZmUk3Tzc6mn+rS9d1xsfHGR8fRwhBvV5nfn6es2fPYllWWjRwrfgxNZ+n9NhjFB9+GOeVV2RF6+JiyqQqhiErIoWgMT1NY36eyfFx9E4HxTRTZ/Ng6P9gfmvQaPRpQweNVCtG+dcAplEcA5VKFTxPAlzPo9gJqWkF1HIJenKkOsg+pWAsIy9oBQHNIGByYkK2Jq0SS7TCDZ891k4HJZ+nMDlJIdGH+j5Oq8X8zAyBppEvFskrCvnkvbAMxtesb/PJT4bUG21ytTzja6soStxsNWDISlnlQb2qoizHT7kuaqFAs9ulHYZMjoykzNzkMKzdXuH82QhLOOhayGN7FxFB//mJfD8FOokJym92KOFQy5cIClW8sILjtQGvX5+Z0TwnMWhqzPYHjUY6wgYIzBJf/hLMzgxjdANef8ag4MK9BwfYyrjDXlEUFi9fxmm1mBgfR4kTKLJRWHQ6FPN5KqOjhL6Pu7SE0+mw2Gyi6job93fZOvQSD20YwQo0ovYyGF7RTJVlLJONccKyx+xmen0GzVvZMgTXJYo/C4quo8RxWknSwlhk8xPbfgTFKrJmbHKZMaefeUVV5fg+l5PfkZ6XZiOn5z/Rpg5m5waB/PwAxUKVj+/+AdA0Xr/4Ik6vzZ7xvaiqij48LI+320W02xyqPsD9h+7ntfMlzh7rEpomuqnz6MM5hsfl5MHoBhRcQeT7bFhzD4pf4Pmp5/jO1cP8w4f/oQT5lkXY6RAFgYzRe+458vfcQ+HgwTTm7I2W48tzktOvH6d4o+tuGv2/EyR5t2u9q4BqAkoS5/rQ0FCfc/2NKlRv13o7gOr1orrq9Tqvvvoq99xzD0NxhMutWLe6tvV6azWg+mZBarJ+8eAv8tDah275MVYq8IlPLF93IQTnz59naWmJ/fv3v+Vc1Le6FEWhVqtRq9XYvn07juMwNzfHsWPHiKIolQiUSqUV507Rdex9+yjs3Uv3xAmcI0fwLl0i6vXwY3aqKwRrd+yQ4FKIdAw6aEBJfuiVfD4NTY9arX6ndtw6FbQHRvmDbU69HmQqV9PoqcRMkgABx+GhtQ/x0NqHEK32MsgIZMUkQhC0WqiFwjJYrtdZuHSJXq/HxNgYeqm0AoBCP4hRhJBJAbncsu610eiTF6iWhV4uo5sm5XKZKIrodrs4nseC62L4vjRkhSFGqYRerVKtKZQaDQjbRMlbu5YhKwNGiKLl/NnEINZoMH/+vGybGhtDT+KL2m0UBI/tb7BrAwS6zdCIihm20ggzNZdDy+XkNWy1UhkHisK6nSVOXhRUIjAB32mwaR8rJArCMCQwip3xfakFA8c+faZNr6GilBU6SoirzPDqsUnuecCTbGUuRxRI844QgqWlJfwwZO327XIjEpumkvOlWJZkK+OmNs2yKI6NUYhNXoHvYzuCjwx9GN8zWWy3yWsauXhS1JfVC4gokoxlPJYNGo2UsRxseusb6SfvMQaWSnJek6xdZGJGoj1uXrqEJSxGS1VEnLIx25nli6/833xg10fZkNsq47F0fXk6kBxGFiDHE45EGx25LiiK/D9Nk5FpgF+vAwJVUTk6f4yL3ix71h6UKR8x8NXLZUQUUemZRN0CJ06qVIdNFF3Fb7Z46dsh7/9ABxQFszpErlgFIVicv0yrNYtrgZc3UExTVs4KgaLFGbPxe2g/9xydF14gt3Mn9qFDb6hjdQN5PxaMNx/ft9q6m0b/7wHVd9FqNBocO3aMHTt2MDo62vfv3g7A+Ha97rVA2pUrV7h48SL79++/5WzeW0kauJnXygLVG9GjXmv90/f/09txiH0riiKOHz+Oqqrs3bv3rtilFwoFNm7cyMaNG/F9n/n5ec6fP0+n06FarTI6OkqtVuv7olYUhfyuXeR37aJ36RKtb3+by4cPgxBMjIxAp7OiPjUZpysxc5Y4v/uAabGYutOBlY7xTH6r8DzJ5MXVmaLTWQY7q8gIVgtxTxlhy0r74cNmMwWUQgjm220Uy2I8jgpaFWjEY28lDGV6gaKkUUWJjlGJ3fCp9nIgg5ZOh4KqUkAGr3uqSttxmF1YgOlp8oUCtm1j5vN9MoXBQoNkIxD1emkTEfTXegohWKjXIZ9nfHQUJW7CSo8zvm6joxGoLmouj2JUAVZGYWUamxCCjSNNHn9Q4cXjJYRQOHigydbNQraaWRbkcnLMP6hXLZcl8x0DuhRIlUpEVx0gYq09hhOFnO0scW9+F1FvaRkkI1nj2YUFojBkLDa5rXbNURSZPpFEN2XYW9WyyJXLGJa1bMjqdmlHEfMLC5hhSKFapWgYaLaNoqp9TvrkOfo2CTGoS+LQQseR0gVFSaty0w1c8hkrFFBjBlh4HgtTUwhFYWLbtlTXjKLghl1OOhd5mCBlqOMPaX9ywsB9G7RasuJUUZhf0jlzwUSNArau61CrQQhc8qb5V8d+n5/d/sNEvk/JU1MJTeR58jtWlY+dap/n0pSKFW3AcRaZd+fZVNvOolMl0poogccvbv9xCfRtmy9d/K9crV9h68ROTJa/W6JOR044kvs38x7c48dxjx9f1rFew3hatsr85AM/ydbq1hX/7q2sMAzvOKGw2nrP9f8uWlNTU5w5c4Z9+/atGoj+vQRUB5cQghMnTuC6Lg8++OBtiea6kzWq2de6GZAK0PE6KIpyy3bhg8v3fY4ePcrIyAgbNmy4K7NpDcNgcnKSyclJoiiiXq8zNzfHqVOnKBQKqUQga7bTJie5uH071e3bqV65QvfVVyUoSAxIlpV2s0eOk2axQqxNjA1JcP3Qf9Htpp3uSaD7iurMVYBpn4ZWCF479xwvLR3jcw/+FJoqzSRZDa0atxT5jQazMzNYlkW1WFzJXPZ6KL6/nP3Z60mAew3da9bo0weiYyZQKxalkSr+ZwOoqSq18XFELkc7bsfyZ2bI5fMUbBt7ZESCzG5X/neOkwKwbC5q9hyFvR6zFy9iGAa1XA5FCNRyOa1yjXw/Bc9C0xADOaAkLFzShLVKvur27RHb75FJCiCZ+T7mNb7G6Sg+q8/MNjxFsip0fGMB5YhGs93DcjyKjs6efYsoqpbqKyPPY/r8eTRNY3zt2uVrJQQkjGfMRoUZjeaKTNcBkEyng63rlAsFhKLQdV0c12Xq9GkQQhqybJv80FDKaK8owojPnxIzlmp8jYJmE+UaZirhOKlBaja+b8bWrJHHrWkohkG7GfLqN1Vy55/mnGex/n0qhaHl8ovBUoaw25V5tEKgGgaKYTB70eGZv47QtB4ChQuXyjz1wYhKrk3ouJS6oOkmerVKsaPF1xREGKKYZnrfHbv0Xa7ON1mv/CzTgcJUe5pxYyuT5SaGIlCrVYJeTzKlikLo9dDRCAIPO9T7DGhauSxlDXFOLEhDVxSfw7DZpPH5z9P66ldX1bGuK63jNz/0mzfwjXdj624Z/YdheMfiNO/G9a565+Vy+bog7O0CCInJ6O1aCVCqVCq3NZrrTgLVpJkqyUdNXv+trH3/bh9PbXqKf/nRf3krDxGQI5ujR4+ydevWFQz/3bpUVWVoaIihWHva6XSYm5vjyJEjAIyMjFAulzl9+jQbN25kYmIC9u8nfP/7ab/wAt1Tp6ShpNuVP9oJaIzd6MC19ZyJ7s625Y9hUmOZaDE1TT5XRt/aB0wzo/yw1UJRVamhVRTmZhucmz1FsLgAqi51cYVCyghG3S5hp8PMwgLliQmKMWMkPI8wWK7hTFjBvqrUbBPW9XSvzSZKoSBBJVJe0MdSZosIogjFcSiZJpUtW2TA/cICnU6HxcVFtGKRYrVK0bYhezz0m3KIIvx6nemZGYojI1QqlbQhS7huOkIXUUTUaqUs92AGJ0EgNwiDFbCJaSeWRkSO0xcVNtggdq3MWGIAlDxP0GphCcHHHofjxxWenwkIx17l3vs2pPpKAcy02+SKRaqxFje9r1S1LzoKVrLh2fswlZpoWqrzVJKNSK+HCZiGQW3jRoRp0pqbo760xNzMjDRkDQ9TKJUQjoMWb+gU00TV9ZQxBjnSv1aMVXrdXJeZpSV0w2BoYkLm98b3fBDA4b9RmXPKtA2dxbkCz38n4tFHGyja8qZE0TSUeOqgGgYClg2RnseZkxphvoSd99DCLu12h3PHI/Y/bOEXDLoq6HaRz4x+vywziDdB+L7c1CA3d44FWqHLgY1dvvhtF6VbwarV2Huoi1YyaPda/Kcj/18e2fIk24d34XccbKGjdlxUXQfblmx6ECCyn5tYCkAUyWtomrL5K5YfNL/6VdrPPENhz55UxxpG8rdAU2/NuP5uGP2/ndjhblnvKqBaLBbfFg3q3bw6nQ5Hjhxhy5YtElDcxnWnNaphGBKG4VtiUbPLVE16wa1vDltaWuL111/nvvvuoxyPYd9pS1EUisUixWKRzZs343kely9f5ujRoxiGQaPRkAxdrYZWKlH5wAcoPfIInZdeovPcc8u1m6vkSUJmnB5H5ogYPKUAQ9fRbHuFvnUFCEzMTKqKVqvJL3fPI3LdtA9dUVTalgQKwAoHe6/RYHpqiqGhIfLEo23LShmqFCzHY8m++KzsMQ00Xqn5PGrSr16v96cXDAL1bBFBthwhbsgqrl0rA+6XlvB7PZylJaauXEGYJoVymTzI6KwMQx0KwdTp01QqFYqWJT8v1apsyGo0ULJAecCQlRq7skAuY4IidrT3Ma+DiQPXih0LQxBCMtOwAuAmYK6otnnwwYiZUy8SNS6gFaTkwG80mJ6ZoTQ6SnVoSLKwGdCXHEtf7FJvleD+ZDKjaculFAl4jpdWLEoNfByFhe9TKhapTkwQui5dx8HxPBYvX0YVgmKlQl5RMFSVZJbWxxgn+u1M3S/xOD0KAqYWF8nbNlXTTB39ycahPh/iuD1quQ7jLhSrOrOdKt2ghV2OTUQJk5ww38gUhaxMRCHE9Ju8Vn+FwLTZmNtDqAeolkbo9dAU0FVdnrNk8zXwPqJuF63TRdNN1t9bZlJ8g/NXX+RDTx6S7LDQ6XouV5Yu0m3WmWudp6cJdLvI7uE9bPM6iESmUSwSRhGqpskNZ6ytVnRdaooHY8wch6jXS3Ws1o4dfHuswd997u/zrR/5FrtHd1/7i+0G193i+r/Z37h3+npXAdX3Vv8KgoCXX36Z3bt33xGgdKc0qkIIdF1PkwtGR0cZHR29pnP9eisMgcWtLClDRJH0NtyKNTU1xaVLl9i3b99bOq67dbVaLWZnZzl06BD5fJ7FxUXm5uY4efIktm2nEoHSww9TfPBB3FdfpX34MP7cHMAy8InH5iB/QBOAlo6RwzCtaF0V5MQgUCiKLBAQIh1Hh3EzUJIZGbZa1JcE57+9nuL89/GybnHwURvVjWOyfB+n3Wa2Xmdixw5ycfh8CpZjgJD+6A8yYAnwziYh1GqIeOydzY5NdYmZxqjkWBXDSBmvyHFQTDM1ZEWt1orGolyxiJnLUa1WCcMQ13Vp+D6eEFhCYOdy6J7HXL3OyKZN2OXyckNWvK5lyFoR8+W6YNtoMcDtC/5nFcnGaiHzQqRZnsKy5LXNpBYMbj4GwZyvKaiKIuOcgoDppSUqk5MUY8NaeiwDuubVrpWi6/2saax1Tg8lBkPpKH0gCitstaT5SVFQDIPC0BCFeIPix/fTfK9HYBhSf2yay4asRNvbbsvnixkzxTQJPY+pc+coFApUDEMCyyRkPz4OzQdPK1MtldhjTxCoJl4vQNOEfC+uu5wqkLnnoqzTX1XZcn+J81MhDb+KFVmoWpetWxQEGmG3ixGC1o6v+yo5r2ouB6ZJ2xREmDJXOHDRrQCiUN4HrRZ+p0nXgGYUssbUMERE0VPYPrwDpViUUgJNk/99rwf5vNwUxJMLRVHkfVooyPcQS2mUZJIhBCrQO30a65kjfGIGjEevIIbve8t5rMm6W0b/3+us6rsKqN7ojuNOZX2+XUsIwYULF/A8j0cfffS2RyAl606M/hNnv6IoHDp0iG63y9zcHK+++iphGKaNTMW4e/56q92GX/gFk6vf/JfMqSY/fdjkt3/b42ZOlxCCM2fO0G63OXDgwF2xG79V68qVK1y9epX9+/enWtWRkRFGRkYQQtBut5mbm+Oll15CVVV5LbZuZeyBB+iePk3nhRfw5+flD14CTBPzSTzGv16EVcrK1moyCig2MqUB8PFIPcjoW+l2cX2DL3yjRKvZgqjOyVcjom6bh56QbG2n3WZ+ZoaJoSEMx5GtTllgOlhqkDV9xc5tLQamItbiBjFYVnI5lFi/mRivYCVAFDEwu2YD2GBrV+xoz+opi5pGMf7bnqJQb7Voz86SUxR68/PorothWTLL9g0MWWGvhxZfAxG/T5EBlemGIgZQ1xrnC9+XiQNJvWezmYLt5JqletXBiC8h4ixZ6dD/1AN/m1BEBF7E9Jkz1IaGKAiBUJQ+6cWqWa/JccfRT2om+ik9lizjOVAgILpdyejrutT2WhaKri9nt2bej6Vp6IZBBVJDVgeYn5vDMAyKgC2EHHvH8gQRhoTdLtPT05TGxqhUqytirNRKhajXo2JrbN6mcv6Eh6KCr8Ce7R1MNVyV2V9hlvN9NMNgNB/ygUddznx7mqJV5MmDI9RsiJpdRkrjHNjxBPlcqX9jZtsIVU03DFG7jdLz0fOWbP8TMORbsr0rZqFVR2WjNkY1MBheP86j5Y9hKBqLOKjzdSpmWZopDQPV96HXk2REzG4HrRZhoh/WNLlZEkLKSOLzj22jWBZ+6DPaBP7y68y9cOYt57Em624Y/Xued9NFPO/09a4CqjeyEjD1dtx8dwIgR1HEq6++iqIolMvlO/o+b/fofzXTVDbcPnGunzt3jk6nQ61WS53rq+2K//W/1nn5ZRWt0EZTdb773XX83u/pfcH8b2aFYchrr72GZVns2bPnXbMZSsB3p9Nh//79q95TiqJQKpUolUps2bKFXq+XMq29Xo+hoSFGP/IRqo6D8+yzuCdOpBWtfS7vJHsyO+KPwZISRy2ljKlto+RyaevUtcDS/FSA5jTIFxSuqmWM4SonL/kc6rWpLyzQarVYu20bWqwNXK1tK2v6SljcNKfVcdJjUixLagSzADQBTYnzP9a9Br4vf4xNU7KI7XZ/rFamBvNazLKIWUktjphKWMrIdfEXFlg/Po5WKtGO28JEFKUmoMLIiNQbJoYs101H/EnMVwoqB183mwOaOc5Er6pl9Korgu7fQK8qoiiNfUp1r62WvD6+z9TMDKMbNpDP5+UI+xrSCyXxKuTzaHFsUxQD/xBWlhasEjem5nKpiQnTXHbuIw1K2dF9XxRWvAGj3aY0OkpZ04iqVbwootNuM3Xlijy0QoFCsYhZrTJ97pz8DMXsZ5qPGlcPizAE3wfDYP8DHpMlB9dVKBYdRid0tOLyRibMSEhEkq0anwOCQN5zQcDIcMT27ecYKYwysnavrD1tt5nMjTKZG5UA2bbl9cikbIiYtQb4oe2fQSCNax/d84M8Hetxw3ZbEgu+wQ/s+TGGh4fB99nprwFV5XeO/z5l8vw3Oz67qmadpJ3NsiTzGgREnielPIois2ZNU27o4mvnGdDKga6ZBLGOtfWtb2Hv309h794bzmNN1t0w+v9eD/uH70Ggquv623Lz3QmA3Ov1ePnll5mcnGT9+vW89NJLdzRt4HaO/oUQqf74WqOYQef60tJS31h6bGyM4eHhNG7kxAkFyxJMqOOoiooZCI4ff2vgMsnunZycZN26dW/tTd6FK4oiXnvtNQzD4IEHHrhh8G1ZFuvWrWPdunWEYcji4iJTU1M0Gg1KO3YwfP/9mKdP0zt2TDJ7Ay1VIopSI0sy1lWLRfnDFI80r5Wt2pffWq2iNQU9NWQkpzKWq+D3Wnh6kYbj4LbbTExMoDgOEddgTJFZoEJVJZuZYXEV05TyguS1V3N9x73ooe/L7NhcToLfdnu58SgxgyWmm4TFGoxYiiKCZnNFOUJ2hO4IwaLjMDExIY2l3S6VXI7ajh1EYUh7bo5mo8Hc/Dy5ahW7UqGQzyNarbSxi8FzMSh3SGKtkhSEODFhNb1qn7M+y1RmEgdEvAFN8nCjTmfZ1IUElc/NH2Vh6jIf2PwEVgwssxW5EJMBcToBkDYxhdljiYHsamCbMOxjTdUMa5qel4ECgUGQLIIA1bLkPRwbmpLXM4CqZTG0dSuhptGemWFpYQH30iWsOFc4siz02N2fyFwSlj1hEQHWbFmWWxBmPj+xqVAxDHlPJqA9TpZINdVIbfjf3v/frmBeA0vHDzwKRkFutnxfZsXG371Z1ro8umZZIpG5R4SiMDM1haVpVHVdHkc+z+XOFEUtj9HxsPJ2n2697zOdz6dTE1Gvg6piFIuEiiIf63Tk2D+fB02TmllXphWYuQJauZaer/a3v03n8GFyO3bIPNYb/I6+G0b/nU7ne7o+Fd5lQPVGfkQ1TSMIgjtOpScRVbcLqCb5sbt27ZI7V+6sC/92vd5bDfFXVZXh4WGGh4cRQtBqtZibm+PixYtomsbo6Chbt67nuefyjA2PAbCwAPfc8+a1QO12m2PHjrF9+/b03L8bVpIWMTo6yoYNG97y8yTne3R0FCEEzWZTXovhYbRHH6U6NYV19SpGHNjfB4gy1/taEVYJ2FEMA7VSSR3kUbdLuLjIeFFlZKzCwrSBSY8oEty76yK+02PNtm1SJjAQk6XYtjSjJLmn8TEppolq28vA9Bqj8zQ71jRRh4dXZsfG5pEE+F7TcBbr/NIGMGTEUl8GbUYH2mo2abfbTI6PY5RKK3Sjai5HZf16KopCUK/Tcxyc2VmWHBkpZceGLCNm9WAVXa3joNo2WjzODxoNlKxeNWsQu8Y4P9EUK7kcSi4nmd3r6FXdVovXzzyPq3kURkdTBldRFJT4GBM2kMxm+Xouf2JzmBaPhRXDgMQ8dyOsaYYFVnM5CeJ8XwLMKEoNcivan+JWJwUolEo0fJ+xoSH0fJ6O47A4NYWWy2GXSuQAU9f72PRUK5otMsjlEMlr+75k8eP0gtXu0xSoD5j3ABCCwye+zNcufJ1/9PQ/SXWe2fshOdfC9zl8/CtU80Ps2nRAbvaiiKDdZmZqiny1ytDoaPq3wvf5o1f/L+7ZsB9XDRhV9X7duqZJrXkc9aXoOqptr6h51cvl5apZz5MkUKHAyOQ29mg+9HyC+XmpY83IeNzXX8d9/XXMtWuX81ivA0TvhtH/93qGKrzLgOqNrHdjlurU1BTnz59fkR97p9/rrR79v1WQOrgSGUS5XGbr1q2prvWxx47wrW9t4dy5Krqu8+CDgp/6qTc39l9YWODUqVPcf//976pdr+u6HD16lM2bNzM2NnbLnldRFCqVCpVKhW3btuG6LvPz88xOTeG/9hrFCxfIBwGWZS074LNVpbDiBxoh5Oi/15Mj+PjHKWF/NDXi6UeXuHBBoR0V0ZQZ1g4H1GojcoxJ/EMdM1AEgWT0iIFpLkcYM1HZzEc1o6HtY4RjplP0enL0vbAgj6NUQsTsWgJAk/enJONOSBuLtMRI1ekger00vWBFrFYM/BquS1dVmVizBjU5T7ou9aHxP2eLCFTTxB4bIxeDON/3cTod5n2fQNMoKAoFy8ISAs22U7lD2Gj0V7eaptQZJ0awbF1q1pDleTIBoVKRAG4VvWqadJABuF1FYb7dxrAMelGYmqBELicBSNblP9gGlXX5F4uEjoMSf5+gqmj5PGpivMqyplmwnWFNU3bb8+RoP4orT+NM4GwjVF+1aRYkx98TfrfL1bk5RoeGyKkqarFITtcZsqz0WizE1yIP2LkcuTjlJPlMpCAyvgdU0ySK0xRSYJkxl2VrU9W4FU7RtPReTe73QIRoAkSrs/y3q2hetWKRrxw7zH2VnWxvbJPHYtvM1Ovk83kq8fvPaprDMCDfFSh+QDgqm+BEr7esWzdNea3aK2tek/i5RHesl8uSTXVdRLfLdm2M7WsnoFBIUx7Ceh0lNkQq8efJu3IF78/+DGNsjPx991HYs0duNgZWFEV3BaP6HlD9HlvvphpVIQSnTp2i3W6vmh97p4Gqqqr4mS/qm1m3CqSutnK5HOvXr2f9+vX8yZ8EvPzyLEtLixSLC5w7JxuZhoaG3vAL6vLly0xNTfWZi94Nq9Fo8Nprr3HvvfdSiUHO7Vr5fD69FsH+/czPzzP33HPMPfccVquFbdvk4x+LpA88CgLJFnmeBClxhFU6ns2MzRMWy8Bl8+aAmZkTFItFKhPrJIOWmDJcFzI/1MSxU9diTEUCXhIjVQJws6kDxaIchyfsXJa9SiKgyER0xT+6wvclwE10r6bZp3vNjl0To9bC7CxRFDE+NiajvuKxcbZOVtH11ZutYtCtOA5GbAISmkYXaDsO83NzWHNzFAoF8vk8umn2g/RrnSPPQ8QSCEVVpSlmUK+a1YiuUgHbbrVoOA5rN2/GbWj4obYc5h8vNc5PTfSqUUYqkuiLkxxR1bKkwzxJjwDJTA9INfranHI5gqzLXwgUS5qHUtY0iY/KsqaDUViuKzdXqkqv2WR6dpaJtWsx4ti1bIuVFTcipYYsz6MjBPNzc5i2jR2GMv6qUEjzhhGiH4QmwDJrLisUpDxCCPm+43xgdF0awuJr6Uc+XVuXEoas+bFQSD83iWnQcgK0EVlPG7ouM6dPUygUqE1MpM1licxCaBoLuZCoUsRdCCi6EeHSEmqhsKxdXiW6SyQFAKqKFk8Wosz9pBhGn9mQTgctjmGLPI/QceS10nXZjqeqMpFgehp/epr2M8+Qf+AB7IMH06rhu2W9N/r/HgSq7xZGNQgCjh49SrFYZN++fasCuXfq6P9mm6bezDJNnUOHRoCRVRuZxsbGGBkZ6avRSzYI3W73muaid+qam5vjzJkz7N27946lRSRL13UmJiaY+NSnEN/3fcwfO8bs177G0rlzchTqeRQ0DSOfR9G0ZUf8G0RYAYSWxdTUFMPr1lG0bULXlZq5eDScrD59axZ0ZV5DrVQkE5WUBMSAUisWZff8Km1bSuxeXlFqYBjLMoXsj+6A8SoFgjErmOheI89jttnEqFYZHxqSsVrZvNdB41UC4LO1pbG2UC0UUEollPjv8kDesmB8HN8waC8t0Zieli1umVamVH8a/3/NtmUCQtKQlaxBXepgwkOmsUuYJu0oohmGTI6Po7TbWK6PJliObLoOwE2WommSXVeUVK+aHk4m63XFPRQH22OaaSYpCRueITreqEAgiutjRRimUoduu83MpUuMjo1hxOP6NHopo0FNGGYlDCkbBsVuF1EoEBgGrUaD5tJS2pBlVyrk4iKHFc+REBiZIgo1yS3OgPLs+Vtvr+GJcJ9MbYgZcKJI1gtnNnRREBBFAfluRNjtMtNqURwZoWQYaSybalkoto0IArxWnaoDBSfgY/d8iiFTgsL0GmY3L8lmUNf79djJZMGyUCqVZSA8cP1Et4tot1FNEz2WHfn1OlGjIaUnmiZNWq5L2O3Sef55nO9+V+pYH3wQc/36N/jGujOr3W6/B1Tf7gO4letGAE1iprrT61YCVcdxOHLkCJs2bWJycvKOvOaNrFsx+r8R09TtWoONTINxS6OjowwPD3P69GmKxSK7d+9+1zj7AS5dusTs7CwHDhx42/utFUVhdPduRnfvxp+dZeEb32DxhReYbbUQQpDP56WecmgIETOEfRFWcX2qomn0ej2mL15ktFKhYFkI4hpI6Ne3ZsBhH3CpVNKsR+F5fYxdogmETEbsQORSH5CKMyLJgLhEh5foK68F4BKgqeg6aq1GFEVMnTlDXtep6rp0qdu2HE0P5r1mG68SPaxpSt1rzMRlW5z65BZCYHgeNdtmeHycMAhozc6yuLBAMDdHvlrFrlYp5HJEzebyBiJ5nuQcRFE6ps+ynUntrprPywIBz2Pp8mUcx2FifBwVyTb3DAXDU655fpIxeHL+B/WqKyQKq2ieVctKg/eJTW+Jo1z0eiuA0ArW1HEka5o47FVVsn/x+3fm5pibm2NiyxZM01w9CitukkIIKVXQNMl4+j4Ige551PJ5hkfk5ro1O8vS3Bz+lStYhQL26Ch5y0IzDAnWHCc1HKIo8r1n2NvkvkgTOAyDe7c+zD3iIakdTv62UJDxVlnWU1WpGwEYBtNTUzK1wDBQy+Xlz4vjyHOkqoQ5k54GuqKzu7BVPm+cshBlmFcln0+TDqJmc3lKkflsJed+UHcbxJsuLa62Dev19J7UE2lDqyXvu1ZLXu9iUW5Oej3c06cRUUTpLpmSvTf6f5cBVZA/cNcLx03MVHd63SrQuLCwwOuvv87999//hmPZO9kUBTfn+r+do/63sgbjlrrdLlNTUzz//PPouk6xWKTZbFIul9/2Y73ZlTDEvV6Pffv2ve2arMFljI0x8YM/yOjTT9N+7jla3/0unXqd+sICc1NTWPk8xbExLF1Hj/WCwvcRrosLzM/PM16rSWBwrRzTbF5luSzrPOOmrERjmEQuJeuNGFM1HhsrkDrN00SAQkEydgNsbR+zGDNKQlXRazXJ0MVaQm9+npmZGcqTk5Rjs0mfLnFA9xplW7sURWpzs7rXwcD+VaKasoas2saN1BQFf2mJbqdD68oV5rtdjFKJYqVCTgi0pMJ0ted3XQkm4u+woNGQ50kIlpaW8DWNNVu3pgAvbDb5sZ2fkyY3Qfp+RRRdV6/axyivJlGIZMuHAmhx6cIKvWrWTDaYfiBEqr0liqQsIJEWxOAoiSfr6TpzU1OMj4+jxzWkaRi/76OZZmqUUnRdguwwlMziKqPw5NyWR0epxqxtt9ulNT/PYqeDVixi53LkVRUDVgV1fSP9mD0W3a6Ui8RabyWXk6B8FeY6DHzsLniNDpX711GOJSFRdjqQxM5FEVrH4+/u+AwjIxu52JujJnKUAOG6Um+q6+lrJWbBvkzY1eLM4g2cWihIljyJekv+Nrmu7Xaf3EUvlZZNeUKQ37ULY9s2zI0b5XeIEHDhwtuuU31v9P8uBKpvtN6po38hBJcuXWJqaoqDBw9i3UCA8Z1qisq+3lsBxncbSF1t+b7P9PQ0e/fupVQqsbCwwKVLl2i1WlQqlVTX+k6TAYRhyLFjx7Btm/vvv/+uPPfJ0splKh/6EKXHHpMVrc8/T+h59MKQdqvFwuIieqlEMZ8npyi4rkuz2WRifByjWFw2zcTgog+09Hqynz0GUSII5Mg4DFPQslrW42rANCsLiJLRZdw9n5i1wmZzpVQhmwdaqSAUJdXPZnWvkWkyfemSDLyPs0pXgOUEICbMVhwb1Zf3Go9NszmxK5qqXBd6vWXTSlxoEMaGLM0wKE1MUIhHtZ7n4dTrNHwfLEuagPJ5jMSQFYORsF7vN2RZFoppMnP+PEQRY7WaZAIz8VNKFKGGURoJljR/KYOh/cm1uRajHLvhk1Yq4Xnp+8F1pWY3o+VdbXOj5nIpY6jE+s4o1s6uVjXqNJssLCwwsWYNVrUqI70MI22SSj51otdLG51gAOAPRGFFkawbTZl2TSNv25gA1SpBEOA4DvNhSCAEeSGwCwVyvp+2OglFkc87MNJPzIOrvZcs86qVSnzuvp+hZlrYUb/eNGi1+goLtEoFxXXZObSTntfjd57/XT6w+5M8Mf6kBJbJJmPgczGYTJAwulEQyM1jfA77JgIZ3fJgAUTY6cjPtaJQ2LuX3PbtWBs2LBvToigtzSkWi31V3aqq3nHQ2ul0GB8fv6Ovebet70mg2stEqdzJ132roDGKIo4fP04URTz44IM3/EF5J4z+3wkgNdFtPvDAA+kIZnx8nPHxcaIootFopH+Tz+fTGtG73WD1Ts1+VXM5Su97H8VDh3BeeYX2s89iBQFizRp836fTbrPgeURAOZ+XsXCxKzg18MQgCE2TP2SxHjHyvOVR/rVSBwbyW4kzK6Nej6jRSNuPUnPXtTS0A0BKEG/2ut3l7NhCIQVHCtBdXGR2dpbRdevIx0xVOlpP/j5mxiLXvSaz1Zf3mtW9eh6B50n9rGUts1NJRamm9RuyBsbwuW4Xy7KoAaGi4MaZrn69Tn5hITVkqbGpJQWD3S5zly6hWxYj69alwfQJENRKJb564a+xPYUHx/Yt3wuDwDpbSZvJVyWKIJZYJMauPoCbyYxNNLtZc5To9STjGOe0KrEGM82ddd1rFgi4UcSC6zKxYQNWootNoqRirTHQB+hWjcLK54mCIA3uF56HiDdASdxX9j5Tej3Kuk4Z+RvSDUPaYch8o4GpKBSaTfL5PGalIvWmcdTT9djbVO4SBATNJtPnzzNarVIZn1g2kWVTOSxrOYe30aCnhFyI5qjmpeY03/aJlpYkQC6X03OXlfBk2VTFNNFjgB21Wsv3ZRL3luSxrsL+Ct9HHRpKwak5MbH694uqcuHCBVqtFrt375bXJvZMJKBVCIGmaSl4vZ3rvdH/uxCovtHoX9d1OlmB/x1abxU0ep7Hyy+/zNjYGBs3bnxTQO5Og/I3y+DeSdPUW1kJiz03N3dN3aaqqtRqNWq1GkIIOp0Oc3NzHDlyBCDND73bvmgcx+Ho0aNs27aNkZGRt/tw3tJSNA17714Ke/bQO32a1ne+AxcvEsaO6KGhIdwwpO77eLGWslStkgsC6XBOGMIEKKzGvsGKMXjkeXJMG+sck1B34ucZNF4lUUmDGlohZDd7CmqiCBEbrKJer5+tzeXohSEzly8zPjaGiRznK6Ypx7Zk4rDiWCrNtlcUDqxmXAqbTTAMtOFh+b47nWV2arCIYBUQF7mufLzVQisUUmc5jQZFoFgoIAoFeppGp9Fg8fJldMOQhqxiEaNUYuryZXKGQa1SQfh+ykBH3W4KNs+cf5FirsLD298vR7bZcf5AXFgSWZYA01X1qlmAO5AZG2X0qqhqeo4Txjrr8o/iMobVznGn12Op2WTN2BhaJkrqWhrZFS1bcWlAYgxUFAVi3W/fvTkQBdYnT1BVNEVB63Yp9HpQKBCYJu2FBdlWNjNDPp+nODxMrliUz5mN5KrV5Ov1eukxR6rKVKNBdXgYO4ngSs53nE9LXPOrJpueIGDx6kn+5Mi/4+PbPo6ng1KUxrus5nXQ6a/mcqmZKqjXZfh//PntA9PZ85lcc99HHx/Hfvhh8tu331Az1YULF6jX6+zevTsFoeoA2xqGYUrK3G629b3R/7sQqL7RejtH/28WNLZaLY4ePcqOHTsYHR190695N7v+307T1I2sKIo4ceIEURTdsG5TURSKxSLFYpHNmzfT6/WYn59PEwKGh4cZHR2lUqm8raC8Xq9z/Phx7r//fkql0tt2HLdqKYpCbvt2jC1bOPbXf41x4gSVeh3FNDFzOapCEA4N0Y0imnNzzLXbGKaZOtfNSmUZcEH/2FVVCV0XrVCQGlHXTa9dAjhEFK3KhmVNK1lzl4Js9hG+n46qRRT1R1UNuMk7i4ssLS4yuW4duVpNPlfMpEb1ugRqto2SMHTXYnEHdK9CUSDRBMZ5rwlr1me8op91TIGTYaAPD6d/l3X5Z5loBciFIbliEXV8HM/zaM/NMTs1Re/SJXLVKsWxMcnsNRrLo3gyBQhCoKMstyplihGEELIRKs6RFp7XF4U1uGkYTFKIXFc68zVNAtNY15ia65KnyTK10coCgdB10WNDW7PRoNXrsWZ8HKXXk2UNq7GVg6yp56EmetVYy0uslwb6NgpJrmi2iliJ81ERIk0BUPN5CRbj+1LvdqkWiwxPTBB4Hp2FBeozM3gXL2IWixRHRykUCijdLlHGyKQWi3iNBjNXrlCtVrETXWh8f0WdDiKWrijxRjC76bEqVbatuY+8niPvg9UNUYeNvk1DYoZSbVvKEprNvuzf9G9XaQVLNirW5s3k77kHa8sWqQe/wXXx4sUVIDW7kscSiVcURSloTdjW5O9uFdv6HlD9HgSq75Qc1enpac6ePcvevXvfMhv3duSo3ghQTT7YdyOLCsvRX7VajU2bNr3lY7Qsi7Vr17J27VrCMGRhYYErV65w/PhxyuVymiJwJ3WtMzMzaTlEbpWA63fqSlq0xnftYt2HPoS/sEDnuedwjh4lij/vOSA3PIy6cSPdRoNOvc7M1BRMT1MoFCiNjmKYppQF5POpKUvV9WVjUgIWMixemt04wIaFvi9/sBJzl+OgxN3rke/3a0kHGLGso7klBM1ejzU7d6IGAUFSapA0+SSGm9WYziyLm9G9iqzu1bZl+89AbWxfAH/8uFAUtGpVgpBOR2ZpJgA3rlFNiwgGxvDZxw3LorJ+Pc7VqwwpCqoQLF68iO95WJUKxWoVKwxRFYWg1ebSJYWF04/gFIosjCkMDwkJ6HK5tI0sOc5k9Uk2rpGviqpK17dlSY1ihpkLXXdZ6hCbbkS3uywhKZUkCDeMNOpJjacuS1NTdFotWc/b671hgYCiKCmwI4rANGXdKaw6xl4BkhNAlCQrxAH3Iok/i6OiBuUJyTkrT05SVlVEEOAuLeHMzrLY7aIWi9i6TsEwMByHMAyZXlhgZMMGcnHrVZToreMGtrDVSs+1out9+aZDYY7Pbv40M6JBxwJdlTrfMNaEC02DWG8qklSMQgFVVQk6nf6M1ex1CQJyO3aQ27EDa/Pm9Dq8mXXx4kUWFxd54IEHbhhgZlnUa7GtNwtaHcd5D6i+3Qdwp9fdbqYSQnDmzBkajQYPPvjgTcUE3Wkz1RtpVN8JetSkkWnTpk23VMCuaRpjY2OMjY3JFqFY13r27Fksy0olAjdiknsrSwjBxYsXWVhYYP/+/W97/NStXN1ulyNHjvS1aBnDw1Q/9jFKTzxB54UX6LzwgtSixj+spqqS37CBKAjwWy3cMGRucZHA88jl85RUFcNxSH5aEvOImug8E3A4wFoSd4+LKJJSgMSNnsgIMqP8PnNXxqCilkqEnodmGCzOz+MsLjI5OYmu6zJCB/pAsVosLkdSZStL4/xQRVXl82d0r0o+L6UD0A8oY3d0Vveq2XYaKh91OkRJgcB1igjSGKPkcc+Txi5VRXS7eK0WM2fOUBsawq5UUPN5yu02Uexcd+bmWIglAIuXDY68WEB1i3jOEF/4m2G+//tDykGjjzUdbIJaDSiL+Nwl51lhOXEgWX0AdyB7VIShBKqWJVlLXZfa5kTeASzOzOB4Hmt37pTXZLBAIA7G1+L7RHS7KPH/TjYwq7Ux9bGmMZusaloak6XEQDaJoFqNCc+mW2i1mpwIBEGqdVYtC3tkhFwux1AUpYashSDAbzSI2m3KlQpWEKDk83IzE8s+Uka+UIDk+q+STyu6XSqhxY9s/yzrJneg5aoyHzW5lsk9HcmMW+E4hNAfLxaGoKoU9u0jv3075vr1161CfaP1VkDq4Loe25r87+y/v9HXeU+j+i4Eqm8Efu5moBoEAa+88gr5fJ79+/ffNJC7m+KpEpCa3WHebetONTIpikK1WqVarbJ9+/ZU1/rKK68ghGBkZCTVtd6K8ySE4MSJE4RhyN69e+9KqcVbXe12m1deeYV77rmH6ir6M822KT/5JMX3vQ/nyBHazz5L2GgsZ24aBma1iikEpU5HtgC5Ls3pabphiFkqYQP5XA4NVsZIxeNmEV8nxTTTZilYqW9NXOqJcz5tl3IctHxeVqY6DoQhc40GfrvNxPi4bBIarPFcJZJKxMxNGoQfRelrp47yLEOXBXYJ0DTN5RF6t7s8uk10rxnj1ap1spksTDWXk0Cm3U5ZNj8MmW61GJ2cJBcnEiTaTj3Ouk3KJnwh+NYFG0cH3wqpKovoTpkLx+CBvWrf667INE1apoIAzTQlMFVVomYzPQfpeciy2asA3MShjxAo8blJCgREkoBQKrEwO0uv22VibExmdMYALez1UDVNsuueJ4Gxoixvnq4h+ciypuk9BjJeLIogUxWcBbLZhrDk/lByORnlJcQyox4zr4nBcPAc0ulQ1nUKQcB0o0Fl3Tp8Ibg8P48RRRTyeQrFIlZGPnOtBImw2ZRpE7UaNrBLz4ETETqL8vUyzOuqelPPk2ao/fulGeoWEQmXLl26aZC62hpkWwcB642yre12+10h0bqZ9a4Dqm+07tbRv+u6vPzyy2zYsIG1a9fekde81etao/+saepuBanJSPztaGSybRvbttm0aROe5zE/P8+ZM2dwXZdarcbo6CjVavUtfYmGYcgrr7xCuVxm8+bNd+W5f6trcXGRkydP9qUxXGuppknxwQexDxzAff112t/5Dv70dP/f5POohkFB07BtGyGEjFvqdmm0WiieR8GyKA4PowkhWblcjsj3EfEPa8KqrYiLSlp6BiOODIMoNv+kMTuex9zcHKqqMjYykurvUmCaBS+xqUbV9eUxaAywUsPNtbJjs87/cjnNJY0cR+ZoJrrXKOo3Xg3mkybMsqalppfIcSQYct3lMXQQ0G00mJ2ZYSzOve0rKAhDgmZTGrLi92bU61TULqqhMFHcjqtYNOYDlpammZkKZMVuoYBRLvc3ZPm+jBdL2sMG81WzRQpZgBcnIIiYsUNRJODWdRlIn9WrZh3lYcjchQsEQcDEpk2ouk7Qbkt9ZDwiJ77WIr4eq2mIB4FiFIf/izBEdDrSPGdZRLEGtY89T1jTwbIKkCYt15W998n4PwiWc4JZlhCErZZsJ4ufQ8Rmt9E1a8glMqU1awhUVeqMp6cRU1PSkDU6Si5TChB4nqzQjc2GYbtN2OvR9tpMh0tsHNqC0Q2WmdfBGtpuF2v9ekqPPUZu2zb0W0wgXLp0ifn5efbs2XNbN/CrSQQGweu1DFmO47wHVN/uA7jT625kVJeWlnjttde47777VmWFbuY17ySjuhoIeic4+8+fP8/S0tJdMRI3TZM1a9awZs0awjBkcXGR6elpTpw4QalUSnWtuv7GH91er8eRI0dYv379dRvM3olrenqaixcvsm/fvjcll1BUlcK991K49166587R/s536J07B6wOJi3LIlcsMpLPy+irToe5mRlC15XtWLaNZVkSFJGJsFpFV6hommS0omg54iibOtBoEAnBbLuNVSpRjcsCssC0r5YzHo2q8ftPnudaI/gsA6rEbVtqHE7fF/Cu6xKoxa1A19O9qpWKHDXH8oZs3qui633Gq263y3ynw8SWLegxOI/i/nVtaEieg4TtzMRt3XNA5ZtfdgkDiESPmg0HHl2Pbrh05uep///Ze/P4Nsp7e/iMdsmSbVm25H2JnTjxngSyFEqhBHITIHEIBUKBsnTjtqU7LZeWN9DSAC2UkNKW5gf0UloocQIJSUpbeklpS0jI4j2OnTiOd63etEsz8/4hPRNZlrxqR+cfPtiO9EgjzZz5PmcZGQGl00GuUkGelgYhnw96fJwLfCfrgc+UeZJswvs+gmU9sUPeDE4SNwYANDC1KcyH6JtsNjAUBU1+PkcseSLRpcQB77Y+eU2TXP5EQyyXg/Fm8HLxV25P6xNL05MlIkGmpjyJxFP76j0m9Pg4wLKeqalI5CGnftmm/hFUfKnUkwfsdsMxPo7hM2eQlZkJmbc6mLFYPG56AOlKJVQFBXCZzbCOjWF0aAgOlwsSlQopCgUkDHMpL9fH9NRv6MC+s/twf939yE7P9xBnbzQYY7dDvGgRpEuXQlJa6tkRCAMiRVL9MeJKHq8AALv9SURBVFdDltVqhWwOhrBERMIR1ZmIEI9kzkUYwYhqX18fBgYGsHLlypCbWyKtUfWHr2kqFrebST4tj8eLyS1xPp/PaVdZlsX4+Dj0ej16enogFAq53wX63JjNZrS2tmLJkiXI8JKAREFvby8MBgNWrFgxK8IeDJKSEkhKSuAaHsbEsWOwtbdzmj2Wpj1TRniqUenxcfAAKHg8KFQqUCkpsExMYNxggNPhgEgs9kzGMzI8xNQbJUQJBJ6pnEQCHtF/kq0/EnHk1e65LRZotVrI5XKkSqWXtJJe5zfljWvigsm9JNCfmHJZqX5xSTSJ1aK9XfAsC/hOaoLkV06Z3HkvoCwpNAA4l7av8Qq4FPdk9lauklYmUkTAOJ0eDaK3IYvyN2RZrchXAdf8lwTne8QQM2YsWUwjhW8BJRRDVloKUBTsej2sZjO0ej1omoZMqfSQVrd78nrIVrLF4pFgENLvfR+mGLJ8kw4CmKAYiwWGkRHwRSKoc3PB80aLkcm6L6nkJAp+W+OM1QqKkDG73UNMiV7VJ3WBL5d7JnF+U1NeaqqHGAsEHsI5Ps59FigezzPx9jseU6Kw0tM9+l2ip7XZ4GZZDI2OchINXzLMmeO87wlPIEBaYSHSWBbu0VE4bDZYtVqYvK1dMj4fMpEIIu+1Ny1Dg8qSVZAJZR65iFAIaU0NJGVl8zZDzQX9/f1RIamBMJ0hy+12Q6vVRnV9sQBqBtIWeUa3QNA0PePW/ocffohPfepTEVqRBy6XC6dPn8aqVasAeD6QHR0dcLlcqKqqCovz2/85I4EPP/wQa9eujXnTFHGJZ2VloaCgICbXOB2sVisMBgP03gsz0bXK5XKMjIygs7MTVVVVCeUWJVWvTqcTFRUVIb/AuMfGPI1XJ09yukMA3KTRl4Bwv0pJAQvAajTCarHA5naDL5N5UgRSU8HzTiAnPZZCMTksHh59+vD4ODKUSsh4PE4WQExbnFbS53ztPzHlwOd71ut1eVM+sgCyBU/kANyyfCeOvj/3Tv9AUR5iQ3Svfk5+7u/9NJaAxwwyarMht7gYAq+8gUx//cm1/2sjUzbf4wBSUeqzVqL1ZS0W0C4XbDYbrFYr7DQNcWoqZBQFqUgEPiFw3hsIenx80ntH+elVudflS/DgnX4CGB4chEgkQrpINOkcEvD9JBIIl8sjg/LWnjJ2u+fxfKbrAC61RAVai1DoMYX5vJ8Bn5N83nzMXuSxJ+XvEnmI93jbTSbohoeRpVZDLJEE/NxQ3jIKUgpBPgeTJATwfLatNhusANw2GyQ8HmQyGeQ5OZBVVEBSVuYxQ0XoHNzf3w+9Xo+ampqYbhJ0u9348pe/DIVCgd27d0d7ObNFWA5iwk1UYxW+E1XSCKRSqbBs2bKwfUGjJXOIdZJKwu5LS0vnlU8bC5DJZCgsLERhYSFcLhcMBgMuXLiAsbExMAyD8vLyhNouYhgGbW1tkEgkqKysDMvnSpCWhrSrr4Zi9WpYTp2C+eOPL7XqBCsD8E47UzQayHk80KOjcDmdsJrNGNZqwVAUUjIzIeXxIObxpga60zTso6PQGQzIKiiAzBuWT1EUZ9YBPIadKRpT/4B5b9wSzzs1ZWnaQ4a829TANG1bfpFUZEJHCCFPLAZ8JBZBHf4+sVq8tDSMjYxg3OlEjkoFymwGw+d7ckv9jFdTttWJIUssBj811TNJHB+fWrNJdLnexwKPB6FSCb5EwumMHQwDG8tizGLx6IwFAshkMohEoqlGMP+tde8EnGUY8LxEk+Lx4B4fh3ZoCBKJBOlecj7JkOU/wbVawZdIPJpPgGt3Ip+jQPrMKS1RDofn2PpIJiiJhCPy0xYIeD+7XPuZzeZJb/De1FA0zWW6Op1OaEdGkF1aCiGJXfMmJgiUSs/0ymuaoslnLjWVy6j1j1yD2cw1ZPFLS+HKz8dEaip6vIQ1k89HptMZtsQTX/T390On06G2tjamSSpN0/j617+O0tJS/PSnP432cqKOhJuoMgwDl89daSBEY6JKnre6uhotLS0oKyvjonTCBZZlcfTo0Yi9VpZl8eGHHyI/Pz+sUUsLwcjICDo6OhIm7J6AZVlcuHABo6OjyM/Ph8lkwsjICORyOadrjbb+dr7wnX4XFhZG7HlZt9tT0frRR3B7t6ZZgKs1hXebM9CUk8uppGnPdM9mg4PPh4TPh0wggFQqhUAuh8PtxvDwMLK9W+K+9Jvyc+VzP/clezTt0VTyeJeITLCJqU+2Kfdz76SQdTg4/SxjtXqIWoBpHuU1QPk3PcG7JtZbasDabBjV62G125FbWgp4SeClB7o0XWR8ptcsjwdhejrnTOd+R/7e5yaB+7m3rpb8nAU874lYfEln64WbpmGjKJjHxkBbLJBKpZDJZJBIpRAoFNx6WIryaDW93xnfiSTDMNAaDJBnZiLVWzM75f3x3uDwyQ2By+WJIwswHaW8aRCTJtNePTJL057pqfeY8uVyrgnL970nE3TfKT3lLRBgSd6p17DGGf3M5kufXa9e12G1QtvTA7VG46mA9hJ2yifeCvDZ/vd/PX43cuDxIC4uhmTxYkgWL55khmJZFlarFXq9HkajETRNQ6VSITMzE6mpqSG/GR0YGIBWq415ksowDL71rW9BqVTiqaeeiro0YY4Iy2TqE0lUjx49itWrV0f8A/DPf/4TQqEQNTU1EduSjRQpJ7oacuLR6/UAPBWiarU6JqZ7g4OD6O/vR01NTUKF3RMZCUVRKC8v5z7XLMtiYmKCuxD4al4jnWwwX9jtdjQ3N6OoqCikubZzAcuysHd2wtrYCEdPDxfEDgTfKg5EHlg+H06Kgtlqhc1sBmWzwe12Q6PRQOKNDgq0nc7FQnnJIXlOlmz9knpTH0xLTL1aWb5U6pmeetuKghJTmYyLpLr0QDwPMfV2z3NEkWXBk8thHB6G02yGWq3mCMck3avvmggp8ZIp8v76T325v/f+nPY2XgEekxwvLc0z7Rwbm7TWSWH7Po9DSaWw2u0weyOlBFIpFJmZkMnl4HtjrCY9r0IBxuXCYHe3R0ecmsoRZcabXEC26wlh95eLkAYxX/kDMFnGQaQJjM3m0QP7NGFN+5qIOcw7kfctNQhKZH2OudPphE6rRfaiRRDJZJf+PU1PSm6YtP0vFHo+Hz43LpRIBOnSpRAVFUG6ePGszVAulwsmkwl6vR4TExNITU1FZmbmrM2j0yGeSOr3v/99CIVCPPfcc/FGUoEkUZ0dZkNUjx8/juXLl0dswkSmXefPn8dnPvMZz51qhBAJohqsaYpUiOp0OjgcDk5HGY675elAShTMZjOqq6tj+kQ1V5AWrYyMDBQVFU37vtpsNk7X6nK5uOOhUChiUqJBDGHl5eVQemOPog1HXx/MH30Ee1fXJDIZUFNJUZ5tWLHYE/fjQ3zMZjNGbDbI09JgMxjAsqyn0lUmg1guB99Xt8njcZNPANwWqy9860R94aut5HnjtFiW9XSwByDYlN/W/KUH8pAd2uHwNHUJBFzQ/KT6SpaF0WgEy7JQFxdPKhTgHiolxaN7BbhJISlK4HSgvtNFvyIC7ucKBdcIRYxlQPCbh0A/p8RiLjPWqtPBajbD5n0PZRkZkKelge/NPaVpGtrhYaRlZyM1Pd3TZ+9NCaC8BiiKZT2TSt/XO51e1e325NumpHjeK4fD8znyJ5UBCCFZP+V18/NFIs/Wu90elMgGmshSfD6cIhGGh4aQk5UFgdvNhf9TASb6gW4geHI5pOXlEC9aBMmiRR4N8ALgax41mUzg8/nIzMxEZmamp9p1DuereCKpjzzyCBwOB37961/HI0kFkkR1diDZh9Ph1KlTqKioiMhUjaZptLa2QiQSwWQy4Yorrgj7c/oinER1Lk1TbrcbRqORu1tOT09HVlYWMjIywvqFpGma0zYuXrw4JgnZfLGQaaPL5eKOh9lsjtjxmC1GRkZw9uzZmDWEuQwGmI8dg621dfKEVSIBXya7lE/pQyoIYRkZGoLFYkF2drYngkYsBisQYMJLlFxOJyTp6ZArlZClpAQmpsGmk77buuT/BQKwbjcor25xVsSUtCL5TFtZ78STJ5UGNF5RUim0Oh34TicyMjK47xpHsll2svkngPEKCG4i8jUAMd6mJsBnGkkai8jfB5IpeB37FJ/v2c73nw56bzbcTiesVissFgtcACRpabAZjchIT4c8NdUjN/CmH/gbsoJui/scG+6mwTutnDL9DiZ14PE82lm7HQKhkMveBctekhzMYuLPS0nhjol9YgK6vj5osrMhUSqnSkfIRN/vsYUajYeYRsAMZbfbYTAYYDAYYLfbufOVUqmc9nw1ODiI4eHhuCCpjz32GIxGI3bv3h3Ta50BSaI6G8yGqDY1NaG0tDTsF0C73Y7Gxkbk5eWhoKCAc8RHkiyFi6gupA6VYRiMjo5yd8spKSlQq9Uh11ES01pOTg7y8/ND9rixgImJCbS2tgZtZJoLAh2PrKwsZGZmRkXXqtPp0NPTExcSDdpshvn4cdjPnQM9Pn6JUAbYKmVZFiMjI3DxeMjJz+cikgBwBITyGm+sIyMe17rNBoFIBIVaDalIBJ7fbpH/5Iy43z1LoILqW/1Jh69mlPZO9XjeylZKIAiaCEBKDViGgU6ng1gsRkZ2toccORzgeyUKjMXiIY4BUgqC6V4pPt9jAGJZUDTtKQ/wBvEHSk4I+nORiAv/p8fGLj239z2fciNAtsq9Ri2Xy4UhgwFChQJutxsChkGKQICUlBTw+fzJulRfkuidgjLealg+uWnwygKmkMdgSQrkGNtsEHinv7TVGviGIUhCBSUQgJLJLpnkvO+Rk2U9xilv/qzvc1IUNXk6zONBXFQEcWEhJIsXQxglKQ7DMBgZGYHBYMDIyAgkEgk3bfU9XwwODmJoaAh1dXUxTfxYlsXPfvYz9Pb24ve//31Mr3UWSBLV2WA2RLW1tRUFBQVhrckcHR1FW1sbKioquG3Ljz76CJdffnlEP4jhIMehDPFnWRZmsxk6nQ5GoxECgWDafNDZgmwbL168GCqVat6PE4swGo3o6upCdXV1yDugyfHQ6/UwGAzclptarY6IrrWvrw86nQ41NTVxZf5inE5YT5+G+fjxyS1IAKcb1PX0AAAyMzM92cKpqZ6pFglb9yGthHAxDgdXNGCzWgFvyYCUojzvD4/nMf14jYuTiBgQdBoGHs+jrXS5PPpWgcDTPc+yXFf8lC17vwxSAlYgwJDJhBQeD0qNhpMFsF7jziQ5BODR7wbQaYLHA+V1oHNb+lZrUOMVp8n0Nxf55oLa7ZOmg8Em0f4/J4YsN4+Hgb4+ZEokkHrfH5fbDRtFwTI2BtZuvyTZkEg8j+N0etbJ43H5t2TyOUWvGiiWyidqCwIBF2PFut2Bp6OBzFEAV2bAI8HyNhtYhuGIrG1sDAaDARqNBiJvbq//54Qnk0GYmwvJokWQLFkS8maohYIYssi0laZpLjd6dHQUy5cvj2nix7IsfvGLX+DMmTN47bXXFqzFjQEkieps4fDbJvNHR0cH54QOBwYGBtDb2zuljvPjjz9GbW1tRDWqoSbH4W6astlsnBmLpmmOtM6l954QuVjdNl4IBgYGMDg4GLHPEdly0+l0cLlcUKlUYdEZsyyLc+fOwW63o7KyMibkB/MByzCwtbXB/NFHcOl0np+xLLRaLURpacjMzvZES9ntl7JEvdMuxt+wFEBTSNM0rA4HLABcbjckNA25RAKJROL5PgbJJfWftBEiRgmFHnLqDa/3xaSYI189rs/WPA1AazIhLS0NKWIx+GQL3p8UB5p0ktfnlSX4ygKCShuCmcTkcg/pZxiwPgQ4mJGKe22+Af88Hvjp6Z7sz/FxuGw2aLVajy5SpQr4OKxEAqvVCrNeD5fTCbFCgZSMDKTI5R6nPGll8iKglthn+k7bbNxxYZxOT5uU//sW5OaDOy52O/heWQFjs3kSKvyOo81uh9FiQW5ODnh+U2mBUglBVhakS5ZAUlYWtmaocMDlcuH8+fPQarUQCoVITU3lJE2xduPLsix27dqF48eP489//nPMrW+eSBLV2WImotrV1YW0tLSQx0OxLIuzZ8/Cbrejqqpqyt3RqVOnsGzZsog6rkNJjlmWhdvtjlg+qsvl4kirzWZDRkYG13sf7Pn7+/sxNDQU8RuCcIMYwiwWS9gKImaCv844LS2NuwgsZD0Mw6C9vR0ikSihdMT28+cxdvQoeltaoJBKoRCJPDpN0tfujTDiEGTblqUoCAJMCBmGgZ1hYHW5YDOZIPLmg8pkMvCFwinkkOLzPRpPbzvfFFe7z1b+JHe8DzFlGYYjUk6rFUN6PVQyGaS+37VgBQk+ukvW7Z4Uh8XzdZn7rQneGtJJRFMq9VSFkuglbxEB5TVe+b+3wfSwpOqVm956f+cCMDwyArVcDrEPgQj0ODxv5SgLwDw0BJvFApvNBj6fD7lKhZTUVFAOx+Rppy9R9pm8sgwTWK/qF8Hl/z5TFAWKRJM5HNMWCJj1ehj1emRnZ0PglWPw5HKI8vIgXbIE4pKSBZuhooWhoSEMDg5yTYPj4+MwGAwwGo3g8XicgXSuhqxQg2VZvPjiizhy5AgaGhoS6VqVJKqzhdPpnLYmtbu7G1KpNKT95y6XC01NTUhPT0dpaWnAL0GktLG+OHnyJCorKxe0jb4QPWqoQHrv9Xo9xsbGkJqaCrVazZEk0lpEJnKxvN0zV5Cwe7FYHDNEjmEYjI2NcbpWqVTK6VrnctIlqQUqlQpFRUVhXHHk4XA40NTUhHypFJJz52Dr6AiszfSfQALgp6V5guG95IRsnQeNsOLz4eLzMWEwwOatb5XJZJBnZkKsUHhIjrf3nSBobJNffivF43lc6RTFkUYybVSpVJCmpARv7vIayGibjcslZez2S81QgQioN1d0ErHzFg6wbjd4QqFne90nDmqK7jVQCgMwKReUtdsvSQkEAvC9MVwOiwV6nc6TJSqTTZ1eeiUHJH/WvyGLPK/TbofFYoHVagXL50OmVEJGURAJBNzfAZ5orSnO+pn0qhbLpPeTR2pXg0xqyc2N1WqFaXQUeWVlEMpkkJSWQlJeDlF+fkycVxYCX5Ia6PxPUmgMBgNsNhvS09ORmZkJpVIZ0esFy7J4+eWXcfjwYbz11lsxr8OfI5JEdbaYiaj29vaCoigUFBSE5PnMZjPXdDSd+zoS2lh/NDY2YvHixfPWMsYCSQ20prGxMeh0OphMJkgkEtjtdiiVSixZsiQm1hgqkLB7tVodss9rqMGyLCwWC6drpSiKm1xM97kjRK6wsBDZ2dkRXHH4YbPZ0NTUhCVLlnCaOffICMzHj8Pa1DRFm8npCXk8jxaTVFoGI5NB6lMpgQC81FS4XC6YtVpYxsZA0zSkUinkajWkEsmUbXPKOyX0zerkSSSgvE1K9MQE4LNep8sF7cQENBkZ8L8lmRTF5NWikimhb60m99xeQuafE8oRUIvFM7GkKA+pJO72QMarYLFaXqJOUZTn9273pffcj1zbHQ7oLRbkZGZC4DvtFgo901eWnZzmEGx67GfIomkadoaBxe2Gw+GAmGWRIhJBKpV6ZC7evFp/+cckKQe8k1hvEQCPFAX46VUDyTV4cjksFguMNhsWf/azUFRWQhjmwplIYmhoCAMDA6irq5uVznO2hqxw4NVXX8XevXtx4MCBuMmzngOSRHW2mImoDgwMwOVyobi4eMHPpdfr0dnZiZqamhmbjs6cOQONRsNduCKBlpYWFBUVecKp54hYJKn+sNlsaGxshEwmg9PpBEVRUKvVcRVqHww2mw3Nzc1YtGhRXFW9+ufnEl1rWloa9xmyWCxoaWmZROQSBSSRobKyMuD3jrZaYTl5EpbGRk/XureFiXW7A2duApe2tP2yREnVJxjm0va19/dE5+k2m2Gz2WCxWOB0OCBKTYU8LQ1ilgWffKd9UgcYm21ygYAPqSMGHLVaDZFINKWJiDQtsYDHZe9HTINGUvlMIsHnc7IA1uHgCNwUch/Ise+j6+UJhZd0rl6CyzLMZOOVz/tkMRphNBq5LXG+tyELfu8rTy73vGb/9i+/94Jrt5JIAJrmqkxZloXD6YSVZWGdmADf7eYkG0Kx2LN+UuLgnfSyXqLPzlGvylitEOXnw65WY5DPR92VVybSNjMAYHh4GP39/bMmqYFgsVi4aavb7eYasnzPWaHA66+/jtdeew0HDx4MuRE2RpAkqrOFy+UC43s37Ifh4WFYLBaUlpbO+zlYlkVPTw/0ej3q6upm9eXv7OyEUqmMKOloa2tDXl7enCOMwm2aCgUIIVi6dCmXrGC32zldazyE2gfD2NgY2tvbUVFREdEJfKhB0zSnax0fH0dqaipkMhmGh4dRXV2dcGY3kv86m0QGxuWCtbkZlmPH4B4ZmfS76SaplEzmmeh5q0pZpzO4M97vscCycDgcsFqtsLIseBIJ5FIpZCwLAdn+DGJ+stpsMNlsyNFowCekkegrvQTBPTo6uxpYn0gqUgNLCQRgXS7PhDWI8SrQ6yMTU7Csx1Dl/RteSkpg45V3KunbbGW1WmGy2ZBbUAABSS3wPj/Rj7r90g4C/pzH4/TE/pNochzeaz0AnUWL2yu3AQBokQgWryGLpWlI09Mhz8iAhJB1s3nS+8BLSQkeS+XNvSUufcnixTCMj6OnpyeiJTeRQihIqj+IFt9gMGB8fBwKhYJryFrI+7d3717s3r0bhw4dSqj6bj8kiepsMRNRJeLq8vLyeT0+CZHn8/lYtmzZrB3K58+fR0pKSkS3OeeTcEBMUwBi1n2t1+tx/vx51NTUBK1ndbvdXBOT2WyGUqmEWq1Genp6zL4uwPPauru7UVNTE/dTYV+Qm7ve3l6IRCJIJBKo1WpkZmZC7I1XimeQ/Nfa2to5vR6WZWHv6ID5o4/gHByc9DtuW97h8DQPkc52Mjn0J3TAJYLmP5UViz0Zqyzr2fK22+FyuWB1OGBlWdAWC2QikSdqSSwGRciP2w2zwYDR0VHPtNFrvgE8cgZ/LWmgial/DSxHPCnKs5UdYDJKKlpZ/8klcf7bbBxZJHrVueheKYkElFiMibExjI2OIlupBI80MgUrIhCLPdNL/+120j7m87tgYfsN3QfQZx/Ct6se8EzC4U1gEIvB0DQmhodhNZs902+xGCkqFVIUCk9FaxCNMV8m8xDTJUsg8TFDabVaLoEm0UgqeW3Lly8PW6wTacjyN2RlZmbOKYnmwIED2LVrFw4dOrTg3OsYR5KozhYzEdWRkREMDQ2hoqJizo9tt9u5EPnCwsI5/duenh4IhULk5eXN+Xnni7kkHMTDVj/Lsujr64Ner59T1ibRJOl0OoyOjkKhUHAEPpay6+I1R3Q26O/vh1ar5V6br66VZdlJutZY/OxNh4GBAS5tYiHHzXHxoqeitbvbs43ubVAiFaNTYqeCdLADHgLF8vmeIgCAM2UFMxoxLAs7jwfzyAicExMQSySQyWRw0zQsFIXc/HzwvBWd3NMH0LcCgUP8KW8lJ0dMA01GA0VS+YTP84gJiWHA0DSoQJWrMzVekfgmhsHY8DAmLBbklpaCstmmGK+IwWrStrpA4Fmrt4qWrJfy6kwD/b2vac7NuMFQLKTpmWDJdr7ve+rTtGX3mrFsXiKekpEBGQAhnw+BUukhpkuXQpSXN+U7E45pY6wgEiQ1EHwNWVarFUqlckZD1l/+8hf8/Oc/x+HDhxNO5hQASaI6W7jdbtC+Jxw/TExM4MKFC6ipqZnT446NjXFbzfPJYO3r6wPLsnMmuAvBbKe48UBSGYbB2bNnwTDMnCbZ/vDtkTYajRCJRFxea7QmeyS1wOFwxHWOaCCQaC2r1Ro0kcHpdHLTb98osrS0tJh+L8iUeGxsDNXV1SFzD7v0epg/+gi2trapYfnTTFKJNpQnFHq2ya3WoNvvQfNN4dFb2hwOGPV6OMbGIBEKkZKSArlKBaFUOsWNHoj8st5tap5I5DEb+W3BT1cDS9IFyP8TvSnnkPfPdQ0w6SQE0W02gycSgScSgXU6wTqd4MnlGBkehmV0FBqNxvMZ8zNA+b5PRDtM8fmX3i//0gTf9zXAz4nRLVBDVlBDls/xcdM0HCkpmFCp4NJokFFaiszMzIA7RMQBX1tbmySpYUIgQ5bT6YRKpeJkhe+99x5++tOf4vDhw8jMzIzaWiOIJFGdLWYiqlarFWfPnsXy5ctn/ZhDQ0Pctl6wreaZMDg4CIfDgZKSknn9+/lgNlPceCCpJMZIqVSiuLg4pGu0Wq2crpVl2UklA5EATdNobW1FSkpK0GizeAXDMDhz5gwEAsGsExn8o8hidfrNsiw6OzvhdrsXdOM0HeiJCZiPH4fl1KnAmk2Sm+ndBmZsNs+2b4BJ45Ttd7/HYrwtRixNg7ZYMGIywcXnIzsvD46REVhJ1BLLQpaaCkVmJgQu19SpJTEVTUxMItnTTUwnbdl7da/g8z01sOPjgY1XftPlSc5/mp40kaak0knygtHRUdgdDuSUloLyN0b5FBHwBAKPzMBuv2R2C2CkChjkD0/MGCiKu2kAy+Lk8Em4JUKszV0TuNDA53EoPh+ioiJIysshLSsD32vOI98Rg1eS4Vt7rNfr46I6dD7Q6XS4ePFiTEoZLBYLDh06hBdeeAETExOoqalBU1MT3n//feTm5kZ7eZFCkqjOFjMRVYfDgZaWFlx22WUzPhaZdJnNZtTU1CzoQqnVajExMYGysrJ5P8ZcMdMUNx5MU8T9XlxcPG38VyjgdDo50mq326FSqaBWq0PexOT7fE1NTcjNzY2oJCQScLvdaGlpgVKpRFFR0bzeP//pt1Ao5HSt0cwfJNm2EokEZWVlYf/eMA4HLKdOwfLxxx6tpVf/yHr1ngGTAoJkjBLHPGO3gycQgPLpfud5b850Fy9ycgyKoiZNZWmXy2PGslrhpGlIVSqkpKRAJhR6JojeGtagGtMARjGKxD/xeHCPjk6OnhIKPc5/r/GKg/902cchT1HUpSpTH/AVChj0ejjHxqBWq7njRnSvrMt1qYjAYrlkvArQbBWoHIEnkwFCoec98I0Zk0q5m4c/tfwBDMviruq7AsZJUSIRpMuWQVxc7GmGmuFz7lt7PDg4CJfLhaKiIqjV6riU0QRDLJNUf/ztb3/DE088gbKyMrS1taG2thY33HAD1q9fzxl/ExRJojpbzERUaZrGxx9/jDVr1sz4OM3NzZDL5SEJWl+oiWs+mC6KKx5MU9F0vxPHuk6n45qYSMlAKN4vEtG0ePHisNX5RgtOpxONjY0oKCgIabEGmX6TXm+ia5XL5RG7IJPzQmZmZkRlPADA0jSs7e2wHD0Kl14/6Xe+ZGiSachHI0lRFHhSKWfK4stkkzvuWRZ6vR6ClBRkZmcHfCwqJQVwuz36UKsVtvFxWKxW2CgKQopCirchi0zzCPmd4r5PS/NELtntk8hsUGJKtsJ9oqqI7pViWc9WezDjlcUClmVhMplA0zQ0RUWgvASRJ5VysgAAgY1XwbS4IpGnlYqmwfMh/EGLCEQi/Lb9FcicFO6quIP7OV+p9Dj1S0vn3QzV19cHg8GApUuXYmRkBHq9ntNRZmVlQalUxux5fibEE0k9duwYvvOd7+DAgQMoKCgAwzA4deoUDh06hL/+9a8QiUTYu3dvwp3zvUgS1dmCpmmOgAUCy7I4evQoPvWpTwX9G6vViqamJhQXF4fsQrsQE9d8ESyKi6bpmN7qBzwT6J6enphwvzMMg9HRUa6JyXerbT4nztHRUZw5cwZVVVUJF1VitVrR3Nwc9oxUl8vF6VotFsukit1wXZDJBDw/Pz+kBHyuYFkWjnPnYP7oIzh6eyf9zlezSSpP4a0J5QkEgRukUlLAsiwGu7shEYu5qQ8hXG6bDQKJxKOvtNk8Oli/HFOWZT0pAgCsZjNgs0EqkyElJQVCodCzDm+MH+tLNoO1SAXQjLLeOlGKZKT618AGIcWUVAq90QjWakVmZqZHKsHnc+9JUONVsLxXu91DXuExqZHYqCl5pgGKCF5pegVisQz3rPsuRHl5IWmG6u3thclkQk1NzaTPPtFR6vV6jIyMQCaTzatBLpqIJ5J68uRJfP3rX8f+/fuD5rRrtdpJ0/wEQ5KozhYzEVUA+PDDD4MSVaPRiI6ODlRVVYV0ijc+Po6LFy+iuro6ZI85E8gJasmSJQDiQ49KDCojIyOorq6OuZOT71abwWAAn8/nSgZmsx2t1Wpx8eJF1NTUJFp9HjcBjzQB9091kMvl3AU5VLpW0jZVVlYWU8YI5+AgzEePwnb2LNcAxSeOf5Kf6l/R6qcXZRgGw8PDkKtUUGZleSaNYrGnP97pBONyeQxC/sH7AR6LgBWJYHY4YLFY4HI4IKUopEilkCoUHjd9AElCQHMXn+/JJmVZMGNjk8hssLxZ3wpSlmGgN5kgkMmQqdF4DFn+utcAKQXAZKIJeJMU3G4wdntgU1swYxRFga9QgJ+aim91/gKixaV45Z63pzuss4avmW+6GzTSIEdc6yzLcmUckdyRmAv0ej0uXLgQFxmwTU1N+MpXvoJ9+/ZFVN4XY0gS1dlivkSVZVn09vZieHgYdXV1IXeAWywWdHV1oa6uLqSPOx1I2PrSpUvjgqQS8w2Px0N5eXlcbFXZbDZO1zrddjTLsrh48SI3+YglY1AoECv5ryzLYmJigruREAqFHGmd77rMZjNaWlpiuoDBbTJ5dKynTk2tEQ1EnuAhejTDYOjcOSjS05GmVnsMSC4XeN4mrClxWArFpeYkv8cCRXmmlGLxpdQBkQiUWAyzTgeL2QyH3Q6hSIQUhQJytRqUwzF5vRQFXlqap7XLx4Tk+xxTihAkEvC8xBQ+Wk9KKsXQ8DCETieUPjpzEiXF2GzTNl7xvFmrjNMJSiicpDslCGoSk8tBARBkZnrMUEuWgJ+aistfuRzlGeV4bfNrMx/UGXDhwgVMTEygqqpqzudKp9PJXR8sFgvS09ORmZmJjIyMmDBhxRNJbWtrw/33348333wTS5cujfZyookkUZ0tGIaBy++u3x/+RJVhGLS3t4Nl2bDFA9ntdrS1tWHlypUhf+xgGB0dxcDAACoqKmLeNEV67bOyslBQUBCTa5wJgbajiRmrs7NzwdFasYpQ5YiGA743Em63e85tZaOjo+jo6JhV21QsgLZYYDlxApaTJ2ckVW6KwrDJBJU3VJ7xj7Di8z2yAH9CBx+nu93OTXBZm81D9vxII4BJdZ8Ob4KA1WoFxeNBlpUFeUoKxN5yA0Kog27lByCmrPf1QSAAHA7QFgu0Wi0kEgnSVSoPWfefCPsRb1J7yhmiSH2qD4IVKpBYLcbhgLSszJNxGsQMRc7DC0F3dzcsFktIrldE2mQwGGAymSCRSLhg+2js+sQTSe3o6MA999yD119/HZWVldFeTrSRJKqzxWyJ6tq1a0FRFGf8UKvV83YnzwYulwunT5/GqlWrwvL4gUAyY5ctWwYgdk1TxFhUWloaV73204FEyOh0Omi1WshkMpSUlHg0cjEwsQgFWJZFd3c3zGYzqqqqYv51uVwubopE2sqmM5qQKXFtbW3cyTQYlwvWpiaYjx0DPToKAJdakCQSOB0ODJ09C5VKxU2aKaHQE+U0U7GAbwc9w3jc+n4O+GAxUmTCSzudHn0ow2DCYIBlbAy0SASpVAoZRUEikVxy5fts5ftnqFIymUcrarFwJJSlKAyPjyOFz0eqb5xgoIIEEoclFHqI6cTEpPcxqLzAp/GKL5NB6m2GEhUXe2KtwgTynbPZbKisrAzL9cpXIkDTNFQqFTIzM8OWfuKLeCKpXV1duOuuu/CHP/wBtbW10V5OLCBJVGeL2RDVY8eOYeXKlbBarWhpaUF5eXnYdWcMw+DYsWNYu3ZtWJ/HFxaLBSdOnODiSmKxqnJkZITTBCeascjhcHDmG5lMxsUs+daHxoupwR8Mw6Cjo4OTacTbBJxMkXQ6HUZGRqYY5AYHBzEwMIDa2tq4PUYAwDIM7B0dsDQ2wtnfD9blgtPphE6rhbqgANLU1KnTzwB6UZ5U6tGswpM+MKmDHgheLOATI0UatsAwoAOkDjAMA5vNBivDwO50QkTTSJHJIJPJwOPxPERaJvM48r21r2CYScYr2m7H8PAwFAoFFKmpXCbqpEQAodAzffUP3wcCRkYBUxuvBBkZkCxZAml5OYQBmqGC4aH/ewgrslfg9orbZ3kEL4FlWZw7dw5OpxMVFRUR+c6RmzuDwcCln2RmZkKlUoX8xtRgMKC7uzsuSGpPTw9uv/12vPLKKxHdJY1xJInqbMGyLJx+TSv+OHHiBDQaDfr6+lBbWxuxLb3pTFyhhK8e1W63Twm0V6vV8y4uCCUGBwfR39+fkMYis9mM1tbWgO53i8UCnU4Hg8EAiqK4koFYOCazAU3TaG5uRnp6esgLGKIBf4Oc0+kEj8dDTU0N5N5e+0SAo6cHuv/7Pwx+/DHUajVHwANOP71Odkoo9Ewg/SeNQQidvzGJI7guF8Dne6aWAepeSRsV+SSxLAsny8JK07CMjoIvFiNFIoGUx4NQLA64lU8zDLTj40iTy5HiN9XkpaWB4vE85jAfKYHvZJTym9ZOcv5TFEQ5OZAsXQpJWRmE89z5KdhVgFuX3Ypn1j0zp39HMr1JwUQ0vnMsy2JsbIxLPwmF/puAkNS6urqYvzHs6+vDrbfeit/97ndYvXp1tJcTSwjLhzKx3ByzBMuysNvtGBoawuWXXx7zd25zBSGpNE2Dx+NBJpOhqKgIRUVFnkmKToezZ89ydW9qtXrWer1QrvH8+fMwm81YuXJlzG8ZzxUmkwmdnZ2oqqoKSHRSUlJQUlKCkpISOBwO6PX6qB+T2YJENOXl5SVM4wpFUVAoFJDL5XC73bDZbFAqlejs7ITL5eLc0ZHY+gwnzAoFBioqUHnttXA3NcHW3u6ZjrpcoF0uz1RUJgPFMKAnJjy5oV74ZpICuOSE9yN0LE2Ddbs9W+wAWLsdzNjYpHX4NzCR//K9U0u32Qy+RAKZUAiJw4EMqRS0SASzXg/D+DgYmoZUJoMsJQWyzEzA7YbLbMbw8DDS09ORQvJeBQLwADA+a+BJJOD7TJEZmw2w2aa+DqcTDE1DsmgRxKWlnBlqoXDSTgh4c7v0khY0lmWjRlIBz/ckPT0d6enpAC7pv8+cOQOXyzWp+ngua4wnkjo4OIjbb78dL7zwQpKkRgifuIkqacuxWCyorq6OuIM33BPVuTRNud1uGAwG6HS6STmUSqUyrCdCmqa5Vp9QFCnEGoaGhrhJ/VylFm63mysZmI2GMtIgGamJWFJAEieEQuGkzyU5Jnq9ntv6zMrKihl39Gyh0+nQ09MziQy4x8ZgPn4cjvPnwdhslwxCRMvpck1pdwpYLODd3gef79GK+kczyeWBnfG+j0VRHpLsNSTxJJLAof9yOdx2Oywmk6cdy+GAUCSCnceDSqXy3EzweJyjP6i+1TtF9o/J4kmlkCxZMutmqNnC7QZ+8xsBHn7p/7CsKANvPFuN0tKZL7Esy3ISm9nWEEcDbrebqz4eHx+fdfWx0WjEuXPnsHz58pgnqcPDw7jlllvwzDPP4Jprron2cmIRya3/ucDhF8MCeO7+GhsbUVRUhNHRUeTk5ES8ziycRHUhdagMw3DGn7GxMaSmpnItTKG8GJNpXE5ODvLz80P2uLEAlmVx4cIFjI+Po7q6esHvm39Yt1wuh1qtjlrn/fj4ONra2lBZWYnUEEyWYgk0TaOlpYWTMgQDwzAYGxvjdK1SqTQuAtQHBwcxODgYNJWBsdthOXUK5uPHpzZI+U1SJ/2cRDZZLJdI4AxxWJOMSQKBh6wCHpLrl28aqI1q0vMzDBxmMwa9TnXX+Dj4UinkaWmQsCyEPt/BYMQUfD4EWVkQZWdDWl4OcXHxvJqhZsL27QL86U8CDFh6oBBkIFeVir/8xY7pWqFZluVuniJR1Rsq+FYfm0wm8Pl8Lm3DV94UTyRVr9fj5ptvxo4dO3D99ddHezmxiiRRnQv8iarJZMKZM2dQWVmJ9PR0nD17lpsgRhK+aQOhRCibpogOSafTwWg0QiaTccafhcgkiGYzkadxfD4/LMYikg1KjgnpvM/KyoqIQc5gMODcuXOora2NektYqOFyubibp7y8vFn/OxKgTnStFEVxF+NYirHq7e2F0WhETU3NjDdPrNsNa0sLzMeOwW00Tvod5dWagmHAOhycycq3onWmYgHAa7qSSgGKgnt0NGjd66THoijwvFNZ1pvNypNI4LDZMDw0BHV2NoRuNyh4jqfFYoHV5QIrFEIKIEUqhUgk8nwvvdNfSiSCpLTU0ww1BzPUfMCyQEWFBGIxi/NjnVBJMyFhVPjpT1245ZbAdd8sy6K9vR1isRilpaVxQ1IDwW63c7F9DocDGRkZEIlEGB4exooVK2KepBqNRmzduhXbt2/Hxo0bo72cWEaSqM4FTqcT5LX19fVhYGAAdXV1nGHn/PnzSElJQXZ2dkTX9dFHH+Hyyy8P2ZQy3CH+xGRCjD9EPD/XBAGj0Yiurq6gms14Bul+z8jICGu8mS9I5z0xyGVmZkKtVoeFICWK+z0Q7HY7mpqasGjRogXftBKtMbkYE13rXPV6oQKJMbJYLHMOhGdZFvbOTpg/+sjjigc81alud9B60WCTVJaiwE9P95QB+MkCZoqw8n0sSiYDTygEyzCgWBY2kwk6rRZZ3nNRoNQBmqZhczphZRg4xschy82FsrYWWZddBsl0o8wQg2WB6moJBAJPzCsATEwATz7pwpYtU4kqy7Joa2uDVCrFokWL4pqk+oOmaVy8eBG9vb0QiURQKBRcZmss+kVGR0dx88034+GHH8bmzZvn/O+Li4uhUCjA5/MhEAhw4sQJmEwm3Hbbbejp6UFxcTHefPNNbnd3x44deOmll8Dn8/H8889j/fr1ADz1rPfccw9sNhs2btyInTt3xuLnIklU5wKn0wmaptHR0QGXyzUl47GnpwdCoXBOE5RQ4OOPPw7ZBT8aTVM2mw06nW5SgsBME6T+/n4uDD4RiU5zczOKioqgieCFzxdOp5PTGtvt9pARJFJlS+oZ40mPORuQ7N7y8vKQS4BomuZ0rePj40hNTeX0epF4H1mWxdmzZ7mCiYV8Dhz9/TAfPQp7V9fUAH+ZzDP9pCeTLZ5CAYrH42KoyHSU8hJKJsD2+xQXP0kdEAg8jzM+fmlNDgd0Y2PIKSiAwOmcrD31SR2gAIgKCyEpL4e4rAwTNM1JaSQSCSfbiMSuxAsvCLBzpwAU5XnpGg2Lgwcd8PqSODAMg9bWVsjlcixatCjs64o0TCYTurq6uAgq37QNHo/HkdaUlJSoE7Hx8XFs3boV3/rWt/C5z31uXo9RXFyMEydOTIq/fOihh5CRkYEf/vCHePLJJzEyMoKnnnoK7e3t2LZtG44fP47BwUGsW7cOnZ2d4PP5WLVqFXbu3Ik1a9Zg48aNePDBB7Fhw4ZQvdRQIUlU5wKz2YzGxkaoVCqUlJRM+cD39/eDpmkUFRVFdF2nTp3CsmXLFrx9uhA9aqjgdDqh1+uh0+ngcDi4qR5xq5M4FbvdjsrKyoQjOhMTE2htbcWyZcs4F2y04U+Q5mv8IQYOlmWxdOnSmDByhRJjY2Nob2+PSHavb6QPydANJ0EiLXtisTikuka30QjzsWOwtrSA9d2W99aOMg4H+CKRp63KagUYJnjlabBJKp8PflqaRxM7Pj7JSEXisCx6PYwGAzQaDYRC4RTtqe+WvqS0NGgzFNmVIL33vrKNcJxPWRZ4+20+3n+fh+xsFl/6khv+Q3yGYdDS0oK0tLRptdLxCkJSg1WUOxwOrmiAJG9kZmZGxUxqNptxyy234Ktf/SruuOOOeT9OIKJaXl6OI0eOICcnB0NDQ7j66qtx9uxZ7NixAwDw8MMPAwDWr1+P7du3o7i4GNdccw06OjoAAK+//jqOHDmCF198cQGvMCxIxlPNBW1tbVzIfSDw+fwZs1bDAT6fD5oOrEmaLWKBpAKASCRCXl4e8vLyOGf0xYsXYTabkZ6ejomJCWRkZKC6ujrqd8ahBtFs1tTUxJQekc/nQ61WQ61Wg2VZLtD+3Llzs9YaE2NRampqwJu8eAeRodTV1UVEb+sb6bN48WJO19rc3AwAISVI5NilpaWhpKQkFMvnIFCpkL5xIxRXXQXLxx/DcuoUQFFcRiprt3vMVQzDTUuJAYvnN0klcVjg8TyyAJb1aFktFtAmk+ffyOWg/OKwbDYbjBMTyF2yBDy7nXssViRCyvLlkJSVQVxSAmqGmzKKopCSkoKUlBQUFxdzuxLnz5+H1WoNS9oGRQFbttABt/oBD0ltbm6GUqmM+AAlEiCRfcuXLw96gyYWi7lriq+ZtLOzEzKZLGLGRYvFgttvvx3333//gkgq4PmsXX/99aAoCl/5ylfw5S9/GVqtFjk5OQCAnJwc6HQ6AJ4q6jVr1nD/Nj8/HwMDAxAKhZPMx+TnnxQkLFFdvnw5ppsWh4IwzgcLfV6SjwrEVh2qQCCARqOBRqOB1WrF6dOnIRaLOb1eJLc9w42BgQEMDg7GvAmAoigolUoolUrO+KPT6XD69Gnw+XxOtuFL1kgqQ25ubsRlMZHA8PAwent7o3rsghEkm83GGTzT09PnTFrdbjeampqg0WjCmqjBl8uRes01kF9xBayNjTAfOwbGagUFePSh8Lr7AdAWCyjAY75yODzTT7kcjNMJnljsIayjo1yEFU8i4coASIYrmaROaLUYHRlBTnY2eFYrBGo1JEuWQFJaumAzlEgkQm5uLnJzc6cQJNJYplKpwvaZYRgGTU1NUKlUKCwsDMtzRBOzIan+4HnjxlQq1STjYlNTEwBwEgG5XB7Sm2mbzYY77rgD27Ztwxe+8IUFP95//vMf5ObmQqfT4brrrsPSpUuD/m0gzkJ2JwP9/JOChCWqwQ4ugUAggNvPoRoJzJeoRkOPOh+Q7fCKigqOIJEEge7ubkil0pAkCEQDpKTAarVixYoVcUW6KYqCXC7ndG+krezMmTNwu91QqVRIS0tDV1cXFi9eHPY64Wigt7cXBoMBK1asiEq8VyD4EiSapmEymTA0NISOjo5Z51ACl24wCgoKImYQ5YlEkK9ahZTLLoOtrQ3mY8fg0moBXJqk8r0ZpiTAnxIKPfmmbjcgEl2SELDsFJLrO0k1m80Yt9lQtHYtZIsWQVJeDmGYPqP+BIloKJuamsKS7EBa3rKyshIusg/wVGTPlaT6w/f8VVJSAqfTCaPRiAsXLsBisSA9PZ2bgC/kvOxwOHDnnXeivr4eX/ziF+f9OL4gpShqtRpbtmzB8ePHodFoMDQ0xG39k53f/Px89PX1cf+2v78fubm5yM/PR39//5Sff1KQsBpVt9s9LSEcGxtDX18fqqqqIrgqoLOzk9tWmi3ihaTq9XqcP38eNTU1AatAfad6BoMBAoGAm+rFen0qwzBoa2uDWCxOuJICl8uF/v5+9PT0QCQScRfi9PT0mJrazxe+Nxhzdb9HC745lEajESKRiNv29P+ukOSC0tLSqN9g2Lu7YT56FI6eHo92NSUFFADG5QJPJJqaFEDKAALVqkqloMRimHk8jCgUqLnhBogjnHvtD6Kh1Ov1sNvtyMjIQGZm5ry/KzRNc1PwRNzBGBkZwdmzZxdEUmcCwzAYHR2dZJIj57C5PKfT6cTdd9+Na665Bt/61rdCco63WCxgGAYKhQIWiwXXXXcdHn30UfzjH/+ASqXizFQmkwlPP/002tracMcdd3BmqmuvvRZdXV3g8/m4/PLLsWvXLqxevRobN27EN77xjViMykqaqeaCmYiq2WzGuXPnUFdXF7lFYe6xWPFAUlmW5aZVNTU1s56Ukvo9nU436wSBaMDlcqG5uRlqtRoFBQXRXk7IQTSbNTU1kEgkXLvM6OgoFAoFVzIQTxNkAhKYzuPxwpJvGyn4Gn9omuYuxDweL2zJBQuBc3gY5mPHYGtvn9nd7wUpFmBdLkjKyiBZsgRGqRT60VHU1tbG3OePTMD1ej3GxsYgl8u5CfhszoFEqpGTk5OQ0zFCUn1jISMBi8XCGbJomuZSUKarpHa5XLjvvvuwatUqPPTQQyE7T3R3d2PLli0APMf7jjvuwCOPPAKj0Yhbb70Vvb29KCwsxJ49e5CRkQEAeOKJJ/Dyyy9DIBDgueee45z9J06c4OKpNmzYgF27dsXi+SxJVOeCmYiq3W5HW1sbVq5cGcFVzS0WK1ZMU9OBYZhJMTjznVbNlCAQLdhsNjQ3N4ckZzMWMTQ0hP7+/oDRYWSqR0oGxGIxVzIQy9pcApqm0draCoVCkVCmMJfLBYPBgKGhIYyMjECtViMvLy8mJ+Du0VFPUkBzM1cQAGBKRStfLvfoTZcsgai4GDw+HxcvXsTIyEhcRKORQg4yASca8MzMzIC7S263G42NjcjLy+NMNYmE0dFRdHR0RJyk+sPlcsFoNMJgMHD1xyqVClKplGvXc7vd+PKXv4zKykr86Ec/SpjzRJSQJKpzAU3T02pQXS4XTp8+jVWrVkVwVZ7yAZZlZxTMsyzLrT/WLj4EJOheqVSiuLg4dDE4Afru1Wp1xC/EJMKooqICaWlpEXveSIBlWY4IzKaxCABnZtDr9QDAFT8EuhBHG5EyFkULY2NjXNMeKRoYHR3lpnqZmZkxo8MFAMZmg/nECVhOnOBaqgQq1SVy6mOGIlXEZrM5bqQa/iAacL1eD6fTOSnbmJDUSOqJI4lYIan+IH6Jzs5OfPWrX4VSqcR1112Hjo4OLFmyBD/5yU+SJHXhSBLVuWAmosowDD766CN86lOfiuCqPC0/DocjaHRMPGz1A5cmjcXFxWENuicOXJ1Oh9HR0YgFp+t0Oly4cAE1NTUJVxlKwuBpmp73FNy/hYlsRaempkb9M+twONDU1BTVEoZwgkg1/Otsfad6vi1ysaQBZ91u2Ds7IVCrA5qhWJbFuXPn4HQ6UVFREfXPUijgdrsnSQRcLhdycnKwaNGimLqZCAVilaQGQnt7O7Zv344zZ85ApVLhuuuuw4033ohVq1bF/AQ/hpEkqnPBTEQVAD788MOIE1WtVouJiQmUlZVN+V28kNRoTRr9g9PDlSDQ29sLvV4/J71tvIBshxP3fyg+Y2QCrtfrMTExgfT0dKjV6qiEdFutVjQ3N2PJkiWc5iuRoNPp0NPTg7q6uhnlF0QDrtfrOa2eWq0OeZxPqEBuoADEtZ44GFwuF06dOgW1Ws2R11i8mZgv4omkMgyD733vexCLxfjlL38Jq9WKv//97zh48CA+/vhjrFixAl/+8pcjzg8SAEmiOhcwDAOXn1jfH9EgqgaDAUajEeXl5ZN+Hi8kVavVoqenJ+qTRv8EARJ0v5ATPsuy6OzshMvlQkVFRVxuOU4Hl8uFpqYmZGdnh207nDhwdTodRkZGkJKSwt1MhHt6RKLRKisrOf1ZImFwcBCDg4Oora2d8w0U0erp9XpOThPqQPuFgGVZtLe3QyQShbRNK1bgdDrR2NiIkpKSSVp335sJt9vNZYPGws7EXECkKP5T/lgEwzD4n//5H7hcLrzwwgtTPv8Mw+DkyZPg8XgR97AkAJJEdS6IVaI6MjKCoaEhVFRUcD+LB9MU6X0nmsZY27Lynx4R/eRsEwTIpDElJQWlpaUxeQwWgmiYwkgGJbmZCOf0iASKB4tGi3f09vbCaDTOWk88HXwD7cnNBNG1RmMHgUS/paSkJJTpjcDpdOL06dMoKyuDSqUK+neBjD/zqT+ONOKNpD722GMwmUz43e9+F9Pva5wiSVTnglglquPj47h48SKqq6sBxIdpimGYSRE/sbpOAtL2o9PpYLfbZ9RPJnobk28JQzRNYYFuJkJRHarVanHx4kXU1taGLasxWmBZFt3d3bBYLGExFvkG2pOdiUCNZeFCoteGOhwONDY2zkhS/cEwDCdzMplMkEgk3M1ELH3G44mksiyLn/3sZ+jt7cXvf//7JEkND5JEdS6YDVE9evQoVq9eHVHiZbFYOCNEPGz1kwzRrKwsFBQUxOw6g4GmaS6ge2JiYkqCgMViQUtLCxYvXjynC0m8gEwaq6urYyqfltxM6PV6rjpUrVYjLS1tTp+x/v5+aLXahNQTE80miX6LxHfP163ucrk4t3o4tqJJ2D05tyQa7HY7GhsbQ6KXJokbBoMBDMNwN9/R1BvHG0n9xS9+gY6ODvzhD3+IuR3BBEKSqM4FLMvC6ZvbFwAff/xxwPzIcILkt9bV1cU8SSUkrrS0NCEyRP0TBMRiMSwWC6qrq5Genh7t5YUcpNc+1ieNJDhdp9NhfHwcqampUKvV0255kgijiYkJVFVVJdx0hGEYtLe3QywWR02z6W+SS0tL40xyC32/SUQTqY9NNBCSunTp0pCfW0iOrl6vh8ViiYreeHx8HO3t7XFDUp9//nmcOHECb7zxRsLd0MYYkkR1LpgNUT116hSWLVsW0S+a0+nExx9/jOXLl0MkEsUsSR0ZGUFHRweqqqqgUCiivZyQY3h4GN3d3VAqlRgbG4NUKuW2PBPhRHbx4kVO0xhP0wOS7KDT6WAymQIel2hMGiMJmqbR0tKCtLS0oDF2kYZ/TSU5LpmZmXO+0Xe5XGhsbERhYWFCxofZbDY0NTWFhaT6w19vLJPJ5n1cZovx8XFu2BIPJPW3v/0t/vnPf6KhoSEuikriHEmiOhfMhqiSfmy5XB6xNbndbly8eBF6vR4CgYBzqsfSxGtwcBD9/f1cpWYigQTdm0wmjsSRBAGy5RmKBIFoIZGSCwIdF5VKhZGRESgUioQ0vcVDUYHvcTEYDKAoiruZmMnIFsz9nigg8WjLli2LuB7c/7gAmHRcQvFdIZPUeDAtsiyLl156Ce+++y727dsXd+fyOEWSqM4VDodj2t+3tbVx1YPhRiDTlM1mg06nm9L0E627VJZlcf78eZjN5rioLZwrSN0ry7JYunRpUBJnt9u54zKfBIFogWEYtLa2QiaTJSSJs1gsaGpqAsuyEAgEXM1urOaCzhXE1BdvjUX+5Q++LUy+x8Vut6OpqWnOxqJ4AZFKVVRUxEQ8GqmlNhgMsNlsnERgvg1/ZJJaW1sb8yQVAF599VXs3bsXBw4ciPnJbwIhSVTnipmIakdHB9dyFE7QND2jHpWc7HU6Hdxud8TJEU3TaGtrg0QiweLFixPiwu8Lt9uNlpYWpKenz6nu1T9BgISmx1rOITG9qdXqhDSmEBKXn5+PnJwcLspHp9NxOr1o1OyGCoTElZaWIjNAY1O8gKZpTtfqqzeWSqVobW2NyHZ4NGCxWNDc3ByzUimapjmJgG/VrkqlmpXUiSSHxAtJff311/HHP/4R77zzTswPGBIMSaI6VzidTkz3+rq6ujiDQDgw3xB/IpbX6XSw2Wzc5EihUISFHBESkJOTE7PbjQsBqdQsKChATk7OvB8nUIJALISmE5JTUlISts9yNEE0f8GSGfxNcgqFgrsIx4M+l2wXl5eXQ6lURns5IQPRGw8MDGB4eBhpaWnIyclBVlZWQmkFzWYzWlpaUF1dHTEZ2ULgW7VrNBrB5/O5FIFAJDTeSGpDQwP+3//7fzh06FBM3jQkOJJEda6YiaheuHABYrE4LK5TQlJpmgaPx5s3wSTkSKfTwWw2czE+6enpISGtZrMZra2tCRvPRF5fqCs1A5EjtVoNlUoVUckEuUguW7YsISdV5PXNNgOWZVmMj49zW55isZjT6cWSDpyAvL5EbdMiJIdkwBKJAHBJPxnPEy/y+mpqauL2ddjtdu4G3F+6Qc6f8fL6Dhw4gF27duHQoUMJeT6MAySJ6lwxE1Ht7e0FRVEh3yoNV9MUwzBcjM/Y2BjS0tKg0WjmPdEzGo3o6upCVVVVXEwC5gqSIRru10fIkU6ng9FohEQi4cxY4UwQGBkZwdmzZ2MuIzVUIN3hC3l9VquVa8ZiWTamyBHJoUzU4zfd6wuUo0v0k7EkqZkOiUBS/eEr3RgdHYXT6URpaSlyc3NjfnfiL3/5C37+85/j8OHD8xpK0DSNyy67DHl5eTh48CC2b9+O3bt3c6a/n/3sZ9i4cSMAYMeOHXjppZfA5/Px/PPPY/369QCAkydP4p577oHNZsPGjRuxc+fOuPk8hwhJojpXuFwuMAwT9PeDg4NwOBwhjYCJVB0qy7Jcp7rJZJrzRK+/vx9DQ0MRz5GNFAYHBzEwMICampqIT9JI0w9xqhO9cShdp6SNKRGTGQBAr9eju7sbtbW1IXt9xFyi0+m4yVG09MbkJjEecijnA3KTMZvXR3J09Xo9xsbGorY7MRfEk/t9PjCbzVzlstlshtFo5CqQMzMzY+4z+/e//x1PPPEEDh8+PG+N97PPPosTJ05gfHycI6pyuRzf+973Jv1de3s7tm3bhuPHj2NwcBDr1q1DZ2cn+Hw+Vq1ahZ07d2LNmjXYuHEjHnzwQWzYsCEULzFeEJYTaWzfIoUZfD4fNE2H7PF8TVPh1ixSFAWlUgmlUjlpotfd3Q2pVAq1Wh2wu5tlWXR1dcFut2PFihUxeyGYL0gQ/Pj4eNRen1wuh1wuR0lJCZcg0NbWNqk2dCET3t7eXhgMBqxYsSLmpxzzAbnJWLFiRUgn0iKRCHl5ecjLy+MmR319fZiYmEB6ejrXqx7u765Op0NPTw9WrFiRkDeJRqMR586dQ11d3axuMnxrW32lGxcuXIBIJIo56UY8NTLNB0SOUltby02Ky8rKuArkM2fOhL21bC44cuQIfvKTn+DQoUPzJqn9/f04dOgQHnnkETz77LPT/u3+/ftx++23QywWo6SkBGVlZTh+/DiKi4sxPj6OtWvXAgDuvvtuvP322580ohoWJN5Vbg4IFVGdr2kqVKAoCmlpaUhLS0NZWRksFgt0Oh1Onz7NZbWq1Wrw+Xy0tLRAoVCguro64bYkGIbBmTNnwOfzUVtbGxOvTyKRoLCwEIWFhXC5XNDr9Th37ty8EgTITYbD4UBdXV1cuttnQk9PD0ZGRsJ+k0GyctVq9aQw+66uLqSkpHCTo1BLNwYHBzE4OIjly5cnRLGEPwjBJIUmc4X/ucxqtUKv16OlpQUMw0ySbkTj+z2XSXE8gpDUQHIGqVTKnctIaxm50UtLS+Nu9CI5HPj3v/+NH/3oRzh48OCCyiO+9a1v4emnn8bExMSkn//qV7/Cq6++issuuwzPPPMMlEolBgYGsGbNGu5v8vPzMTAwAKFQOMmMTH6exMKR0ER1phOZQCDgsk3ni2iTVH9QFMVN9BYtWsRltZ4+fRoWiwVZWVnIy8uL+jpDDZfLhZaWFqhUKhQWFsbk6xMKhVxlZKCJHqmnDERAGYbh4sOqqqpi8vUtBISEO51O1NbWRpSE83g8ZGRkICMjAyzLwmw2T7rRI+RooRKE3t5eGI1GLF++POF2MgCPHKW3tzekJFwmk6GoqAhFRUVcGsr58+dhtVon6Voj8XkhmvDZTorjDdORVH8IBAJoNBpoNBpOhqbX63H+/PmIGRg/+ugjPPTQQ3jnnXcWZIg+ePAg1Go1Vq5ciSNHjnA/f+CBB/DjH/8YFEXhxz/+Mb773e/i5ZdfDuh7oSgq6M+TWDgSmqjOhIVOVCOlR10IpFIplEolBgcHUVlZCafTifb29qhktYYLJJ6puLg4bioZ/Sd6JOOws7OTi1fKzMwEn8/n2oqysrJQWFgY7aWHHKTXXiQSobKyMqrfI4qioFAouOYrst1JpBskKm4uEz2WZdHd3Q2LxRJxEh4pDA4OYmhoCMuXLw+bHEUoFCInJwc5OTmcsVSr1eLs2bOQy+WcrjUcz28ymdDV1YXly5fHjAQhlPCN2Jrr9cBXhgaAm4K3trZy3xkidwrVd/vkyZP49re/jf379y/YDP2f//wHBw4cwOHDh2G32zE+Po4777wTr732Gvc3X/rSl3DjjTcC8ExK+/r6uN/19/cjNzcX+fn56O/vn/LzJBaOhDZTud3uaYmo1WrF2bNnsXz58jk/djyQVADcXa6/6J9sQ5Mg+3BntYYLxHmbKPFM/gkCIpEIVqsVJSUlyMvLi/byQg6aptHc3AylUoni4uJoL2da+Ocb+5YMBPvOsCyLs2fPgmEYLFu2LK6+W7NFX18f9Ho9amtrozIp9s0FNRgMnOknVBXIvprbRCSppKwgHDmw5Duj1+thsVhCogVvamrCV77yFezbtw9lZWUhXe+RI0fwi1/8AgcPHsTQ0BCXu/3LX/4Sx44dwxtvvIG2tjbccccdnJnq2muvRVdXF/h8Pi6//HLs2rULq1evxsaNG/GNb3yDSwr4hCBppporwrX1H0nT1HzBsixnulm5cuWUrTjfbWiiN7p48SKX1arRaKZUIMYaDAYDzp07FzdB1LOBr0YvNzcXjY2NyMjI4ELTyQU4EfRxLpcLjY2NyMvLi4vJg+9EjzjVh4aG0NHRgdTUVK5kgJA1MikWi8UoLy+P6e/SfNHT04PR0dGoaqYpikJqaipSU1MDTsGJFnw+Ez2DwYDu7u55a25jHeEkqcDUKbivFlwmk3E7R7N9b9va2vCVr3wFe/bsCTlJ9cdDDz2ExsZGUBSF4uJivPjiiwCAyspK3HrrraioqIBAIMALL7zAfed/85vfcPFUGzZsSBqpQoSEnqjSND0tEaVpGh9//PEkYfR0iDU9ajCQTnsyxZnLBYRhGK6acnx8fEbtZLTQ39+P4eFh1NTUJOQFhJg2fDNg7XY7NwWf7zZ0rIDINRYtWsTlFMYrSAMTafqRSCTIzMyETqeDUqkMafxdrIDIGaxWKyorK2Pq3OCLQFW7s22TI8awurq6hDzHhJukTgeWZWGxWLgpOABOIhDsfNbR0YF77rkHr7/+OiorKyO63iRmjWSO6lwxE1FlWRZHjx7Fpz71qRkfK15IKjEVka3UhayT3AHrdDqMjIzERL4hy7KcmaKysjIhTSk6nQ4XLlyYNkOUSDdIYLpvm0ysfjYJLBYLWlpaErb3fWxsDC0tLQA8qQ9kCp4oU3+WZXHu3Dk4nU5UVFTE/OeNwFcLPjIyMm26g06nw8WLF1FXV5eQ6QzRJKmB4FsAYbVaQVEU9Ho9rr/+eojFYnR1deGuu+7CH/7wB9TW1kZ7uUkER5KozhUMw8Dlck37Nx9++OGMRDVe9Kg2mw3Nzc1hMRX5aydJVmtWVlbEsjyJ810sFmPx4sUxexwWgr6+Puh0OtTU1Mz6AkkSBHQ63awSBKKJsbExtLe3x8wFMtRwOp1oampCQUEBsrOz4XA4uCk4yZ6MRy04AdHcAohrOQNJdyATPd8s1/HxcfT29iY8Sa2qqoJCoYj2cqaAYRi0tLTgl7/8JU6ePInCwkL09fXhd7/7HT772c9Ge3lJTI8kUZ0rQkFU44WkEgIw2070hYBs22i1WhgMBohEIo60hmuLzOVyobm5GWq1OuSVt7EAMqWy2WxcL/p84D8FJ25okiAQTSR6G9NMcgaiBdfpdDCbzXPaho4FsCzLpTOUlZXF7LlwPiCymv7+fthsNuTn50Oj0UQ9zD7UiHWS6o+LFy/ivvvuQ01NDVpaWiCRSHDjjTfipptuwuLFi6O9vCSmIklU54qFElWWZTnpQCxfSLRaLXp6elBTUxMVAkD61PV6PSiK4mKXQpU1aLPZ0NTUhNLS0rjXMwYCMd0IhUIsWbIkZBdG35Yfg8EAsVgc9huKYBgaGkJ/f3/CVvZarVY0NzejvLyci+mZDv7b0OGOV1ooGIZBa2srl8+ciCARW5WVlZzmONKtZeGE1WpFU1NT3JDUwcFB3HLLLfjVr36FK6+8EoDnPHLo0CG888476Ovrw09+8hPccMMNUV5pEj5IEtW5gmVZOJ3Oaf/mww8/xNq1ayeRg3jRo7IsyzX51NTUxMQFzt/ws9CsVjIprqysRGpqaohXG3243W40NzdDpVKhqKgorM9FGssMBgN4PF7EEgRI+kSsfEZDDZJBOd/PKIlX8o0ki6XaUJqmOd17uD+j0cLAwAC0Wu2UiC1fp/rIyAikUil3bOJJFhBvJHV4eBi33HILnn32WVx99dUB/8Zms8FqtUKlUkV2cUlMhyRRnStmQ1SPHTuGlStXchfQeCGpZArH5/NRXl4ek3f6RCCv1WrhdDo5l/psY2KIqShak+Jww+FwoKmpCYWFhcjOzo7oc5MbCr1eD7fbHZYEAV/j20LkDLEM0vs+n6D0YCCB6Xq9HizLTjo2kQZN02hqaoJarZ5UD5lI6O/vh06nmzEH1t+pTlFUXBjlCEmNl5t9nU6HrVu34sknn8R1110X7eUkMTckiepcMRuievLkSVRWVkIikcQNSSV6zaysLBQUFMTsOn3hdru5sHSLxcKZSoK51Ht7e6HX6+dkKoonEOf7kiVLkJGREdW1+AfZZ2RkTHtsZgOGYdDR0QEejxfXppvpEAnNLbnZI8UckUx3cLvdXM4tCT5PNPT19XHT/rlquIlRTq/Xw+FwxGTyRryRVKPRiJtvvhmPPfbYJy0oP1GQJKpzxWyIamNjIxYvXgyZTBYXpilCcOJZr0nC0gNltVIUhc7OTrhcLlRUVCTkFG50dBRnzpyJyW04kiCg1+u5YzNXfR5N02htbYVCoUBJSUnMfpcWAp1Oh56enohmbPofm7S0NO7YhNooR8oYCgsL46aWeK7o7e2FyWRCTU3Ngs8zkTw2s4XNZkNjY2PckNSRkRFs3boVDz/8MDZv3hzt5SQxPySJ6nzgcDim/X1LSwsKCwu5rZtYJkYjIyNcCHysEZz5wtelbjKZQNM00tLSuNaPRINer0d3d3dcyBmCJQhMZ/gh036NRpOwW8WDg4MYHBxEbW1t1Kb9DMNgbGyM+97IZDIu3WGha3I4HGhsbEyIMoZg6OnpwdjYGKqrq0N+zicFEOTY+GbpRuqmhhhQKyoq4oKkjo+PY+vWrfj2t7+NW265JdrLSWL+SBLV+cDpdCLYayRxKxKJBPn5+TFNjAYHB9Hf34+ampqQueljCU6nE42NjVAqlWBZdsrFN5aPzWxB2rSiSXDmC1/DT7AEAaK5LS4uhlqtjvKKw4Pe3l4YjcZ5bRWHC8EyQeeTvGG329HY2BgTkpRw4cKFC5iYmIiYbproWvV6PQBwpDVcmmNCUpctWxb2qMJQwGw245ZbbsEDDzyAbdu2RXs5SSwMSaI6HwQjqkSParFY0N/fD5PJFFOZkwTEkGKxWFBVVRUz6woliJxh8eLFnIOTXHwJMYpEVmu4QOomzWZzwhxD34svRVFIT0+HTqfD0qVLE5LgkGNIvoexvPMSqGo3KytrRhMjITiJ2hgGYFKrXTSOodPp5L43drsdGRkZyMrKQnp6ekgkMvFGUi0WC2677TZ84QtfwBe+8IVoLyeJhSNJVOeDQEQ1kGmKTIy0Wm3Umpf8QdM02traIJFIEraJiXTaV1ZWTitn8CVGPB6POzaxPl1mGAZnzpzh0hkS8RgaDAZuZwJAWBIEognSxsQwDJYtWxZXr4kY5fR6PSwWyyRi5EvUSBB8vOgZ5wpyw+9wOGKm9pVo9fV6PcbGxpCamoqsrKx5V1THG0m12Wy4/fbbceutt+JLX/pStJeTRGiQJKrzgcvlAsMw3P/PpmkqUPOSRqOJaHYeqWLMyclJWK3f8PAwent75yxnsNvtXMEAwzDcNmesRcTQNI3m5mYufzIWLo6hhslkQmdnJ2pqaiCTycKSIBBNkBg4sVgc921MDMNwJsaxsTEoFAqo1WqIRCIuYisRa21J65vL5YrZGw3fimqTyTTnLF0i2YgXkupwOHDHHXfgpptuwgMPPBCTxySJeSFJVOcDX6I636YpEpSu1+shEAi45qVwbUGbzWa0trZO2gpPJLAsi4sXL3KO24VMrMlWmk6nm1dWa7hAbjTy8/MTNtpHq9Xi4sWLqK2tDXgx9U93SEtLg1qtjpuGHxJ0n5aWhpKSkmgvJ6Qghp/+/n5otVqkpaUhJycnLqU104FlWXR2doJhGCxdujRuCJFvli65GSe6Vv/XQEhqvEg2nE4n7rrrLlx77bX45je/GTfHJIlZIUlU5wNCVGmaDkk+qs1mg1ar5bag52taCAaSzVhVVZWQ0w2GYXD27FmwLIulS5eGlLD4ZrWSxhK1Wh3xvm5Sp5moNxoAOIIz25xb34YfogfPysqKWaOc2+1GU1NTQqcXjIyM4OzZs6itrQXDMJM0x/EQZD8TiGQDQFzLbkiWrl6vh81mg1Kp5OQbxIQaLyTV5XLh3nvvxZo1a/D9738/bo9JEkGRJKrzgdPphNvtDkuIP9mC1ul0YFmWm7TON3aov78fQ0NDCduH7na70dLSgvT0dBQXF4f1JEVyDXU6HSYmJqBUKqFWq6do80INUvmaSBFivmBZdpJrej5aukCVobFklCPT8IKCgog3hkUKRqMR586dQ21t7ZSbbN8ge6fTyQXZR/qGbyFgWZYrnFiyZEncrHsmEPkGqXR1OBwoKipCYWFhTN7w+cLtduNLX/oSqqqq8KMf/Whex4SmaVx22WXIy8vDwYMHYTKZcNttt6GnpwfFxcV48803oVQqAQA7duzASy+9BD6fj+effx7r168H4Cn5ueeee2Cz2bBx40bs3LkzYT4fMYAkUZ0PfvOb3+DTn/40iouLw0pQnE4nR1rdbvecOu7J9pTD4UBlZWVCuML9QaKLCgoKIr4VzjAMRkZGoNPpMDo6itTUVC4PNJSfCb1ej/Pnz4e1qSiaCJepyGq1ctIaMs1byA3fQmC329HU1JTQGaJ6vR4XLlyYVVmB2+3mguwnJiYmlXPEqnyDZVmcOXMGQqEw7nXFwWC323H69GkUFhbCZrPBaDRCKBRyk/BYM5nSNI0HHngAJSUlePzxx+d9TJ599lmcOHEC4+PjOHjwIB566CFkZGTghz/8IZ588kmMjIzgqaeeQnt7O7Zt24bjx49jcHAQ69atQ2dnJ/h8PlatWoWdO3dizZo12LhxIx588EFs2LAhxK/4E4skUZ0rGIbBiy++iH379mFsbAwbN25EfX192B30LpcLer1+Use9RqMJqC9yu91ci8+iRYsS8qRKNLfl5eXc3W604BvGbTQakZKSAo1GM22I/WwwMDCAoaEh1NTUxMRUMNRgGAatra1ISUkJ6+eUTPN0Oh1cLldENcdEshELn9NwYXh4GH19fairq5uzMZTc8JFpXizKN1iW5ZJSSktLE/J8SjSp/p9Tm83GTcLnEksWbjAMg29+85tQqVR48skn532D09/fjy984Qt45JFH8Oyzz+LgwYMoLy/HkSNHkJOTg6GhIVx99dU4e/YsduzYAQB4+OGHAQDr16/H9u3bUVxcjGuuuQYdHR0AgNdffx1HjhzBiy++GJoXm0RYPmixcXYJE3g8Hh544AE88MADMBgMePvtt/E///M/0Ol0+K//+i/U19eHxQUqFAqRm5uL3NxcuN1ubtJms9m4C69CoYDD4UBzc3NUpoyRAnGFV1dXhy3gei4gmZ/p6elcVqtWq8WFCxcgkUi4LejZXsR9t8KXL1+ekNNwt9uN5uZmZGZmorCwMKzPJRaLkZ+fj/z8fC5B4MKFC7BYLJzmOBwJAmazGS0tLQkbzwR4SkOGhoawfPnyeRFLHo8HlUoFlUrFyTf0ej0uXrwYE9M8hmHQ1tYGmUyG0tLSqKwh3AhGUgFAKpWisLAQhYWFU747RNca6Uk4wzD43ve+B4VCsSCSCgDf+ta38PTTT2NiYoL7mVar5a6dOTk50Ol0ADyDgzVr1nB/l5+fj4GBAQiFwkmac/LzJGIbCU1UfZGZmYkvfvGL+OIXv4iRkRG88847+MlPfoLe3l5cd9112LJlS1jq9AQCAXJycpCTkwOapmEwGHDx4kWMj4/D5XKhtLQ0YXVwg4ODGBgYwPLly2cVsRJpUBQFhUIBhUKBsrIyLt3h9OnT4PP5nOY42NoZhkFHRwcoikJNTU1CTm+IWaOwsDDin1OhUDjpu2MymTAwMIAzZ86ENEGA6Iprampi4mYqHOjr64PBYEBdXV1IbqYoikJqaipSU1NRWloKm80GnU6H1tbWGV3q4QCZ+CsUioRLaCAg1bazmfj7fnd8J+GdnZ1ISUnhpE/hjFtkGAb/8z//Ax6Ph2effXZB39ODBw9CrVZj5cqVOHLkyIx/H2inmOSlB/p5ErGNTwxR9YVSqcTdd9+Nu+++G+Pj4zh06BCeeeYZdHZ2Yt26daivr8eKFStCTlr5fD40Gg14PB7MZjPKysowOjqK/v5+KJVKaDSakDWURBOkxWdiYgIrVqyImyljSkoKSkpKUFJSwm2jtbS0gGXZKVmtvtFF4TaGRQskQDwW0gtILWhWVhZYlsXo6Ch0Oh26urq4C+98tqBJykZdXV1C6oqBS732tbW1YZumSaVSFBUVoaioiHOpk12kcGfpMgwz6buYiHA4HDh9+vS8ZCn+k3DS+Nfb2zvpexXKzz/DMNi+fTssFgt279694M/df/7zHxw4cACHDx+G3W7H+Pg47rzzTmg0GgwNDXFb/6S6OT8/H319fdy/7+/vR25uLvLz89Hf3z/l50nENhJaozpXWK1WHD58GHv37kVrayuuvvpqbN68GatXrw4J2WJZFr29vTAYDJNiffyDuNPS0qDRaGLasBAMidjE5J/VmpGRAaPRiIKCAuTl5UV7eWHBxMQEWltbUVFREdMB4oGqdslNxUxaYZ1Oh56enlmZiuIR5IYxmpWhgbJ0s7KykJGREZJzKsMwk0o1EhGEpC5ZsiTk9cSkblev13Oa8KysLCgUinmfu1mWxRNPPIG+vj78/ve/D/mg4siRI/jFL36BgwcP4vvf/z5UKhVnpjKZTHj66afR1taGO+64gzNTXXvttejq6gKfz8fll1+OXbt2YfXq1di4cSO+8Y1vYOPGjSFd4ycYSTNVJGG32/G3v/0Ne/bswenTp3HllVeivr4en/rUp+al7yL5ocQxHeyiQfImdTodRkZGwuZQDwdcLhdaWlqgUqkS9qIxMTGBxsZGSCQS0DQdtazWcILka8aKrngu8E0QABA0Mm5wcBCDg4Oora2NWNtcJMGyLLq6uuB2u2OmjYlMwkmWrlQq5aZ58zkGpPktMzMTBQUFYVhx9EG2+xcvXhxykuqPQAkP5KZittcelmXx85//HGfPnsUf/vCHsJjsfImq0WjErbfeit7eXhQWFmLPnj3c+/TEE0/g5ZdfhkAgwHPPPcc5+0+cOMHFU23YsAG7du2Kie9HgiBJVKMFp9OJf/zjH2hoaMBHH32ENWvWoL6+HlddddWsTrCEwCmVyjltExOHular5ULSiUM91rbTSaxPcXExNBpNtJcTFoyPj6OtrY0z3ATLalUqlXF74tPr9eju7g6YrxlvCJYgYDKZuFa0WPsehQLxkCFKaqrJJHyuW9A0TaOpqQlqtTphCxkiSVL94VvQMTIyAqlUyslrgl3zWJbF888/jxMnTuCNN95IyBvAJGZEkqjGAlwuF/75z3+ioaEB//73v7FixQrU19fjmmuuCWi6GRwcRF9f34IJnG8XtNFohFQqhUajiYloGELgli1bFhftKPMB0TKSTnt/EMOCVqvl5BvxVBcKXIrYSsQpI0nfuHDhAhwOB3Jzc7kCiFgkcvMFwzBob2+Pu3imQFvQwWLJaJpGY2MjsrOzE1Z643Q6cfr0aZSVlUVdH05uKvR6PQwGA5d1DIDbOWNZFr/97W+5a2MiSmmSmBWSRDXWQNM0/v3vf6OhoQHvv/8+qqurUV9fj3Xr1kEqleL999/HN7/5Tezbtw9lZWUhe15/XZ5YLJ5zrFKoYDAYcO7cuaAELhFA0gtm2xgWaBJOphGxOMFjWRYXL17EyMhIQk8ZifRmyZIlnAua3FRkZWXFhbxmOiSK893lcnE7FRaLBRkZGVxlKMMwaGpqQk5OTsKaYGKJpAYC2an47//+b/T19eHKK6+ESqVCS0sL3nrrrbjfiUliQUgS1VgGwzD46KOP0NDQgPfeew8qlQr9/f149dVXUVtbG9bnJltoer0eAoGA0+WF+662v78fw8PDCRtyz7Isenp6MDo6Om8C51sXajAY5pXVGk6QVjSiZYxnohYMZMooFounNBX5JgiYTKYFJQhEE0SvmZGRkVD6cP/KUJfLBY1Gg8WLFyfkDVWsk1R/jI2N4YknnsC7774LqVSKtWvXYtOmTbj22msTNkUjiWmRJKrxAJZlsWPHDhw6dAirV6/G//3f/6G4uBibNm3Cxo0bwx4m7msm4fF4M2aBzgcsy+LcuXOw2WwJW/lKdH4sy2Lp0qUhI3CBbiqysrKikjM7HYFLFPjGiM00ZfTfqRAKhVE9PrPFJ0Gv6XK5cPr0aWRlZXF51L47SYlwoxxvJBUA/vSnP+FPf/oT3nnnHUgkEhw9ehT79+/He++9h+LiYmzduhV33nlntJeZROSQJKqxDqfTiS9/+cuQy+V47rnnIBAIuIy/PXv24C9/+Quys7OxadMm3HjjjWGvabTb7dDpdNDpdGBZNqgDei4g24tSqTShyY3vFmq4XiPJag3l8ZktEnUC5wu3242mpiZoNJp5ETir1crpJgNl6cYCXC4XmpqakJeXl7Dtdi6XC42NjSgqKuJyMgFwukmS8OBbMhBvICS1tLQUmZmZ0V7OrNDQ0ICXXnoJhw4dglwun/L7jo4OnDx5Ep///OejsLokooQkUY1lmEwmfO5zn8PmzZvx4IMPBvwblmVx5swZNDQ04ODBg0hPT8fmzZtx4403cuL0cMHhcHCklaZpZGVlQaPRzOmiSy6KGo0mYeNgyGvMycmJqFHD16HudrsnmUlCDXLhz8vLS2idX1NTEwoKCkLSqEWOj16vh9PpnNbsEymQ1rCioqKETdogr7GkpGTac6TD4YDBYIBOp4PD4Yir2DjyGhctWhQ3JHX//v144YUXcOjQoZjOWU4i4kgS1VjGxYsX0dbWNuvgYLJ93tDQgAMHDkAqlWLTpk3YtGkTNBpNWE+u/gH2ZFI0HSmyWq1obm5GaWlp2El1tGCz2dDc3IxFixZF9TWSnm6dTgebzcaRooWEcBOQGLFov8ZwItyv0e12c8eHmH0inSBAooviaQI3V8yXwIUiDzRSiEeSevjwYTzzzDM4dOhQxGOzkoh5JIlqooKYdvbu3Yu3334bPB4PN910E+rr65GbmxvWi18gUqTRaCZNikgXOskPTUTEahOTf1brQkiR2WxGS0tLQseIkRuq+VRNzgf+rXKkoCNUzUuBYLfb0djYGJamolgBIeIL1Wv65oH6muXC3XM/GxDd7UzT4ljC3//+dzzxxBM4fPhw3BDrJCKKJFH9JIBlWQwMDGDv3r1466234HQ6cdNNN2Hz5s0oKioKK2klkwitVguLxcKdzLVaLWpraxPWxTlTRmqsIFDV7myzWsnNRnV1dVjkBLEAQsSjdUPl27xkNBqRkpKCrKysaUPS5wpCxJcuXZqwNxvhCroPZJYjutZIRyrFI0k9cuQIHn30URw6dChhpSZJLBhJovpJA8uy0Gq12LdvH/bt24fx8XHccMMNqK+vD7uRiaZpdHR0cCd0ovlKtID0oaEh9Pf3zzojNVbgH6s0XVYrybpN5JsNQsRrampiwkwTjgQBi8WC5ubmhN7ZINPiSEzEiZlRr9eDpmlOYpOSkhL2Xax4I6n/+te/8PDDD+PQoUMJa9pLIiRIEtVPOvR6Pd5++23s27cPer0eGzZswObNm0Pe5U2yNV0uFyoqKgBg0iQvPT2dqwqNNc3XbOEbcl9dXR1XmZn+8M9q9a07NBgMcUnE5wIyEY9lIm6z2bhYsvkkCExMTKCtrQ1VVVUJOxG32WxoamqKyrTY5XJxpNVms00qGQjluTUeSepHH32E73znOzh48GDCxp8lETIkiWoSlzAyMoIDBw5g79696Ovrw/XXX48tW7agqqpqQeSRRDPJ5XIsWrRoykmaaL60Wi1GR0eRmpoKjUYTk0aFYCAtRTRNJ2TIPZnkDQwMgKZpLFq0CBqNJqazQOcLnU6Hnp4e1NXVxQ0R9zczkt2KYGa5sbExnDlzJualKQsBIanLli2LukacpmmuZCCUuuNgMVuxjBMnTuAb3/gGDhw4kLAxdkmEFEmimkRgjI+P4+DBg9i7dy/OnTuHdevWob6+HsuXL58TCSORPrONLfLfflYoFJxRIVZLAGiaRltbG2QyWVx1oc8FJFHCbrdj0aJFnFmOdHRHKqs13BgcHMTg4CBqa2ujboyZLwIlCGRlZUGpVIKiKIyMjODs2bMxPS1eKIjutqKiIuYkDaQOmZzjpFIppzuey41RPJLUxsZGfPWrXw15BXgSCY0kUU1iZpjNZvzlL39BQ0MD2tvbcc0112Dz5s1YtWrVtOTRYrGgpaUFixcvnpfLlmVZjI+Pc9vPsVhFSTJSs7OzE3YLi2EYnDlzBgKBAEuWLJlExP2zWglpjQVN51zR29sLo9E472rbWIS/WU4sFsNqtWLlypUJS1KJ7raqqgoKhSLay5kWLMtyJQMGg2HWN37xSFJbW1vxxS9+EXv27EF5eXm0l5NE/CBJVJOYG+x2O/7617+ioaEBp0+fxqc//Wls3rwZn/rUpyaRx3fffRdNTU347//+75BcLIiRRKvVcv32Go0mpO7nuYJka5aUlMTNxWKu8K0LLS4unnZaTDR5Op0Odrs9pFmt4QTLsuju7obFYlmwzCWWodVqcf78eSiVSoyOjkImk3E3fvE6PfZHPJHUQLDb7Zyu1eVyITMzE1lZWZO+Q/FIUs+cOYN7770Xr7/+OiorK6O9nCTiC0mimsT84XA48I9//AMNDQ04fvw41qxZg/r6epw7dw67d+/Gm2++OWMX+nzh634WCATQaDQR7ecmGamJnB+6kGkx6U7X6XQwm81RCbCfDYi2mGGYkBsIYwnDw8Po6+tDXV0dhELhpAQBo9EIgUDATfLiVXdMosQSJS6NSDj0ej3MZjOUSiUyMjLQ09MTV81hXV1duOuuu/Daa6+hpqYm2stJIv6QJKpJhAYulwtHjhzBj3/8YwwODuLqq6/Gli1bcPXVV4f9wme1WrkqVz6fz/Xbh+t5TSYTOjs7UV1dHZdb3LOBw+FAU1MTiouLFzy1CZTVqtFoop7wwDAM2tvbIRaLwx7NFk0MDAxgeHgYtbW1QSUzgRIE4qnjntw4xkqUWKjBMAwMBgPOnDkDHo8HpVKJrKwsqFSqmJFBBcKFCxewbds2/P73v8eKFSvm/O/tdjuuuuoqOBwOuN1u3HLLLXjsscewfft27N69m0s5+NnPfsY1OO7YsQMvvfQS+Hw+nn/+eaxfvx4AcPLkSdxzzz2w2WzYuHEjdu7cmbDf+QRDkqgmERq43W58/etfB8uy2LlzJz766CM0NDTgyJEjqKmpQX19Pa699tqw6+LsdjtHWgFwpDVU4dvDw8Po7e1FbW1t3E6eZgLRFocjd5IkPOh0OoyMjETNLOcraQjX1D8W0NfXB4PBMCfdrW+CgMPhiHkJx/j4OFc8kYgkFfCcX0+fPo3CwkKo1WqMj49zJRAikYi7sYilc1Jvby9uu+027N69G6tWrZrXYxANr1wuh8vlwpVXXomdO3fi3XffhVwux/e+971Jf9/e3o5t27bh+PHjGBwcxLp169DZ2Qk+n49Vq1Zh586dWLNmDTZu3IgHH3wQGzZsCMVLTSK8CMtJJ3Zv75IIC8xmM26//XZceeWV+MEPfgCKonD11Vfj6quvBk3THGn96U9/ivLyctTX1+P6668Py0VFIpGgsLAQhYWFcDgc0Ol0aGtrA03THGmdbxzPxYsXYTQasWLFipieYiwE4+PjXLZmODR+PB4PGRkZyMjImGSW6+7unpTVGk7NpNvtRlNTEzQaTcIa4ACgp6cHY2NjqK2tndPkWiQSIS8vD3l5eVyz3MWLF7ntZyLhiAUt7ychZsvtdqOxsREFBQXcdn9aWhrS0tJQVlYGq9UKvV6PlpaWmJmGDwwM4Pbbb8cLL7wwb5IKABRFcTIOl8sFl8s17c3S/v37cfvtt0MsFqOkpARlZWU4fvw4iouLMT4+jrVr1wIA7r77brz99ttJovoJRmJewcOE4uJiKBQK8Pl8CAQCnDhxAiaTCbfddht6enpQXFyMN998MyId4/PFtm3b8PnPfx7btm2b8js+n48rrrgCV1xxBRiGwcmTJ7Fnzx78/Oc/R0lJCTZt2oQNGzaEJUJGLBajoKAABQUF3JSoo6MDLpeL0+PNRsvGsiy6urrgdDpRV1cXExfocIBIGmprayNy0acoatIF12KxQKfT4dSpU1zrklqtDqnumMSlFRQUIDs7O2SPG0tgWRbnz5+H3W5HdXX1gj6vRP+t0Wg4Ccfw8DDOnj0bsizQ+WJ0dBQdHR0JHbNFSGp+fn7Qz6tMJkNRURGKioq481xXVxfsdjtUKhWysrKQlpYWsWn48PAwbrvtNjz33HO48sorF/x4NE1j5cqVOHfuHL72ta9h9erV+Mtf/oJf/epXePXVV3HZZZfhmWeegVKpxMDAANasWcP92/z8fAwMDEAoFE66KSU/T+KTi+TW/xxQXFyMEydOIDMzk/vZQw89hIyMDPzwhz/Ek08+iZGRETz11FNRXOX0sFqtcyY2DMOgubkZDQ0NOHz4MHJzc7Fp0ybccMMNYSflgdzpGo0Gcrk8YBlBa2srpFJpQusYtVotLl68GDOSBqI71uv1oCgqJBIOktKwaNGiuGnwmStIAxwpngjX5zVQFmgkEwQISa2rqwuZrCfWMBuSOh1omobRaIROp8PExATS0tK4G4tw3WzrdDps3boVTz75JK677rqQPvbo6Ci2bNmCXbt2cbmzFEXhxz/+MYaGhvDyyy/ja1/7GtauXYs777wTAHD//fdj48aNKCwsxMMPP4z33nsPgKe+9emnn8Y777wT0jUmERYkNarRRiCiWl5ejiNHjiAnJwdDQ0O4+uqrcfbs2SiuMrxgWRbt7e1oaGjAoUOHoFQqsXnzZtx4442T3pdwwDcc3Wq1co0+qampcLvdaG5uhlqtRkFBQVjXEU309fVBp9NNa7aJJkhkj06nA03T88pqJQHwkeh7jxZYlkVHRwd4PN6UvNtwPy+ZhpMUDrL9HA4SSSb/nwSSmpeXh5ycnAU/HtGG6/V6mEwmpKSkcGQvVDcWRqMRN998Mx577DHO2BRqPPbYY0hJSZmkTe3p6cGNN96I1tZW7NixAwDw8MMPAwDWr1+P7du3o7i4GNdccw06OjoAAK+//jqOHDmCF198MSzrTCKkSBLVaKOkpIRrjPnKV76CL3/5y0hPT8fo6Cj3N0qlEiMjI9FbZARBttkbGhrwzjvvQCqVYvPmzbjpppug0WjCevH1nUCMj4/D5XKhsLBwxvzQeAXJDzWbzQveIo4U5jINJyCxRZWVlTHXUhQqkAQDiUQS9XY0m83GHaNQayZNJhO6urpQV1cXE5P/cICmaTQ2NiI3NzckJNUfJJqMlAyQpJSF3FiMjIzg5ptvxiOPPIJNmzaFbK16vR5CoRDp6emw2Wy4/vrr8YMf/AArV67k3ptf/vKXOHbsGN544w20tbXhjjvu4MxU1157Lbq6usDn83H55Zdj165dWL16NTZu3IhvfOMbYSPUSYQUSaIabQwODiI3Nxc6nQ7XXXcddu3ahU2bNn1iiaovWJbFhQsXsHfvXrz99tsQCAS46aabUF9fj5ycnLBdjAmxyc7OhtVqxfj4ONLT06HRaGLGRLJQkOkbACxdujQuiTgx+mi1WlgsFm4a7qvHGxsbQ3t7e8LGFgGX5CkKhSLmEgxCmSBgNBpx7tw5LF++PGJ5yZFGuElqIJAbC71eD5qmuZKB6W7+fDE2NoatW7fiu9/9LrZu3RrStTU3N+MLX/gCaJoGwzC49dZb8eijj+Kuu+5CY2MjKIpCcXExXnzxRe79euKJJ/Dyyy9DIBDgueee4wxTJ06c4OKpNmzYgF27dnGv7/z58ygtLeWeM5n3GlNIEtVYwvbt2yGXy7F79+5P1Nb/bMCyLPr7+7F371689dZbcLvduOmmm7B582YUFhaGjGiRHvSqqirOaMUwDEZGRqDT6TA6OhoRrVc4QYhNSkoKFi1aFJck1R80TXNZreTGQiKRYHh4GHV1dQlrtqFpGs3NzVCpVCgsLIz2cqYFubEgJRBzSRDQ6/W4cOEC6urqEp6k5uTkIDc3NyprcLlcXMmAxWLhijrS0tICHqOJiQl87nOfwwMPPBDQTBsPMJvN+PnPfw673Y6enh5cf/31uP/++6O9rCQuIUlUowmLxQKGYaBQKGCxWHDdddfh0UcfxT/+8Q+oVCrOTGUymfD0009He7kxA5ZlMTw8jH379mHfvn0wm8244YYbsHnz5gUZnoihqKamJugWGMuyXA6oyWSKWg7ofEGimRJZd8swDHp6etDX1wehUMi50+PlGM0W5FhmZ2cjLy8v2suZE/xv/lJTU7kAe/9jpNPp0NPTg+XLlydM1as/YoGk+oPc/On1eoyNjSElJQUtLS3YtGkTd8267bbbcM899+Duu++O9nIXhHPnzmH16tUoLi7GyZMnAXhIe6J+3uIMSaIaTXR3d2PLli0APBedO+64A4888giMRiNuvfVW9Pb2orCwEHv27EFGRkaUVxu70Ov1ePvtt7F3714YjUZs2LABmzdvntOWdm9vL/R6PWpqamZ9ciI5oFqtFkajESkpKdBoNMjMzIxJQuR0OtHY2IjCwsKEjWYCPHKawcFBzhxGslqNRuOkfvtYNI7NFqTvPT8/P2JbxOECSRAgAfa+CQImkwm9vb1c9WsiIhZJqj9YlsXg4CB27NiBf//739BoNHA6nbj99tvx7W9/O9rLmxfcbjd3Dujr68Pu3btx9OhR1NTU4JlnngHgOTaxeC7/hCFJVJNILJhMJhw4cAB79+7FwMAArr/+emzZsgWVlZUBt65omsa5c+fgdDqD/s1swLIsJiYmOOdzpON6ZoLNZkNTUxMWL14MlUoV7eWEDb29vTAajQGbmHz77Q0GA0QiEWciiaftZHLDEYp621iDb4LA4OAgXC4XSkpKkJ2dnZAOf5qmufKJeJmK2+123HnnnRCLxVzKw6ZNm7B582YsWrQo2subFSwWC6dZP3ToELKzs7Fy5UoMDQ3h3nvvRVlZGX71q1/hxz/+MW6//XZUVlZGecWfaCSJahKJi7GxMRw8eBB79+5Fd3c31q1bh/r6ei6032634/Of/zw2bNiA+++/P6RaTUKI9Hp91AkR6UFPZNc7STCwWCyoqqqa1Q2Hb1Yrj8fjYq9imRA5HA40NjaitLQ07NFt0cTQ0BAGBgawdOlSbvt5vtFksYp4JKlOpxN33XUXrr32Wnzzm98ERVEYHh7GO++8g7fffht6vR6f//zn8c1vfjPaSw2Kw4cPo7OzE1/60pdwzz33YGJiAqdOncLXv/51PProoxgaGsKdd96JoaEhXHHFFdi9e3e0l/xJR5KoJvHJgNlsxuHDh9HQ0ICOjg5cccUVOHbsGNavX48f//jHYX1uq9UKrVYLvV4PPp8PjUYTsV5uYg5L5B50lmVx9uxZMAwz75B736xWhmFioobSH3a7HY2NjViyZElCS4EGBwcxNDSEurq6SVNxp9PJZR6TaLKsrCykpqbGnSEwHkmqy+XCvffeizVr1uD73/9+wPd8YmKCS2aIVbzyyis4deoUFAoFDAYDfve736Gnpwfbtm3jclcB4N///jfXrMUwTFwaZxMESaKaxCcP3d3d2LBhA4qKijA4OIirrroKmzdvxtq1a8OuW7TZbNDpdNDpdCFrXAoGnU6HCxcuoLa2NqanhAsByQ8Vi8Uhaw7zjVRyOp1cpNJs43rCAVJYsHTpUqSnp0dlDZHAwMAAtFotamtrp9UG0jTNudMnJibmlCAQbRCSqlarJ9V6xjLcbje+9KUvobq6Go888kjc3RgAk/WmBw8exBtvvIHh4WG89tpryM7OxsWLF3HHHXegtrYWv/71r7l/lySpUUeSqCbxyUJHRwe2bduG5557Dp/5zGfgcDjw3nvvoaGhAR9//DHWrl2L+vp6XHnllWHXlgaa4mk0mpBEKQ0MDGBoaAi1tbUxoZENB2iaRktLC9LS0sKWH+rfXOYb1xOpizXJ9a2qqoJCoYjIc0YDfX19MBgMAfXF08E/QSCWkzjikaTSNI0HHngAJSUlePzxx+OSpPqSzb1792LLli04evQo/t//+3+4/PLLsXnzZuTl5aG3txe//vWv8eSTT0Z5xUn4IElUk/jk4MMPP8R///d/47XXXkNVVdWU37tcLhw5cgQNDQ34z3/+g8suuwz19fW4+uqrw64tdTqd3KTV7XbPW4vHsix6enowNjaG6urqmLtQhwokmkmj0UTsgu+f1RqJKR7RF1dXV3O5vokIYoKrra1d0HtJkjhIyoNUKuVkHNG+YWMYBk1NTcjKyoobksowDB588EFkZWVhx44dcTlZ9CWpe/bswU9/+lNs2LABTzzxBD744APs27cPZWVl2Lx5M4qLiwP+uySiiiRRTWJ6nD17Frfddhv3/93d3Xj88ccxOjqK3bt3IysrCwDws5/9LKbr6BiGwT333IMnnnhiVvmhbrcb//73v7Fnzx7885//RG1tLerr63HttdeGfRvdvyaUkNaZtp5ZlkVnZyfcbjeWLVuWsCdZp9OJpqYmFBQURC1mK1AOKCmBCNXNwdjYGM6cOYOamhrIZLKQPGYs4uLFixgdHQ1LjS+pCiX68IVWhc4XhKRmZmbGTX4xwzD47ne/C6lUimeffTbuzydf/OIX4XK5kJ2dje7ubmRlZWHnzp04evQodu/ejfr6+pA3ayUREiSJahKzB03TyMvLw7Fjx/DKK69ALpfje9/7XrSXFXbQNI2jR49i7969+Mc//oGlS5eivr4e1113XdjNNmTrWavVwmazcTWh/gYShmHQ1tYGiUQSMq1mLMJut6OpqQmLFi3ibpKiDZIDSqZ4KSkpC85qNZlM6OzsRG1tbcK2agGYNP0PNxGy2+1cykMkEwTilaQ+/PDDoGkav/rVr+KSpJ47dw5ZWVlIS0vD8PAw7r77bvztb38D4BnAPPHEE8jIyMDPf/5zdHV1zduImUTYEZaDEr8p2klMi3/84x8oLS1FUVFRtJcSUfD5fFx55ZW48sorwTAMTpw4gYaGBjz11FMoLS3Fpk2bsGHDhrDoBwUCAbKzs5Gdnc0ZSHp7e2E2m5GRkQGNRgO5XM7VaCbysSGGovLyciiVymgvhwNFUUhPT0d6evqkrNaLFy/OK5rMYDDg/PnzWL58eUSSIaKF7u5umM3miJBUAJBIJCgsLERhYSGXINDV1QW73R70BnChYBgGzc3NcUdSt2/fDpvNht/97ndxSVIvXryIP/3pT/jhD38Im80GqVSKc+fO4a9//SvWr1+P8vJyVFdX469//Ssee+wx/OhHPwJFUWBZNklWPyFITlQTFPfddx9WrFiBr3/969i+fTt+//vfIzU1FZdddhmeeeaZmCIPkQCZlDQ0NOAvf/kL8vLysGnTJtxwww1hd2YzDAOj0Yjh4WHodDqkp6ejpKQESqUyIU+0xFAUb1mwJLx+tlvPpC40kTvtSeatzWZDRUVF1IkQTdMwGo3Q6XRcgkBWVhaUSuWC1kZIakZGBgoLC0O44vCBZVk88cQT6O/vxyuvvBLXGneXy4V//vOfaGtrw4MPPog9e/bg1VdfxTe+8Q2sX78ejz32GBwOB4aGhvDUU08lXHlGAiG59Z/E7OB0OpGbm4u2tjZoNBpotVpkZmaCoij8+Mc/xtDQEF5++eVoLzNqYFkWbW1taGhowKFDh5CRkYH6+nrceOONYWuC8t0G5/F40Gq1GBsbQ1paGjQazYIvtLGCsbExtLe3o6amJqZyTecK361nkvKgVqs5/SkJuU/kpAaWZXH+/Hk4HA5UVFTE3E0V0R7r9XqMjIzMO0EgXknqz3/+c3R2duLVV1+Ny4phfwPUvn378Oc//xnr1q3Dpz/9aTQ1NeHb3/421q5di9HRUbz77rvYtGkTHn/8cVx++eVRXHkS0yBJVJOYHfbv348XXniB0/j4oqenBzfeeCNaW1ujsLLYAzE1NTQ04ODBg0hJScGmTZtw0003Qa1Wh+TiTCaMy5YtmzS9ZVmWM/mQC61GowmpySeSMBqN6OrqSjitpn9Wq1gshsPhwIoVKxKapHZ1dXFmv1gjqf7wTxCQSCTcRHy6YxSvJHXnzp04deoUXn/99bj/DB45cgR5eXnIysrC+fPn8ctf/hJXXXUV7rrrLoyMjMBsNqOwsBA/+tGP0NfXhz//+c/RXnISwZEkqknMDrfffjvWr1+Pe++9F4Bn+pOTkwMA+OUvf4ljx47hjTfeiOYSYxJkm3Pv3r3Yv38/hEIhbrrpJmzevBk5OTnzuliPjo7izJkzM0YW+Zt85HI5Z/KJB9L6SdgGB4ALFy5Aq9VCKpVOa5iLZ5CbN4ZhsHTp0rh8Xf4yjkCVuwzDoKWlBenp6XGjF2dZFr/5zW/wr3/9C3v27InL71pnZyecTieqqqrw7LPP4sCBA/jsZz+Lw4cP4//+7//wr3/9C3/605+wbNky3H///cjKysI777yDf/zjH3juueeivfwkpkeSqCYxM6xWKwoKCtDd3Y20tDQAwF133YXGxkZQFIXi4mK8+OKLHHFNIjBYlkV/fz/27t2Lt956C263GzfddBPq6+tRUFAwq4s3MdrMtW2KZVlMTExAp9PBYDBAKpVy06FY3OIbHBzE4OBgQm+DAx6SOj4+zhmKAukl46VxKRhIxS1FUViyZElcklR/+JZ1kASBzMxMdHd3xx1Jfemll/Duu+/irbfeijvzHjEv/uAHP0BFRQU+85nP4Jvf/Cb+9re/4dvf/jb0ej03QDly5AgOHDiAn/3sZ5BIJLBarQkd+5ZASBLVJJKIBliWxfDwMPbt24d9+/bBYrHghhtuwObNm1FaWhrwYn7mzBmYzWbU1tYuaOrBsiwsFgu0Wi0MBgNEIhE0Gk1MhKIDl8Lf59pQFE8gWk273R7UUBQsq1WlUsUNaWVZFmfOnIFAIMDixYsTgqT6w+VyQafT4fz58wCAnJycuJmI/+///i/eeust7N+/f17SGrvdjquuugoOhwNutxu33HILHnvsMZhMJtx2223o6elBcXEx3nzzTc5su2PHDrz00kvg8/l4/vnnsX79egDAyZMncc8998Bms2Hjxo3YuXPnrN+/hoYG/OhHP8LDDz8Ml8sFo9GIf/3rXzhw4AB4PB4aGhqwdetW0DQNgUAwqU41iZhHkqgmkUQsQKfT4e2338bevXthMpmwceNGbN68GeXl5aAoCo8//jhOnTqFvXv3hvwE67ulKRAIoFaroVarI74FSGQSFosFVVVVcUPG5gqyDU7T9Ky1moGyWjUaDVQqVUxOxAHPmtvb2yESiRI625dhGLS2tiI1NRUFBQWTJuLp6elQq9UxaWz84x//iNdffx0HDx6c92SR3PTK5XK4XC5ceeWV2LlzJ/bt24eMjAz88Ic/xJNPPomRkRE89dRTaG9vx7Zt23D8+HEMDg5i3bp16OzsBJ/Px6pVq7Bz506sWbMGGzduxIMPPogNGzYEfe6Ojg4cOXIEX/3qVwEAzz33HHbv3o3e3l6UlJSgubkZAPDCCy/g4MGD2LNnT0K3uyUwkkQ1iSRiDSaTCfv378fevXsxMDCAjIwMAMCbb74ZdkORzWaDVquFXq8Hj8cLqMMLB8j2MMMwcWG0mS/IhJHP5897G9xfxjFbk08kQVIwpFIpFi1alLDH05ek+tZvkt+Njo5OMjYSiUC0p3l79uzByy+/jEOHDoWMvFmtVlx55ZX4zW9+g7vvvhtHjhxBTk4OhoaGcPXVV+Ps2bPYsWMHAODhhx8GAKxfvx7bt29HcXExrrnmGnR0dAAAXn/9dRw5cgQvvvjilOdhWRZutxv3338/3nrrLdx999149NFH4Xa78ec//xknT55Eb28vqqqqkJubi3feeQd/+tOfUFZWlsxJjU8kA/+TSCLWkJGRgXvvvRd33XUX7r33Xo6MXHvttbjuuutQX1+/4E70YJBKpSguLkZxcTEXp9Ta2gqWZblJa6jJMsMwaG9vh1gs5ibIiQjyOiUSSVB5x2xAURRSU1ORmpqKsrIybiJ++vRpLqtVrVZHTW9IWtJSUlKwaNGiqKwhEiAkVaFQTCGpAMDj8ZCRkYGMjAwuQUCv1+PChQvczUVmZmbEdy7279+P3bt3h4yk0jSNlStX4ty5c/ja176G1atXQ6vVcp6FnJwc6HQ6AMDAwADWrFnD/dv8/HwMDAxAKBQiPz9/ys8DgWVZCIVC7NixA3a7Hc3NzfjNb36DnJwcDA8Po6CgAN/73vfwt7/9DXK5nCOpye3+JHyRJKpJJLFA2Gw2bNu2DWvXrsVDDz0EiqIwMTGBw4cPY+fOnejo6MBnP/tZbN68GZdffnlYSKt/k49Op8OZM2fgdrtDVj9J0zRaWlqQlpaGkpKSEK089kDc4KmpqSF/nSkpKSgpKUFJSQlsNhv0ej1aWlrAsuyUrNZww5e8JfrxnMvrpCgKaWlpSEtLm3Rz0djYGDRBIBw4fPgwnn/+eRw6dIgzxi4UfD4fjY2NGB0dxZYtW6aNKQy020oaoQL93B9DQ0P461//iiuvvBJlZWV44IEH0NTUhMLCQrAsi0OHDuG9997D0NAQ/vd//5f7dwzDJElqEpOQJKpJJLEAjIyM4Oabb8Zdd92F++67j/u5QqHAbbfdhttuuw02mw1//etf8dJLL+HBBx/EVVddhc2bN2Pt2rVhOSGLRCLk5+cjPz8fLpcLer2ei4TJzMyERqNBSkrKnKaEbrcbTU1N0Gg0k6YpiQaaprmK23Dnakql0ik3Fx0dHXC5XJNuLsIxtY7HaKb5gEyMF0LGfW8uSIJAW1sbaJpGZmZmWI7T3//+dzz99NM4fPgwJycKJdLT03H11Vfj3XffhUaj4SIMh4aGuNan/Px89PX1cf+mv78fubm5yM/PR39//5Sf++P8+fP4z3/+gz/+8Y949NFHUVtbi/fffx9r1qzBmjVrUFFRgQcffBD//ve/0d/fz51XYk0fnET0kdSoJhER3HfffTh48CDUajV3Fz8ft2msYf/+/aAoCps2bZrV3zscDrz33nvYs2cPTpw4gbVr12LLli244oorwq5ZdLvdXEyPzWbjLrIKhWLai6zT6URTUxMKCgqQnZ0d1jVGE4SMZ2dnIy8vL2rrcLlcMBgM3HEKdVZrPIbczwcsy6K1tTVssoZAxykrKwtpaWkLOk7vv/8+/r//7//D4cOHQ1oVqtfrIRQKkZ6eDpvNhuuvvx4/+MEP8M9//hMqlYozU5lMJjz99NNoa2vDHXfcwZmprr32WnR1dYHP5+Pyyy/Hrl27sHr1amzcuBHf+MY3sHHjxinPOTExgddffx3bt2/Hk08+ie7ubvzrX//Cyy+/jKKiImi1WtA0jdzc3KQmNTGQNFMlEb/44IMPIJfLcffdd3NE9aGHHpqz2zSR4HK58P7776OhoQEffvghLr/8ctTX1+Mzn/lM2LVwNE1zF1mz2cyRIf+LrG/1a1ZWVljXFE24XC40NjbGHBkPltWqVCrndVEnE+PMzEwUFBSEYcWxgXCTVH/4H6f5Jgj861//wsMPP4xDhw6FPOu6ubkZX/jCF0DTNBiGwa233opHH30URqMRt956K3p7e1FYWIg9e/ZwU9wnnngCL7/8MgQCAZ577jnO2X/ixAkunmrDhg3YtWvXtJ/HDz74AK+99hry8/Px6quv4sorr8Qvf/lLbjCRJKkJgyRRTSK+4V/fWl5ePie36dq1a6O29nDD7XZzbTMffPAB6urqUF9fj89+9rNh18LRNA2TyQStVjuJDInFYrS0tKC8vJy7oCQinE4nGhsbUVxcHNIJVqhBslq1Wi3GxsaQlpYGtVqNjIyMWZEhmqbR1NQEtVqd0PIN3xSD0tLSiD+/f4LAbFvmjh49iu9+97s4ePBgQh6fgYEBtLW14amnnkJTUxNaWlqSxTOJh6TrP4nEwlzdpokMgUCAa665Btdccw1omsaHH36IvXv34rHHHkNFRQXq6+tx3XXXhcVoQwwiWVlZHBnq6+uDwWBAZmYmGIYBwzAJqR1zOBxobGxEaWkpMjMzo72cacHj8aBSqaBSqcCyLEeGurq6ZiRDNE2jsbEROTk5AfWEiYJok1Rg5gQBIg/wdfGfOHEC3/nOd3DgwIGEJKkAkJeXh7y8PFx//fVJkprEnJAkqknEHGbrKk1U8Pl8fPrTn8anP/1pMAyDjz/+GA0NDXjyySdRVlaGzZs3Y/369VAoFCF/bh6PB4FAAKvVitWrV3Mmn87OzrhsW5oONpsNTU1NcTkxpigKSqUSSqVyUlarb5wSyWp1u91obGxEXl5eQpODWCCp/giWIPD5z38eRqMR//Vf/4Xly5fjJz/5Cd56662ENrYB4G54q6uro72UJOIISaKaRNQwV7fpJxE8Hg+rV6/G6tWruS2zPXv24LnnnkN+fj42bdqEjRs3Ij09PSTPZzQa0dXVhbq6Oi6DlUyGxsbGoNVqce7cOcjlcq5tKR61w1arFc3NzVi2bFnIon+iBf+sVrPZDL1ej9OnT4PH48HhcKCwsDDhSSrJvY3lPFiSILB//35cuHABu3fvxre//W1kZmbi9ddfR319PSorKxP2xjwRbnCTiDySGtUkIgZ/jer3v//9ObtNk/CAmEUaGhpw+PBhqFQq1NfX44YbboBKpZrXY+p0OvT09KCurm5aMxfZziQVoVKpFBqNBpmZmTFbEeoLs9mMlpYWVFVVhWUqHStwuVw4efIk5HI57HZ7WIsgoglCUsVi8YLKGSKNM2fO4N5778Ubb7yB3NxcHDp0CG+99RbOnz/PlYWsWbMmSe6SiCckzVRJxC+2bduGI0eOwGAwQKPR4LHHHkN9ff2c3aZJTAWpNG1oaMDBgwehUCiwadMm3HTTTcjKyprVhXtwcBCDg4Oora2dU0wWy7Iwm81cRahYLI65ilBfjI+Po62tDdXV1QndJe5yuXD69OlJBjGHw8HFk7ndbi6eLJ7fh3glqZ2dnbj77rvx2muvoaamZtLvbDYb3nvvPbz99tv4xS9+EXeylCQ+0UgS1SSSSGJ6sCyL7u5uNDQ0YP/+/RCLxbjpppuwefNmZGdnB7yQNzc3g6Zp1NTULHhqTTR4er0eAoGAm+BFunoyEEZHR9HR0YGampqItT9FAyTFoKSkJGikmH8G6GwzdWMJLMvizJkzEAqFKCsri5t1X7hwAdu2bcPvf/97rFixItrLSSKJUCJJVJNIIonZg2VZ9Pb2Yt++fXjrrbfAMAxuuukm1NfXIz8/HyzL4qGHHoJer8crr7wS8i1Gq9XKkVYej8dNWsMdtxUIJpMJnZ2dqKuri8rzRwpOpxOnT5+eU4qBf6ZuRkYG1Go10tPTY5b8xStJ7e3txW233Ybdu3dj1apV0V5OEkmEGkmimkQSScwPLMtiaGgI+/btw759+2C1WiGTySCTyfDHP/4x7Nv0drsdOp0OOp0u4lpJg8GA8+fPo66uDmKxOOzPFy2QqK2ysrJ565QZhoHJZIJOp5tXVmskEK8kdWBgAJ/73Ofwwgsv4Iorroj2cpJIIhxIEtUkkkhi4XC73bjzzjsxOjrKhZNv2LAB9fX1WLJkSdgv/A6HgyOtNE0jKysLGo0mLNvxszWIxTvsdjsaGxuxZMmSkHXD+2a1mkwmKBQKLp4sWsZGlmXR0dEBPp+PxYsXxw1JHR4exi233IJnn30WV199dbSXk0QS4UKSqCaRRBILg91uxx133IHVq1fjBz/4AQBPJNX+/fuxb98+DA0NYf369diyZQuWLVsW9ima0+nkDD5OpxNZWVkhM/gMDQ1hYGBgzgaxeAMhqeHMgw2U9EAKBiL13sYrSdXpdNi6dSueeuoprFu3LtrLSSKJcCJJVJNIIon5w2w2Y+vWrbj55pvxla98JeDfjI6O4p133sG+ffvQ09ODdevWYcuWLaipqQk7aQ1k8NFoNJDL5XMmJf39/dDpdKitrU3oWDNSWrB06dKQZenOBJZlOdOcwWCIiGmOkFQejxeRqX+oYDAYsHXrVjz++OPJ5JIkPglIEtUkkogE7rvvPhw8eBBqtXpS5us777wDkUiE0tJSvPLKK0hPT0dPTw+WLVuG8vJyAMCaNWvw29/+NprLD4o33ngDAHD77bfP6u8nJiZw6NAh7N27F2fPnsW1116LzZs347LLLgs7aXW73TAajdBqtbBYLFCpVNBoNEhNTZ2RpPT29sJoNIYkxSCWQUhqtEsLbDYbJ+WgKIozzYVKf0zi1yiKiiuSOjIygptvvhmPPPIINm3aFO3lJJFEJJAkqkkkEQl88MEHkMvluPvuuzmi+re//Q2f/exnIRAIuC3zp556akqJQaLCZrPh3XffRUNDA5qbm/GZz3wGmzdvxpo1a8JOBmmahtFohE6nw8TExLSu9AsXLmBiYgJVVVUxY/4JB0izVkVFBVJTU6O9HA6B9MdqtRopKSnzerx4JaljY2PYunUrvvvd72Lr1q3RXk4SSUQKSaKaRBKRwnQE9K233kJDQwP++Mc/fmKIqi8cDgf+/ve/Y8+ePTh58iQ+9alPYcuWLbjiiivC3kzl70pPT0/nSOuFCxdgt9tRUVGR0CTVYrGgubk55pu1XC4Xpz+22+1zzmplWRadnZ1gWRbl5eVxQ1InJiZwyy234Gtf+9qsdy+SSCJBkCSqSSQRKUxHQG+66SbcdtttuPPOO9HT04PKykosWbIEqamp+OlPf4pPf/rTUVhxdOB0OvH++++joaEBR48exapVq1BfX4+rrroq7C57klig1Wqh1WohFAqxZMkSqFSqhCWqpP413pq1iJTDN6tVo9EgLS0tIAGNV5JqsVhw66234t5778Xdd98d7eUkkUSkkSSqSSQRKQQjqk888QROnDiBffv2gaIoOBwOmM1mqFQqnDx5EvX19Whra4up7dhIwe1244MPPkBDQwM++OADLF++HPX19bjmmmvCFrJPMjX5fD7UanVMRSmFGvFKUv3BMAxHWsfHx7mpuFKpBI/Hi1uSarPZcNttt2Hbtm24//77o72cJJKIBsLyZU3MsUMSSYQB//u//4uDBw/ij3/8I3fxFIvFXLj6ypUrUVpais7OzmguM2oQCAT47Gc/i1//+tdoamrCl770JXzwwQf4zGc+g/vuuw8HDhyA1WoN2fMxDIPW1laIxWIsWbIESqUS5eXlWLNmDQoKCjA2Nobjx4+jubkZw8PDcLvdIXvuSGNiYgItLS2oqamJa5IKADweD1lZWaisrMTq1auh0Wig1+tx7NgxtLa2orGxETRNxxVJtdvt+PznP4+tW7fivvvum/O/7+vrwzXXXINly5ahsrISO3fuBABs374deXl5qKurQ11dHQ4fPsz9mx07dqCsrAzl5eX461//yv385MmTqK6uRllZGR588EHMMIxKIomYR3KimkQSAeA/UX333Xfxne98B//85z8n9afr9XpkZGSAz+eju7sbn/70p9HS0hKy0PVEAMMw+Pjjj7Fnzx78/e9/R1lZGerr67F+/fp5ky6GYdDS0oK0tDQUFxcH/TuWZWE2m6HVamEwGCCRSDhXerxkq46Pj6O9vR01NTVhKUWIFTAMg7a2NlgsFrAsC5lMFvGs1vnA6XTirrvuwrp16/Dggw/Oi1wPDQ1haGgIK1aswMTEBFauXIm3334bb775JuRyOb73ve9N+vv29nZs27YNx48fx+DgINatW4fOzk7w+XysWrUKO3fuxJo1a7Bx40Y8+OCDyWisJCKFsNxZhtf5kEQScYht27bhyJEjMBgMyM/Px2OPPYYdO3bA4XDguuuuA3AphuqDDz7Ao48+CoFAAD6fj9/+9rdJkuoHHo+H1atXY/Xq1WAYBo2NjdizZw+effZZFBYWYtOmTdi4ceOsI5ZomkZzczMyMzNRUFAw7d9SFAWFQgGFQoGysjKYzWbodDqcPn0aAoEAGo0GWVlZMdtaNTY2hjNnzqC2tjYidbPRAsuyOHfuHAQCAVavXg3Ao/fUarU4deoUhEJh2LNa5wOXy4X77rsPV1111bxJKgDk5OQgJycHAKBQKLBs2TIMDAwE/fv9+/fj9ttvh1gsRklJCcrKynD8+HEUFxdjfHwca9euBQDcfffdePvtt5NENYm4RnKimkQSSUQFLMuitbUVe/bsweHDh5GVlYXNmzfjxhtvDEr2nU4nWlpakJOTg9zc3AU9v9Vq5aKUiMZVrVZDLBYv6HFDhdHRUXR0dHxiSKrL5cKyZcsCkj1yrPR6PZfVqlarw6Z9ng3cbje++MUvoqamBo888kjIZAo9PT246qqr0NraimeffRa///3vkZqaissuuwzPPPMMlEolvv71r2PNmjW48847AQD3338/NmzYgOLiYvzwhz/Ee++9BwD417/+haeeegoHDx4MydqSSGIGJDWqSSSRROKAoihUV1fj8ccfx8cff4xnn30Wer0eW7duRX19/f/f3p3HVVmmfxz/HGBcQFBQzhmMFBMXXBB1VLIkzRUyzlEsRYscqUkbM8tsKmcml5K0DbNxshlRylITEC3XUnlp/VLcyF0QAYGAw5GjYLKe8/z+8MUzkbizHPB6/6X3WZ4bAflyP/d9XURFRZGfn6/uscvPz2fIkCHY29vfdUgFcHR0xMvLi/79+9O9e3cUReHYsWMcOHCA8+fPU1JSctfXuFNms5nTp0/j5+d3z4dU+N/nql+/fvTo0QONRsOJEydITEwkLS2NX3/9tU7nbbFYeOGFF+jatWuNhtTK7nGRkZG4uLgwbdo0UlNTSUpKwsPDg1mzZgFUu+9Uo9Fcd1yIhkxu/Qsh6p1Go8HHx4d//OMf/P3vfyc1NZXY2FhCQ0Np2rQpw4YN48svv2TmzJn4+fnV+PWbNWtGu3btaNeunVq0/sSJE1gsFnX1rq72hxYUFJCcnIyfn1+9rhjWtlsNqb/XrFkz7r//fu6//37KysowmUwkJydTWlp6V213b5XFYmHGjBncd999zJ07t8auU15eTkhICJMmTWLs2LEA6HQ69fHnnnuO0aNHA+Dp6UlmZqb6WFZWFm3btsXT05OsrKxrxoVoyOTWvxDCZimKwoEDBxg3bhzt27cHrtaxNRgM3HfffbW+WlRWVkZ+fj55eXmUl5ernZZq6+T9hQsXOHv2LH5+fjazBaE2KIpCamoqpaWldOvWrUY+jxUVFZhMJoxGo9p2V6vVXrdW652wWq288sorODk58cEHH9RYvV5FUXjmmWdwc3MjMjJSHc/JyVH3rn700Ufs37+ftWvXcuLECSZOnKgepho6dCgpKSnY29vTr18/li5dyoABAwgKCuLFF18kKCioRuYpxE1IHVUhasPp06fx9PTEyclJbpPZmIyMDMaMGcOSJUt4+OGHycnJITY2lri4OEpKShg9ejR6vZ4OHTrU+ueuuk5LNbl6ZzKZSE1NpXfv3jZ1YKim1UZI/T2LxaJ2MKuuVuudsFqtvP766yiKwtKlS2u0qcQPP/zAoEGD6Nmzp/q+CxcuZM2aNSQlJaHRaPDy8mL58uVqcH3nnXeIiorCwcGByMhI9cDUwYMHmTx5MsXFxQQGBrJ06VL5f03UFQmqQtQGT09PduzYQbdu3YCrgcSWy+HcK1JSUnjyySdZvnw5/fv3r/KYoigYjUY2bNhAXFwcFy9eJCgoCL1eXyc94X+7enflyhV19c7FxeWOrp2fn09aWhp+fn6NOqQCpKamqq1u6yJAVXYwMxqNmM3mO2oGYbVaeeuttygsLGT58uWNtvOZEHdJgqoQNa2wsJD+/ftz+vRptSB8dHQ0ubm5/O1vf6v13vV3a8qUKXz77bdotVq15uvcuXP5z3/+o9Z7XbhwoXrrLyIighUrVmBvb8/HH3/MyJEj623uN2KxWHj00UdZunQpvr6+N33+hQsXiI+PJy4ujry8PEaOHMmYMWNua+/j3cy1stNSUVHRTduD/p7RaCQjIwM/P79G/wtSamoqxcXFdO/evV5W+RRF4dKlSxiNRi5cuICTk5Naq/V63+uKovD222/zyy+/EBUV1Wg6nQlRCySoClHT4uLiWLlyJd988w1wdU9iREQEDg4OzJkzB7i6mqIoik3+gNqzZw8tWrQgLCysSlC93SLhtqiiouKOflG4ePEimzZtIi4ujoyMDIYPH86YMWOq3FatLdW1B9XpdLRq1araa+fl5XH+/HkJqfWgshmE0WjEZDLRpEkT3N3dcXBw4I9//KP6nMWLF5OSksLnn39u87+4ClHPpOC/EDXt3XffRVEUHnzwQXr37k2nTp3Izc3liSeeAGx/G0BAQADp6em39NzrFQmvLA5ua+40FLRq1YqwsDDCwsIoKipi8+bNfPjhhyQnJzN06FD0ej19+/atldBa2R7U3d0dq9WK2WwmLy+PM2fO0LJlS7RaLW5ubtjZ2ZGbm0tWVha9e/du9AHo3LlzNhVSoWoziI4dO3LlyhWSk5N5/vnnadKkCUFBQVgsFpKTk1mzZk2j/xwJYatko424Z12+fJn8/HwOHDhAfHw8PXr0IDo6mtLSUgICAkhKSuK5555jzJgxrFmzBqvVitVqVV+vKEqVv9uSTz75BF9fX6ZMmYLZbAYgOzu7SicnT0/PG3a/aQycnZ2ZMGEC69ev56effuKhhx5i+fLlDBw4kL/97W/83//9HxaLpVaubWdnR+vWrfHx8cHf3x8PDw8uXLjA/v37OXDgAGlpafTs2bPRB6Bz587x66+/2lRIrY6joyN+fn7s37+f6OhoUlNTiY6OJicnh48++oizZ8/W9xSFuCdJUBX3rO+++07du6nT6XjhhReYMGEC/fr1Izc3l8mTJxMYGEhYWBgrV67kzJkz2NnZsW/fPkpKStBoNFVW5SwWS7UFt+va7RYJv1c4OjoSEhLCV199RWJiIiNGjODzzz/nwQcf5OWXX2bPnj3qPuWaptFocHV1pUuXLrRr1w6r1YqbmxuHDx/m6NGj5OXl1Vpgrk+Vxfgri/Q3BIqisGvXLi5evMi5c+fYuHEj7u7uvPzyy/Tr14+5c+dy9OjR+p6mEPcM2aMq7lmdO3fmiy++UHuL79u3jxUrVjB79mzWrFlDeno6K1euBGDBggWUlpby2muvYTAY6NatGwUFBTz99NOMGjWqXn8Ip6enM3r0aHWP6vUei4iIAOCNN94AYOTIkcydO9dmb/3XlbKyMnbt2kVMTAz79u1jwIABGAwGAgICanzbR1ZWFkajkV69emFvb6/uk8zLy8NkMtG8eXP1cI8tbzm5FWlpaVy+fJnu3bs3qFPyq1atIj4+no0bN17TFaywsJCtW7dy4MAB3n///XqaoRA2S1qoClGTKotiVzp16hRWq5XOnTuze/dudZ8qwOHDh2nXrh1nzpzBYrHQuXNn5s2bxy+//EJ0dDQBAQF8+OGH5ObmVrmGoih1vlKWk5Oj/nnDhg306NEDgODgYNauXUtpaSlpaWmkpKRcU/bpXtSkSRNGjRrFf//7X5KSkpg4cSJbtmzhoYceYurUqWzbto3S0tK7vk5mZib5+flqSIX/7ZP09vbG39+fjh07UlxczOHDhzly5AjZ2dmUlZXd9bXrWlpaGkVFRQ0upH755ZfExMQQHx9fbetaFxcXxo8fLyFViDokK6rinqYoChqNhvLycjZv3kxKSgqzZ89mwYIFaLVann/+edLS0hg0aBDHjh3jo48+olWrVkyePBk3NzcWLVrEr7/+ysiRI1mxYgXt27fnrbfeorS0lMuXL9O6devrXrMmhIaGkpCQgMlkQqfTMW/ePBISEm67SLi4lsVi4ccffyQmJobdu3fTo0cPDAYDw4YNqzbE3Mj58+cpKCjA19f3loPblStXyMvLIz8/H3t7e3Q6He7u7jbfsSo9PZ3CwkJ69OjRoELq+vXriYqKYvPmzbXWeUyIRk7KUwlRVxITE5k6dSrOzs60a9eOXr16MWPGDMLDw5k4cSKBgYEoisKOHTuYO3cuc+fOVWuSFhQUEBsby/bt2zl37hzTp0/n6aefvuZWrsViwc7OrsHs3buXWa1W9u/fT0xMDN9//z2dOnXCYDAwYsSIm4aa9PR0Ll26dFflsYqLizEajRiNRjQaDVqtFq1WS7Nmze7o/WpLQw2p8fHxLFu2jM2bN9OyZcv6no4QDZUEVSFqk9VqveaH6w8//ICTkxO9e/dm3bp1xMfH849//INu3bqpK6Pff/89sbGxjBw5kuDgYN59912+++474uLiAJg5cybz58+nffv2bNiwgT59+qh960XDY7VaOXLkCOvXr2f79u20b9+e4OBgAgMDrwk5ERER+Pv788gjj9RYcCspKVFbuVqtVtzd3dHpdLe9ylvTGmpIrSxftmXLFlxdXet7OkI0ZBJUhagr1YXWjIwMzp49S9++fWnVqhU7d+6kefPmDBw4kAULFvDzzz/z5ptv8sEHH1BQUIDJZMLLy4vjx4+zYsUK/vjHP+Lt7c348ePVWq1Tp0695joWi8Vmi/CLqqxWK8ePHycmJoYtW7ag1WrR6/WMHj2aiIgIUlJSWLduXa21RS0rK1NXWisqKnB3d0er1eLk5FQr17uejIwMLl68WCdNFWrSjh07WLhwIVu2bKFNmzb1PR0hGjop+C9EXan8Yfvb/aTt27evshJqNpv5+9//TrNmzXBxcWH48OFYrVbs7e2JiorCw8ODr7/+mt69e+Pq6squXbvo3Lkzn3/+OT/++COLFi3i6aefxtnZGbPZTGZmJr6+vlVCanWBWdgOOzs7fH198fX1Zd68eZw+fZr169czcOBAXF1dCQ8P59KlS2o725rWpEkTPD098fT0pLy8nPz8fFJSUigpKVFDa4sWLWp1e0lDDam7d+/m7bfflpAqhI2TFVUhbtH1DkH9/PPPpKamMnbsWCwWC0899RTjx4/HYDBUeZ5eryc4OJjw8HBycnJ44403eP755ykuLmbZsmWkp6fTtGlT5syZo9Z3/a07bSkq6o6iKMyZM4fc3Fxee+014uPj2bRpE82aNSM4OJjg4GB0Ol2t70uuqKjAZDKRl5dHcXExrVu3RqvV4uLiUqPXbqghde/evbz55pt8++236kFDIcRdk1v/QtiS692i37lzJ2+88QYWi4WAgABmz56NxWKhS5cunDx5Ei8vLzIyMnjttdeYMmUKq1evpm/fvsycOZOPP/6YzMxM3nvvPZYtW0b79u157LHHbvnaov4oisJrr71GUVERy5Ytq7Iqn5GRQWxsLPHx8Wg0Gh5//HEMBgNt27at9dBqsVi4cOECeXl5XL58GTc3N3Q6HS1btryra99JJQNb8NNPP/Hqq6/yzTff4OnpWd/TEaIxkTqqQtiSyqD4+1/2hg4dSmJiIl999RWPPvoobdu25ccff6RVq1ZkZGRw5coVPvvsM5ydndW2muHh4QD06dOHzMxMFEVh27ZtXLlyhZKSEkaMGKE2H6i8duV1f9/a1VZNmTIFrVar1nUFGD9+PH5+fvj5+eHl5YWfnx9w9WBO8+bN1cemTp1aT7O+NYqi8PLLL1NSUsK///3vKsGtskzYrFmz2LNnD2vWrKFp06b85S9/Yfjw4URGRpKWllZrXc3s7e3RarX07NmTAQMG4ObmRnZ2Nvv27eP06dMUFBTc9rUbakg9ePAgr7zyCvHx8RJShWgg5D6iEHfp96tSlaudXbp0oUuXLgB8++23hIaGsmbNGqZOncqoUaPUA1hGoxFnZ2cqKiq4cuUKZWVlaDQazGYzgwcP5r333uP06dO0atUKAIPBwEsvvcSQIUMAGkxQmDx5MtOnTycsLEwdW7dunfrnWbNmVTk137FjR5KSkupyindlxIgRBAYG3nCVUqPRcN999zFjxgxefPFFjEYjcXFxzJw5k8LCQoKCgtDr9XTq1KlWVlrt7Oxwd3fH3d0dq9WK2WwmNzeXM2fO0LJlS3Q6Ha6urjf8msrMzGyQITUpKYnp06cTHx8vVTeEaEAkqApRw3670qrRaMjJyWH37t2kpKTg6OhITk4OLi4uODk5UVRUhLe3Nz/99BMmk4l169YRHByM2Wxm4MCBfP/99+zevZu33nqL8vJyvvnmGywWC4MGDeLgwYN8/PHHKIpCSEgIBoOhyuErRVFQFMVmwkRAQADp6enVPqYoCl9//TW7du2q20nVEI1GU+2+4pu9RqfTMW3aNKZNm4bJZGLjxo28+eabGI1GAgMD0ev1+Pj41Fpobd26Na1bt0ZRFMxmM0ajkeTkZJydndHpdLi5uVXZYpKZmYnJZKJXr14283V1K44fP87UqVOJiYnhgQceqO/pCCFuQ8P5n0aIBqYyXHh4ePDdd9/h6OhIRUUFHh4eavmgzp0789hjjzFnzhyWLVvGhAkTeOKJJ7C3tyc/P5+VK1cyZcoU2rdvT1xcHIcOHWL69OmcOnWK8PBw3n//fZ566iliYmI4e/YsdnZ2JCUlYbVa0Wg0DSZM7N27F51OR6dOndSxtLQ0evfuzSOPPMLevXvrcXZ1o02bNoSHh7Nlyxa1qcCCBQsYNGgQ8+bN4+jRo7W2xUOj0eDm5kbXrl3x9/fH09MTs9lMYmIix44dIy8vj4yMjAYZUk+dOsWzzz7L2rVr6dy5822/PjMzkyFDhuDj40P37t1ZsmQJcLWxx/Dhw+nUqRPDhw/HbDarr4mIiMDb25suXbqwfft2dfzQoUP07NkTb29vZsyYUWvbPYRoTOQwlRB15GatU4uLi9Wi7YqiYG9vz4svvsiSJUuYOXMmX331FZGRkUycOJEXXniB1atXM3DgQEaNGkVycjLu7u789a9/Vfd9FhYWEh4ezsCBA+vqQ7yp9PR0Ro8ezfHjx6uMT5s2DW9vb2bNmgVQpQXtoUOHMBgMnDhxAhcXl/qYdr0qLCxk8+bNxMbGcvbsWYYOHYper6dPnz61HhgVRaGoqIizZ89y8eJF9SCWu7t7g6hAkZycTFhYGKtXr8bX1/eO3iMnJ4ecnBz69OlDUVERffv2JT4+nlWrVuHm5sbrr7/Ou+++i9lsZtGiRZw8eZLQ0FASExP55ZdfGDZsGMnJydjb29O/f3+WLFmCv78/QUFBzJgxQ9oYi8ZE6qgK0ZBdL6RWtlJt3ry5GmatViurV69m6NChlJSUcPjwYZydnXniiScA+O6770hKSsLOzo6oqCj279/P+++/z/HjxykvL6dbt2507NiRX3/9tS4/xDtSUVGhrhZXatq0qdrTvm/fvnTs2JHk5GT+9Kc/1dc0642LiwuhoaGEhoZy5coVtmzZwrJlyzh58iSDBw9Gr9fTv3//WqkCodFoKCwsRKPREBAQQElJCXl5eRw6dIgmTZqoofX37YFtQVpaGmFhYaxateqOQypcvSNSWcLK2dkZHx8fsrOz2bhxIwkJCQA888wzDB48mEWLFrFx40YmTJhA06ZN6dChA97e3iQmJuLl5UVhYSEPPvggAGFhYcTHx0tQFeImJKgKUc9+GzAqw6y9vT0TJ04Erq5qLViwAKPRyB/+8AcuX77MsGHDOHr0KAaDgfnz5zN//nwAXnrpJUJDQ5k0aRKOjo51/8Hcge+//56uXbtWOYWdn5+v7o88d+4cKSkpsrcQcHR0ZNy4cYwbN46SkhJ27NhBdHQ0M2fO5KGHHsJgMDBw4MAaW+3MysoiPz9fbUTRokULWrRoof4SZDQaOXLkCA4ODmi1WrRaba114bod58+fZ+LEiaxYsYI+ffrU2Pump6dz5MgRBgwYQF5enhpgPTw8MBqNAGRnZ+Pv76++xtPTk+zsbP7whz9U+RqvHBdC3JgEVSFsVOXqqkaj4ZFHHlHHW7RowRNPPMGrr75KVFQUQ4cOZfTo0Tg4OHDp0iV8fHxwdHS86VaDuhYaGkpCQgImkwlPT0/mzZtHeHg4a9euJTQ0tMpz9+zZwz//+U8cHBywt7fn008/xc3NrZ5mbpt+20SgrKyMnTt3sn79el599VX8/f0xGAwMGjTojlc7s7KyMBqN9OrVq9rVWicnJzp06ECHDh0oLi7GaDTy888/o9Fo1NDarFmzu/0wb1t2djYTJkxg2bJl9OvXr8be9/Lly4SEhBAZGXnDLSjVbafTaDTXHRdC3JgEVSFs1G9/iP2+leqjjz5KYmIi8fHxnDhxgpYtW7J161Y0Go1aesfWfgiuWbOm2vFVq1ZdMxYSEkJISEgtz6jxaNKkCYGBgQQGBlJeXs6ePXtYv349r7/+On379sVgMDB48GB1O8XNZGdn3zCk/l7z5s3VFsMlJSUYjUZOnDiB1WpVQ2vl/uvalJuby5NPPsmSJUt46KGHaux9y8vLCQkJYdKkSYwdOxYAnU5HTk4OHh4e5OTkoNVqgasrpZmZmeprs7KyaNu2LZ6enmRlZV0zLoS4MTlMJUQD9PvgCldPN58/f55BgwY1mNv+onZZLBZ++OEHYmJiSEhIoGfPnhgMBoYOHXrd4JiamsqlS5duOaTeSFlZGUajEaPRSEVFBe7u7mi1WrXqRU0yGo2MHTuWxYsXM2zYsBp7X0VReOaZZ3BzcyMyMlIdnz17Nq1bt1YPUxUUFLB48WJOnDjBxIkT1cNUQ4cOJSUlBXt7e/r168fSpUsZMGAAQUFBvPjii7dd1kwIGyYtVIUQVVUXWIWojtVqZd++fcTExLBz5046d+6MwWBgxIgRanBcunQpe/fuZc2aNTV+OKu8vJz8/Hzy8vIoKyujTZs26HQ6nJyc7nr132QyERISwvz582v8cNIPP/zAoEGD6Nmzp/q9tnDhQgYMGMCTTz7J+fPnadeuHevXr1e3p7zzzjtERUXh4OBAZGSkOqeDBw8yefJkiouLCQwMZOnSpTZ350OIuyBBVQhxfba2J1XYLqvVyuHDh1m/fj07duzAy8sLrVbLoUOH2Lx5M87OzrV6/YqKCvLz8zEajRQXF9OmTRu0Wi3Ozs63/TVsNpsZO3Ysc+bMITg4uJZmLIS4BRJUhRBC1Cyr1crChQtZuXIlrq6u6HQ69Ho9jz32GK6urrV+fYvFgslkwmg0qrVztVotLVu2vGlovXTpEiEhIcyaNUv2NAtR/ySoCiGEqFlffPEF0dHRbNq0iebNm3Pq1CliYmLYvHkzrVq1Qq/XM3r0aNq0aVPrc7FYLBQUFJCXl0dRURGurq5otVpcXV2vCa1FRUWMGzeOv/71r0yYMKHW5yaEuCkJqkIIIWrO6tWrWbVqFRs3brzmgJOiKJw9e5aYmBi++eYbmjVrhl6v5/HHH0en09X6NhOr1YrZbCYvLw+z2Ux0dDSBgYEEBQVRUVHBk08+yZ///GfCwsJqdR5CiFsmQVUIIepKZmYmYWFh5ObmYmdnx1/+8hdeeuklCgoKGD9+POnp6Xh5efH111+rt8gjIiJYsWIF9vb2fPzxx4wcObKeP4rrO3bsGDNnzmTTpk03PYWvKArp6enExsayceNG7OzsePzxx9Hr9bRt27bWQ6vFYmHbtm3ExsaSmJhI06ZNGTFiBIsXL77lkltCiFonQVUIIepKTfZ4t1VlZWW33UlKURSys7OJjY1lw4YNlJeXM3r0aPR6Pe3bt6/V0FpSUkJoaCi+vr5YLBZ27dpFjx49CAkJYdSoUXVSq1UIcV0SVIUQor7o9XqmT5/O9OnTSUhIUAu9Dx48mDNnzhAREQHAG2+8AcDIkSOZO3eu2tu9MVIUhby8POLi4oiLi6OoqIjHHnsMvV6Pt7d3jYbWsrIynnrqKYYPH86MGTPUbk+HDx8mJiaG7du34+3tzX//+98bdo4SQtQaCapCCFEf0tPTCQgI4Pjx47Rr146LFy+qj7m6umI2m5k+fTr+/v489dRTAISHhxMYGMi4cePqadZ1z2QyER8fT2xsLCaTicDAQPR6PV27dr2r0FpeXs7kyZMZOHAgr776arXvpSgKJ0+epFu3blKmTYj6USvfeFIpXAghbuBue7zfS9q0acOzzz7L1q1b2bFjBx07dmTevHkMGjSI+fPnc+zYMaxW6229Z0VFBc8++yx/+tOfrhtS4eq/dffu3e+5f3MhGjsJqkIIcR036vEO3FKP93uVq6srzzzzDJs2bSIhIQFfX18WL17Mww8/zD//+U8OHTp009BqsViYNm0aPj4+vPnmmxJChbgHya1/IYSoRk32eBf/c/nyZbZu3UpsbCwnT55kyJAh6PV6+vXrV+XfymKxMGPGDHQ6HQsXLpRWwULYPtmjKoQQdaUme7yL6pWUlLB9+3ZiYmJISkri4YcfxmAw4O/vz+zZs3FycuKDDz6QkCpEwyBBVQghRONUWlrKzp07iYmJYevWrTz88MOsW7dOQqoQDYcEVSGEEI3fpUuXaNasmRTzF6JhkaAqhBBCCCFskpSnEkIIIYQQ9w4JqkIIIYQQwiZJUBVCCCGEEDZJgqoQQjQCmZmZDBkyBB8fH7p3786SJUuAq3Vfu3btiq+vL2PGjFHbv6anp9O8eXP8/Pzw8/Nj6tSp9Th7IYSongRVIYRoBBwcHPjggw84deoU+/bt41//+hcnT55k+PDhHD9+nKNHj9K5c2ciIiLU13Ts2JGkpCSSkpL49NNP63H2d2bKlClotVp69Oihjs2dO5f77rtPDeBbtmxRH4uIiMDb25suXbqwfft2dfzQoUP07NkTb29vZsyYUW07XCFE/ZCgKoQQjYCHhwd9+vQBwNnZGR8fH7KzsxkxYgQODg4A+Pv7k5WVVZ/TrFGTJ09m27Zt14y//PLLagAPCgoC4OTJk6xdu5YTJ06wbds2XnjhBSwWCwDTpk3js88+IyUlhZSUlGrfUwhRPySoCiFEI5Oens6RI0cYMGBAlfGoqKgq3bLS0tLo3bs3jzzyCHv37q3rad61gIAAtSvYzWzcuJEJEybQtGlTOnTogLe3N4mJieTk5FBYWMiDDz6IRqMhLCyM+Pj42p24EOKWSVAVQohG5PLly4SEhBAZGYmLi4s6/s477+Dg4MCkSZOAqyuw58+f58iRI3z44YdMnDiRwsLC+pp2jfrkk0/w9fVlypQpmM1mALKzs7n//vvV53h6epKdnU12djaenp7XjAshbIMEVSGEaCTKy8sJCQlh0qRJjB07Vh2Pjo7m22+/5csvv0SjuVqTu2nTprRu3RqAvn370rFjR5KTk+tl3jVp2rRppKamkpSUhIeHB7NmzQKodt+pRqO57rgQwjZIUBVCiEZAURTCw8Px8fHhlVdeUce3bdvGokWL2LRpE46Ojup4fn6+ukfz3LlzpKSk8MADD9T5vGuaTqfD3t4eOzs7nnvuORITE4GrK6WZmZnq87Kysmjbti2enp5V9u1WjgshbIMEVSGEaAR+/PFHvvjiC3bt2lXlxPv06dMpKipi+PDhVcpQ7dmzB19fX3r16sW4ceP49NNPb3m/py3LyclR/7xhwwa1IkBwcDBr166ltLSUtLQ0UlJS6N+/Px4eHjg7O7Nv3z4UReHzzz9Hr9fX1/SFEL+juUkZDqnRIYQQwiaFhoaSkJCAyWRCp9Mxb948EhISSEpKQqPR4OXlxfLly/Hw8ACu7tONiorCwcGByMhI9WDZwYMHmTx5MsXFxQQGBrJ06VK5/S/E7auVbxoJqkIIIYQQ4m7VSlCVW/9CCCGEEMImSVAVQgghhBA2SYKqEEIIIYSwSRJUhRBCCCGETZKgKoQQQgghbJIEVSGEEEIIYZMkqAohhBBCCJskQVUIIYQQQtgkCapCCCGEEMImSVAVQgghhBA2SYKqEEIIIYSwSRJUhRBCCCGETZKgKoQQQgghbJIEVSGEEEIIYZMkqAohhBBCCJskQVUIIYQQQtgkCapCCCGEEMImSVAVQgghhBA2SYKqEEIIIYSwSRJUhRBCCCGETZKgKoQQQgghbJIEVSGEEEIIYZMkqAohhBBCCJskQVUIIYQQQtgkCapCCCGEEMImSVAVQgghhBA2yeEmj2vqZBZCCCGEEEL8jqyoCiGEEEIImyRBVQghhBBC2CQJqkIIIYQQwiZJUBVCCCGEEDZJgqoQQgghhLBJElSFEEIIIYRN+n+9ArHCXswSKAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from mpl_toolkits.mplot3d import Axes3D\n", "from sklearn.linear_model import LinearRegression\n", "from sklearn.preprocessing import StandardScaler\n", "\n", "# Load the Auto MPG dataset\n", "url = \"https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data\"\n", "column_names = [\"mpg\", \"cylinders\", \"displacement\", \"horsepower\", \"weight\", \"acceleration\", \"model_year\", \"origin\", \"car_name\"]\n", "auto_df = pd.read_csv(url, delim_whitespace=True, names=column_names)\n", "\n", "# Clean the dataset by removing missing values\n", "auto_df = auto_df[auto_df.horsepower != '?']\n", "auto_df['horsepower'] = auto_df['horsepower'].astype(float)\n", "\n", "# Select relevant columns for the analysis\n", "X = auto_df[[\"horsepower\", \"weight\"]].values\n", "y = auto_df[\"mpg\"].values\n", "\n", "# Standardize the features\n", "scaler = StandardScaler()\n", "#X_scaled = scaler.fit_transform(X)\n", "X_scaled = X\n", "\n", "# Fit a linear regression model\n", "reg = LinearRegression()\n", "reg.fit(X_scaled, y)\n", "\n", "# Create a grid for the plot\n", "x_min, x_max = X_scaled[:, 0].min() - 1, X_scaled[:, 0].max() + 1\n", "y_min, y_max = X_scaled[:, 1].min() - 1, X_scaled[:, 1].max() + 1\n", "xx, yy = np.meshgrid(np.linspace(x_min, x_max, 50), np.linspace(y_min, y_max, 50))\n", "\n", "# Predict the response variable (mpg)\n", "zz = reg.predict(np.c_[xx.ravel(), yy.ravel()])\n", "zz = zz.reshape(xx.shape)\n", "\n", "# Create a 3D scatter plot of data points\n", "fig = plt.figure(figsize=(12,12))\n", "ax = fig.add_subplot(111, projection='3d')\n", "ax.scatter(X_scaled[:, 0], X_scaled[:, 1], y, c='b', marker='o', label='Data Points')\n", "\n", "# Plot the regression plane\n", "ax.plot_surface(xx, yy, zz, color='r', alpha=0.5, label='Regression Plane')\n", "\n", "# Calculate and add residuals for every data point\n", "predicted_mpg = reg.predict(X_scaled)\n", "for i in range(len(X_scaled)):\n", " x = [X_scaled[i, 0], X_scaled[i, 0]]\n", " yy = [X_scaled[i, 1], X_scaled[i, 1]]\n", " z = [y[i], predicted_mpg[i]]\n", " ax.plot(x,yy,z, linestyle='--', color='g')\n", "\n", "ax.set_xlabel('Horsepower')\n", "ax.set_ylabel('Weight')\n", "ax.set_zlabel('MPG')\n", "ax.set_title('3D Plot of Multiple Linear Regression (Auto MPG)')\n", "#plt.legend()\n", "plt.show()\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dashed lines indicate the residuals. The best fit of the model minimizes again the sum of squared residuals. This model makes predictions selecting the $Z$ value which intersect the plane for given values of $X$ and $Y$.\n", "\n", "In general, when we consider $n$ variables, the linear regressor will be **a (n-1)-dimensional hyperplane in the n-dimensional space**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Statistical Interpretation\n", "The statistical interpretation of a multiple linear regression model is very similar to the interpretation of a simple linear regression model. Given the general model:\n", "\n", "$$y=\\beta_0 + \\beta_1 x_1 + \\ldots + \\beta_i x_i + \\ldots + \\beta_n x_n$$\n", "\n", "we can interpret the coefficients as follows:\n", "\n", "* The value of $\\beta_0$ indicates the value of $y$ when all independent variables are set to zero;\n", "* The value of $\\beta_i$ indicates the increment of $y$ that we expect to see when $x_i$ increments by one unit, **provided that all other values $x_j | j\\neq i$ are constant**.\n", "\n", "In the considered example:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight$$\n", "\n", "we obtain the following estimates for the coefficients:\n", "\n", "|$\\hat \\beta_0$|$\\hat \\beta_1$|$\\hat \\beta_2$|\n", "|-|-|-|\n", "|$45.64$|$-0.05$|$-0.01$|" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can interpret these estimates as follows:\n", "* Cars with zero `horsepower` and zero `weight` will have an `mpg` of $45.64$ ($\\approx 19.4 Km/l$).\n", "* An increment of one unit of `horsepower` is associated to a decrement of `mpg` of $-0.05$ units, provided that `weight` is constant. This makes sense: cars with more `horsepower` will probably consume more fuel.\n", "* An increment of one unit of `weight` is associated to a decrement of `mpg` of `-0.01` units, provided that `horsepower` is constant. This makes sense: heavier cars will consume more fuel.\n", "\n", "Let's compare the estimates above with the estimates of our previous model:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower$$\n", "\n", "In that case, we obtained:\n", "\n", "|$\\hat \\beta_0$|$\\hat \\beta_1$|\n", "|-|-|\n", "|$39.94$|$-0.16$|" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can note that the coefficients are different. This happens because, when we add more variables, **the model explains variance in a different way**. If we think more about it, this is coherent with the interpretation of the coefficients. Indeed:\n", "\n", "* $39.94$ is the expected value of `mpg` when `horsepower=0`, but all other variables have unknown values. $45.64$ is the expected value of `mpg` when `horsepower=0` and `weight=0`. This is different, as in the second case we are (virtually) looking at a subset of data for which both horsepower and weight are zero, while in the first case, we are only looking at data for which `horsepower=0`, but `weight` can be any value. In some sense, we can see $39.94$ as an average value for different values of `weight` (and all other unobserved variables).\n", "* $-0.16$ is the expected increment of `mpg` when we observe an increment of one unit of `horsepower` and we don't know anything about the values of the other variables. $-0.05$ is the expected increment of `mpg` when `horsepower` and `weight` are held constant, so, again, we are (virtually) looking at a different subset of the data in which the relationship between `mpg` and `horsepower` may be a bit different." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that, also in the case of multiple regression, we can estimate confidence intervals and perform statistical tests. In our example, we will get this table:\n", "\n", "||COEFFICIENT|STD ERROR|t|P>\\|t\\||CONFIDENCE INTERVAL|\n", "|-|-|-|-|-|-|\n", "|$\\beta_0$|$45.64$|$0.793$|$57.54$|$0$|$[44.08, 47.20]$|\n", "|$\\beta_1$|$-0.05$|$0.011$|$-4.26$|$0$|$[-0.07, -0.03]$|\n", "|$\\beta_2$|$-0.01$|$0.001$|$-11.53$|$0$|$[-0.007, -0.005]$|" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Estimating the Regression Coefficients\n", "Given the general model:\n", "\n", "$$y=\\beta_0 + \\beta_1 x_1 + \\ldots + \\beta_i x_i + \\ldots + \\beta_n x_n$$\n", "\n", "We can define our **cost function** again as the residual sum of squares:\n", "\n", "$$RSS(\\beta_0,\\ldots,\\beta_n) = \\sum_{i=1}^n (y_i - \\beta_0+\\beta_1x_i + \\ldots + \\beta_n x_n)^2$$\n", "\n", "The values $\\hat \\beta_0,\\ldots,\\hat \\beta_n$ values that minimize the loss function above are the **multiple least square coefficient estimates**.\n", "\n", "To find these optimal values, it is convenient to use matrix notation. Given $m$ observations, we will have $m$ equations:\n", "\n", "$$y^{(1)} = \\beta_0 + \\beta_1 x_1^{(1)} + \\ldots + \\beta_n x_n^{(1)} + e^{(1)}$$\n", "$$y^{(2)} = \\beta_0 + \\beta_1 x_1^{(2)} + \\ldots + \\beta_n x_n^{(2)} + e^{(2)}$$\n", "$$\\ldots$$\n", "$$y^{(m)} = \\beta_0 + \\beta_1 x_1^{(m)} + \\ldots + \\beta_n x_n^{(m)} + e^{(m)}$$\n", "\n", "We can write the $m$ equations in matrix form as follows:\n", "\n", "$$\\mathbf{y} = \\mathbf{X} \\mathbf{\\beta} + \\mathbf{e}$$\n", "\n", "where:\n", "\n", "$$\\mathbf{y} = \\begin{bmatrix}\n", "y^{(1)} \\\\\n", "y^{(2)} \\\\\n", "\\vdots \\\\\n", "y^{(m)}\n", "\\end{bmatrix},\n", "\\mathbf{X}=\n", "\\begin{bmatrix}\n", "1 & x_1^{(1)} & x_2^{(1)} & \\ldots & x_n^{(1)} \\\\\n", "1 & x_1^{(2)} & x_2^{(2)} & \\ldots & x_n^{(2)} \\\\\n", "\\vdots & \\vdots & \\vdots \\\\\n", "1 & x_1^{(m)} & x_2^{(m)} & \\ldots & x_n^{(m)} \\\\\n", "\\end{bmatrix},\n", "\\mathbf{\\beta} = \\begin{bmatrix}\n", "\\beta_{0} \\\\\n", "\\beta_{1} \\\\\n", "\\vdots \\\\\n", "\\beta_{n}\n", "\\end{bmatrix},\n", "\\mathbf{e} = \\begin{bmatrix}\n", "e^{(1)} \\\\\n", "e^{(2)} \\\\\n", "\\vdots \\\\\n", "e^{(m)}\n", "\\end{bmatrix}\n", "$$\n", "\n", "The matrix $\\mathbf{X}$ is called the **design matrix**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the notation above, we want to minimize:\n", "\n", "$$RSS(\\mathbf{\\beta}) = \\sum_{i=1}^m (e^{(i)})^2 = \\mathbf{e}^T \\mathbf{e}$$\n", "\n", "It can be shown that, by the **least squares method**, the RSS is minimized by the estimate:\n", "\n", "$$\\mathbf{\\hat \\beta} = (\\mathbf{X}^T\\mathbf{X})^{-1}\\mathbf{X}^T\\mathbf{y}$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### The F-Test\n", "When fitting a multiple linear regressor, it is common to perform a statistical test to check whether at least one of the regression coefficients is significantly different from zero (in the population). This test is called an $F-test$. We define the **null and alternative hypotheses** as follows:\n", "\n", "$$H_0: \\beta_1=\\beta_2=\\ldots=\\beta_n=0$$\n", "\n", "$$H_a: \\exists j\\ s.t.\\ \\beta_j \\neq 0$$\n", "\n", "The null hypothesis (the one we want to reject with this test) is that all coefficients are zero in the population. If this is true, than the multiple regressor is not reliable and we should discard it. The alternative hypothesis is that at least one of the coefficients is different from zero.\n", "\n", "The test is performed by computing the following F-statistic:\n", "\n", "$$F=\\frac{(TSS-RSS)/n}{RSS(m-n-1)}$$\n", "\n", "Where recall that $n$ is the number of variables and $m$ is the number of observations.\n", "\n", "In practice, the F-statistic will be:\n", "\n", "* Close to $1$ if there is no relationship between the response and the predictors ($H_0$ is true);\n", "* Greater than $1$ if $H_a$ is true.\n", "\n", "The test is carried out as usual, finding a p-value which indicates the probability to observe a statistic larger than the observed one if all regression coefficients are zero in the population.\n", "\n", "In our example of regressing `mpg` from `horsepower` and `weight`, we will find:\n", "\n", "|$R^2$|F-statistic|Prob(F-statistic)|\n", "|-|-|-|\n", "|0.706|467.9|3.06e-104|" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This indicates that the regressor is statistically relevant. The $F-statistic$ is much larger than $1$ and the p-value (Prob(F-statistic)) is very small (under the significance level $\\alpha = 0.05$)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Variable Selection\n", "Let's now try to fit a multiple linear regressor on our dataset by including all variables. Our dependent variable will be `mpg`, while the set of dependent variables will be:" ] }, { "cell_type": "code", "execution_count": 226, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['displacement' 'cylinders' 'horsepower' 'weight' 'acceleration'\n", " 'model_year' 'origin']\n" ] } ], "source": [ "print(data.columns[:-1].values)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We obtain the following measures of fit:\n", "\n", "|$R^2$|F-statistic|Prob(F-statistic)|\n", "|-|-|-|\n", "|0.821|252.4|2.04e-139|\n", "\n", "The regressor has a good $R^2$ and the p-value of the F-test is very small. We can conclude that there is some relationship between the independent variables and the dependent one.\n", "\n", "The estimates of the regression coefficients will be:" ] }, { "cell_type": "code", "execution_count": 229, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept -17.2184 4.644 -3.707 0.000 -26.350 -8.087
horsepower -0.0170 0.014 -1.230 0.220 -0.044 0.010
weight -0.0065 0.001 -9.929 0.000 -0.008 -0.005
displacement 0.0199 0.008 2.647 0.008 0.005 0.035
cylinders -0.4934 0.323 -1.526 0.128 -1.129 0.142
acceleration 0.0806 0.099 0.815 0.415 -0.114 0.275
model_year 0.7508 0.051 14.729 0.000 0.651 0.851
origin 1.4261 0.278 5.127 0.000 0.879 1.973
" ], "text/plain": [ "" ] }, "execution_count": 229, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + weight + displacement + cylinders + acceleration + model_year + origin\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the table, we can see that not all predictors have a p-value below the significance level $\\alpha=0.05$. In particular:\n", "\n", "* `horsepower` has a large p-value of $0.22$;\n", "* `cylinders` has a large p-value of $0.128$;\n", "* `acceleration` has a large p-value of $0.415$.\n", "\n", "This means that, within the current regressor, there is no meaningful relationship between these variables and `mpg`. A legitimate question is\n", "\n", "> How is it possible that `horsepower` is not associated to `mpg` in this regressor if it was associated to it before?!\n", "\n", "However, we should recall that, when we consider a different set of variables, the interpretation of the coefficients changes. So, even if in the previous models, `horsepower` was correlated to `mpg`, now it is not correlated anymore. We can imagine that the relationship between these variables is now explained by the other variables which we have introduced.\n", "\n", "Even if the model is statistically significant, it does make sense to get rid of the variables with poor relationships with `mpg`. After all, if we remove a variable, the estimates of the other coefficients may change. \n", "\n", "A common way to remove these variables is by **backward selection** or **backward elimination**. This consists in iteratively removing the variable with the largest p-value. We remove one variable at a time and re-compute the results, iterating until all variables have a small p-value.\n", "\n", "let's start by removing `acceleration`. This is the result:" ] }, { "cell_type": "code", "execution_count": 231, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept -15.5635 4.175 -3.728 0.000 -23.773 -7.354
horsepower -0.0239 0.011 -2.205 0.028 -0.045 -0.003
weight -0.0062 0.001 -10.883 0.000 -0.007 -0.005
displacement 0.0193 0.007 2.579 0.010 0.005 0.034
cylinders -0.5067 0.323 -1.570 0.117 -1.141 0.128
model_year 0.7475 0.051 14.717 0.000 0.648 0.847
origin 1.4282 0.278 5.138 0.000 0.882 1.975
" ], "text/plain": [ "" ] }, "execution_count": 231, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + weight + displacement + cylinders + model_year + origin\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the coefficients have changed. We now remove `cylinders`, which has the largest p-value of $0.117$:" ] }, { "cell_type": "code", "execution_count": 233, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept -16.6939 4.120 -4.051 0.000 -24.795 -8.592
horsepower -0.0219 0.011 -2.033 0.043 -0.043 -0.001
weight -0.0063 0.001 -11.124 0.000 -0.007 -0.005
displacement 0.0114 0.006 2.054 0.041 0.000 0.022
model_year 0.7484 0.051 14.707 0.000 0.648 0.848
origin 1.3853 0.277 4.998 0.000 0.840 1.930
" ], "text/plain": [ "" ] }, "execution_count": 233, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + weight + displacement + model_year + origin\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "All variables now have an acceptable p-value ($\\alpha=0.05$). We are done. Note that, by removing the two variables, `horsepower` now has an acceptable p-value. This indicates that one of the removed variables was redundant with respect to `horsepower`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Adjusted $R^2$\n", "\n", "While in the case of simple regression we saw that $R^2=\\rho$ (where $\\rho$ is the correlation coefficient), in the case of multiple regression, it turns out that:\n", "\n", "$$R^2 = Cov(Y, \\hat Y)^2$$\n", "\n", "In general, having more variables in the linear regressor will reduce the error term and improve the covariance between $Y$ and $\\hat Y$, hence increasing the $R^2$. However, in general having a small increase in $R^2$ when we add a new variable may not be good. Indeed, we could prefer a simpler model with a slightly smaller $R^2$ value.\n", "\n", "To express this, we can compute the adjusted $R^2$ as follows:\n", "\n", "$$\\overline R^2 = 1- \\frac{m-1}{m-n-1} R^2$$\n", "\n", "Where $m$ is the number of data points and $n$ is the number of independent variables. The $\\overline R^2$ re-balances the $R^2$ accounting for the introduction of additional variables.\n", "\n", "For instance the last model we fit has an $R^2=0.820$ and $\\overline R^2=0.818$. We will see more in details how to use the $\\overline R^2$ in the laboratory." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Qualitative Predictors\n", "So far, we have studied relationships between continuous variables. In practice, linear regression allows to also study relationship between **continuous dependent variables** and **qualitative independent variables**. We will consider another dataset similar to the **Auto MPG** dataset:\n" ] }, { "cell_type": "code", "execution_count": 355, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
mpghorsepowerfuelsystemfueltypelengthcylinders
021111.0mpfigas168.84
121111.0mpfigas168.84
219154.0mpfigas171.26
324102.0mpfigas176.64
418115.0mpfigas176.65
.....................
20023114.0mpfigas188.84
20119160.0mpfigas188.84
20218134.0mpfigas188.86
20326106.0ididiesel188.86
20419114.0mpfigas188.84
\n", "

205 rows × 6 columns

\n", "
" ], "text/plain": [ " mpg horsepower fuelsystem fueltype length cylinders\n", "0 21 111.0 mpfi gas 168.8 4\n", "1 21 111.0 mpfi gas 168.8 4\n", "2 19 154.0 mpfi gas 171.2 6\n", "3 24 102.0 mpfi gas 176.6 4\n", "4 18 115.0 mpfi gas 176.6 5\n", ".. ... ... ... ... ... ...\n", "200 23 114.0 mpfi gas 188.8 4\n", "201 19 160.0 mpfi gas 188.8 4\n", "202 18 134.0 mpfi gas 188.8 6\n", "203 26 106.0 idi diesel 188.8 6\n", "204 19 114.0 mpfi gas 188.8 4\n", "\n", "[205 rows x 6 columns]" ] }, "execution_count": 355, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from ucimlrepo import fetch_ucirepo \n", " \n", "# fetch dataset \n", "automobile = fetch_ucirepo(id=10) \n", " \n", "# data (as pandas dataframes) \n", "X = automobile.data.features \n", "y = automobile.data.targets \n", "\n", "auto = X.join(y)[['city-mpg','horsepower','fuel-system','fuel-type','length','num-of-cylinders']].rename(\n", " columns={'city-mpg':'mpg',\n", " 'fuel-system':'fuelsystem',\n", " 'fuel-type':'fueltype',\n", " 'num-of-cylinders':'cylinders'}\n", ")\n", "auto" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this case, besides having numerical variables, we also have qualitative ones such as `fuelsystem` and `fueltype`. Let's see what are their unique values:" ] }, { "cell_type": "code", "execution_count": 358, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Fuel System: ['mpfi' '2bbl' 'mfi' '1bbl' 'spfi' '4bbl' 'idi' 'spdi']\n", "Fuel Type: ['gas' 'diesel']\n" ] } ], "source": [ "print(\"fuelsystem:\", auto['fuelsystem'].unique())\n", "print(\"fueltype:\", auto['fueltype'].unique())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will not see the meaning of all the values of `fuelsystem`, while the values of `fueltype` are self-explanatory." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Predictors with Only Two Levels\n", "\n", "We will first see the case in which qualitative predictors only have two levels. To handle these as independent variables, we can define a new **dummy variable** which will encode $1$ as one of the two levels and $0$ as the other one. For instance, we can introduce a `fueltype[T.gas]` variable defined as follows:\n", "\n", "$$fueltype[T.gas] = \\begin{cases} 1 & \\text{if } fueltype=gas \\\\ 0 & \\text{otherwise}\\end{cases}$$\n", "\n", "If we fit the model:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_1 fueltype[T.gas]$$\n", "\n", "We obtain an $R^2=0.661$ with $Prob(F-statistic) \\approx 0$ and the following estimates for the regression parameters:" ] }, { "cell_type": "code", "execution_count": 365, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 41.2379 1.039 39.705 0.000 39.190 43.286
fueltype[T.gas] -2.7658 0.918 -3.013 0.003 -4.576 -0.956
horsepower -0.1295 0.007 -18.758 0.000 -0.143 -0.116
" ], "text/plain": [ "" ] }, "execution_count": 365, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + fueltype\", auto).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How do we interpret this result?\n", "\n", "* The value of `mpg` when `horsepower=0` `fueltype=diesel` (i.e., `fueltype[T.gas]=0`) is $41.2379$;\n", "* An increase of one unit of `horsepower` is associated to a decrease of $0.1295$ units of `mpg` provided that `fueltype=diesel`;\n", "* For gas vehicles we expect to see a decrease of `mpg` equal to $2.7658$ with respect to diesel vehicles." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Predictors with More than Two Levels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When predictors have $n$ levels, we need to introduce **multiple dummy variables**. Specifically, we need to introduce $n-1$ binary variables. For instance, if the levels of the variable `income` are `low`, `medium` and `high`, we could introduce two variables `income[T.low]` and `income[T.medium]`. These are sufficient to express all possible values of `income` as shown in the table below:\n", "\n", "|`income`|`income[T.low]`|`income[T.medium]`|\n", "|-|-|-|\n", "|`low`|1|0|\n", "|`medium`|0|1|\n", "|`high`|0|0|\n", "\n", "Note that we could have introduced a new variable `income[T.high]` but this would have been redundant and so **correlated to the other two variables**, which is something we know we have to avoid in linear regression.\n", "\n", "If we fit the model which predicts `mpg` from `horsepower` and `fuelsystem` we obtain $R^2=0.734$, $Prob(F-statistic) \\approx 0$ and the following estimates for the regression coefficients:" ] }, { "cell_type": "code", "execution_count": 369, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 38.8638 1.234 31.504 0.000 36.431 41.297
fuelsystem[T.2bbl] -1.6374 1.127 -1.453 0.148 -3.860 0.585
fuelsystem[T.4bbl] -12.0875 2.263 -5.341 0.000 -16.551 -7.624
fuelsystem[T.idi] -0.3894 1.300 -0.299 0.765 -2.954 2.175
fuelsystem[T.mfi] -5.8285 3.661 -1.592 0.113 -13.049 1.392
fuelsystem[T.mpfi] -5.4942 1.202 -4.570 0.000 -7.865 -3.123
fuelsystem[T.spdi] -5.2446 1.612 -3.254 0.001 -8.423 -2.066
fuelsystem[T.spfi] -6.1522 3.615 -1.702 0.090 -13.282 0.978
horsepower -0.0968 0.009 -11.248 0.000 -0.114 -0.080
" ], "text/plain": [ "" ] }, "execution_count": 369, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + fuelsystem\", auto).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see, we have added different correlation coefficients in order to deal with the different levels. Not all predictors have a low p-value, so we can remove those with backward elimination. We will see some more examples in the laboratory." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Extensions of the Linear Model\n", "The linear model makes the very restrictive assumption that the the nature of the relationship between the variables is linear. However, in many cases, it is common to find relationships which deviate from this assumption. In the following sections, we will see some simple ways to deviate from these assumption within a linear regression model.\n", "\n", "### Interaction Terms\n", "A linear regression model assumes that **the effect of the different independent variables to the prediction of the dependent variable is additive**:\n", "\n", "$$y = \\beta_0 + \\beta_1 x_1 + \\ldots + \\beta_n x_n + \\epsilon$$\n", "\n", "In some cases, however, it makes sense to assume the presence of **interaction terms**, i.e., terms in the model which account for the interactions between some variables. For instance:\n", "\n", "$$y = \\beta_0 + \\beta_1 x_1 + \\beta_2 x_2 + \\beta_3 x_1x_2$$\n", "\n", "As a concrete example, consider the problem of regressing `mpg` from `horsepower` and `weight`. A simple model of the kind:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_1 weight$$\n", "\n", "assumes that the $\\beta_1$, the increment that we observe in `mpg` when `horsepower` increments by one unit is **constant even when other variables change their values**. However, we can imagine how, for light vehicles `horsepower` affects `mpg` in a way, while for heavy vehicles `horsepower` affects `mpg` in a different way. For example, we expect light vehicle with big `horsepower` to be more efficient than heavy vehicles with small `horsepower`. To account for this, we could consider the following model instead:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight + \\beta_3 horsepower \\times weight$$\n", "\n", "Note that the model above is nonlinear in $horsepower$ and $weight$, but it is still linear if we introduce a variable $hw = horsepower \\times weight$. We can easily do this by adding a new column to our design matrix computed as the product of the two variables. Then we can fit the model using the same exact estimators seen before.\n", "\n", "This new regressor obtained $R^2=0.748$, which is larger as compared to $R^2=0.706$ obtained for the $mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight$ regressor. Both regressor have a large F-statistic and an associated p-value close to zero. The new regressor explains more variance than the previous one.\n", "\n", "The estimated coefficients are:" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Index(['displacement', 'cylinders', 'horsepower', 'weight', 'acceleration',\n", " 'model_year', 'origin', 'mpg'],\n", " dtype='object')" ] }, "execution_count": 63, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data.columns" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 63.5579 2.343 27.127 0.000 58.951 68.164
horsepower -0.2508 0.027 -9.195 0.000 -0.304 -0.197
weight -0.0108 0.001 -13.921 0.000 -0.012 -0.009
horsepower:weight 5.355e-05 6.65e-06 8.054 0.000 4.05e-05 6.66e-05
" ], "text/plain": [ "" ] }, "execution_count": 68, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + horsepower*weight + weight\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's compare these with the ones obtained for the $mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight$ regressor:" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 45.6402 0.793 57.540 0.000 44.081 47.200
horsepower -0.0473 0.011 -4.267 0.000 -0.069 -0.026
weight -0.0058 0.001 -11.535 0.000 -0.007 -0.005
" ], "text/plain": [ "" ] }, "execution_count": 74, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + weight\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can note that:\n", "* The p-value of the product $horsepower \\times weight$ is almost zero. This is a strong evidence that the true relationship is not merely additive, but an interaction between the two variables actually happens.\n", "* The coefficients of `horsepower` and `weight` have changed. This makes sense, also their interpretation has changed. For instance, in the new regressor an increase of one unit of `horsepower` is associated to an decrease of $0.2508$ units of `mpg` if **the product between `horsepower` and `weight` does not change**, i.e., if the way the two quantities interact does not change." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How should we interpret the coefficient $\\beta_3$? Let's rewrite our model:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 weight + \\beta_3 horsepower \\times weight$$\n", "\n", "as follows:\n", "\n", "$$mpg = \\beta_0 + horsepower (\\beta_1 + \\beta_3 weight) + \\beta_2 weight $$\n", "\n", "Hence we can see $\\beta_3$ as the increase in the coefficient of `horsepower` when `weight` increases by one unit. In the example above $\\beta_3$ is very small, this is due to the fact that weight is measured in pounds, so increasing the weight by one pound has a very small effect. It easy to see that, **an increase in `weight` by $1000$ pounds increases the coefficient of $horsepower$ by $1000 \\beta_3 \\approx = 0.05$**. This is a relevant increase, considering that the coefficient of $horsepower$ is $-0.2508$. Hence, when we see an increase in `weight` of $1000$ units, the coefficient of `horsepower` will be larger, meaning that **in heavier cars, large `horsepower` will let `mpg` decrease more gently**.\n", "\n", "Let us consider the computed coefficients again:" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 63.5579 2.343 27.127 0.000 58.951 68.164
horsepower -0.2508 0.027 -9.195 0.000 -0.304 -0.197
weight -0.0108 0.001 -13.921 0.000 -0.012 -0.009
horsepower:weight 5.355e-05 6.65e-06 8.054 0.000 4.05e-05 6.66e-05
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ols(\"mpg ~ horsepower + horsepower*weight + weight\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can interpret the results as follows:\n", "* **Intercept**: the value of `mpg` is $63.5579$ when `horsepower=0` and `weight=0` (also their product will be zero);\n", "* **horsepower**: an increase of one unit corresponds to a decrement of $-0.2508$ in `mpg` provided that `weight` is held constant and the way `weight` influences `horsepower` does not change. Note that, if we change the value of `horsepower` and keep `weight` constant, the interaction term will change. Here we assume that, even if the ratio change, we assume that the way `weight` affects `horsepower` does not change.\n", "* **weight**: an increase of one unit corresponds to a decrement of $-0.0108$ in `mpg` provided that `horsepower` is held constant and the way `horsepower` affects `weight` does not change.\n", "* **horsepower:weight**: an increase in one unit of `weight` increases the coefficient regulating the effect of `horsepower` on `mpg` by $5.05e-5$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Non-linear Relationships: Quadratic and Polynomial Regression\n", "In many cases, the relationship between two variables is not linear. Let's visualize the scatterplot between $X$ and $Y$:" ] }, { "cell_type": "code", "execution_count": 506, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABG6ElEQVR4nO29e3hU9bX//1qT2+ROCCGJQIJIBORuqdpWPAqth3pQqYq2ttZTbdPzfUrBWlvbnlpb9fSU1kul+GsP1Z6qpxe0Wm2tpVrQqq2XAgKCqEEEBEOIAXKf3Obz+2NmD3PZe2aSzGQmyXo9T55M9uzL2nsma3/2WuvzXmKMQVEURRk9uFJtgKIoijK0qONXFEUZZajjVxRFGWWo41cURRllqONXFEUZZWSm2oB4GDdunJk8eXKqzVAURRlWbNmy5X1jTFn48mHh+CdPnszmzZtTbYaiKMqwQkT22y3XUI+iKMooQx2/oijKKEMdv6IoyihDHb+iKMooQx2/oijKKGNYVPUMR7xew76mdhpaPJQXuZlcmo/LJak2S1EURR1/MvB6DRt2Heb6h7bh6fHiznJx5+XzWDKzQp2/oigpR0M9SWBfU3vA6QN4erxc/9A29jW1p9gyRVEUdfxJoaHFE3D6Fp4eL0daPSmySFEU5QTq+JNAeZEbd1bopXVnuRhf6E6RRYqiKCdQx58EJpfmc+fl8wLO34rxTy7NT7FliqIomtxNCi6XsGRmBdNXLuRIq4fxhVrVoyhK+qCOP0m4XMKUsgKmlBWk2hRFUZQQkh7qEZEMEXlVRJ7w//1dETkkItv8Pxck2wZFURTlBEMx4l8F7AaKgpbdZYy5fQiOrSiKooSR1BG/iEwE/g24N5nHURRFUeIn2aGeHwNfB7xhy1eIyA4R+YWIlCTZhpTj9Rr2Nrbx4tvvs7exDa/XpNokRVFGMUlz/CKyFDhijNkS9tZPgVOAeUA9cIfD9rUisllENjc2Ng7KllQ6Xku+4YI1z/Opn7/MBWueZ8Ouw+r8FUVJGWJMchyQiPw3cBXQC7jxxfgfNcZ8JmidycATxphZ0fa1YMECM9DWi6nWzdnb2MYFa54PmcnrznLx5MqFWvGjKEpSEZEtxpgF4cuTNuI3xnzTGDPRGDMZ+CSwyRjzGRGpDFrtE8DOZNkAsXVzkv00oPINiqKkG6mo4/+hiMwDDLAP+GIyDxbN8U4uzU/604Al3xA+4lf5BkVRUsWQSDYYY541xiz1v77KGDPbGDPHGHORMaY+mceOppszFCqaKt+gKEq6MeJn7k4uzWftlfPZcbAZr4EMgdkTi5lcms/L7zQ5Pg0kKv6u8g2KoqQbI97xA3T3GtY9tzcknANDF4ZR+QZFUdKJEa/OGS2co2EYRVFGIyN+xO+U3G1o8YVzNAyjKMpoY8Q7/rzsTNtwTl52BqBhGEVRRh8jPtTT3dfHykU1IeGclYtq6OkLV5FQFEUZHYz4EX9pfg7rNx/g2rOnIALGwPrNB1gyqyLVpimKoqSEEe/4J5fmc+OSGRGTtDSBqyjKaGXEO36to1cURQllxDt+0ASuoihKMKPC8Q9nvF7DvqZ2Glo8lBfp04qiKINHHX8ak2pJaUVRRiYjvpxzODMUInKKoow+1PGnMarlryhKMtBQT5JIRGxetfwVRUkGOuJPAonqs6sicoqiJIOk9dxNJIPpuZsKEtln13py0DkIiqL0F6eeuxrqSQLRYvP9dfw6B0FRlEST9FCPiGSIyKsi8oT/77Ei8rSI1Pl/lyTbhqEmWrtHRVGUVDMUMf5VwO6gv78BbDTG1AAb/X+PKDQ2ryhKOpPUUI+ITAT+Dfgv4Hr/4ouBc/2v7weeBW5Mph1DjeoDKYqSziQ7xv9j4OtAYdCycmNMPYAxpl5ExtttKCK1QC1AVVVVks1MPLFi8yrFoChKqkia4xeRpcARY8wWETm3v9sbY9YB68BX1ZNY61KLSjEoipJKkhnj/whwkYjsA34LLBKR/wMaRKQSwP/7SBJtSBher2FvYxsvvv0+exvbHGvy41lPpRgURUklSRvxG2O+CXwTwD/iv8EY8xkR+RFwNfAD/+/Hk2VDooh3hB7veoks91QURekvqZi5+wPgYyJSB3zM/3daE+8IPd71tNxTUZRUMiSO3xjzrDFmqf91kzFmsTGmxv/76FDYMBjiFUuLdz0t91QUJZXozN04iFcsLd71tNxTUZRUoiJtcWA3Ql996Rya2rsCCVyv12AM3H7ZXFYtnkplsTswkp9YnMv2d4+xYWc92989Tm+vN1DuedaUcUwpK0iK0483Ia0oyuhCR/xxEDxCb2jx0NNnuOnx19jf1Ik7y8XaK+fT3WtCkrrf/8RsTq8aw0lFufzhtff49mM7A+/dtmwWy+ZOIDMzefddLRlVFMUJHfHHiTVCLy9yU/vgZvY3dQK+GH5dQ1tEUvdbv38Nr4HdDS0Bp2+99+3HdrKrvjmp9mrJqKIoTqjj7yfhCdzKYjfjCnIck7r1zfYJ38PNye2ipd27FEVxQh1/Pwkvxbzk9IkcPNbhWJ5ZWZxr+15JXnZS4+5aMqooihPq+PtJeKI3wwUPbT7IykU1Icnf739iNi4Br/Fy68WzQt67+cKZ3Pan1wfcmWsgdmrJqKIoFtqBawAEd8XKzcrkinUvUpKXzSWnT0QEXAIfmVrK3/c04TVQUZjNKeWFHGvvpiAn079tN49sOcixju4Bdebqr52xSkZVNE5RRh7agSuBBCtver2GOy+fx/UPbeOeZ/bgznLxw0vn8GZ9K+ue2xuoqPnWx6dT6M7i+oe2BJatXFTDgy/tT5pUQ7zdu7QCSFFGF+r4B4ndZKxj7d18/ZEdIRU177d38/0/vxGybM2mOmrPmZLyuLtTBdD0JD2JKIqSWjTGnwDCJ2M1e3oiKmq8Btsqm1PLC1Med9cKIEUZXajjHwCxZsRWj82PqKjJEGyrbGZUFKU8nKIVQIoyulDHHyeWs//nvib+uOM9LljzPJ/6+cu2lTknj8vnjuWhFTVj87L5ykdPDSyrLs1l3VULONLqCbl5BB9n+7vHBiS3EO3GZPeeVgApyuhCq3riIDj5ee3ZU7jvhb0RQmzhlTn73m/j0VcPMWFMLgeOdvLo1oOAr+6/0J3B+EI33/r9ayHJ1PNnlPPU7gZWb9jNFQuqWLOprt/J1miJWiDqe/FWACmKMjxwqurREX8cBCc/Rexj9eHx8PpmD2s27uHdY53c98Je6pt9s3jveWYPHd19AadvbX/9Q9vYVd/M9Q9tY+mcCQGnH/x+sNyC06g+mlRDtPeGQjROUZT0QB1/HIQnP+OJh1tx80e2RE7uOnV8oe3Nw5J3iHVzsUb1duGmaIlaTeIqigLq+OMiOPlp58jt4uFW3PxYRzcPvrSf2nOmsPbK+fzpywuZUVlke/OwpJytv8Pft24u0Ubu0RK1msRVFAWS6PhFxC0ir4jIdhHZJSLf8y//rogcEpFt/p8LkmVDoghOftY3e9j0xmH+998/yM8+czrraz/E+TPKI0IjVn3/kysXctcVc1k2bwIXzKrk5HH5ZLjg+5+YHXHzmFlZzJ2Xz+OP2w9FvblEG7lHS9RqEldRFEhicldEBMg3xrSJSBbwArAKWAK0GWNuj3dfqU7uwglJg6PtXRw67uFG/wStgSZeS/KyWb5gIqeWFzKjooiTx/mSqcHHycpw0dHdFyGhsLexjQvWPO+YYHaSavB6DZvebGDHwWa8xictMWdiMYumRd64FEUZ/gy5ZIPx3VHa/H9m+X/Sv4TIASv5CfCZ+16JCLOctmohXkNUrZvgEI2V/LUctrVuPDIL1sg9vDrHGrk77WNfUzsrfv1qzIokRVFGNkmVbBCRDGALMBW4xxjzsoh8HFghIp8FNgNfNcYcs9m2FqgFqKqqSqaZ/cIuzFKSl83WA8dDyjPXXjmfk0sLONJ64kYQvG1lsTsg6tbY1tWv8smB9uyNFiJSx68oo4ekOn5jTB8wT0TGAL8XkVnAT4Fb8Y3+bwXuAK6x2XYdsA58oZ5k2tkf7BqqL18wMaQ8syQvm7qGtsDo2hqRn1ZZGNDi//cPT+auv76Fp8fLvc/vjStcZKeg2R+HHW8zeEVRRjZDNoFLRG4G2oNj+yIyGXjCGDMr2rbpEOO3sJsgdftlc1nxm1cD63zpvKm2k7yeWHE27zV7ONLq4WhbF919Bk+vb50/bj/EL64+g1PG2zvyRChohsf4MwRma4xfUUYsQx7jF5EyoMcYc1xEcoGPAqtFpNIYU+9f7RPAzmTZkAzswizGEDKSdqrDf6OhlRse3k5JXjaf/VA1a5/ZEyLRXN/c4ej4E6Wg2d1rQuSi77x83sAuhKIow5Zk1vFXAs+IyA7gn8DTxpgngB+KyGv+5ecBX0miDUkhfJbryePCunI5CLK91dCKp8fLJadP5O6NoTNz12yqIzsjI7B++MzcpvauQU++0gbsiqJAcqt6dgDzbZZflaxjporwp4Asl4u87MxADN+d5eKmpaexdtMewPmJoL27F7AP66y+dA7Vpbnsb+oMbBMen4/VRcspuftWQyuA6vMoyihBG7EkiOASyr2Nbfz6lf1ce/YUqkpyOdTcSaunh2Md3YH17ZKsk0ryAPuR+Y2P7GDdVQuofXCzbQlnPDkAp+Tua4dauG79Nu26pSijBJVsSAKTS/O5cckM7nthL+8e72TNxj3c/4/9gdm4j2w5yKrFoTNzr//YqWRm+Byu08g8K0N4cuVCflt7Jk+uXBjipOMJ49jN3F25qIZHtx7UsI+ijCJ0xO+nt9fLrvpm6ps9VBbnMrOyiMzMgd0Xg0M/jW1d3Pu8T53zwZd8TwEZLphSVsCK86bi6fViDPzv3/cxZ2IxVWPzycvOtB2Zlxe5HSd3xVOjH2zXWw2tvHaohQdf2k99s8d2/Vhog3ZFGZ6MesdvJVF31bewt7GNhzYf5FhHN7ctm8WyuRMG5fynlBWEzLKtb/Zw3wt7WX3pHL7/5OsR8fqKIjcbdh1m9YbdrFxUE6HHH01TJ94a/eAZyNet3xZzfSdGaoN2vZkpo4FR3YjFznmtXFTDgy/t51hHN+trz2LupJKEHCdYO6eqJI+ndjdEOM1p5YX82098GjzWzN4MFyyePp7ZE8bEnNzVH0c8WMcdSy9oODJSb2bK6GXI6/iHA3Zx8TWb6rj27Cnc88weDjd7mDspccez7rHhVUAVRW76vFB3pNW+SXuv12ZvofRXxmGgsg8WI1H+IVFzJRQl3RnVjt/JeYm/Dr+iePBSBk6jyPNnlAOQ4RK2H2zmxkd28PmFUwKSDledVR0I9cQr6RCPwNtg1g9mJMo/jMSbmaLYMaodv5PzcgnctmwWMyuLo24fLR5svdfY2sXqDbu59uwpiN9nr96wm4KcTGof3BzSw9dq8uLp7bNtvTjtywsdZ/bGa9dAsNtfLIXQ4chIvJkpih2j2vHbOa/bls1iekUh08ujV/XEampuaeKcMi4/onH6ykU1vFHfHNFm0ar8uW5xje3I88DR9piOP9Fx6mj7G0yoKB0ZiTczRbFjVDv+wcS5o8WDXQJ1DW2se24vP7psbsTofc2mOn542dzAvsJHmfk5maxcPBWv8bV6rG/24M7yzQYejF0DCVfE2t9AQ0XpyGDzHooyXBjVjh8GHueOFg8WJKDF88777fajd/9EKSu8s2ZTXUC87YbfbQ95Oli/+QCf/GAV5UU5g7JrIA56tMW9B5P3UJThwqh3/AMlWjx4X9MJZ9/d57Vd75SygkAP3/WbD3Dn5fMwxvDVh7dHPB3cftlc3NkuqsbGDjkkOk6tcW9FGXmMesmGcBVMrze+eQ3RGpdXj80PLLdG9MHr3bT0NBpaOvnff1/AysVTWTpnArc+8Tq7D0eWc3p6vHT4xdviOY+GFg8/v2oB1aW5geN9/xOzcQlxn1u856koyvBEJ3ANIhHq1NS8t9fLY9sP8e3HduLp8VJdmst3L5pJU1s3B4528LB/dvDNF86ku6eP/97wBp4eL6sWT+V/nots4GJV/jhNjnJS88zNzmDnoebA8Qaa5HU6T0VR0hunCVyj2vEna/bp3sY2PvfLV1g6ZwLTKwqpO9LKjIoivhKUJLWOtWpxDW1dfYhAfnYGGS7hzqdPyDl/c8l0Wrt68fR6WTh1HB+cPDbC6TqdR+05U1izcU9Cz01RlOGDzty1IZGJy+Bad5cI3b2Ge57Zw+pLZrNm4x6u/9iptseaNDaPGx4+kcxde+V8fnXtmfytrpHcrAw8vd5Ap657n/fp/Jw0xk1pfk5g5O10HuGRnZGclFUUJX5GteNPVOLSLtSyanEND7y4n7wcn9KmU5J3RkURT4aVD245cBR3ZgadPX2BNolwQpffCv1YoZtoE9GC0aSsoiiQxOSuiLhF5BUR2S4iu0Tke/7lY0XkaRGp8/8evAraAElU4tKu1v3ujXUsXzCRnz/3NjdfOJM/bj8UkeS98/J5nDwuP6SNo8sllObnsH7zASYU5zpKSgTr5zudx5yJxZqUVRQlgmSO+LuARcaYNhHJAl4QkT8DlwAbjTE/EJFvAN8AbkyiHY4kasKOXailJC+bM08ey2mVRUwoyeXHl8/j/fZuHrjmDI6391BelMOY/CxefqcpQlbBauTy5uEW25G8lZYJbpt4/ozywJNDWYGbDBc0tnWxvvYsOrr7VGJYUZQAyey5a4A2/59Z/h8DXAyc619+P/AsKXL8kJgJO5XF7sBMW4Dn3jzCx2dXcu39myNCP8c6ulm5qIb/+vPrfPKDVYFlwRU31g1pRkUhE0vyuOnxnRGy0WDfNnFyab5tpdKZJ5dGOH3VnleU0UlSq3pEJAPYAkwF7jHG3Cgix40xY4LWOWaMiRruSVZVTyKwi+/fdfk82woeS+7ZneXiR5fN5fan3mD5BybR2eP16+6XM3tCccD5BlcH5WS6mDq+gNUbdrO/qTPkJmBJOjy5ciFAXJVKqj2vKCOflFT1GGP6gHkiMgb4vYjMindbEakFagGqqqqSY2ACsIvv7z7c4hibt17XHWnligVVTBqby9d+twNPj5d1z4XKLze0eNjf1Mk9z/hKMq3mLDMqC9ld32rbNtEYbI8dXs2j2vOKMnoZkpm7xpjj+EI6S4AGEakE8P8+4rDNOmPMAmPMgrKysqEwc0DYxfe9hkBS1SI4Nu/OctHnhTWb6hDEsUG6Va1jYbVunFSSx30v7A04fWuf4wvdEdsEvxfLbusGoSjKyCaZVT1l/pE+IpILfBR4A/gDcLV/tauBx5NlQzh28gwDlWywsHO0f9x+iNWXzgmpqFm1uIZHtx4MhGge3XoQT4+Xve+3h2xrOV+v12AM3H7ZXFYtnkplsZvq0lzWXbWA9q7eCFmGOy+fR1VJHi6BO5bPZeXiqaxYNJVVi6ey9sr5EdU88d4gFEUZecQV6hGRS2wWNwOvGWNsR+xAJXC/P87vAh4yxjwhIi8CD4nItcABYPkA7O43djHttVfOp7vXDCrObafhfuOSGZw/wxevP9LqYVx+Dm1dvXT29NHnJSQu3+sNHXW7s1yUFbgjbL1j+Vz6vIbaB08kjFdfOocJY9yMzc8J9PFdvWE3V55RHaj/t84pHrvTsdxTE9CKknjiSu6KyJ+ADwHP+BedC7wEnArcYox5MFkGQmKSu3ayBisXTw2ZIAUDkzWIR8vG7sbzlY+eijvTFdDqsZzvaZWFLLm7f7Za5xfc0SvWOaW7Bo8moBVlcAw2uesFZhhjGvw7Kwd+CpwJPAck1fEnAqdYfCIkG+IpCQ2eM/B6fQu761v55T/2AQTaMp558lg+cso4Xn6nqd+2WucX3NEr3nNKV7kmTUArSnKI1/FPtpy+nyPAqcaYoyLSkwS7Eo6drEGGRHa/Smac27pBtHp6A/o8QKDE82MzxuNyyYBsDY7Zx3NOw2E0PdqawCjKUBGv439eRJ4AHvb/fRnwnIjkA8eTYViisYtpz55YnJI498zKIm5bNisg22z1+rWau08uzWftlfPZcbAZr/E5/dOrxwRstTp1VZfm897xTjq6ezm1rJA7L5/H6g27Ax29gnMBTe1dAFSV5HHgWAf7mto50NTOqsU1tHf3Ab4m8KX52ZQV5qRF2EebwChKcog3xi/4pBbOBgR4AXjEDJGmc6ImcNnFtIGUxLl7e73sqm/mcLOHimI3MyuLA83dw/X8rRvDRbNP4r2WTrYeOM63fv9ayKzgiSW5/OuMCg42d3K0vYusDBcd3X309Bluevw19jd1Ul2ay5cX1YTsN3xGscsFP/5rXcJG/4NJzg6HpxJFSWcGrccvIhX4Yvpe4J/GmMOJNdGZdJ65mwy2v3uMK9a9FDHSXV97FoXuLEft/cXTxzN30olJ0OEJ7S+dN9U28Rs8o/iHl81l5W9eTYh2fyIcd7onoBUlnXFy/HHV8YvI54FXgE/gC/O8JCLXJNZExaK+2T62fbjZE1V7/3Bz6OSr8HWdEr/BM4r3+ecVeHq8HG3vGtQcB6fkrDVBLR6svEiweqmiKIMj3hj/14D5xpgmABEpBf4B/CJZho0W7EIhlcW5trHtimI3he4sR+39ymJ3yD47e/pYtXgqD20+GJjlG03t053loqvX9151aS6Hjnv4zH2vhMx7OLm0gCOt8YVtNDmrKOlJvI7/INAa9Hcr8G7izRkeJGpSkVMo5KPTxjsmf10uYfWlc7jxkR0hcfr87AwKcjLZ935bSA6gujSX7yw9jbojbWRnCHd/ch673mvBa6CiMJvJ4wp4r9nD2ivn09HVw11/9YV8br14dmCyGPhkpusa2ljx61fjDttoclZR0pN4Hf8h4GURseQVLgJeEZHrAYwxdybDuHQkkQlHp1DIkysXsmzuBGrGF9gmf08a42bFeVMpK8ghLyeTg8c6+Onf9jK2IIe3GloDE70qi91csaAqoBTqznJxy8WzeHzbIYrdWXzqzGo+/8CJmcC3XjyLn356PkW52RGj9UtOn8jdG+v6VVOfiNnBOnNXURJPvI7/bf+PFeR93P+6MBlGpTOJnFQUKxQyd1IJcydFbleanxPow2vhznLxVkMrXuMbnV9y+kSmVxTytd9tD7H1O4/v5NqzpzCtopCvh7130+M7WV97VuA8gkfrA5kY5nIJ588oZ33tWdQ3e6gszmVmZZFW9ShKiolXpO1JYB6+5O5yfAney4wx3zPGfC9JtqUliVS1dBJKKyuIHgqxa7X4/U/M5uHNBynIyeCzH6rmvhf28mZDq2Myt7Or1zGBbHcMawJZuK3RwjZer+Gp3Q1cse4l/uP/tnLFuhd5andD3EniRCSHFUWJJN4R//8BNwA78ZVzjloSGbe2C4WsWlzDO01tnDzOOaRh1zLSJXCso5vePhPyNOCUzLWawNslkO2OUVHkZlpFUb/CNoN9OtLksKIkh3gdf6Mx5o9JtWSYkEhVS5dLOK2ykNpzpuA1Ps0cazJVrBr6cH0gr9dw5+XzeCOoCcwjWw5GzOK9+cKZ/Oxve3j+rSxuvnAm3/vjLtvZw3bHqBqb36/+xIN13JocVpTkEK/jv1lE7gU24muiDoAx5tGkWJUArJmxwbFlKzk6GAbSoD04QTm+0NcIvb7ZQ152Jg0tnazZuCdim6b2Llo9PRGx8X1N7TS1d5HtcnG0o5u87EzKi3KoGpvPkpkVTBiTG0ju1jd7ePCl/dSeM4X5k8aQl53Jf/3pdZbOmYAI9PT2cefyufQZX8K4JDeLf+4/Sl52Jt19fZTmh0o39Lc/8UAdt3W9mtq7IiqY0lE6WlGGG/E6/s8B0/E1TLf+iw2Qlo7fSfJg2dwJCXP+8TpAuwRlsEzCXf44erBzrC7N5cDRTv4zSJbhtmWzKCvM5juP7+KKBVUho/hVi2uoKS9g0TRfD4DgJ5JjHd1MryjiX04dz76mdt460saOQy2BY1nb1zd3cufTb4VIRv/6lf3cuGTGgJOpA3k6Cr9eVvOZrAzRqh5FSRDxavW8ZoyZPQT22NJfyYZokgfBkgZDgV0fgGCZhOrSXGrPOYVbn3g94Bx/9pkP8B//tyVim9svm8vuw622sgu150xh2bwJTCkrcJQ5sLsJ3bT0NLx9hv/68+6Ifa44byprn9nDhlUL8RoGrLfTH8kFp+s1WPkIRRmNDFaP/yUROc0Y83qC7UoK0SQP7Mojk4lTnNuSSdjf1Emrp4drz57CnAlF1JQXsudIaDWO1WS912uYXlFISV52SL9dS7LBip07PZFY5ZXrrlrA5v1H6fPCuufe5mvnT7e1sawgh5K87AhRuP6UVPY3POR0vY761UW1nl9RBk+8jv9s4GoReQdfjF8AY4yZkzTLBkE0yYOhxinOHSyT0Orp474X9gZGta2e3sA2lcVurjqrOiK088CL+0NkGFxCXEnPg8c72Lz/KF7jq83v7jXgoPWfl5PJ8gUTA04fkt8Mxe562clHaD2/ogyceAPeS4Aa4HzgQmCp/7cjIjJJRJ4Rkd0isktEVvmXf1dEDonINv/PBYM5ATssvfvgOvfwipWhwq7mPrjx+jeXTKcgJ4PbL5uLMb7QSLD9l5w+MeD0wed4795Yx/IFEwP7u2npacw6qTiwvR1er2Hf+21s3n+Mdc/tZe2mPdz7/F6uOqua91s9rFpcE2Fj/fEOppYVJGzegpNdwUJwVSV5IderujSXH1xyIsFrHV/r+RVl4MQ14jfG7B/AvnuBrxpjtopIIbBFRJ72v3eXMeb2AewzLjIzXVElD4aS8CqgsgJfVc+8SWModGfyVkNbRM/d82eUU1aYze2XzaXXa2wd72mVRdx1+VwKc7O49Yld7G/qdBwJW7H9Nw63hPTt9fR4WbOpjus/WsOkkrxAWalLYEJJLuWF2bx6oDlpJZVOM3PPn1HOkysXcrS9i0PHPby4N7IVpdbzK8rASZonNMbUG2O2+l+3AruBCck6XjiZmS7mTirhX2dVMndSSUKdfvgoNdZM1GBp4VPGFzB5XAEfOmUcedmZtmGUXfXNfPHBraz4zavsaWyznTH7en0LexrbWfHrrexv6gzZPnwkbE2kcurbWzkml1/+Yy99/rf6vHDHU2/y97ePcv+L+1m5KPRpIFEllU4TvA4c62BKWQFj83O48ZEdeE3/Zw0riuJMvDH+QSEik4H5wMvAR4AVIvJZYDO+p4JjNtvUArUAVVVVQ2FmXCRSP8YpkRmcnLabhPX9T8zmR395k0s/MDGukbB1nNwsV8jovbLYzfIFE8nJdHHWKWU8suVgSNLYawjMBQhvCJ+I2HqsCV7W+3bXQOv5FWXgJN3xi0gB8AhwnTGmRUR+CtyKbx7ArcAdQERTF2PMOmAd+Mo5k21nvCRSpM0p8VtZfGJ5+CSs6tL8gDyDtX6sMIx1HJcIqxbXcPfGukDfXktx053lYuWiGh58yZc0thLG4HP+4Q3hE0GsCV7W+8E3nwwXLJ4+ntkTxgTsUAVPRekfcbdeHNDORbKAJ4C/2Ek3+58EnjDGzIq2n3Rqvfji2+/zqZ+/HLH8t7VnctaUcf3aV7QY97N1R0Karc+eWMyiaeUh9firN+zmmg+fTFNHt+164cd543ALD28+aKvcaY3+JxTn8l5zJ7MmFOM1hl3vtZCXncHEMXlkZ7kYm5fN0fYuyosGPxs61tNTPE9XquCpKM4Mto5/IAcU4D5gd7DTF5FKY0y9/89P4BN+GzYkUj/GSf7B6zUc7+gJJGKtqiSv1+BySWC70yoL2XrgeERy2CJ4JDytvJCqsT45h3ue2cOKRVNDnH54yegdy+dhMDy+7RBXLKjiR0+9wTUfPpmdh/w3o/daOHC0nY/PrByU88/OlJCkcnbmCWcdjzxGIp/AFGW0kMxQz0eAq4DXRGSbf9m3gE+JyDx8oZ59wBeTaEPCSaRIG9hPcHrt0PGA3AT4nNm3H9tJzfiCwMxjl0vwGhxr7CeX5tuOhNdeOZ8Vv341JN5vVzL61Ye3UXvOFJbOmcCaTXWsWlxDR09fyM3oWx+fzvZDx+nu9Q4oxLKvqT3Q0csifJZurAlgquCpKP0naY7fGPMCvole4TyZrGMOBQMRaesv8c48jtUbwG4k/KcvL+RJv+1WvN+pyYo1ycvT42ViSV5IaKgkL5v27j4+fe/LAw6xNLR4Ak1jrJnMj2w52C+nrQqeitJ/hr6wfQQQXJ5pSSQkEmvmcTB2M4+dGrmML3Q73hQa23xOtaO7jwde9CVMp5UX2u7HOi13louOsMYtTq0Yw0tJo5W+Vha7A01jrAlln/1QNRVF8TttuwlyWvGjKNEZknLO4UK6VIdYM3fD1UVnlBext7EtYJ81yzU4nLP60jk0tXeRl23faGVcfg57G9vIz87kWEc39zyzh8pid0S55B3L55GXI3R1G/77ktnkZmX0uxVjrMRrn5eIm8fdG+s4/7SKuK9VPE9g6fK5Kkq6oI7fTzpVh9jNPJ5RXsRf3zziOMu1ocVDT5/hpsdfY39TJ9WluRE3j+s/diq7D7fwtd/toCQvOxDqqW/2sH7zgRD544nFuTy+4z1uenxnQB75lotn8R3/31YrxmghlliJ1yOtzk8lp4yPPz4fLQ+QTp+roqQLSS3nTBRDUc6Z7nLAseyze7+6NJevnT+dNxpaMQYKcjJCRthWCac1PyB4JGwnbW05/3/uO0Z+dgYZLgnR8A93qLFKX4fimqf756ooyWTIyzmHG+leHRLvLNdg9jd18kZDK2s3+Tp8BZdwWvR5oas3so2yXYJ5f1Mnh5s9gf1VFru5/3NnYDC2IZZYidfJpfmsvXJ+xHyFRMbn0/1zVZRUoI7fT7pXh8Q7yzX8/fBoRnVpLkvnTCAn00XN+AJ+sGF3YFZu8IjdSdo6N/vEV+ZYRzdlhTmODjSe0tfuXhNSIho8DyERpPvnqiipQKt6/KR7dUgs+5zenzOxOLDspbcb+dJ5Ndz3wl7ufPotvvLQNq5YUEVlsTuiKsdO2vqWi2fxwD/22h7fDivx+uTKhfy29kyeXLkwJBTklANIpNxyun+uipIKNMYfRH/bBCb6uHZVJ8HvVRa76fNCY1v06pXwWcBW0/lxBTl85r6XI0a/VhtIOBF/t/T732v20NrVy/jCHE4bX0idf1lRbiYnFefS5/V1/nKqlol2buE5AKvT2OwJRZxaXpiw65+qz1VRUo3G+OOgv20CE0G0qhOgXxUp4fZ7vYandjcEtl+5ODLG7+k50QbSCoHY2fStj09nX1NHSAP4my+cyc/+tsexF0CsiprgMIydbESiqm9S8bkqSjqjoZ4UEy3cMdhQSPj2Trr2xoSGQOyO+357d8DpW8u+98ddLJ0zwdG2WPZPLs3njuXzHDuNXf/QNvY2trH93WNs2FnP9neP02uTiFYUpX/oiD/FRKs6MQ6NU+KtSAnft52u/epL5zBhjJtLT58QCIHY2eTUxEUk9O9g22JV1Hi9Bq/xUnvOFCYU59quu6u+JdB20ZrItmzuhJR0U1OUkYI6/hQTq+pkMBUp4fu2Jmqtrz2Lzp4+x3i3tV2wjs70ikKqS3MD3b4sW4JTROG2xTq3XfXNfO13Pqe+YtFU23XfbmyLKlanKEr/UcefYmLVsg9GCbSqJI8fXjqHrweNmFctPpXi3CxmTxgDYJt4tWyqa2gLadRyy8WzuOeZukBM34rxg321jF05pyUpAcTsNHbbslnc8dRbIedkJ1anKEr/UMefBjjVsg9GCdTrNfx9byO5WRnctmwWpfnZ1DW08qO/vMmxjm7uvHwe2ZkSkEUOT6aeXFoQIpns6fHyncd3sv4LZ3G0o5u87EwqinM4Y/IZjlVGwfaHS0q4s1z88nMftO00NvukYk4ZX0BHd2+g05iFnVidoij9Qx1/iomlZzPQipQDR9s5eMzDrU+8HnDsKxfVhByj9pwp/dbR6ezt47zp5cCJMsloFcFer6HV08Mxf5ewYncW0Imnx8uehlb++5LZvPN+e+BpZ/K4fE6tKKC6tIDeXq+tWN3MyuJ+XQtFUUJRx59ikiUp0NDSFXD61j7XbKoL1Ox7enx6+07HHV9oH58vK/CNtuMRP+vt9fLY9kMhjvvmpTPhlf3sONRCW3cfnrCnnRvOn0ZjaxfVpQW2YnUzK4s1sasog0T/g1JMNE39wdDe3Wt7Qyl0Z/Cl86aycvFUZp1UxI1LprFi0VRWLJpKdWlu4LgZLli1uCZkxuuqxTVk+E11elI5cLQ9oL+//eBxfhJWovm9J3bx+XNOAWDimDxuf+rNkPdvf+pNsjJOXI/MTBdzJ5Xwr7MqmTupJO2cfrR+A4qSriSz5+4k4AGgAvAC64wxd4vIWGA9MBlf68XLjTHHkmVHupPoVo4W1SV5ESP26tJcxuRm8+O/7gpK9tbwyJaDHOvo5taLZyH4nFl9syfQqEUEjIEHXtzP/KoxTB5nLwpXkpfN5v3H+fZjr4WElx58aT/1zb6uYJ4eL53dvbizXI6a/h3dfQM+76HU3lfJZ2W4ksxQTy/wVWPMVhEpBLaIyNPAvwMbjTE/EJFvAN8AbkyiHWlNslo5ZmQI3/r4dN5v7w7Ez2edVMyXfxuasL1744nwz02P76T2nClMryhi2viCQKMWi+BQz/iCnIgby/IFEwNO39p/cHjJ2sfJpfk8uXIhxmsSKqA21I5YG70rw5WkPTcbY+qNMVv9r1uB3cAE4GLgfv9q9wPLkmXDcCEZrRwb27ro7PGy7jlfW8P/eW4vzZ6eqJOwrLj/9Q9to7O3L2qox+79qrF5tvu3trGSs6dXlTClrIDMTOHmC2eG7OPmC2eSmTGwcx4K0bdgYvU8VpR0ZUiSuyIyGZgPvAyUG2PqwXdzEJHxDtvUArUAVVVVQ2HmiCI7w8Vdf30rxAm+e7TDdoRtVeVYrz09Xg4e64wa6gl/f1p5IQeOttvu/5yaMmZWFkUkZw83d/Gzv+0JOcbP/raHKePmUl3a/xHzUGvvO01Qy83KwOs1Gu5R0pakZ8pEpAB4BLjOGNMS73bGmHXGmAXGmAVlZWXJM3CE0tHdF+EEH9p8kO8sPS1iFP/o1oOBipvn3zqCO8tFZXFuINSzdtMe7nlmD8c6ugNhmPD332xo5aHN77JyUehTwA8vncO4gmyKcrModGeFOMP27l72N3WGHGN/Uycd3b0DOmenRHlFkTspCVg7yeeVi2pY+dtX2bDrcMhxNAmspBNJlWUWkSzgCeAvxpg7/cveBM71j/YrgWeNMdOi7WeoZJlHEk4tB++/5oM0tnRjgMZWDxNK8jje3k1eTib3/2MvH55axvSKIs6fUc6zdUciZhRPLSugvtnDSWPcbD/YzJ4jbXgNFGRncNKYXO54+k2WzplAhgvOOHksnp6+iEli588o58CxDhpbu7j6f1+JsPGBa85gXEFOv3MddjH+tVfOp7vXJC3u7/UaXjt0nI1vHKHPC49uPUh9syekvaMmgZVU4STLnDTHLyKCL4Z/1BhzXdDyHwFNQcndscaYr0fblzr+/mNXQ+9rrJLBDQ9v57qP1uD1EiKRsHJRDXMmFvHhU3xPWOHO6rZls/jJJp9kw4LqYj55RnXE/udPGkNjWxfjC90YA//2k8ibz7qrFlD74GZK8rL57IeqQ2Qhrv/Yqfzv3/cFZhf31zmGa+872ZDInrvp0FtYUexwcvzJDPV8BLgKWCQi2/w/FwA/AD4mInXAx/x/KwnmwLEOfuKvqFmxaCrXnj2Fo21d3PDwdjw9XiaMyYuQQV6zqQ53ViYul9gmSr/92M6ADPNnPzwl4PSD3z/a3h1IUjvN/t28/2hApuHPr9Vz+2VzuefK+dy+fC5PbH8voOEzkMRseKLcyYZEJmBjzcXQJLCSbiQtuWuMeQFwGqotTtZxFR8NLZ5A/NwiuNn6O++32zqjo+3dge2jTQDzeg2fXziFR7YcDKnRb2jpCqzvlPzs8/9ZWexmyaxKbvjd9sCI/ysfPZXGtu6A8x9sYnYoeu7GmosRjw1DOf9AUdJrGqSSMOxGoRlyohFLd5/XdpRaXpTjuH11aS6F7izue2Ev163fxr3P7+Wqs6qpLHZHbA/2yc/Vl87hiR2HAGybr9z117f49JlVgfUH66CHoudurN7CsWywcgAXrHmeT/38ZS5Y83xEclhREon23B2hOCU6j3f08O3HdtrG14ObnNht/9NPn87/+9XWiJHrtWdP4b4X9nLLRbO4aHYlbndmiB3BMfeqkrxAO8jPL5zC2k17Imxffclsbv7jrrhj/LFGy4PtuRtvT+RoI/VoNmgOQEkW2nN3BNCfcIDTjODu7j6qx+ZxuKWLqpJczpg8lvoWDxVFbuacdKLG3uUSzp9Rzvras6hv9lBZnEubwwSw6RWFPHDNGcysKAhx+uBLMh9t7+b9tm6yXC4mFucG7Dp0vJN7bUIglWPcrK89i5mVxXE5/VgVM7EUTmM59kT0RI5mw1DPP1AUdfzDhIGUBIY7m95eL0/sqncc8QfvL7xRe3VpbmCWbbijfuNwK1/73XZuuXgWy+acRHa2b+ptd3cfj+14j+88fqLyx1pnSlkBgk8ILtiGVYtr2PVeC3dvrItrxD9Y2YRY1zXa/oGESDbEUkJNFJpHUCw0xj9MGIgcQfikoTcaWgKVOJecPjHgcO32t6+pndUbdgeqgm44fzr/3zN1ERO0blp6Go9uPYinx9eoZcd7zYHj73ivOeD0rWMEryMCpflZ3H7ZXFZfOpvbL5tLaV4WD7y4P+6qnsFUzFg1+G8cbuHzC6dQWeyOOG60/Qe/V1ns5kvnTeXzC6dwuKUzoil8tAlcsZRQE4HmEZRgdMQ/TOhvOMBuJHvbslmU5GVT3+xxVMa09tfU3sUVC6oi6vw37KwPkVho9fSEVfWccLiHHWy21mls6+JYRy/f+cOJZjFf+eipcZ2fxUCrduyuT7CSqHXceHoil+Rlc9VZ1YFrde/zsfMlwU8VsZRQE4EKyinB6Ih/mNBf3X6nOvzlCyaGbO+0v+wMl22d/8JTxwckFu57YS+tnr6Q7cuLTthT6WCztY6dntBdf32LS06fGPP8LAZatWN3fdZsquOS0yeGHDfa/q33li+IrE769mM72VXf7His4KeK8iJ3VHmMRKBzCZRgdMQ/TOivbr/TP/opZQW4s1w8suVgRHw9eH92Wj+enlClzVsumsU9z9ad+PviWcw56URbxNknFXPLxbMiYvzWOk7HEInfgccja20X23a6PtVjc1l75fzAcWPtf8nMClwOT09WU/hYT2tWc/tweYzgcx9sfH4o5jMowwd1/MOE/ur2O/2jz6wsYn3tWRxu9jChJJePzSjn/fauiP05bW8pbVYWu/H09XLrxbM41tFDSV4WmRmEdMjKzs7wJXLH5Qcc1pyTigPJXztNf3eWi3NPHccl8yfE7dyiVcw4hVmmlRfaHvvg8U4K3Flx79/lEiqLc233VeF/sonH6XaHtaC88/J5Mc+hP3IWyWr4owxPtI5/hDJYZxFr+0TUnu88dJzn696PqOpZWDOOWRPG9OtcnUbDTnZuWLWQ1+tbbWP8xzq6Y55H8DELcjLZ09jGNx890Xns5gtn8uFTxlJdGlukLda1TFSd/2DnM/TnGFo5lB5oHf8oY7CdvWJtn4jacyfN/ynj8uN2/LGcqpOdh1s8LJlZQennzuD5Pe9jDCEtIqOdh90xbzh/Gnd/cj7HO7rJzc7k3ufe5uRxeVSXFgz6Wiaqzj/WfIbBoiqkwwd1/COYwf6jR9s+ETHjYE3/4H1UFMe/j1jVKtHsdLmEssIc7n1+r20N/d7GNtuRq90xb3/qzYgWk8HXYjDXcrjE57VyaPigjl8ZEJNL8/mfq06ntbOP9q5e8t2ZFLozImLGvb1edtU3B2b/zqwsCuQBZlYWcduyWRHSzjMri+0OaUs8idNosW2n999paovoIxDrKaJ6bC4rFk21Tc5Go6okj1/8+wKa2nrIz86g1xhyMiWmjYmOzw82TNPQ4qEkL5tLTp8YaOf5yJaDOgN5gCQzbKaOXxkQXq+hsbU7wmkHtxx06glg1bf7RtzZ3H7ZXNq7e8nPzqQwNyOh1Sqxwix277sEltz9fL+fIg4e72Ttpj0RydlY1/Evrzfw1YdPOPVVi2uYUJJLb6+X7OyMQYft4rVjsGGaymJ3xGzwVYtrAkluJX6SHTbTOn5lQOyqb7bV47dq1+NZZ19TO198cCsrfvMqNz7yGit+8ypffHBrvzT446njj9XMPvx9SxI6mOCad7tjrlpcw8ObDwbWjbeXwL6m9oDTt7a9e2Mde460hcyCjnUOgyURjer7vETMBr97Y11AhluJn0R8HtHQEb8yIJyco1W7Hs86iUhaRorJueMSd4tGf58iBOG69dsCieHKYjeXnD6RtxpaAQI3IbvHdqdr4DWEzIJONokI0zg1vWls83DK+Pj2oVVBPpIt3KeOXxkQjrXrQYnZWOskImkZLiaXiEfieGLqwcnavY1tHOvo9p+zO0S+wdo2O1NscwZO18AlhMyCTjaJCNMM9vPUqqATJDuhn8yeu78AlgJHjDGz/Mu+C3wBaPSv9i1jzJOx9jXS6/ijJUDTlVjx+3jW8XoNm95siJixumhaedz/6ImocbcbZQJx17wHOyyrN0G4PbXnTGHNxtDqpSdXLmRyaT5/3nnYNsa/ZEZFYLJbIog2mn77SJttb+I/fXlhv0brg3Hcg/ksR9qTQqJugqmo4/8lsBZ4IGz5XcaY25N43GFFPA40HXG5hDF5WdSeMwWvAZfAmLyskC9lZqaLZXMnUDO+gMPNHir8YZjg84o2YzUeBvtIHO0fLN5S2ODQz1sNrY6hm/BlDS0+G8+rKeXnn13A8Q5/VY/XYIyhr88LJMbxx3Ik0XoTx+v4B5uEdvosres00HMbjiQ7oZ/MnrvPicjkZO1/pOCUAK0ZX8DcSSUpts6ZfU3tgdCFhd3oLDPTxdxJJYG4f/g+Blv3PdhH4kTVnluhH+v4dqGbYNxZLrL8wkc7D7fyhQc2R2zzwDVncMbJpXHbEI1Y55mXnWlrd14/nzgGM3dkoDaM1PkDyZxwl4oh5QoR2SEivxARR88mIrUisllENjc2NjqtNuyJlgBNZxKh9piIfQy2p26iVSvt7Llt2SxK87JDlq1cVEOrx2ps3xVhQ0leNp09fbb6/QMh1nl29/VF9FpYuaiGniEsyRmoDao82n+GOrn7U+BWwPh/3wFcY7eiMWYdsA58Mf6hMnCoiSdJmo4kIvmUiH0M9pE40Uk0O3s6unv50q+3hkhTrN98gDWfnO+3IVSszkq0fvHBLQkLXcQ6z9L8HNZvPhBh45JZFQM63kAYqA3DZWZzOjGkI35jTIMxps8Y4wV+DpwxlMdPR6zZq+EjxP7MXk0Fgx1pJ2ofMLga90TZEM2e6eVFfHlRDfe9sDfQx+DLi2oCn/HsiiJuuejEd2D5gujd0QZCrPOcXJrPjUtmhNh445IZQ6reOVAbkvEZjnSSqs7pj/E/EVTVU2mMqfe//gpwpjHmk7H2M1qqepwSoOlKItQeh0IxMtE2RKsCcqoqsfuMrZ6+DS0eSvKz6Ojq49BxD9mZwhcf3Bpx3N984Uw+dMq4ftllZ4NT9Vg81yHZFWgD/T4M9fco1rUe7GeRKJyqepJZzvkb4FxgHNAA3Oz/ex6+UM8+4IvWjSAaI93xK8MHuwqStVfOp7vX9KuqxG4/qxbX8MCL+7l8wUT+57nIktCffvp0Fk4ts3UQsSpbElH5Mlwr0BLNYK/1UF5HJ8eftE/LGPMpY0ylMSbLGDPRGHOfMeYqY8xsY8wcY8xF8Th9RUkn7CpIdhxs7vf0erv93L3R1/rxoc0HI5qvr1xUw3f/uCtEEiPW/oJtSIQEQDwyHaOBwV7rdLiOo+c2rSgJwK6CxGucG9f3Zz+eHl/bSav5+v9c9QFWLJrKtWdP4cGX9rO/qdOx2itWZUsiKl+GawVaohnstU6H66iSDYrSD+wqSDLEvnY/WlWJUyWKFXk91tGNOzODtZvi61UwFJr+w7UCLdEM9lqnw3XU1ovKqMVKwDW1dyEIR9u7KC+KnmhzivF39ZgQ2YXw+Hl4Mm9GeSF/ffNIYD8LqotZtXga9S0e8rIzyHIJY/IzuPoXvpLO6tJcvnvhTHIyM6gojkwojy90R+0hEI88RqyEY2+vl41vNtDTawI9GLIyhMXTyhMWmx4O0guxruVwiPHriF8ZlVj/nKs37OaKBVUhomrR/gnt6vSrSvJ4tu5IiHxFdmZoBYfdP/pFs0/iyZULae7spu5IO194cHPg/VsunsXCU0pZX3sWR9u7ON7Ry//71daYCeUNqxZyuMW+siWaPEY8zsjrNTR39vKdx3eG2DnYyWXhn8lwkF6Idi1jzS2JR8ok2eiIXxmVWIJgTqJq62vPilsyI5a42PZ3j3HFupccj/HPd5q46hevRLz/4DVn8MGTS233v3Lx1IDjsTtmom0E2LzvKJ+57+WIdf7v2jNZMHlsXNcqGolqKp9shoudkIKqHkVJZ6wEnIh9YrY/ibbBJvMO20g2eHq8NLR0Oe6/vwnlRCQcD0cRUUsEw0V6YbjYGQ11/MqoxErAAYHfFv1NtAXvK3gf4ck8p2NU+CUbwt8vL8px3L+VUHY6ZqJtBKh02Eei+gbEsjFdGC52RkMdvzIqsab5/3H7oQhhsP5KZsSSDIglyzG7sjhEssGd5eKWi2Yx2/++3f5nTyy2PaZLsBV2C99HdWku665aQEOLh72NbcwoL4wpHTL7pGJuuTjMzotnMeekE+v09nrZ/u4xNuysZ/u7x+ntjV/kbTDSC16vYW9jW8JE7ZJlp8VQ2muHxviVUUtkVU835UU5A0q0xZIMiCXL4fH08lp9Mw0tXZQX5TC7shi3OzPq/uFEs5iyguhVPcH7ONrexaHjHm58ZEfIuh+dNp7dDS1RE47d3X3seK85UHUz56TiQLOYRFSrDER6IRVJ4cFIRAylvUMu2ZBI1PErSnT6k3BMVnIyngRxMhhOyVYYWns1uasoI5j+JByTlZxM1YzU4ZZsTQd71fErygigPwnHZCUn40kQJ4PhlmxNB3vV8StKGjDYZF9/Eo7J0q+fWVnEjy6bw8rFU1mxaCqrFk/lR5fNSXpviUQnW98+0sa+95OXeE2H/gEa41eUFJOoZF9/Eo7J0K/3eg1/3nk4RLrijuXz+Pis5M+8TXSy1ZLIPtbRnZTE61D1D9DkrqKkKcMtOenEcD0PJ7uvPXsK9zyzZ1icgxOa3FWUNCUdkn2JYLieRzSJbOt1up9Df1HHrygpJh2SfYlguJ6Hk91WMGQ4nEN/SZrjF5FfiMgREdkZtGysiDwtInX+38kr7lWUYUI6JPsSwXA9Dzu7Vy2u4dGtB4fNOfSXZPbcPQdoAx4Iarb+Q+CoMeYHIvINoMQYc2OsfWmMXxnppEPT+USQDucxEE3/YLvLCtxkuHCUtx7oMVJBSpK7IjIZeCLI8b8JnGuMqReRSuBZY8y0WPtRx68oSjwMhRzCcOobkC7J3XKrwbr/9/ghPr6iKCOYRDSVT4djJJu0Te6KSK2IbBaRzY2Njak2R1GUYcBQVBYN1+qlYIba8Tf4Qzz4fx9xWtEYs84Ys8AYs6CsrGzIDFQUZfgyFJVFw7V6KZihdvx/AK72v74aeHyIj68oyjCjP3IWQ1FZNFyrl4JJZlXPb4BzgXFAA3Az8BjwEFAFHACWG2OOxtqXJncVZXQykETqUFQWpUP1UjyoZIOiKMOO4SoDkS6kS1WPoihK3IyERGo6oo5fUZS0ZSQkUtMRdfyKoqQtIyGRmo5kxl5FURQlNbhcwpKZFUxfuTDtE6nDCXX8iqKkNS6XMKWsQJO5CURDPYqiKKMMdfyKoiijDHX8iqIoowx1/IqiKKMMdfyKoiijjGEh2SAijcD+JOx6HPB+EvabSNTGxDEc7BwONsLwsFNthGpjTIS88bBw/MlCRDbb6VikE2pj4hgOdg4HG2F42Kk2OqOhHkVRlFGGOn5FUZRRxmh3/OtSbUAcqI2JYzjYORxshOFhp9rowKiO8SuKooxGRvuIX1EUZdShjl9RFGWUMWocv4jsE5HXRGSbiGz2LxsrIk+LSJ3/d0mKbZzmt8/6aRGR60TkuyJyKGj5BUNs1y9E5IiI7Axa5njtROSbIrJHRN4UkX9NoY0/EpE3RGSHiPxeRMb4l08Wkc6g6/mzobAxip2On28aXcv1QfbtE5Ft/uUpuZYiMklEnhGR3SKyS0RW+Zenzfcyio2p/14aY0bFD7APGBe27IfAN/yvvwGsTrWdQbZlAIeBauC7wA0ptOUc4HRgZ6xrB5wGbAdygJOBt4GMFNl4PpDpf706yMbJweulwbW0/XzT6VqGvX8H8J1UXkugEjjd/7oQeMt/vdLmexnFxpR/L0fNiN+Bi4H7/a/vB5alzpQIFgNvG2OSMWO5XxhjngOOhi12unYXA781xnQZY94B9gBnpMJGY8xTxphe/58vAROTbUcsHK6lE2lzLS1ERIDLgd8k245oGGPqjTFb/a9bgd3ABNLoe+lkYzp8L0eT4zfAUyKyRURq/cvKjTH14PuQgPEpsy6STxL6z7XC/2j4i1SHpPw4XbsJwLtB6x30L0s11wB/Dvr7ZBF5VUT+JiILU2VUEHafbzpey4VAgzGmLmhZSq+liEwG5gMvk6bfyzAbg0nJ93I0Of6PGGNOBz4OfElEzkm1QU6ISDZwEfCwf9FPgVOAeUA9vkftdMWuJ15Ka4ZF5D+BXuBX/kX1QJUxZj5wPfBrESlKlX04f75pdy2BTxE6IEnptRSRAuAR4DpjTEu0VW2WDcm1dLIxld/LUeP4jTHv+X8fAX6P7zGvQUQqAfy/j6TOwhA+Dmw1xjQAGGMajDF9xhgv8HOG4HE/Dpyu3UFgUtB6E4H3hti2ACJyNbAU+LTxB1L9j/tN/tdb8MV7T02VjVE+33S7lpnAJcB6a1kqr6WIZOFzqL8yxjzqX5xW30sHG1P+vRwVjl9E8kWk0HqNL7myE/gDcLV/tauBx1NjYQQhoyrri+znE/hsTzVO1+4PwCdFJEdETgZqgFdSYB8isgS4EbjIGNMRtLxMRDL8r6f4bdybChv9Njh9vmlzLf18FHjDGHPQWpCqa+nPNdwH7DbG3Bn0Vtp8L51sTIvv5VBkkFP9A0zBl9HfDuwC/tO/vBTYCNT5f49NA1vzgCagOGjZg8BrwA58X+DKIbbpN/geQ3vwjZyujXbtgP/EN1p5E/h4Cm3cgy+uu83/8zP/upf6vwfbga3AhSm+lo6fb7pcS//yXwL/EbZuSq4lcDa+UM2OoM/3gnT6XkaxMeXfS5VsUBRFGWWMilCPoiiKcgJ1/IqiKKMMdfyKoiijDHX8iqIoowx1/IqiKKMMdfzKiMKvcJgO8xwUJW1Rx68ofvwzU9Oe4WKnkr6o41dGIhki8nO/BvpTIpIrIvNE5KUgDfQSABF5VkS+LyJ/A1aJyHIR2Ski20XkOf86GX4N9X/6t/+if/m5IvKcf3+vi8jPRMTlf+9T4uv/sFNEVvuXXS4id/pfrxKRvf7Xp4jIC/7XH/ALdG0Rkb8EyQ+E2Dm0l1MZaejIQRmJ1ACfMsZ8QUQewjcj8uvAl40xfxORW4Cbgev8648xxvwLgIi8BvyrMeaQ+Btk4Jtd22yM+aCI5AB/F5Gn/O+dgU9jfT+wAbhERP6BT2f9A8AxfKqwy4DngK/5t1sINInIBHwzPJ/367r8BLjYGNMoIlcA/4VPwTHETkUZDOr4lZHIO8aYbf7XW/ApX44xxvzNv+x+TiifQpDoGPB34Jf+G4YlqnU+MEdELvP/XYzv5tINvGKMsUbuv8HnxHuAZ40xjf7lvwLOMcY8JiIFft2oScCv8TU9Weg/1jRgFvC0T+aFDHzSCXZ2KsqAUcevjES6gl73AWNirN9uvTDG/IeInAn8G7BNRObhk/T9sjHmL8Ebici5REr7GuwlgC1eBD6HTy/meXyj+Q8BXwWqgF3GmA/FslNRBoPG+JXRQDNwLKixxVXA3+xWFJFTjDEvG2O+A7yPb2T+F+D/+UMxiMipfpVXgDNE5GR/bP8K4AV8zTb+RUTG+dUWPxV0vOeAG/y/XwXOA7qMMc34bgZlIvIh/3GyRGRm4i6DovjQEb8yWrga+JmI5OGTuv2cw3o/EpEafKP2jfiUEnfg64e61S+128iJln4vAj8AZuNz5r83xnhF5JvAM/79PGmMseSBn8d3M3nOGNMnIu8CbwAYY7r94aQ1IlKM7//zx/gUGxUlYag6p6IMEH+o5wZjzNIUm6Io/UJDPYqiKKMMHfEriqKMMnTEryiKMspQx68oijLKUMevKIoyylDHryiKMspQx68oijLK+P8BDMDM9AdX2hYAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sns.scatterplot(x='horsepower',y='mpg',data=data)\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This relationship does not look linear. It looks instead as a quadratic, which would be fit by the following model:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 horsepower^2$$\n", "\n", "Again, the model above is nonlinear in `horsepower`, but we can still fit it with a linear regressor if we add a new variable $z=horsepower$. \n", "\n", "The fit model will obtain $R^2=0.688$, larger than $R^2=608$ obtained by the base model ($mpg = \\beta_0 + \\beta_1 horsepower$). Both have a large F-statistic.\n", "\n", "The estimated coefficients are:" ] }, { "cell_type": "code", "execution_count": 520, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err t P>|t| [0.025 0.975]
Intercept 56.9001 1.800 31.604 0.000 53.360 60.440
horsepower -0.4662 0.031 -14.978 0.000 -0.527 -0.405
I(horsepower ** 2) 0.0012 0.000 10.080 0.000 0.001 0.001
" ], "text/plain": [ "" ] }, "execution_count": 520, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ols(\"mpg ~ horsepower + I(horsepower**2)\", data).fit().summary().tables[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The coefficients now describe the quadratic:\n", "\n", "$$y = 58.9001 - 0.4662 x + 0.0012 x^2$$\n", "\n", "If we plot it on the data, we obtain the following:" ] }, { "cell_type": "code", "execution_count": 521, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTrklEQVR4nO2dd3hUVdrAf2fSOyGEJCSQEAnF0EVEBVRQFhUVUcSGdc26K4LdtRfUtaIiropiXxUUBUU/RAUFbAhIR4qRHkIIkMqkzfn+uDPDTKYlmUwKvL/nmWcmt5z7zp3Jeee8VWmtEQRBEITamJpbAEEQBKFlIgpCEARBcIsoCEEQBMEtoiAEQRAEt4iCEARBENwS3NwC1IV27drpjIyM5hZDEAShVbFixYr9WuvEhp7fKhRERkYGy5cvb24xBEEQWhVKqe3+nC8mJkEQBMEtoiAEQRAEt4iCEARBENwiCkIQBEFwiygIQRAEwS2tIorpaMJi0WwrLCO/2ExSbDgZCVGYTKq5xRIEQXBBFEQTYrFo5q/fy22zVmGushAeYmLKJX0ZmZ0sSkIQhBaHmJiakG2FZXblAGCusnDbrFVsKyxrZskEQRBcEQXRhOQXm+3KwYa5ysK+EnMzSSQIguAZURBNSFJsOOEhzrc8PMRE+5jwZpJIEATBM6IgmpCMhCimXNLXriRsPoiMhKhmlkwQBMEVcVI3ISaTYmR2Mt0nDmFfiZn2MRLFJAhCy0UURBNjMikyE6PJTIxublEEQRC8EnATk1IqSCn1u1JqnvXvh5VSu5VSq6yPcwItgyAIglB/mmIFMQnYCMQ6bHtea/1sE1xbEARBaCABXUEopdKAc4E3AnkdQRAEofEJtInpBeAuwFJr+wSl1Bql1JtKqfgAy9BisVg0uQWl/PznfnILSrFYdHOLJAiCYCdgCkIpNQrYp7VeUWvXK8BxQF8gD3jOw/k5SqnlSqnlBQUFgRLTTlNP1rayG+dMXcJlr//KOVOXMH/9XlESgiC0GJTWgZmQlFL/AcYD1UA4hg/iU631lQ7HZADztNY9vY01YMAAHciWo81RIym3oJRzpi5xyqwODzHx1cQhEuEkCEKjoJRaobUe0NDzA7aC0Frfo7VO01pnAJcCC7XWVyqlUhwOuxBYFygZ6oq3GkmBWllI2Q1BEFo6zZEH8bRSqi+ggW3AP5pBBic8TdYHyir4Y29JQFYWtrIbtVcQUnZDEISWQpOU2tBaf6+1HmV9PV5r3Utr3Vtrfb7WOq8pZPCGpxpJIUGmgFVflbIbgiC0dCSTGmOynnZ5P9bsKsKiIUhBr7Q4yitrPJqB/PUTSNkNQRBaOqIgrFRWa6YvznUyJXVOCKwZSMpuCILQkpFqrnh2UgeZEDOQIAjHLLKCwLOTOq/ILGYgQRCOWURBAJGhwW5NSZGhQWIGEgThmEVMTEBlTQ0Th2U5mZImDsuiqqZ2hRBBEIRjB1lBAAlRYcxcvoPrB2eiFGgNM5fvYGTP5OYWTRAEodkQBYER5nr3yB4uCXHijBYE4VhGFASSkyAIguAOURBWxBktCILgjCiIVojFotlWWEZ+sZmkWFntCIIQGERBtDKaozS5IAjHJhLm2srwVppcEAShMREF0cqQPhKCIDQVYmJqYvz1H0gfCUEQmgpZQTQhjdGHWvpICILQVASsJ3VjEuie1E1FY/Whtq1CJGdDEARv+NuTWkxMTYg3/0F9FITkbAiC0BQE3MSklApSSv2ulJpn/butUuobpdQW63N8wC6uNezfH7Dh64un1qbiPxAEoSXSFD6IScBGh7//DXyntc4CvrP+HaArT4JTT4WiooBdoj6I/0AQhNZEQH0QSqk04B3gceA2rfUopdQm4HStdZ5SKgX4Xmvdzds4DfZBLFkCw4bByJEwdy6Ymt8nL/4DQRCaCn99EIGeMV8A7gIcDe9JWus8AOtze3cnKqVylFLLlVLLCwoKGnb1IUPghRdg3jx4+OGGjdHI2PwHgzLbkZkY7aIcLBZNbkEpP/+5n9yC0npFOAmCIDQmAXNSK6VGAfu01iuUUqfX93yt9XRgOhgriAYL8q9/wYoVMHky9OsHF17Y4KECjZTREAShJRHIFcSpwPlKqW3AR8AwpdT7QL7VtIT1eV8AZQCl4L//hYED4aqrYMOGgFymLr/8fR0jZTQEQWhJBExBaK3v0Vqnaa0zgEuBhVrrK4HPgauth10NzA2UDHbCw2H2bIiMhNGj4dChRh2+LglwdTlGymgIgtCSaA6v7ZPAWUqpLcBZ1r8DT1oafPIJ/PUXXHklWBqv33RdfvnX5RgJgxUEoSXRJApCa/291nqU9XWh1nq41jrL+nygKWQADKf1iy/Cl1/CQw812rB1+eVfl2MkDFYQhJbEsZdJ/c9/Gk7rxx4znNZjxvg9ZF0K6NXlGGl9KghCS+LYrMVkNsNppxkO619+gexsv4ZzF3301EW96dAmnISoMDrFR7L9QDkb84rZsq+EWct3cbC8ktfG96dNeCh5xWZS4iLIToklODhwizrpRCcIxxb+5kEcmwoCYPduOOEEiI6GX3+FhAS/hnOcfKtqNA/MXcv2wsOkJ0Rw87As7p+zzq48nriwFwMy2rDsr4NO2x8b3ZPRfVIDoiQkhFYQjj1aeqJcyyU1FT77DHbuhLFjoarKr+FsCXBJseHkvLec7YWHARh7Qke7EgDD73DvZ2vZV1zpsv3+OetYnxeYsiASQisIQn05dhUEwMknw+uvw6JFMHGiUdzPTxyd0Slx4STFhrt1Tu/14LTeWxSYkFYJoRUEob4c2woCjOS5u+6CV181Eur8xDFUdUz/NHYdLHcbupriIaQ1PjI0ICU2JIRWEIT6IgoC4Ikn4LzzjOqv337r11COoapKwazlu5g4LMspdPWx0b0ICVZMvqCn0/aHzsvmsS83NKjTXH3ksl1PQmgFQfDGseukrk1JCZxyCuzaBcuWQVZWg4eyOawLSiu4+s1lxEeGMqZ/GkqBSUHPDnGs2V1EckwoxyXFcLCskuiwYGuV10pmrzCinOrbaa6ucvkKoZVoJ0E4OpAopsbkr7/gxBOhXTsj/LVNG7+Gcxc59NB52bz6w1a2Fx4mPMTEvWd3JyY8hHs+W2s/ZuKwLN77ZTvPj+vDoMx2jfPe/JBZop0EoXUiCqKxWbwYzjzT6CMxbx4E+5dL6Pir3YTiztmr7RFOABOHd2H64lyXBLqcoZmM7pva5G1FG6tvtiAIzY+EuTY2Q4fCK6/A11/DHXf4PZxj/4fSymon5QBg0biNLuqaFNMs/gGJdhIEwcaxV2qjLlx/PaxbZzQb6t4dbryxXqd7suGnt41yKbcRpHBbgqNHcmyzmHTqUhJEEIRjA1lBeOKZZ+Dcc2HCBJg/3+fhtl4Pv20r5Is1e9yW9e7czjWSqG1kKLee2dW+LT0hgunjB7CvxOwU7mqxaLbtL+XX3EIW/pHPn/vqHgrrqQ+Fu+0S7SQIgg3xQXijtNSoAPvnn7B0KfTu7fYwR8fu9YMzmbHU1adgs+FbLJq1uw+xaW8J2w8c5tOVuwAjZyImPIj2MeHc6+CwnnJJX0b0SOL7LfvYkl/Ki99tqZfz2JPTeUSPJBZszHfrjAakb7YgHAWIDyKQREcbjurYWGM1sWeP28Mcy1go5d6nYLPhm0yK8soadhw8zIylueQVmckrMvPyoq2UV9bYlYPtvNtmrWJ9XhFrdhXZlYPjPsdSGe5WBJ5KbKzPK/JYesNX32xBEI4NREH4IjXVUBIHDxrJdGWutYtqO3Z9ZSwnxYbzxerdLgl0XdpHu1UueUVmj85sm+Lx1LHOk9M5r0ic0YIgeEcURF3o2xdmzoRVq+Dyy6Gmxmm3YxmL2StcM6dr2/AzEqK4e2QPZi7fwfWDM41Q1/EDyE6OdV+WIy7c7syuvc+meDytFCJDgz2OKaU3BEHwRsAUhFIqXCm1TCm1Wim1Xin1iHX7w0qp3UqpVdbHOYGSoVE591yYOhU+/9wl/NXRsZtXZGbhH3t565oTefXK/szMOZkRPZKczDS2xkBvXTOQIVkJjO6byimZCQQFKZ64sJeLcslOiaNXWhyThntWPJ5WClU1NW6dztkpceKMFgTBK4EMc60AhmmtS5VSIcBSpdT/Wfc9r7V+NoDXDgw33QRbtxrhr8cdZ0Q44dwJ7kBZBbsPmbn27d+8OpNtdn6b49rmSI6PDCVnaCZdk2LokRxL53aGg3hYtyS6JEbTv1M85ZXVdGobZd8HnsNT20aF0b9TW5cudQChwYqcoZlYtFECJDRYfA2CIBwhYApCG+FRpdY/Q6yPlh8y5Ytnn4XcXKOwX+fOxsqCIxM+wJUzljmZep6av5HUNuGUV9a4rW3kaB7KKzIz9but9sgn23EmkyKjXTQZ7dxnM9tWMbWjkmzXsikjG7kFpUz44HfJmBYEwSMBTZRTSgUBK4AuwMta61+VUmcDE5RSVwHLgdu11gfdnJsD5AB06tQpkGLWj6Ag+OADI+N63Dijl8SJJ9p31zb1pMSFM25AJ8ZN/wVzlYX0hAgmX9CLkCBlVxa1e0jYCvsVlFbUOcS0vv2svWVMi4IQBAEC7KTWWtdorfsCacBApVRP4BXgOKAvkAc85+Hc6VrrAVrrAYmJiYEUs/5ERcGXX0JiorGC+PNP+67afRfG9E9j6kIjPNWmLHLeW+4UaWRzGKfEhXPNKRnMWJrLtIVbufrNZT7LfjuGtm4rLCMjIapO4anSH0IQBF80WaKcUuohoMzR96CUygDmaa17eju32RLlfLFpE5x6qlH19aefoH17l8S0icO7MPW7rQDcdEYXt0l08yYMZk+RmX0lZg6UVlBZozFXG8d8sXo3b149kOPau/6q96fyqsWiWbgpnzW7irBoo+RHr7Q4hnVLkrwHQThK8DdRLmAmJqVUIlCltT6klIoAzgSeUkqlaK3zrIddCKwLlAwBp1s3I0di2DBjJbFoEaboaCdTT0RIsL1aq6ckuj/yS7jj49XER4Zy1cnpTFu01an0d15RuVsF4Sm0tXsd/QiV1doum025CIIg2AikiSkFWKSUWgP8BnyjtZ4HPK2UWmvdfgZwawBlCDyDBsFHH8HKlXDJJVBV5ZSJ3CvVNZzUkfAQE5vzSzBXWRjTP80lW3rqwi2EBgUBrpnShWUVDU5286RcHDOzBUE4tglkFNMaoJ+b7eMDdc1m4/zzjRLh//iH8ZgxA9SR6CPbimJbYSkPjDqeyfM22H+1PzDqeKYtNExQnlYYZZXVbs1JT13Um/SECKcS4rX9CJ4qy3pyUm/OLwGQ+kuCIEi570YjJwd274ZHH4W0NOPZimMI7CNfbOD6wZl0io9gd9FhSsxVHCyvtB/rLpehY3yk21/8d89ew/TxA8h5b7lLaCt491F4yptYu7uYW2auki5ygiBIqY1G5eGHjV4SkyfDa6+57LaV2JixNJedhw4z9butvPPTdntpjtkrdrlkS992VleCgzz/4g8JUnw1cQgf5ZzEVxOHOE3q3sxI7sp6TxyWxacrd4m5SRAEQFYQdaa62sL6vCLyisykxEWQnRJLcHAt/aoUvPoq5OXBv/4FSUkwerR9t6O5qaC0gjeWGNVc3/tlO9cPziTIBJmJ0Uw4owvmagtaw1s/bqN3WhztY9z/4k+KDXdJgrPhK9fBJsvm/BLW7i7mvV+2k1dkdjnOF57MWIIgtG5EQfjA5hhen1dMbkEps5bv4mB5JY+N7snoPqmuSiI4GGbNguHDjUS6+fPhjDPsu23mJsfM57wiMzOW5vLURb154qsNLj6F5NhwthaUMml4lks/CG+1k3x1h3M0fd0yc5XH43zdn4aG2rYkRMkJgivSMMgL7ia/icOyeO+X7Rwsr2RmziD6dIx3f3JhoZFtvWOHkW09wDUU2TYp2TKfO8VHum3i0y0phnNfWkJ8ZKg9y9qkYEy/VI+lNzzJ727y9meSzy0o5ZypS1p1yY6jRckJQm1abB7E0YA7G/7UhVu4fnAmLy/ayt4iM306ejg5IQEWLIDBg2HkSFiyBHr0cHuoTUfXLpeRHBtOjQW27CtxMRVZNOwvrfCqIOpafqO+ZTocORpKdvibTyIIRyuiILzgafJT1t4MyXE+TDCpqfDNN4aSGDECfvwRrHWlvLUCBQgyKVbvKuLu2Wv4+5BM0hMiGDegk71sR3iIiaz20fS3aK8TubtCff4cVxtfZqzWwNGg5AQhEIiC8IKnyc+k4LHRPclOifN4rt2mrdrQ8cPPSL3wbNRZZ2H5YTHbgqIoKKngqfkbuX5wpi1lgqfmbyQ6LJic95Y79baevWIXD4w63m2Ya88OcW6zrN3K4qd93d043qrIthaOBiUnCIFAFIQX3E1+j43uSffkGLonuYlisuJudfDW1HcYdONllA47k6+eeIuO6ckuK4KJw7L4I6/IpSxHXpGZrftK3f7K3XGgzKuCaCz7urdxGmqeaikcDUpOEAKBOKl9UNuRXJfJz5Pjdn7XUjpeezkrU7uzb9Ycbp+32eWYpy/uw8QPf2fCsC68seRIYb9/n92N8soabIVdZ68woqneuXYgJ2Um1FuW+jqRjwZntDca8jkLQktHnNQBpiG2eU827Z2DTmfq+bfz7GdPs/2WG6gePAmCgp2O2WFNTrP1tp66cAvxkaGYlHIqrDdpeBZRoUEkxYY1SJb62tePdjt9Q30wgnA0I5nUAcBTrwVzVQ2fdh3CgyP+SedfFjH1q+cIstQ4HdMjJdbe23rm8h1MuaQv95/bgynfbHbyP7z43RYy20fTqa13M0hj9X2Q/hGCcOwhCsIHtSuoemveY8NdGYspl/QlMyGK8BAT7/c7h5fOzuGcDUt4bv6LKH2kcF90WBC3nZnFhGFdGNU7lcnzNrAp3zXM1VxloehwlU+584vNvD5+AOkJEXZZnriwFyZFnd6Lr/ckdnpBOHoRE5MXGurg9ZRXYLFoHhvdk/vnrOO53ucTWVPJ9QvepneXZObc+ADTFm7lYHklD43K5n/LtrK98LCxqkiOdRtls2lvCT2SY13MIp4qv0aEBrFudxHPfL2Jg+WV9XJW+5MrIQhC60Sc1F5obMdsbkEp1769jFG9U+meHMOW/GLO//gVurwxlbdOOI9HhueAUnZn9eb8ErSGX3MLuHRgBvfPWWvva333yB5s3VfKSZ3bcmJGW6eJ2pPcOUMz7d3t/H0vgiC0fMRJHUAayzFri5DZnF/CeX1Smb1iF7cMz2Lqwj8JHncTkau28/flc6kIDuXJ067BXGVh674Spi3cal+1pCdEkDM0k8jQIGLCQ1xWBx3ahJMQFUZGQpRHuWtblI4mJ7MgCI2PKAgvNEYClad6Tm2iQgkPMVFp0fz3bzmE1VRx46+zMQeH8uoZ4xnevT2nHJdgN+Ws2HGA8OAgyitreOFb565zd89eY0+ss9Vu8pTg54g4mQVB8EbAnNRKqXCl1DKl1Gql1Hql1CPW7W2VUt8opbZYnz1Uu2t+GsMx66me084DZTx0XjZfrN7NxOFdeeKcfzGr15nc8uOHzCldSq/UNgzKbEdmYjQmkyIhKoyZy3eQGhfhsfyHrYZQkAm3cvdOixMnsyAIdSZgPgillAKitNalSqkQYCkwCRgDHNBaP6mU+jcQr7W+29tYrS1RzpGf/9zPZa//av87JS6cMf3T6JESQ3pCJNXVFvaXVRIXEcKhYjMnPjiJ+M9n89d9k9GTbrFfz7YS2bS3mNcW57qsDmwFBAFevbI/3ZNjqLFAQamZxOhwgkxQUFpBaJCJ8soaKWktCMcALdYHoQ3NU2r9M8T60MAFwOnW7e8A3wNeFURz4m8CVUpcOBOHd8GiITosCIXi+W83OyW8vfuzUT584rAsnjz5H7x+qJTjHn+AJ5btpO9zD9sjjUZmJ9MjOYa0+EgemLvOpQQ5uLYNHdEjyW0J8ZM6J7iU/JZ+CIIgOBLQPAilVJBSahWwD/hGa/0rkKS1zgOwPrcPpAzNicWi2ZBXwvTFuUxbuJXyyhq7coAjCW9j+qfZTU+3np3NDWffxp4zz+Heb6YT+fJUdhwwsqtNJoUGpi0ySo7fdlZXplzSl5nLd5BXZHbbNnR9XpHHtqOOcs5fv5dzpi7hstd/5ZypS5i/fm+98iQEQTj6CKiTWmtdA/RVSrUBPlNK9azruUqpHCAHoJO1RHZro7b/waLx6D+wvd6yr4SLT8rkyxOfpcPOIs597UnWRARjee5RTCajN/X2wsN2c5KjyWpjXolL29C8It+RWNIPQRAEdzRJJrXW+hCGKWkkkK+USgGwPu/zcM50rfUArfWAxMTEphCz0XEXbuquXIXNDRQeYqLGAlMXbiGpXRyTzruTed2H0PuFxzj4yOOAa8kLW7vSjvGRzFiaa1cOtvFS4iJ8lsjwFs4rCMKxS8BWEEqpRKBKa31IKRUBnAk8BXwOXA08aX2eGygZGkJtW3yn+Eh2HCxvkG2+dpjs7BW7XPpK23wQjr4Ec5WFbfvLqA4KZtJ5d6CB8x59AEtEMPq6CTx7cR+27Cth1vJdhAYrJl/Qi7KKal4fP4D75661Z2BPuaQvPZJieGFcXzbkFWPREKSgV1qcU/SS9EMQBMEddVIQSqkxbjYXAWu11m5XAEAK8I5SKghjpTJLaz1PKfUzMEspdT2wAxjbALkDQu2chfSECG4elsX9c9Y5OXjrWp6idp+Bg+WVZCVF8+XNQygoNdMuKozSimoOV9VQY8FuHgoPMVFRbUzWNaYg/j3mLk7fkETMPfcwZ8EmXhp4MeEhJp4b24caiybnveVOSXOpbcJpGxVGp/hIvt+yjx0Hyp0qwT43tq9XOVtSCKw4zwWh+ahTmKtS6kvgZGCRddPpwC9AV+BRrfV7gRIQmi7MtXaJipvO6GLv6majvuUpfIXJukuke2hUNq8uPlKL6T8X9qJfh2jWnnkh563/nqeHXsV/T76EicO72Cd+d/LlFpQyZ9Vur8fUVc7moLGaHQnCsUpThblagB5a63zrRZOAV4CTgMVAQBVEU1HbFu/Y1c1GfctT+AqTdSyCtyGvmI15JXy4bDujeqeiFGgNbSKDySurZtI5t1KF4q7F7xJSU03NGQ94lS+/2OzRMe7pPbSk0lziPBeE5qWuCiLDphys7AO6aq0PKKU815xuZXiyxQfaNm9TIiXmau74eDXmKgtrdhfbrzfi+EHEhIcQGhbCHefcQo0K4tYfP2D5G2G80e1izNVHZnVH+ZJiwwlSvt9DS/2lfrQ3KRKElk5dFcQSpdQ84GPr3xcDi5VSUcChQAjWHNS2xX+xere9PHdT2OazU2JdrvfY6J5kp8RhMimmXd6PNbuK2D5sKr+/+jgDPnmLr8fWMLLrJbSJCueqk9NJT4hiz6HDlFdW0zUxhl5pcS6O8acu6k1hWQUmBTUW2H6gjB2FZUwankVZpdHA6Kn5G0mICiUxJqzZzE3iPBeE5qWuPgiFUSJjMKAwymbM1k1UK7wpS23UtsXbopiayjZfXW1hfV4Re4vMJMeFk50SR3CwiepqC3NW7z6iPIIVc3Z/Sfe3/0vp2Ev55o7/cM8XG52io9LiI/hbj2T2FB8mv7iC8spqgkwmHpi7lspqzVUnp7uNqLJldZtM8MK3W/xeTTTU0dxSVzaC0Frw1wdR51pMSqlkDJ+DBfhNa723oRetL81Zi6mlsHrnQcZN/8Xl1/Siyp9IefoxFnQ7hQmj7qQyOMS+L2doJsO7t6dPR6MeoqMT3pMD3lbTydaTYuKHv/vVN8LfSb4lOs8FobXgr4KoU6KcUurvwDLgQgzz0i9KqesaelGh/njKiF4z/l/89cDjjNj0E69/OpnwqiNZ1BYNex0S5xxt+p4c8I5Z3dv2l9lfHyirqHfrVfDsaHYs9eENm3/GsbKtIAhNQ10zqe8E+mmtr9FaXw2cQAsusNfacdcH21NGdHJcOPrmidw76hYGb1vFOx8/THRFub3/Q0pcuH28w1U1TBrehZS4cPv5tcdzzOq25WKkJ0Sw+5DZXqvp2reXsXTr/jopC8nSFoTWS12d1LuAEoe/S4CdjS/O0YE/yV2eTDJndmvv1YF90uQ7uCMkjKfnPsuHM+9j+SvvExQVSmx4MF+s2cPds9fYk/8eHHU82wvLmXZZP3ILSimuqCE5JpSMdtHsKTIz7fJ+lFdU8fy3hqlp8gW97Ml4KXHhjBvQySk5z5vJSBzNgtB6qauT+l2gF0fKYpyPYXLaDKC1nhIoAaF1+SD8tbl764PdKT7SrQMb4Ldthfyae4Deq5Zy6r3/orh9B667dDK3/v1Mct5bYZ/cxw9KZ+pCZ8f0stxCRvRM4ZEv1tu3T76gJ1nto4iNCCW/2GzvaVHf5MHG8kFIJrUg1J+mSpT70/qwaZO51tcxDb3w0Yq/yV2+Yv/7dIynT0fX8xKiwpi2aCvmqvaceNHDvDF7Mq++OpHf+39IfGQoY/qn0T05hjs/We1Sbvy18SfwD6sSsW1/YO46ZuYMsstsWwXUN3nQZFKM6JHEzJxB5BWZSYmLIDslVqKYBKEVUFcfxFdAXwwn9VgMR/XFWutHtNaPBEi2Vom/Nvfa1VrBmJwjQoK82vod26P+1rEnV179DLHhwZxxw8XcHbWPGUtz2ZRf4la2Q2VVbrfbHNzuWq/Wls+Tychi0SzYmM+46b9w4/srGTf9ZxZszK+Tk9tfB7cgCP5RVwXxPvAmRi7EKOvjvEAJ1ZrxNMHX1ebubjKeOCyLiR/97rWJj61kx1cTh/BRzkm8+Nh49n+9kPL4doy8/RqGbPjJPl5t2dpEhXh0gNce+/Su7Xjqot517m3tzyQvDm5BaF7qamIq0Fp/EVBJjhL8rYxqm4xTcwbx3R/7nKq8+jJV1a77ZEnowTfvziXp8ot49bMneEqXM/Hmf7r4IN5e+hcPnZft5IOwOcDdjd3foumVGlen3AR/ymWIg1sQmpe6KoiHlFJvAN8BFbaNWutPAyJVE2HLWna0jducvg3FsfierwnU0QHbPiacIJOR7xAZGkx+sZmp3211Oj4+MpS8osNszi9xsuVvKyyjsKyCUJOJA+WVRIYGkxQbRqe2UXQ5PoOLxz/J8x8/zr2fTeHVskPk3H4n2R3asGWfEZiWndaGquoapoztQ42GDm3CiY8I4bftB4gMDaaypoaEqCMlN+rTp7shk7ztvhSWVfDURb3tEVgtqQy5IBwL1FVBXAt0B0IwMqnBcFK3WgXhUrrC+qt5dJ/URlESviZQdw5Yx1IXz1vNTLaJNSXOqLV0/TvLneRNjAnlwbnrGTegk8vKICspmtOz2vP4lYOYEPQQj37+PDcueJNtbS3wwgtMmvm7y8Q9aXgWeUWHmfLNZvtYt57ZlQ+WbefukT3q7SCu74rKXU+O6eMHEBKkJIpJEJqYuoa5rtVa92oCedwSiDBXT6UrZuYMspemCCSewlltpS7SEyLIGXock+dtwFxl8dj74dmL+7Bxb4nb0NOcoZmM7ptKRkKUUa6iqJzuzz9Om/9ORZ87igUPPM+keUeUygOjjqd9TBg3f+iqOCac0YWPV+xk6qX9KK+sqXdNpbqWy/AW5isVXAWhfjRVmOsvSqnjtdYbGnqhloan0hV7i8xuw0gbG0+2eVupi+2FhykxV3H94Ex6p8aicQ4vTYkLZ0z/NKotmu7JMVbzk9lpLIvGbuu3r2hefhGyu6FuvpkReXuY//ZM1tREsLWglGkLt3LLmVlu5UqKNRLkbEq1PiGn9TFJebovB8oq7PtlJSEITUNdbSmDgVVKqU1KqTVKqbVKqTWBFCzQeCtd0RR4inZyLHVRYq5hxtJcspJinOS1JbzNWJrLLTNXcecnq7nq5HR7CQ3b+SaFe1v/v/4Fn38OmzbRYeTpHFq2AltwVGRosFu5EqJC7SYsCFzIqbv7UrvUxzlTl3iN6BIEoXGoq4IYCWQBIzDCW32GuSqlOiqlFimlNiql1iulJlm3P6yU2q2UWmV9nOPPG2gott4LjuGatSN3Aom7cNZJw7P4dOUu0hMimHJJXyJCTLw+fgCd4iOd5B3TP81lsn7xuy2MHZBmH+uBUcfTs0McWuN2Iq3+29n88MZsDhUfZvTNl7HhnU8YPyidwlIzk4ZnuchVbdEBCzl1rD2lNUy7vJ/9+ukJETw55oij2nZdyYcQhMBTJxOT1np7A8auBm7XWq9USsUAK5RS31j3Pa+1frYBYzYawcEmRvdJJat9tNvSFYGmdrRTYrQRxTQgI55dBw67OHVH9EgiMSaUZy/u43GyPj4llucv6UNMRAiT562397SubQqyWDQ/5RZy43oL8eOf481PHuG1jx7i4aIC0u6YQFRoEDlDM7FoMClIjY+grTVXorFDTj1lS8+fNIT9pRXsPmTm59xC6SwnCM1AwGZDrXWe1nql9XUJsBFIDdT1GkJwsIk+HeP5W88U+nSMbzTl4K4aqzscS1kf1z6ajHbRJESFcc9na11+La/PK+If761kwoe/s7Wg1K0ZaENeMVsLypjwwUq2Fx52Ot/x1/a2wjKWbz+AucpCXmwiY694mp/S+/D4ly/S/7VnwGIhNMgYv8YCzy3YxMrtB5k4zHll8Z8Le/kdcuopkc6ioW1UGHfPXoNF1y97WxCExqGuTmq/UEplAP2AX4FTgQlKqauA5RirjINuzskBcgA6derUFGI2Cv7WD/LkpHV0qs9esYuJw7KcwlqfuLAXz3y9iYtOSPP5azu/2ExYsMm+IigNi+S+657gvz/N4KSPppOwZzs3DJvAX4ePyFtcUcPsFbu4fnAmSoHW0CYy2G9HsbdEOq2N1+7er+RDCELgCbiCUEpFA7OBW7TWxUqpV4DJGHkUk4HnAJfmQ1rr6cB0MMJcAy1nY+FvsT5PiWUpcUe25xWZee+X7eQMzaRfxzakJ0RhUnCwvNJ+vDdTUFJsOCEmZe9VHR8ZyhUnp3OJ+RquNMdwz/dvM2vPDm4Ycz+rVJzd4Z1XZOblRVvtY444fpDf98tXIl14iMn+fq8fnEmQCYZ3b0+v1DaYTEqqvQpCAKlzy9EGDa5UCDAP+NpdSXDrymKe1rqnt3FaU7nvn//cby+N7chHOScxKLOdz/M9rUBG9Eji+y37WLOrCIuGIAW90uIY1i3JPlHOX7+Xp+Zv5LpTOlNYXun2ONs1vlqbx+NfbXRb5fXCvWt48uMn0GFhzH1gKm3/NgyL1mzfX0ZKm0hA0z4mnEOHK0mO9S8D3duKC/C6GpNqr4LgnabKg6g3SikFzAA2OioHpVSK1jrP+ueFwLpAydAc+Fs/yFOpDotFc6i8yp4sZ4u6sli0vfzFyOxkjk+JYeWOQ/xn/h9OkyY4l/bo2DaS0GDFy4u2MmFYF6eM7ay/jWV0RAIvz3yEC++4mj+KnmTvJVdQo+HZBX9w3Smd2bKvFIuGDXuK2XGgjLOzUxqsJEKDlZNTPDRYeb0Xtsnf39WaIAjeCaSJ6VRgPLBWKbXKuu1e4DKlVF8ME9M24B8BlKHJ8bdYH7hPLFu7+5C9LAgYk+H9c9aR1T7anvltMiksGu514+Q+ftIQNuSVOMn12OievLRwCxEhR/wR9hDauFRGXzWFaXOfYugjdxC9ZSO3ZoxmwlndKa+qcVJU957dndW7D1FZbam3mWdbYRkTPnDN3LZlTntLsvOnEKAgCL4JmILQWi8F3M0SXwXqmi2B+hTrqw91zfz2NGnmF1e4/Nq+f47RFMjoVW34IxwbAhWHR3Pt2Ie5d9GbXP/BDF7JWEn5yPe5ZcF2+zHxkaGUVdZwxRu/Ntgpb2toZMsin71il1R7FYQWQNME/R9jOIav2n4F+0tdM789ZWiXVVa7VRyHq2oor6zh3Z8NJ3C3pBin82tMQTwz8h+sfvg5Bu1Yy6mXn0v6nlz7/jH903jxO+8Z1t7Cfm1FCGcszWXawq28sSSXq05OJznW9yTvLtlQopsEofEQBVEP6prfEAg8ZX73SIp1kqlTfKTLpPnURb2JDnNfQiMiOIio0GAOllfy8qKtPPHVRpd8h+fG9qXkiitY/e6nhJjL+ey927lg/SIAry1I4YgT2lOZjBoLLgrmxe+2UOM8pFtqN0n6auIQl5VLc35mgtDaaZI8iKOB5o6YcZf53SMplm837XMb8fTVxCHkF5upqtE8MHctldXabkayHfvQedlMnPm70768IjMzl+9wKrGdFhfB3DV7eOCPYLr8/SWmf/UML857jn57NlE09AmvZh5fjuR9Je5NYgWlZo5r79uP4M1H0dyfmSC0dkRB1JGWEDFjy/y2+RxyC0rdyuRYGtuxdPa7Pxu5E6lxEUSEBfPcgj/sGde2fba8Cke/yeqdB3lgruEgX0cUl4x9jBe7fMg1n77D3rt2k/DISzy2qtitU96XIzmQfoSW8JkJQmtGFEQdaYkRM75kqr0/r8joUjdhWBcAu3KwUWOBimpX205tB/mu0mouyhrLB48PpM/Dt3PO1aM44bW3KDp5sItT3pcCyEiIYtrl/VzyOxrDj9ASPzNBaE2ID6KOeHL+NmfEjC+ZfJUUT0+I4KYzunDbWV15cNTxzFuzmxvfX+niJ/DkIN9/7mjOv+p5DobH0P2qixg0+y0y2zlHbNXFkVxZrZm+2HBSv7Y4l8rqxvETtMTPTBBaE6Ig6khLjJjxJZO7/Y+N7sm8NbtZvGkfN57WhRlLc5nyzWZunbWKcQM6kRIX7hKJ5M5B/tB52byx+E92p6Szdd53cOEYuOsuGDMGDh4preXLkezJDNQYpbxb4mcmCK2JgJbaaCxaSqmN+rTObMzr1a4z5Lg9JS6cGgsUlLqXqbbMaXERbMwvpthczQ3vLncx/dhanoJRHmRgRgLbCsvYX1qBAgpKK0iNi0CZYM8hM7ERwXSIi6CmRhM09UXSn3kUUlJQH34Ip5zi9X2Aa2kSW6e8XqmxdE2K8fseN/VnJggtiRZbauNopD6tM/3FW02mBRvz6xyZ4yiz45h/H5LpteVpeIiJxOhwFxnuGdmdvCIzz3y9ySka6tUftrK9ph8Dxj/DOwueJ3LoUNTkyVjuvIv5G10jrWzyOvoobJ3yaldt9SfqqCk/M0E42hATUwvFk+llfV5Rg00ytcf05J+wTcxBJlyuVVheaVcOtm2PfLGeUb2NVh/LE7tw2qXPUnbeaLj3XsxnjuDxNxd5lDcjIYrnxvb12CnvtlmrWLnjIPPX5bF65yGq3TjRBUEIDKIgWih16QvhuL0urT8dx7T1WKidUHdGt3Z2P4G7a1m0+8Q45fADf39QBOuefQVef52wX39mzus3Mfiv393Ka7FoLNpCztBMOsVHuB178ZYCbnx/JeOm/8yc1btFSQhCEyEmphaK574QEQ3OG3Ac011Pidr2+drmnzH90+gUH8Gk4V2YtXwXeUVm+/UdXVnhISbax0bA3//Onm59OHzRWN6d9SCvDrqIKYOvJDg81C7v+rwi7vzE6Dc9YVgXt+/NllXtrkChIAiBQ1YQLRRbfsDE4V2YMKwLk4Z3Ydrl/chOiW1wZE6n+Eievqi3/dyD5ZVkJETRuV0UneIj2VZY5lSSwhYFlJ4QwfhBRr2ku2av5bXFRr0kWxOjh87LZt6a3W7lST11ALnzvuOTfn/jX798wmf/u5OX+0dSWFZBbkGp2055ju9t4rAsPl25y/4ebAUKBUEIPBLF1ELx1UinvpE5FotmydZ9VFZpisxVJESFsiW/hLd+2s7B8kp76e/thYddrrV29yHGTf/F5Zf9jKsHEGwykRwXRnWN70iqqlkfk3n/HVhKS3n89Gv5+KTzeOu6k7jmrd+c+lGMHZBGrw5xxEeFcvvHq5wS+sJDTMzMGSQrCEGoAxLFdJTiq0xEfSNzdhwoY9dBM5PnbbArnInDsuxj3z9nnT3Etfa1yitr3PoGgkyKkzIT7ArA028Ni0VTYq5i99C/seOTvrSZ+C8e/fY1zty6jN0DX+Y/Y3rx1/4yeyZ1RrsouiZHkxoXyc3Dsux9MGx5HNkpcQ27qYIg1AtREC2Uxi4TkV9cYVcOtrGmLtzipBQcHc2O12of494fkhgd7rMgXnW1hTmrdztN8g/N+IhlL7zEtZ9Ow3Tl2fx026NMr8my779jRDcKSipIT4h2KVCYnRLX4M51giDUD/lPa6E0dpkId/0g4iND6Z4cw4RhXfj3yG70So1jwjDD55GeEGG/VpAJJg139g1MGp5FkMnzSmfHgTJyC0pZtHkfOw+UEx8Zat//yJcb6HjPbZxzzVQOdz6OYY9M4qnZTxFrLsVcZeHZBZsICTKuZStQ+LeeKfTpGN8ilIOUEBeOFQLZk7oj8C6QDFiA6VrrF5VSbYGZQAZGy9FLtNYHPY1zrNIYrUsdSY+PdFoF2Br13PnJavv4k4ZnMXvFLg6WVzL5gp4ojMkwr8hsbyikFGhtVH/t16kN2k3Ya3xkKMu3H+L+OWudzFnv/bLd7pQ+XFnN3qSO/PzWZ2y45T4m/fghJ+1cy31/u4nvupxEeWVNvd+jt4ztxkJKiAvHEgFzUiulUoAUrfVKpVQMsAIYDVwDHNBaP6mU+jcQr7W+29tYx6KTGhq3TMS2/aUs3lzA/rJKLBq6J8Vwh1U52HAstREeYiJnaCbdk2Pp1j6ac6ctdTn2y5uHgNYu+yYO72LvWe1p7HevHUi7mDC0xTi/y87NPPPVC/Qo2Ma87NPInvUWnY/vXK971RQTd25BqVMJddt7+0pKiAstEH+d1AFbr2ut87TWK62vS4CNQCpwAfCO9bB3MJSG4IbGbF1aUFrB4SqLvWrq5n0lXhPezFUWLNrIpD5cXePRxORuX6e2kR7Htjma+3eKJzMxmuBgxUPnZbO1Y1fOv/p5pg69krM3/USnoSfCRx/h0fNdi0AW/XPEm29IEI42msRJrZTKAPoBvwJJWus8MJSIUqq9h3NygByATp06NYWYRzWhQSae/3azfXKzWEtq1P4lbJuPba/NVRZ2HTzs0cR0qLzKaV+3pBh2HChzO/ZJndtyVo/2To7mvUUVvPrDVvv5FWfez/ULTmfad/8l+rLL4MMP4b//hdRUr++vqXo/eEpgTIyWEuLC0UfAPX5KqWhgNnCL1rq4rudpradrrQdorQckJiYGTsBjhNqhqu6S0iYNN5LSwkNMPDQqmyWb99mzt209q6ct3MrLi7ZysLyS9jHhLvs25Zcwa/lOl7H/c2EvwkNMxISHOK2Eyiqr2V542Gns70OS+e1/X8Czz8I330B2NrzxhtfVhCenfnJseKM6lN2VEJ80PIu/Cp3HFke2cDQQ0EQ5pVQIMA/4Wms9xbptE3C6dfWQAnyvte7mbZxj1QfRmLiznacnRDD5gp4UHa6moMRManwkh8oqiQwL5p2fcjmlSyLdk2MZ0SOJ77fsc+r61iMlloToUNrHhLF6VxFb95Vi0RAdGkSHNhE8980mRvVOJSLERHaHWB7+Yr1TEt6IHknsOFhOQUkFV7+1zOUX+bvXDaRddBgZB/Mw/SMHvv8eTjvNWE0cf7zL+3Png5h2eT8qq3Wj+yW27S/l0993Y9GGzvp0peHYt/khxJEttBT89UEE0kmtMHwMB7TWtzhsfwYodHBSt9Va3+VtLFEQ/uMuH+HR83vy8vdbuGxgJywWnMpsTxyWRe+0WE45zli91Z7wbjurK2/9uI3UNmFcOjDdJZmtX8c2FJRWEBES5DYLe/r4AeS8t5z4yFCuOjmdF7/b4jL2wfJKY2Lt0R7TW2/C3XdDSQncdhs88ABEO5uOajv1tYZzX2p8h3LtHhY2Pso5iUGZ7cSRLbQYWqyTGjgVGA8MU0qtsj7OAZ4EzlJKbQHOsv4tBJgdB8t5yZoYN2FYF56+uA8vf2+U1khtE+lSZnvqwi2EhwRjMim3DuAp32xmTP80rjol064cbPvun7OOA2WVDMps5zELe/n2A/aigf+3No9nL+7Dy5f349mxfZi3eo89HPa2WavYdvAw3HADbNoEV10FTz9trCI+/dTJ7FTbqb+vJDAOZV85KuLIFo4WAhnFtFRrrbTWvbXWfa2Pr7TWhVrr4VrrLOvzgUDJIBwhv9jsZOvfnF9ir3H01/4ytxPagbJK+7mekuwsFs3fh2SSEhfudG5+cQXgeTK1VWhNiQtnZM8U7vhkNTd98Dt3fLyac3t3sI/nNLEmJsKMGbB0KcTHw0UXwbnnwp9/un3PgepJ7auVaV2uKz4KoTXQ/GmpQpPgadICqKyxuN2XFBvm9lzHJLtbZq7ijSW5jB+Ubp/UHc91N5k+dVFve/VXd02Cnv92M1ec1Ml+vMuEfuqpsGIFPP88LFliOLEfeQQOH3Y6LFA9qX312fZ1XZuP4pypS7js9V85Z+oS5q/fK0pCaHFINddjhNqO0/SECG46I4sH565z6wd4bHRPRvdJJTjY5HKut0S4GUtzefT8npzfK4Xw8GD7tR19A53iI+1tU/8+JJNpC7e6yPvUmF489MV6n85dy67dlE+8hejPPqEqrSNBTz+N6dJx2BI6/Ek2rEtPcE8Z296uKz4KoamQaq7HOHUtL2H71dt94hD7pJUSHUbnhEj2FlfQKT6CgRltySs2kxwbTu8OR3IVTCbFiB5JzMwZRF6RmWCTcmuS6p4cw7vXDSQ7OdquHMBwkB8oq2R/aSUhJhNpcRF2WXYfOswb7hojtQlnZs4gslPiPCsHi2b+QRO3ZV9H3/D+PLTwDXpcfhn65Wmo55+HE0/02pPa273ztye4t+s2Vc6GIPiLmJhaMfU1VTg6cTvFR/Llhr2Mf3MZT3y1kZ9yC7lixq9M+OB3rpzxK99u2mcfx2LRLNiYz7jpv/DIFxuosmi3Jqk/9pZw1ZvL+HL9PiqttZQqK2uYs2YPV1rHvmLGr8xZs4fqaguZidGktYlwm6W9fk8x46b/woKN+R7fj6Pz/JdOvTn3que579xJ1GzaDAMHwtVXw+7dDbp3gegJbsNWHbf2/WuMZDvxbQiNiSiIVkx9y0s4Th6rdx3iJavtf0z/NLt5yd042wrLeGr+Rq4fnMktw7PYWVjGrWd2dZrUHxh1PJ+u3IW5ysKDc9exZk8RAGv2FPHgXOcoJ8f9SkFCVAjPXtyHpy7qxbMX9yEhMoR3f97u8/3U/iVuMQXxv55n8fu3v8K//22U6ujaFR58EIqdczR3HCjjj73F/H2IEdUVHxnqdC1fPcFT4sK56Qyj8u3fh2RSWFbh8V7Xnqi9Vcf1B/FtCI2NmJhaMfUxVbgzmdgqrCrlWpHVcZzCsgrGDejklCdxz8juTDijC+ZqC1pDibnK3qPaiGIyXu/1IKNtf0FpBQfLq3nw8yONjG49s6vP9wOey14kdEiE//wHcnIMRTF5MrzyCtx3H/zzn1hCQlm545Ddj+J4L2zX8twTPJz0hAiX+9G5XRT90ixufTa1zVDequNmtGu4iclXkylBqC+ygmjF1CeM093kMXXhFsb0T7Of52mc0CCTS6TRf+b/weEqC9MWbmXG0lxKzDVO5ybFGuemeJDRtr92jShbFJOjXJ7CUn1GKXXuDDNnwm+/Qd++cOut0K0b+//7OvfPdr0XYwek2a/laezslDgeOb+ny/2477O1rM8r8nivHVcnSbHhHkuX+IPkXwiNjawgWjH16RnhafIIMsHHy3cxaXiWUxST4ziekt1s1VltGdlg/fuCnvTuYLQF7dUhjkcv6Gk3M9Xe72tsb2Gp7hzvbvthp3cn/9UPyVj5E8lPPkL7m//B7MQMpgy5km+6nATKcLp3S46xX8vb2JXV7mXeW2SmT0ffK7uMhCimXd7PqXRJr7Q4pzDYhvS18LTq8VfxCMcuoiBaMXWZIG14mjyGZiWSnRJLanwEZ/VIYn9Zhcs4ns49qXNbRvRoj7mmmskX9ORgeRXxkSEEB2GPgAoNDWJ07w5ktouyT3i9O8QRGhoEQPvoMLdjn961HWP6pfqcHH1FKTmbekKY8ubn9P/1WyL+fS+vf/oY65KO44VTL2dpj0HEhIXUaeyk2Ai3MidbV0V1magrq7WTiWvKJX09yFz3Ok6N3WRKECQP4hjBn4nH27nbCsv8iulft/sQS7bsd1q9TBqexZCsdvRMbVOn9+Xp17anfIP5k4awZlshPz06lRuXfEjGoTwKuhzPlFMv44anJ5HZPsbrtbYXlmHR8Oi8IwUIHzovm1OOa0t6gu9ifd7yIAC/7mdjNpnyNHYgO/YJjYvkQQh1oj6rjfqc629Mv6deE5ntonwqCF8TsSfZ9habSWkXTcJNOcz+53X0+PZzer/9Ev955wFKl38Mjz0C558PJpPXa02+oCehwQqlTLyx+E86t4skPSHa5732ds/ctXCtz/30tqLyB6lQe2wiCuIYwp/Jw7O5xT+7t2M/Ccfzk+N8n+8raseXbDOWWrPBQ3oTfN0rXPLH9zyydi5ceCHlx3WldNKttLvhWkzhYW6v9cDcdU5tVB3fs7d77UuuluhHkAipYxNREIJfZCRE8dr4/pQcrqGsopqo8GBiwoOc7N7V1RbW5xWRV2QmJS6C7JRYu48iOyWWx0b3dCkXnp0S5/PadXEGe7PJO+4LDg9l8BN3sZjb+erBl/j7j7PoMfGfHH78UcLuvpOC4Re6vVanthFMGt7FycnsDYtFozVMuaQP0WHBHCyrJCjI5HTPAulHaKiZKL/YTHxkKGP6p9nb0s5esUuyv71wNJjkREEIfmGxaApKKl0meItFYzIpt30oHOs8mUyKxJhQnr24D2WV1USFBhMTEdQoUTu+TD2195kUjHxxCeZuQ5nddQin567gX8tmM/C22xjQZjJ39fwbb/c+m30xCfZr7ThwmBlLc+1OZl/3yl0uyszlO7jpjCyqqy2EhgY12BTYkOvX1UxkK9BY21dkc8wLzhwtJjlxUgt+sXrnQbcNgWbmDKJPx3if+/0pXNfY/4SeGgHNOzGI7Pdeg8/nUq1MfNl9MP87aTRnjB/Fe79sJ6/IXCeZPb1XW5HD968/iQEZbestd13x517/ua/UbfOlL28ewnHtZQVRm0YryPjXX5Ce7uQPqw/ipBaaFVvpCUcccwJ87ffHyV27iGBKXLjX4n6+8LQiiRw6GHXRSCxbtlL+3Auc+793Gb3hB9Z9+xp/9D2PlQOHc8GJGWzOLwGwm4Nqmxc8vVdbJrstuzxQ+GMm8tR8qaDUXCcFcTSYW+qDX8EbNTUwfz68/LLx/PXXcNZZAZTWM6IgBL9IifOQE2B1Mvva74+T21ZEsLFWEL58FqasLsS9Oo2/7r6P9/85mSuWzWXqF89Q9tM7vNv9DB7reRb7Ezsw5ZK+hAYrJnzwu9M43ZJi3L5XrZ2zywOFP2Yifz+no8HcUh8adL8KC+HNN42yMH/9BSkpRh2xXr2aQGL3BLIn9ZvAKGCf1rqnddvDwA1AgfWwe7XWX/ka61g1MXlz7rYUfPkYfO23WDQLN+W7ZBUP65bkc/Lwdxnv7lct4DOPwDbh3T5zJZPDdpPw3gyGbl2O0polnfvxyQlnc9x1l/LCD9ud5Jo/aQgb8krc+iAmnJHFBb072BMIG4q3X+r+mIn8meQb+jm15lVHne+XxQLffmt0SpwzByor4bTT4KabYPRoCAnxdIk60ZJNTG8D04B3a21/Xmv9bACve1Tga2JtKZhMijaRIeQMzcSiwaSgTWSI/Z8gONjE6D6pZLWPZm+RmWSrGcjxPXjKKvaFP8t4b//AvkKB7c7vSaexOb+Ea8tSSSku4JI13zBuzQJe+uRxyr57jbCup/NJz+H82a4j5iqjEuzI7GS63HQqW/aVEhMezMHySu4c0Z2QIEVNjQVouILwNSl569HtS0H4k0fj6XPKL/b8ObX2VYfP+7V9O7z1lvHYsQPatoUbbzR6r/fs2bzCOxAwBaG1XqyUygjU+Ec76/OK7MoBjH+o++esI6t9NH06xjezdEfYVlhmN6XYqP3rMDjYRJ+O8fTp6P78hsbX+2P28Deu35bnYLtmXmwiLw6+nJdOGcdZO37nru0/cMOvn/LPXz9hTXIXvug9nIiDXTAd145Dh6u4/ePVLnK/e91ABnZO8Hnthr6nyNBg9z6WOq5aGppH05DrHg15Fy73q7gYPvsM3n8fvvvO2HbmmfD008ZqISys2WT1RHP8FJ2glFqjlHpTKeVxplNK5SilliullhcUFHg67KjFm3O3JeFvBVF/zven53RjVT6tLUNoWAhn3XkdS5+dwWmT3uPRYTcQBNy34DV6D8qG887D9PHHqLJy+xgpceFcPziT/OIKv5r8+HpPlTU1TBzm3Idi4rAsqmosLmM1Jg257lFTmbaiwjAdjR0L7dvDNdfAn3/CAw9Abi4sWADjxrVI5QBN76R+BZgMaOvzc8B17g7UWk8HpoPhg2gqAVsKvpy7LQV/M6n9Od8fs0djVT51J0N5ZTU3fbCS0SNPQJ19Al/p23l6wY88c3gN7T//hAHz5rEyOIxFmSfwU/8z6DR+LFOW5vptSvH1nhKiwpi5fIdTWZOZy3cwsmdyva5TXxpy3VZdmbaiwlghzJ5tPIqKIDHRMB9dfjkMGmTvmd7SCWgehNXENM/mpK7rvtoci07q1uKD8NdW3Fy25kBe1+tnpzQV3y5ix4z3ifu/z2lfehBzcCjfZ57AV91O5fvMAVTGxNY/Xr4O76k13etW54MoLYX/+z/DhDRvHpSUQHS0YTq64goYPtxvh3ND8NdJ3aQKQimVorXOs76+FThJa32pr3GORQUBR6KYPDl3Wwr+VhANZAXSxrpu7YiaTvGR7DhY7jHCxt1nZzIp+xjxUSGUl1dy+PslbP7v25yz6UeSSg9QrUwsTzue5CsuJuPqcdCtm8uvTW/RPb4i33y950BFzjXkM26K74WvSCmv+3fsoGbel5R+9jnRixcRVFmBbtcOdcEFcOGFhlIIb94VT4tVEEqpD4HTgXZAPvCQ9e++GCambcA/bArDG8eqghBaBrV/zaYnRHDzsCynFUJDfhFPGp6FRWteWriVispq+u3exLDc3zjzz9/ovu8v48TjjoNzz4URI2DoUCxR0R5/WQN+/epuLavWxqK+K64YVcMbmYcZuPFX1Pz5sHEjALvj2rOgy0ksPH4wo28aywUnpLeY+9ViFURjIgpCaE5qx/HfdEaXI5VgrfiK6/eUCzBpeBZa49TfeuKwLBZ98xvPR+8h7ceFsHAhmM0QHIy53wnMCMtkccfe/N6hO5XBIY3WS8JXWZSjDV/5Gbl7DnLPfW9zQu4qBu1Yy4DdG4isqkCHhqJOO43dg4ZyQ0EiG2JT7au8lna/WnIehCAcFdSOqLGVxnDEV/6Fp6icssoaZq/YxfWDM+meHM0fe0uN+k6WWNaffzpp994Ohw/DTz/Bd99R9dXX3Lh8JjfpDykPCWNVSjeWp/agsnMRxX0HNLy8A77Lohxt1P5MIirN9Nq5leBnfoI1v5G+ZAkzy41osz/apTOr11ks7tyfGx++joE901m7Lo8N7690GvNou1+iIATBB54iauoTYeNpDK2NiXnG0lzevnYgN3+4yr7PHrEWEWHYs4cPp+DWexn39P/RN3cNp2xfzQm7N/KvXz4m+OeZACxITGd5h+6sSc5iXXIXtqd0rldvjtYQOdcoWCyk7d3GZRu+I3vnH/Tbs4luBdsI1tb3np1N6aVX8kBRO5Z2yOZApFF+PjzExP1JRq7KsXC/xMQkHJNYLJrthWXsKTpMibmaDm0iOD7ZvUO2IT6I2s7eHkkxfLtpn32MAelxTBrejbxiM5GhQYSYFL/9VcAbP+4kPSGCh8/LJiw4iOS4cJfif9U1mvvnrrW3O31xVBZnle6An3/iwIJFRP++nPDSYkP24GBUz56ofv2gf3+qs3vyR3wqu4KjXZzQ1dUWvtuUT1W1tvf2CAlSDO+W5LdNvVnLZhQXw5o1sHr1kee1a8G6OqiIjCave2/2du9D2JBT6HPhCExJ7X36KFqDz0Z8EIJQT2z1n7bklzoVrvP2z+0YUZMYHc6uQ2Ws2H7IXl6kt0P9KE8Tx/m9OrCr6DBFhyvZsq+MB+ce2f/oBT3p1zGGXQfNHCqv5p7P1tr3Tbu8H5XV2mmieuqi3qS2CadtVJh9snWsEZVYkEe//bncHF/KcTs3o35fCQ4JpwciYvkrIY34Ab1JP2UAQT26UZXakS9Kwrj3m7+c5BrtZ42oJglZraqCbdtg82bXx65dR46Lj4c+faBPHyy9+7Ak4Thu/K2Ew9W4lauuUV8tNdJQFIQg1JPcglLmrNptr/9ko64ORl/OTV/O3t/+KmT8m8tc9r933UASosNcxp44vItbWWs7n73K1S6KDb+tZ8oLc+iUv4MuhTs5rnAnWQd20ra82On9HYiIZVdce3bFtmdffHvOPL03aT0yISkJkpON58RECK6bhdqvooqVlbB/v/EoKDAee/bAzp3Oj717jQw8G/Hx0LWr8eje3a4USD3iUG60ng0tGHFSC0I9yS82Y9HuHc11cTD6KhLoy9m7t7jCQ/G6Cqot2mWfJ1lrO599ybUjMoFvO/WDTv2cjnnz3HSGhZax4oeVfPPVMtKK8kkr2kfX/Ts4/a8VRP46x/2NiIqC2FiIizvyHBNjlI0IDTUeISGEl9dwy4YCTFpj0haCtAWTthCVOwuiQgxTT2kplJU5PxcWGuYhd0RGQseOxuPss43njAwjb6RrV0jwXdPKr54NxwiiIIRjjqTYcIKUe0dzXRyMvspA+HJeJseGud2fFBtGQrTrPk+y1nY+N1SuhIxU6BgPSVm8XZLhsv+DS7PpH15l/ErPzzce+/YZk3dRkfFse71nj/Gr3+GRXFHJNeYKLEpRo0xYlAmLKYiYHWEQEmxM9lFRRuZxbKzRByEqyqhwmpgI7doZj8REY+Lv0MFYIfhZrqJVl/NoIsTEJBxzNMQHUft8f5yXZnM1n6/N48HPHXwQ5/fk/F4phIYGuYztyQfRoU04CW58EI7O9MkX9CIkSJEUG05aXASfr93jUa7KyhrmrNnj4hux+SAammXdUB9EoB3bjeEbaek9K8QHIQgNwDGKqdRcQ0pcGMfXw8Hor/PSbK5mbV4R+cUVJMWG0SsljvDwYI9jw5EopqoazQMOUUy1s3+3FZZxoKyC3YfM3D17jdPkd2a39mzML/bcm6OyhjV7iuwTXu8OcXbl4E/ETn3LZjRVLSZ/ynm0hnpRoiAE4Riiro7VxnbANnWWdWtwILcGGf1VEC0nHksQBJ/UtU9CY/dTaOr+JK2hH0RrkNFfREEIQivC5lh1xJvD2tdxdcXm4K49XqCyhhtb/kDQGmT0F1EQgtAMWCya3IJSfv5zf726yNW1i54/3fbckZ0SyzMX92bi8C5MGNaFScO78MzFvclOiWvQeL7wV37H+/vnvlK27a//vQ60jK0B8UEIQhPTGE2W6uJYbcx+ChaL5v/W7eX2j4/I/NzYvpzdM3AO2YbK76m0+rs/b+dgeWWjOpKbq5dJXREntSC0MlqDc7M2rUlmT7JePziTlxdtbbFyBwJxUgtCK6M1Ojdbk8yeZLXl1bVUuVsioiAEoYlpjc7N1iSzJ1ltxpKWKndLJGAKQin1plJqn1JqncO2tkqpb5RSW6zPLaPtkiA0Ia3RudmaZHYn66ThWXy6cleLlrslEsie1EOBUuBdrXVP67angQNa6yeVUv8G4rXWd/saS3wQwtFGS3duuqM5Za5vSYva5dmDTLC32FXull4qw19atJNaKZUBzHNQEJuA07XWeUqpFOB7rXU3X+OIghCEY5dAlbRoDaUy/KW1OamTtNZ5ANbn9k18fUEQWhnbCsvskzgYTubbZq1iW2FZixz3aKLFOqmVUjlKqeVKqeUFDp2wBEE4tghUBFVrisxqLppaQeRbTUtYn/d5OlBrPV1rPUBrPSAxMbHJBBQEoWURqAiq1hSZ1Vw0tYL4HLja+vpqYG4TX18QhBZCXcuNBCqCqjVFZjUXgYxi+hA4HWgH5AMPAXOAWUAnYAcwVmt9wNdY4qQWhKOL+jqIAxVB1RqjyepDi45iaixEQQjC0UVrKt3RmmltUUyCIAjiIG4liIIQBKHJEQdx60AUhCAITY44iFsHwc0tgCAIxx4mk2JkdjLdJw45ah3ERwOiIARBaBZMJkVmYrQ4pVswYmISBEEQ3CIKQhAEQXCLKAhBEATBLaIgBEEQBLeIghAEQRDc0ipKbSilCoDtzXDpdsD+ZriuL0Su+tNSZRO56ofIVT+6aa1jGnpyqwhz1Vo3S71vpdRyf+qYBAqRq/60VNlErvohctUPpZRfRezExCQIgiC4RRSEIAiC4BZREN6Z3twCeEDkqj8tVTaRq36IXPXDL7lahZNaEARBaHpkBSEIgiC4RRSEIAiC4BZREA4opbYppdYqpVbZwsOUUm2VUt8opbZYn+ObWKZuVnlsj2Kl1C1KqYeVUrsdtp/TBLK8qZTap5Ra57DN4/1RSt2jlNqqlNqklPpbE8v1jFLqD6XUGqXUZ0qpNtbtGUqpww737dUmlsvj59bM92umg0zblFKrrNub8n51VEotUkptVEqtV0pNsm5v1u+YF7ma9TvmRa7G+45preVhfQDbgHa1tj0N/Nv6+t/AU80oXxCwF0gHHgbuaOLrDwX6A+t83R/geGA1EAZ0Bv4EgppQrhFAsPX1Uw5yZTge1wz3y+3n1tz3q9b+54AHm+F+pQD9ra9jgM3W+9Ks3zEvcjXrd8yLXI32HZMVhG8uAN6xvn4HGN18ojAc+FNr3RxZ5WitFwMHam32dH8uAD7SWldorf8CtgIDm0ourfUCrXW19c9fgLRAXLu+cnmhWe+XDaWUAi4BPgzEtb2htc7TWq+0vi4BNgKpNPN3zJNczf0d83K/PFHv+yUKwhkNLFBKrVBK5Vi3JWmt88D4QID2zSYdXIrzP+4E6/L2zaY2fTng6f6kAjsdjtuF9y9vILkO+D+HvzsrpX5XSv2glBrSDPK4+9xayv0aAuRrrbc4bGvy+6WUygD6Ab/Sgr5jteRypFm/Y27kapTvmCgIZ07VWvcHzgZuUkoNbW6BbCilQoHzgY+tm14BjgP6AnkYZoGWhLvekU0eU62Uug+oBv5n3ZQHdNJa9wNuAz5QSsU2oUiePrcWcb+Ay3D+EdLk90spFQ3MBm7RWhd7O9TNtoDdM09yNfd3zI1cjfYdEwXhgNZ6j/V5H/AZxvIrXymVAmB93tdM4p0NrNRa51tlzNda12itLcDrBMgcUQc83Z9dQEeH49KAPU0pmFLqamAUcIW2GmGty+tC6+sVGHbYrk0lk5fPrSXcr2BgDDDTtq2p75dSKgRjsvuf1vpT6+Zm/455kKvZv2Pu5GrM75goCCtKqSilVIztNYYDah3wOXC19bCrgbnNI6HzLzvbP4yVCzFkbQ483Z/PgUuVUmFKqc5AFrCsqYRSSo0E7gbO11qXO2xPVEoFWV9nWuXKbUK5PH1uzXq/rJwJ/KG13mXb0JT3y+r/mAFs1FpPcdjVrN8xT3I193fMi1yN9x0LtKe9tTyATAwP/2pgPXCfdXsC8B2wxfrcthlkiwQKgTiHbe8Ba4E11g8+pQnk+BBjyVqF8Wvkem/3B7gP49fTJuDsJpZrK4a9dZX18ar12Iusn+9qYCVwXhPL5fFza877Zd3+NnBjrWOb8n4NxjB5rHH43M5p7u+YF7ma9TvmRa5G+45JqQ1BEATBLWJiEgRBENwiCkIQBEFwiygIQRAEwS2iIARBEAS3iIIQBEEQ3CIKQjiqsFbSbK6cEEE4qhAFIQhWrJnELZ7WIqfQ+hEFIRyNBCmlXrfWyF+glIpQSvVVSv3iULs/HkAp9b1S6gml1A/AJKXUWKXUOqXUaqXUYusxQcqo/f+b9fx/WLefrpRabB1vg1LqVaWUybrvMmX0FlmnlHrKuu0SpdQU6+tJSqlc6+vjlFJLra9PsBZ4W6GU+tqhxISTnE17O4VjFfklIhyNZAGXaa1vUErNwshsvQu4WWv9g1LqUeAh4Bbr8W201qcBKKXWAn/TWu9W1gYwGBnQRVrrE5VSYcCPSqkF1n0DMersbwfmA2OUUj9h9Ac4ATiIUSF4NLAYuNN63hCgUCmVipERu8RaV+cl4AKtdYFSahzwOEalUCc5BaEpEAUhHI38pbVeZX29AqOyZRut9Q/Wbe9wpCouOBSnA34E3rYqFltRthFAb6XUxda/4zCUUCWwTGttWwl8iDHZVwHfa60LrNv/BwzVWs9RSkVba351BD7AaN4zxHqtbkBP4BujzA5BGCUx3MkpCAFHFIRwNFLh8LoGaOPj+DLbC631jUqpk4BzgVVKqb4YZZJv1lp/7XiSUup0XMsla9yXVbbxM3AtRi2cJRirg5OB24FOwHqt9cm+5BSEpkB8EMKxQBFwUB1p3DIe+MHdgUqp47TWv2qtHwT2Y/zS/xr4p9UEhFKqq7XiL8BApVRnq+9hHLAUo2nLaUqpdtaqnpc5XG8xcIf1+XfgDKBCa12EoTQSlVInW68TopTKbrzbIAj1Q1YQwrHC1cCrSqlIjNLL13o47hmlVBbGKuA7jIqcazD6DK+0llgu4Ejby5+BJ4FeGJP+Z1pri1LqHmCRdZyvtNa2EtVLMJTOYq11jVJqJ/AHgNa60mrGmqqUisP4/3wBozKoIDQ5Us1VEBqI1cR0h9Z6VDOLIggBQUxMgiAIgltkBSEIgiC4RVYQgiAIgltEQQiCIAhuEQUhCIIguEUUhCAIguAWURCCIAiCW/4fLv+2Cvh2uyUAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model=ols(\"mpg ~ horsepower + I(horsepower**2)\", data).fit()\n", "b0, b1, b2 = model.params.values\n", "sns.scatterplot(x='horsepower',y='mpg',data=data)\n", "x = np.linspace(40,240,200)\n", "y = b0+b1*x+b2*x**2\n", "plt.plot(x,y,'r')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In general, we can fit a polynomial model to the data, choosing a suitable degree $d$. For instance, for $d=4$ we have:\n", "\n", "$$mpg = \\beta_0 + \\beta_1 horsepower + \\beta_2 horsepower^2 + \\beta_3 horsepower^3 + \\beta_4 horsepower^4$$\n", "\n", "which identifies the following fit:" ] }, { "cell_type": "code", "execution_count": 525, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEGCAYAAAB/+QKOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTEElEQVR4nO2dd3iUVdbAf3fSOyGkQQgQiYChLyu4AiIoKqIgFuxl0agrgm1FXV3ruqKCyuKni2Jv6KKgiFgABeygVJFiBARCEgKkT9rc748pzGRakslMJuH8nmeembzlvmfemdwz91SltUYQBEEQGmJobQEEQRCE4EQUhCAIguASURCCIAiCS0RBCIIgCC4RBSEIgiC4JLS1BWgMnTp10t27d29tMQRBENoU69atO6i1Tm7u+W1CQXTv3p21a9e2thiCIAhtCqXUbl/OFxOTIAiC4BJREIIgCIJLREEIgiAILhEFIQiCILhEFIQgCILgkjYRxdSeMJk0u4orKCg1khofSfekGAwG1dpiCYIgOCEKIoCYTJplWw5w27vrMdaaiAwzMPuigZyZkyZKQhCEoENMTAFkV3GFTTkAGGtN3PbuenYVV7SyZIIgCM6IggggBaVGm3KwYqw1UVhmbCWJBEEQ3CMKIoCkxkcSGeZ4yyPDDKTERbaSRIIgCO4RBRFAuifFMPuigTYlYfVBdE+KaWXJBEEQnBEndQAxGBRn5qTRe9oICsuMpMRJFJMgCMGLKIgAYzAospJjyUqObW1RBEEQPOJ3E5NSKkQp9bNSaonl7weUUvuUUustj3H+lkEQBEFoOoFYQUwHtgLxdtue0lo/GYBrC4IgCM3ErysIpVQGcDbwoj+vIwiCILQ8/jYxPQ3cCZgabJ+qlNqolHpJKZXoZxmCFpNJk1dUzre/HSSvqByTSbe2SIIgCDb8piCUUuOBQq31uga7ngOOAwYC+cAsN+fnKqXWKqXWFhUV+UtMG4GerK1lN8bNWc0lL3zPuDmrWbblgCgJQRCCBqW1fyYkpdS/gSuAOiASsw/ifa315XbHdAeWaK37ehpryJAh2p8tR1ujRlJeUTnj5qx2yKyODDOwdNoIiXASBKFFUEqt01oPae75fltBaK3v1lpnaK27AxcDK7TWlyul0u0OOw/Y7C8ZGounGkn+WllI2Q1BEIKd1siDeFwpNRDQwC7g+laQwQF3k/Whimp+PVDml5WFtexGwxWElN0QBCFYCEipDa31l1rr8ZbXV2it+2mt+2utz9Va5wdCBk+4q5EUFmLwW/VVKbshCEKwI5nUmCfruZcOYuPeEkwaQhT0y0igsqberRnIVz+BlN0QBCHYEQVhoaZOM29VnoMpqUeSf81AUnZDEIRgRqq54t5JHWJAzECCIByzyAoC907q/BKjmIEEQThmEQUBRIeHujQlRYeHiBlIEIRjFjExATX19Uwbne1gSpo2Opva+oYVQgRBEI4dZAUBJMVEsGDtHqYMz0Ip0BoWrN3DmX3TWls0QRCEVkMUBOYw1xln9nFKiBNntCAIxzKiIJCcBEEQBFeIgrAgzmhBEARHREG0QUwmza7iCgpKjaTGy2pHEAT/IAqijdEapckFQTg2kTDXNoan0uSCIAgtiSiINob0kRAEIVCIiSnA+Oo/kD4SgiAECllBBJCW6EMtfSQEQQgUfutJ3ZL4uyd1oGipPtTWVYjkbAiC4Alfe1KLiSmAePIfNEVBSM6GIAiBwO8mJqVUiFLqZ6XUEsvfHZVSnyuldlieE/0tQ7DgrrWp+A8EQQhGAuGDmA5stfv7LmC51jobWG75+5hA/AeCILQl/GpiUkplAGcD/wJus2yeAIyyvH4V+BKY4U85ggWp+SQIQlvC3z6Ip4E7gTi7bala63wArXW+UirF1YlKqVwgFyAzM9PPYgYOb/4DKaMhCEKw4DcFoZQaDxRqrdcppUY19Xyt9TxgHpijmJolhMkER45Ax47NOj3QSBkNQRCCCX/6IE4GzlVK7QLeAUYrpd4ACpRS6QCW50K/SXDbbXDSSZCf77dLWDGZNHlF5Xz720Hyispd5jZ4O0bKaAiCEEz4TUFore/WWmdorbsDFwMrtNaXAx8CV1kOuwpY7C8ZuPBC2L8fTj0VDhzw22UakwDXmGOkjIYgCMFEa2RSPwacrpTaAZxu+ds/nHwyfPIJ7N3rVyXRmF/+jTlGwmAFQQgmAqIgtNZfaq3HW14Xa63HaK2zLc+H/Hrx4cPNSuKPP2D0aCgoaPFLNOaXf2OOkTBYQRCCiWMjk3rECFi6FMaNMyuJFSsgNbXFhm9MAb3GHCNhsIIgBBPHTrG+kSPNSmLXLrOSKGw537irX/4zz+9PcUU1eUXl1NWZ0BqevGAA08f0JD3BrCz+e8VgyqpqWbY5nw1/HKGuzmQLgx2W1Yms5NgWVQ6NcaQLgiBYOfaK9X31lXkl0aOHeSWR4jINo8nY5y/U1mvuW7yJ3cVVdEuK4ubR2dy7aLMtdPXR8/oxpHsHfvj9sMP2Ryb2ZeKALoSGtrzelhBaQTj28LVY37GzgrByyinw8ceQlwdjxkBRUYsMa/3lnxofSe7ra9ldXAXAhX/qalMCYPY73PPBJgpLa5y237toM1vyS1pEnoZICK0gCE3l2FMQAKNGmZXEb7+1qJIAR2d0ekIkqfGRLp3TB9w4rQ+U+CekVUJoBUFoKsemggBz2OuSJbBjh1lJFBe3yLD2oaqTBmew93Cly9DVdDchrYnR4X7xD0gIrSAITeXYVRBgdlZ/9BFs3w5jx5rLcviIvcNaKXh37V6mjc52cGA/MrEfYaGKhyf0ddh+/zk5PPLxL83qNNcUuazXkxBaQRA8cew5qV3xyScwYQL86U/w2WcQF+f9HA9YHdZF5dVc9dIPJEaHM2lwBkqBQUHfzgls3FdCWlw4x6XGcbiihtiIUEuXuBoWrtvL4cqaJneaa6xc3kJopWCgILQPfHVSi4Kw8sEH5tIc1uzr6Gifh3QVOXT/OTk8/9VOdhdXERlm4J6zehMXGcbdH2yyHTNtdDavf7ebpyYPYFhWpxZ4c77JLNFOgtA2EQXRkrzzDlx2mdkn8eGHEOm7fd7+V7sBxd8XbrBFOAFMG9OTeavynBLockdmMXFgl4C3FW2pvtmCILQ+Eubaklx8Mbz0Enz+uXk1UVPj85D2iW/lNXUOygHApHEZXXR8alyr+Ack2kkQBCuiIBpy1VXw3HPmCKfLLoO6uiYP4S5juVvHGKdIohCFy+iiPmnxrWLSkWgnQRCsiIJwxQ03wOzZ8L//wTXXQH2911OsSuHHXcV8tHG/y7LePTo5RxJ1jA7n1tOOt23rlhTFvCuGUFhmdFAuJpNm18Fyvs8rZsWvBfxW2PhQWHcKy9V2iXYSBMGK+CA88eij8I9/wLXXwn//CwbX+tTesTtleBbz1zj7FKw2fJNJs2nfEbYdKGP3oSre/2kvYM6ZiIsMISUuknvsHNazLxrI2D6pfLmjkB0F5TyzfEeTnMfunM5j+6Ty2dYCl85ooFHRToIgBDfig/An99wD994LL74I06eDG2VqX8ZCKdc+BasN32BQVNbUs+dwFfPX5JFfYiS/xMizK3dSWVNvUw7W8257dz1b8kvYuLfEphzs99mXynC1InBXYmNLfonb0hv+LBgoCELb4dgo9+0LDz0EVVUwaxZERcHMmaAcJ8yGjt3GlP7+aMM+po3OZs6KoyuCnimxLpVLfonRrTO7sMxoW5m4WikkRoe5HdPTeIIgCLKC8IZS8MQTcNNN5ucHHnA6xN6xu3Cdc+Z0Qxt+96QYZpzZhwVr9zBleJY51PWKIeSkxbsuy5EQ6daZbVU87lYK0eGhbscUZ7QgCJ7wm4JQSkUqpX5QSm1QSm1RSj1o2f6AUmqfUmq95THOXzK0GErBnDkwZYp5RfGYY5dUe8dufomRFb8e4OWr/8zzlw9mQe5JjO2T6mCmsTYGevnqExmRncTEgV34S1YSISGKR8/r56RcctIT6JeRwPQx7hWPu/DU2vp6l07nnPQEcUYLguARf5qYqoHRWutypVQYsEYp9Yll31Na6yf9eO2Wx2AwO6qrquDuu83mpunTLbuOdoI7VFHNviNGrnnlR4/OZKudv6F5KDE6nNyRWRyfGkeftHh6dDI7iEf3SqVnciyDMxOprKkjs2OMbR+471jXMSaCwZkdnbrUAYSHKnJHZmHS5hIg4aHiaxAE4Sh+UxDaHB5VbvkzzPII/pApT4SEwKuvgtEIt9xiLsdx3XXA0Qkf4PL5PziYemYu20qXDpFU1tS7rG1kbx7KLzEyZ/lOW+ST9TiDQdG9UyzdO7n2D1hXMQ19ENZrWZWRlbyicqa+9bNkTAuC4Ba/OqmVUiHAOqAn8KzW+nul1FnAVKXUlcBa4Hat9WEX5+YCuQCZmZn+FLNphIbC22/DxIlw/fXmlcTll9t2NzT1pCdEMnlIJpPnfYex1kS3pCgentCPsBBlUxYNe0hYC/sVlVc3OsS0qf2sPWVMi4IQBAH8rCC01vXAQKVUB+ADpVRf4DngYcyriYeBWcBfXZw7D5gH5jwIf8rZZMLDYeFCOPtsc+Z1VBScfz7gbOqZNDjDFqlkVRa5r691+JV/QnqcrRfE1X/pzlNfbMdYa+LF1Xlecx1cVV5tzATvziQlTmpBEKwELFFOKXU/UGHve1BKdQeWaK37ejq31RLlvFFeDmecAT/+CIsWwbhxTuGm08b0ZM7ynQDcdGpPl0l0S6YOZ3+JkcIyI4fKq6mp1xjrzMd8tGEfL111IselOE/6vlReNZk0K7YVsHFvCSZtLvnRLyOB0b1SJe9BENoJvibK+W0FoZRKBmq11keUUlHAacBMpVS61jrfcth5wGZ/yeB3YmNh6VJz9ddJk+DjjzGMGeNg6okKC7VVa3WXRPdrQRl3vLeBxOhwrjypG3NX7nQo/Z1fUulSQbgLbe3dSD9CTZ22yWZVLoIgCFb8mQeRDqxUSm0EfgQ+11ovAR5XSm2ybD8VuNWPMvifhAT49FPIzoZzz4Wvv3bIRO7XxTmc1J7IMAPbC8ow1pqYNDjDKVt6zoodhIeEAM6Z0sUV1c2uvOpOudhnZguCcGzjzyimjcAgF9uv8Nc1W42kJHOJ8FNOgXHjYPlyGGJe1dk7j3cVl3Pf+BN4eMkvtl/t940/gbkrzCYodyuMipo6l+akmef3p1tSlEMJ8YZ+BHfd4dw5qbcXlAFI/SVBECSTusVIS4MvvoCOHc1+iU2bbLusK4ruSbHMW/UbU4ZnMXNSP3JHZlFmrOVw5dG+E65WGF0To13+4p+xcCMPT3BOrLPmOViViqvKsu7Kem/aV+qXntiCILQ9REG0JF27mlcPUVFw2mmwbZvDbmuJjflr8vjjSBVzlu/k1W9220pzLFy31ylb+rbTjyc0xP0v/rAQxdJpI3gndyhLp41wcFB7MiO5Kus9bXQ27/+0V8xNgiAAUqyv0dTVmdiSX0J+iZH0hChy0uMJDXWhX7OyzCuJkSPNzuvVq6FHD8DR3FRUXs2Lq83VXF//bjdThmcRYoCs5FimntoTY50JreHlr3fRPyOBlDjXYamp8ZFOSXBWvOU6WGXZXlDGpn2lvP7dbvJLjE7HecOdGUsQhLaNKAgvWB3DW/JLySsq5921ezlcWcMjE/sycUAX10qid2+zkhg1CkaPNiuJjAzA3tx0NPM5v8TI/DV5zDy/P48u/cXJp5AWH8nOonKmj8l26gfhqXaSt1wH++zvWxasd3uct/vT3FDbYEKUnCA4Iw2DPOBq8ps2OpvXv9vN4coaFuQOY0DXRPcD/PijeRWRng6rVkFqqtP49o15MhOjXTbx6ZUax9n/WU1idLgty9qgYNKgLm5Lb7iT39Xk7cskn1dUzrg5q9t0yY72ouQEoSFBmwfRHnBlw5+zYgdThmfx7MqdHCgxMqCrhwH+/GdznsQZZ8Dpp8PKleaIpwZYdXTDchlp8ZHUm2BHYZmTqcik4WB5tUcF0djyG00t02FPeyjZ4Ws+iSC0V0RBeMDd5KcsvRnSEhpRlmL4cFi8GMaPNyuK5cshIcFjK1CAEINiw94SZizcyLUjsuiWFMXkIZkODYayU2IZbNIeJ3JXhfp8Oa4h7aFkR3tQcoLgD0RBeMDd5GdQ8MjEvuSkJ7g918GmPWAY3d/7H4ZJ56HPPptdbyyk0BTKzGVbmTI8y9agbuayrcRGhJL7+lqH3tYL1+3lvvEnuAxz7ds5wWWWtVtZfLCvuxrHUxXZtkJ7UHKC4A9EQXjA1eT3yMS+9E6Lo3eqmygm3Nm0/8QZr7+B4bJLCTlvIoX/95rTimDa6Gx+zS9xKsuRX2JkZ2G5y1+5ew5VeFQQLWVf9zROc81TwUJ7UHKC4A/ESe2Fho7kxkx+7hy3/7vhJAqefZFT/30nRcNP5bQR0ykzhTgc8/gFA5j29s9MHd2TF1cfLex311m9qKypx5q7tnCdOZrq1WtOZGiWs1/DmyxNdSK3B2e0J5rzOQtCsCNOaj/THNu8O5v24cpabgrJYdIZf+PRT59lZqGRmyfMoN4QYjtmjyU5zdrbes6KHSRGh2NQyqGw3vQx2cSEh5AaH9EsWZpqX2/vdvrm+mAEoT0jmdR+wF0ZC2NtPcZaE28NPIuV19/FuO3f8MTSp1HaZDumT3q8rbf1grV7mH3RQO49uw+zP9/u4H94ZvkOslJiyezo2QziTpam2tdbahxBENoOoiC80LCCamPqE7kqYzH7ooFkJcXYtt3T7TS+/+utTNqykn99+n9EhiruG38CsREh3HZaNlNH92R8/y48vOQXthU4h7kaa02UVNV6lbug1MgLVwyhW1KUTZZHz+uHQdGkWkvu3pPY6QWh/SImJg8018HrLq/AZNI8MrEv9y7aTH6JkTt7j+e13HounTeH3lkp3BR9BYerarl/fA5v/rCT3cVV5lVFWrzLKJttB8rokxbvZBZxV/k1KjyEzftKeOLTbRyurGmSs9qXXAlBENom4qT2QEs7ZvOKyrnmlR8Y378LvdPi2FFYRp/UOIquvZErf/yQuSddxJMjr7Q5q7cXlKE1fJ9XxMUndufeRZtsfa1nnNmHnYXlDO3RkT937+gwUbuTO3dklq27na/vRRCE4Eec1H6kpRyz1giZ7QVlnDOgCwvX7eWWMdnMWb6T204/ntmnXkdoTTVTv32XqtAInv3LZHYWljF3xU7bqqVbUhS5I7OIDg8hLjLMaXXQuUMkSTERdE+KcSt3Q4tSe3IyC4LQ8oiC8EBLJFC5q+fUISacyDADNfUmIsNDuHfs34iqrebvq1+nNjKKMTc9xl+OS7KZctbtOURkaAiVNfU8/YVj17kZCzfaEuustZvcJfjZI05mQRA84TcntVIqUin1g1Jqg1Jqi1LqQcv2jkqpz5VSOyzPHqrdtS4t4Zh1V8/pj0MV3H9ODh9t2Me00dmER4Rxx9m38mnvk7nn83n0+/hdhmV1Iis5FoNBkRQTwYK1e+iSEOW2/Ie1hlCIAZdy989IECezIAiNxm8+CKWUAmK01uVKqTBgDTAdmAQc0lo/ppS6C0jUWs/wNFZbS5Sz59vfDnLJC9/b/k5PiGTS4Az6pMfRLSmaujoTBytqSIgK40hFLWmRip43XknU8s8p+s9/6XTjtRgMyrYS2XaglP+uynNaHVgLCAI8f/lgeqfFUW+ConIjybGRhBigqLya8BADlTX1UtJaEI4BgtYHoc2ap9zyZ5jloYEJwCjL9leBLwGPCqI18TWBKj0hkmljemLSEBsRgkLx1BfbHRLeXvvWXD582uhs/rV2D5fdMYvBeVcy6OYbWF9lYuBtubYooj5pcWQkRnPf4s1OJcjhaNvQWxastxX/c1VCfGiPJKeS39IPQRAEe/yaB6GUClFKrQcKgc+11t8DqVrrfADLc4o/ZWhNTCbNL/llzFuVx9wVO6msqbcpBzia8DZpcIbN9HTH2N68ubGQgjcWkH/CIAbOuImDL78BmJWVBuauNJccv+3045l90UAWrN1DfonRZdvQLfklbtuO2svprne1IAjHLn51Umut64GBSqkOwAdKqb6NPVcplQvkAmRmZvpHQD/T0P9g0rj1H1hf7ygsY/KQTPbVwJ2nz+C1kgcYdP01mOKjMFx4AQWlRnYXV9nMSfYmq635ZU5tQ/NLvEdiST8EQRBcEZBMaq31EcympDOBAqVUOoDludDNOfO01kO01kOSk5MDIWaL4yrc1FW5CqsbKDLMQL0J5qzYQVqHaCoiornyggdYn3486tJL4P33nUpeWNuVdk2MZv6aPJtysI6XnhDltUSGp3BeQRCOXfwZxZRsWTmglIoCTgN+BT4ErrIcdhWw2F8yNIeGpTXq6kxNLrVhpeFkvnDdXqaPyXaIJJo+xmwSamge2nXQbAIyK4kHKe83CD15MtEff8iTFwxg+piepCdE0i0pinlXDKGius6ppMbsiwbSJzWOpycPZNqYnkwd3ZPpY3oy99JBDtFLUmdJEARXNMrEpJSa5GJzCbBJa+1yBQCkA68qpUIwK6J3tdZLlFLfAu8qpaYAe4ALmyG3X2iYs9AtKYqbR2dz76LNDg7expanaNhn4HBlDdmpsXx88wiKyo10iomgvLqOqtp66k3YzEORYQaq647+oq+LjaXovUXUTTqXpClXsnji3aw+4S/MunAA9SZN7utrHZLmunSIpGNMBJmJ0Xy5o5A9hyodKsHOunCgRzmDKQRWnOeC0Ho0KsxVKfUxcBKw0rJpFPAdcDzwkNb6dX8JCIELc21YouKmU3vaurpZaWp5Cm9hsq4S6e4fn8Pzq47WYvr3ef0YlNmBC2Yu44U37yWn4Df+NvFuTrjhMtvE70q+vKJyFq3f5/GYxsrZGrRUsyNBOFYJVJirCeijtS6wXDQVeA4YCqwC/KogAkVDW7x9VzcrTS1P4S1M1r4I3i/5pWzNL+PtH3Yzvn8XlAKtoUN0KPklRg6GRHHl5Id4fcF9/N+if7NkQDrGWkcHvr18BaVGt45xd+8hmEpzifNcEFqXxiqI7lblYKEQOF5rfUgp5b7mdBvDXWkNf/cqtiqRMmMdd7y3AWOtiY37Sm3XG3vCMOIiw4gMM1BGDFde9BCvvXsfEx6ezmfn38Oy7n92KV9qfCQhyvt7CNZf6u29SZEgBDuNVRCrlVJLgPcsf18ArFJKxQBH/CFYa9DQFv/Rhn228tyBsM3npMc7Xe+RiX3JSU/AYFDMvXQQG/eWYNLwzSlvkvXP63j2/X/zt0n3sHHAcK48qRvdkmLYf6SKypo6jk+Oo19GAtPHZPPM8h0OforiimoMCupNsPtQBXuKK5g+JpuKmnoAZi7bSlJMOMlxEa1mbmqJWliCIDSfxvogFOYSGcMBhblsxkIdoFrhgSy10dAWn5kYzZ7DlQGzzdfVmdiSX8KBEiNpCZHkpCcQGmqgrs7Eog37HJTHzNEZnHPHNajNm/jmiReYUpTskKGdkRjFGX3S2F9aRUFpNZU1dYQYDNy3eBM1dZorT+rmoDgaZnUbDPD0Fzt8Xk0019EcrCsbQWgr+OqDaHQtJqVUGmafgwn4UWt9oLkXbSqtWYspWNjwx2Emz/vO6df0/y7qTfblk1BbNnPjxLtZ3nOobV/uyCzG9E5hQFdzPUR7J7w7B7y1ppO1J8W0t3/2qW+Er5N8MDrPBaGt4KuCaFQehFLqWuAH4DzM5qXvlFJ/be5FhabjLiN6n4pk40vv8ktKD57/4FHO3Pa1bZ9JwwG7xDl7m747B7x9Vrc1F8NYa+JQRXWz8kHcOZrtS314wuqfsa9sKwhCYGhsotzfgUFa66u11lcBfyKIC+y1dVz1wXaXEZ2WEElSZjrXXvYoG9KPZ+7imZz7y5e2/g/pCZG28apq620JdtbzG45nn9VtzcXolhTFviNGW62ma175gTU7DzZKWUiWtiC0XRrrpN4LlNn9XQb80fLitA98Se5yZ5I5rVeKRwf2fZedRK7hEZ595wGe/mgWX/XuyB8xvYmPDOWjjfuZsXCjLfnvn+NPYHdxJXMvGUReUTml1fWkxYXTvVMs+0uMzL10EJXVtTz1hdnU9PCEfrZkvPSESCYPyXRIzvNkMhJHsyC0XRrrpH4N6MfRshjnYjY5bQfQWs/2l4DQtnwQvtrcPfXBzkyMdunABvhxVzHf5x0iLdTEyLuuJ+Xbr3j83GkMe+If5L6+zja5XzGsG3NWODqmf8grZmzfdB78aItt+8MT+pKdEkN8VDgFpUZbT4umJg+2lA9CMqkFoekEKlHuN8vDqk0WW17HNffC7RVfk7u8xf4P6JrIgK7O5yXFRDB35U6MtSYi/jKduUVV3PnhHH7OSiAx5RQmDc6gd1ocf//fBqdy4/+94k9cb1Ei1u33Ld7MgtxhNpmtq4CmJg8aDIqxfVJZkDuM/BIj6QlR5KTHSxSTILQBGuuDWAoMxOykvhCzo/oCrfWDWusH/SRbm8RXm7u7wnlRYSEebf327VGrQ8O57cJ/sG/MOAY9/TBP5X3C/DV5bCsocynbkYpal9utDm5XrVcbyufOZGQyaT7bWsDked9xwxs/MXnet3y2taBRTm5fHdyCIPhGYxXEG8BLmHMhxlse5/hLqLaMr5VRXU3G00ZnM+2dnz028bGW7Fg6bQTv5A5l8a2jqX3jTbaPOYdhL87ixhWvg9YuZesQE+bWAd5w7FHHd2Lm+f0b3dval0leHNyC0Lo01sRUpLX+yK+StBN8rYxqnYy75A5j+a+FDlVevZmqGtZ9Mpk0Sx9/lp+vNjL9m7d5/VET0+5/mDkWU5TVB/HKmt+5/5wcBx+E1QHuauzBJk2/LgmNyk3wpVyGOLgFoXVprIK4Xyn1IrAcqLZu1Fq/7xepAoQ1a9neNm51+jYX++J73iZQewdsSlwkIQZzvkN0eCgFpUbmLN/pcHxidDj5JVVsLyhzsOXvKq6guKKacIOBQ5U1RIeHkhofQWbHGPpkJDL+3OnUhIZxxaoFvH93Bdc/OJMTMjqyo9AcmJaT0YHaunpmXziAeg2dO0SSGBXGj7sPER0eSk19PUkxR0tuNKVPd3Mmeet9Ka6oZub5/W0RWMFUhlwQjgUaqyCuAXoDYZgzqcHspG6zCsJV6YpHJvZl4oAuLaIkvE2grhyw9qUunrKYmawTa3pCJFee1I0pr651kDc5Lpx/Lt7C5CGZTtFJ2amxjMpOYdbkwdzGTZSHR3Pj9/9j/zMGaua/zPQFO50m7uljsskvqWL259ttY9162vG89cNuZpzZp8kO4qauqFz15Jh3xRDCQpREMQlCgGlsmOsmrXW/AMjjEn+EuborXbEgd5itNIU/cRfOai110S0pityRx/Hwkl8w1pqYNqany74OT14wgK0HylyGnuaOzGLiwC50T4qxlavIfuU5kh7+J/qMM/nswblMX3JUEdw3/gRS4iK4+e2fncaaempP3lv3B3MuHkRlTX2Tayo1tlyGpzBfqeAqCE0jUGGu3ymlTtBa/9LcCwUb7kpXHCgxugwjbWnc2eatpS52F1dRZqxlyvAs+neJR+MYXpqeEMmkwRnUmTS90+Is5iejw1gmjc3Wb1vRPHQfZKajrr+esWVX8snL77Cp0sDOonLmrtjJLadlu5QrNd6cIGdVqk0JOW2KScrdfTlUUW3bLysJQQgMjbWlDAfWK6W2KaU2KqU2KaU2+lMwf+OpdEUgcBftZF/qosxYz/w1eWSnxjnIa014m78mj1sWrOfv/9vAlSd1s5XQsJ5vULi29V97Lbz7LqxdS9qEM8n/NQ9rcFR0eKhLuZJiwm0mLPBfyKmr+9Kw1Me4Oas9RnQJgtAyNFZBnAlkA2Mxh7d6DXNVSnVVSq1USm1VSm1RSk23bH9AKbVPKbXe8hjnyxtoLtbeC/bhmg0jd/yJq3DW6WOyef+nvXRLimL2RQOJCjPwwhVDyEyMdpB30uAMp8n6meU7uHBIhm2s+8afQN/OCWiNy4m0bsJ5fPvMq5h+y+PMGy9i2Ydfc8WwbhSXG5k+JttJrjqT9lvIqX3tKa1h7qWDbNfvlhTFY5OOOqqt15V8CEHwP40yMWmtdzdj7Drgdq31T0qpOGCdUupzy76ntNZPNmPMFiM01MDEAV3ITol1WbrC3zSMdkqONUcxDemeyN5DVU5O3bF9UkmOC+fJCwa4naxPSI/nqYsGEBcVxsNLtth6Wjc0BZlMmm/yisndl0Dvi//FK+/dz5uv/p1rax9h3CWnExMeQu7ILEwaDAq6JEbR0ZIr0dIhp+6ypZdNH8HB8mr2HTHybV6xdJYThFbAb7Oh1jpfa/2T5XUZsBXo4q/rNYfQUAMDuiZyRt90BnRNbDHl4KoaqyvsS1kflxJL906xJMVEcPcHm5x+LW/JL+H6139i6ts/s7Oo3KUZ6Jf8UnYWVTD1rZ/YXVzlcL79r+1dxRWs3X0IY62J9Z17ceGlM9HAG6/+naR13wIQHmIev94Esz7bxk+7DzNttOPK4t/n9fM55NRdIp1JQ8eYCGYs3IhJNy17WxCEliEgP5eVUt2BQcD3lk1TLb6Ml5RSLkOGlFK5Sqm1Sqm1RUVFgRCzRbD+Im6uvdydk9beqb5w3V6nyfrR8/rx3tq9Hmsl2V8jItRgO39HcjduvHEOdSmpXHD3taR++iFvfr+HuSt28uzKnewurqK0up7Xv9vNlOFZTB3dkynDs+gQHeqzo9hTIp11n6v3K/kQguB//K4glFKxwELgFq11KfAccBzm2k75wCxX52mt52mth2ithyQnJ/tbzBbD1/pB7pzX6QlHt+eXGHn9u93kjszi5auHsHTaCAZnduBwZY3t+Ibn2//aTo2PJMygbL6G9IRIxo4byriL/s26lJ6c8dAtPPHHCoe+EQZlvu6zK3cyd8VO5q/Jo2NMRPNuUiPeb0pcpG2f9f1OGZ7FtDE9WZA7zGYya+xqTRCEptPolqPNGlypMGAJ8KmrkuCWlcUSrXVfT+O0pXLf3/520FYa2553cocyLKuT1/Pd2eTH9knlyx2FbNxbgklDiIJ+GQmM7pVqmyiXbTnAzGVb+etfelBcWePyOOs1lm7K519LtzpVeY2orea5T59m9JbVbLt4Ckuvvp2+XRMxac3ugxWkd4gGNClxkRypqiEt3rcMdE8VWwGP1Vyl2qsgeCZQeRBNRimlgPnAVnvloJRK11rnW/48D9jsLxlaA1/rB7kr1WEyaY5U1tqS5axRVyaTtpW/ODMnjRPS4/hpzxH+vexXh0kTHEt7dO0YTXio4tmVO5k6uqdN3o6dEtj29AvsvedOrnxnPnkbtlH36muExERRr+HJz37lr3/pwY7Cckwaftlfyp5DFZyVk95sJREeqhyc4uGhyuO9sE7+vpZWFwTBM35TEMDJwBXAJqXUesu2e4BLlFIDMZfq2AVc70cZAo6vxfrAdWLZpn1HbGVBwDwZ3rtoM9kpsbbMb4NBYdJwjwsn9wnTR/BLfpmDXI9M7Mt/VuwgKsxgU2qTBmfwzFd5GE+9jt2xydy3cj4/nn8Oh95YwDPL9zB9TDaVtfUOiuqes3qzYd8RaupMTU5i21VcwdS3nDO3rZnTnpLsfCkEKAiCd/ymILTWawBXs8RSf10zGGhKsb6m0NjMb3eTZkFptdOv7XsXmZsCmXtVZ/PM8h1HndxKMf/E8yiIS2LWx7MxXj2RpDPuISNxgEPTocTocCpq6rnsxe+bZeYpKDWSGB3OpMEZtizyhev2SrVXQQgCAhP0f4xhH75q/RXsK43N/Hbn9K2oqXOpOKpq66msqee1b81O4F6pcQ7nL+kzkimX/ouog0Usfv02otb+4DDOpMEZPLPcc4a1J0eytQjh/DV5zF2xkxdX53HlSd1Ii/c+ybtKNpToJkFoOURBNIHWjJhxl/ndJzXeQabMxGinSXPm+f2JjXBdQiMqNISY8FAOV9bw7MqdPLp0q1NI6SV3XMGm95YQ3bEDp/7tYs7ftso2hrewWm9hv/UmnBTMM8t3UO84pEsaNklaOm2E08pFopwEofn40wfRrmjtiBlXmd99UuP5Yluhy4inpdNGUFBqpLZec9/iTdTUaZsZyXrs/efkMG3Bzw778kuMLFi7x6HEdkZCFItr6rjpwsd47v1HmbXocXqM2MuTJ11CiMKjmcebI7mwzLVJrKjcyHEp3v0InnwUrf2ZCUJbx69hri1FMIS5BmMZam8yNdyfnhDJhUMy6JIQRVREKLM++9WWcW3dN6hrB7olxTj4TexLo4fV1/LUyucZv+5T9p05gY9veQSiohz6R9hPwt7Cfv15X4PxMxOEQBK0Ya7tjWCMmPEmU8P9+SXmLnVTR/cEsCkHK/UmqK5ztu3YO8hrQ8KYOmYqm+LSuevTV/nzhl+59+qHefXa0WhLfoS9cvHmSO6eFMPcSwc55Xe0hB8hGD8zQWhLiIJoJMEYMeNNJnf7tTb7DrolRTG+fxciQg1kp8Ty2LKtPLtyp9MqwOogt42jFK8Ov4gx546g74y/MX/ujdSPWkiXsac4ydiYsN+aOu0QNmvN2/D3/REEwTPipG4kwRgx400mV/sfmdiXJRv3sWpbITec0pP5a/KY/fl2bn13PZOHZJKeEOkUieTKQX7/OTk8EprNJVfPIj4ums7nngGvvOIkozdHsq+lSXy5P4IgeEZ8EE2gKa0zW/J6Dbuo2W9PT4ik3gRF5a5laihzRkIUWwtKKTXWcd1ra922PAWzn+DE7knsKq7gYHk1Cigqr6ZLQhTKAPuPGImPCiWjroJO115N9JqvKLn2BuLmPoMhItzr+wDn0iTWTnn9usRzfGqcz/c40J+ZIAQT4oMIIE1pnekrnmoyfba1oNGROfYy24957Ygsjy1PI8MMJMdGOslw95m9yS8x8sSn2xyioV44+x9cUp3IdS8+T/H6DSR+9AGGtFSvkUT2ZiBrpzxrM6SWiDoK5GcmCO0NMTEFKe5ML1vyS5ptkmk4pruWp9aJOcSA07WKK2tsysG67cGPtnDWoEz+Nfpapo+/nZj16zANGQLr1nk1IXVPimHWhQPddsq77d31/LTnMMs257PhjyPUuXCiC4LgH0RBBCmN6Qthv70xrT/tx3TVY2Hm+f05tVcnm5/A1bVM2nVinHXlsTjnVM6/7HHqNXDyyej//hdjTb1beU0mjUmbyB2ZRWZilMuxV+0o4oY3fmLyvG9ZtGGfKAlBCBBiYgpS3EXgOEUU0fjIHPsx7XtKuMp9aHi81TeQmRjF9DE9eXftXvJLjLbr27uyfut6PPnLV9P9lhs47r47+E/OKGaMvYnK8Cgnebfkl/D3/5n7TU8d3dPle7NmVbsqUCgIgv+QFUSQYs0PmDamJ1NH92T6mJ7MvXQQOenxzY7MyUyM5vHz+9vOPVxZQ/ekGHp0iiEzMZpdxRUOJSmsUUDdkqK4Ypi5XtKdCzfx31XmeknWJkb3n5PDko37HOTJPL4bLF2K6aGHGL91FR++fhs9D+6xrVSKK6rJKyr32ilv2uhs3v9pr+09WAsUCoLgfySKKUjx1kinqZE5JpNm9c5Camo1JcZakmLC2VFQxsvf7OZwZY2t9Pfu4iqna23ad8SWSW0lMszA/KuGEGowkJYQQV29h0iqL5ZjuuQSVEUFOx54nOtVH9t1Xrnmz1z98o9O2d79OieQGBPO7e+td0joiwwzsCB3mKwgBKER+BrFJCuIIMWTc7c51WL3HKpg72EjN7/zM3e8t5Eb3/yJugamm/H9u7i8VmVNvUvfQIhBMTQria6JMSgF7n5rmEadyrZPvuLICf3pPWMq93zwFFE15pXDzoIy/j2pn22ldNGQDHp0iuH4tFgGZnTg5gYrikcm9iUnPaGZd1UQhKYgPoggpaXLRBSUVvPwkl8cFM6cFTtseQ/2juaG10qJc+0PSY6N9BrGWldnYtGGfdy7eBe1o+/mzog3yf32PT7/bSPXj7ud8ppeGBtkUt8xthdFZdV0S4p1KlCYk57Q7M51giA0DVEQQUpLl4lw1Q8iMTqc3mlxTB3dk9jwEHokx9rqNH20YZ/tWiEGnCrBTh+TTYjB/UrnhOkjMGn4raicPw5VkhgdTn6tiX+PuJJvegzk+c/m8MFrt7Oz40HOjxqKsQ7b+U9+to0FucMAcxXbAV0THZoitTaeEv8EoT3hz57UXYHXgDTABMzTWj+jlOoILAC6Y245epHW+rC/5GirtETrUnu6JUY7KBxrox5rdzjrpL9w3V4OV9bw8IS+KMyTYX6J0dZQyGpKeu3b3QzK7IB2EfaaGB3O2t1HuHfRJtvY00Zn8/p3u8kvMfJVRn+WvbmM2Jtv5PTZD/Pf7oO4/exbKYrtCJjHq2wQGtsYAjFxSwlx4VjCb05qpVQ6kK61/kkpFQesAyYCVwOHtNaPKaXuAhK11jM8jXUsOqmhZctE7DpYzqrtRRysqMGkoXdqHHfYtQ4Fx1IbkWEGckdm0Tstnl4psZw9d43TsR/fPAK0dto3bUxPm8nI3divXXMinWLDiX3tZeLuvpPKsAhmnDWdL7KH2sZuTD8I+3sViIlbSogLbYmgdVJrrfO11j9ZXpcBW4EuwATgVcthr2JWGoILWrJ1aVF5NVW1JuatMrf23F5Y5jHhzVhrwqTNmdRVdeae1fbOYquJydW+zI7Rbse2OpoHZyaSlRJH1TV/ZcUbH1MQ34kX33+YWcue4ZFRGYSGNO39+bPonz2efEOC0N4IiA9CKdUdGAR8D6RqrfPBrESUUiluzskFcgEyMzMDIWa7JjzEwFNfbLdNbibtuhOcdUFpfW2sNbH3cJVbE9ORylqHfb1S49hzqMLl2EN7dOT0PikOjuYDJdU8vkcx4YVFlLz9f5y34AUOnj+GQ08/C1df2Oj3F6jeD+58Q8mxUkJcaH/4PRxEKRULLARu0VqXNvY8rfU8rfUQrfWQ5ORk/wl4jNAwVNVVUtr0MeaktMgwA/ePz2H19kJb9ra1Z/XcFTt5duVODlfWkBIX6bRvW0EZ7679w2nsf5/Xj8gwA3GRYQ4roYqaOnYXVzHn6z1ckjmeiZc/wZHQKHpfcxHk5kJp474y1onbnsgwA2nxkS3ak9pVCfHpY7L5vdhxbOmFLbQH/Joop5QKA5YAn2qtZ1u2bQNGWVYP6cCXWutensY5Vn0QLYkr23m3pCgentCXkqo6isqMdEmM5khFDdERobz6TR5/6ZlM77R4xvZJ5csdhQ5d3/qkx5MUG05KXAQb9paws7Ack4bY8BA6d4hi1ufbGN+/C1FhBnI6x/PAR1sckvDG9kllz+FKisqquerlHxzkild1LDu8gvQX5kJGBmr+fDjtNI/vz5UPYu6lg6ip0y3ul9h1sJz3f96HSZtXU+//ZHbsW/0Q4sgWggVffRD+dFIrzD6GQ1rrW+y2PwEU2zmpO2qt7/Q0ligI37HlIyzabJu0Hjq3L89+uYNLTszEZMKhzPa00dn0z4jnL8eZV28NJ7zbTj+el7/eRZcOEVx8YjeHcR+Z2JdBXTtQVF5NVFiIyyzseVcMIff1tSRGh3PlSd0cQmitY2du38j8L58ldtdvcNVV8OST0KmT2/fY0KmvNZz9n5Z3KLdmn21BaArB3A/iZOAKYJNSar1l2z3AY8C7SqkpwB6g8YZmodnsOVzJfyyJcUrB8alxzPrsV3YXV9GlQ7Qt3BWOJtG9MWUoBoMir6jcyQE8+/PtTBmeRa+0OO5scO69izbz+l9PZFhWJ7797aBL38Da3YdsRQM/2ZTPkxcMMPs3gHlf/UZ+iZH81OM5efKTfFn9NYlzn4YlS2DWLLjyShyy+iw07P3g7tq++iW85ahIL2yhveDPKKY1Wmulte6vtR5oeSzVWhdrrcdorbMtz4f8JYNwlIJSI7uLq2y+gu0FZbYaR78frHA5oR2qqLGd6y7JzmTSXDsii/SESIdzC0qrAfe+AWuF1vSESM7sm84d/9vATW/9zB3vbeDs/p1t45UQxrabZ8DPP0OvXnD11TB6NGzb5vU9u7u2rz2pvbUybcx1xUchtAWkZsExgrtJC6Cm3uRyX2p8hMtz7ZPsblmwnhdX53HFsG62Sd3+XFeT6czz+9uqv7pqEvTUF9u5bGim7fiUuEjo2xdWr4bnnzcri/794cEHweg+vNRfPam99dn2dl2rj2LcnNVc8sL3jJuzmmVbDoiSEIIOqeZ6jNDQcdotKYqbTs3mn4s3u/QDPDKxLxMHdCE01OB0rqdEuPlr8njo3L6c2y+dyMhQ27XtfQOZidG2tqnXjshi7oqdTvLOnNSP+z/a4tq5e+AA3HorvPMOunt3Cv75CL+PGEtqQpTXntxNSTZsTE9wdxnbnq4rPgohUAStk7olEQXhnqaUl2g4aaXHRrD5QCkHSqvJTIyizqTJLzWSFh9J/84JhIcfzVarqzOxJb+E/BIjoQbFta+tcxr/P5cMIjU+gpy0WGKiImzba2rq2bi/hAOlRtLjI+nX2ZwHsau4gn1HqrjutbUunNh/IiEqzGNxPtPnX1Dxt5uJ2/kr32T257EzrueGm89rdLSQp3vXUj3BXeHNyS0ILUXQZlIL/qeppgr7zOzMxGg+/uUAV7z0A48u3co3ecVcNv97pr71M5fP/54vthXaxjGZNJ9tLWDyvO948KNfqDVplyapXw+UceVLP/DxlkJqLLWUamrqWbRxP5dbxr5s/vcs2rifujoTWcmxZHSIcpmlvWV/KZPnfcdnWwvcvp9dA4cx7KInuPf0G+lT+DsfvHgzR665jj3bd/t87/zRE9yKtTpuw/vXEsl24tsQWhJREG2YppaXsJ88Nuw9wn8stv9JgzNs5iVX4+wqrmDmsq1MGZ7FLWOy+aO4gltPO95hUr9v/Am8/9NejLUm/rl4Mxv3lwCwcX8J/1y82WFs+/1KQVJMGE9eMICZ5/fjyQsGkBQdxmvf7vb6fgpKjVTUK94YfDajcufx2uCzueinT8gYOhCeeAKqqlyeB+b+GL8eKOXaEVlMHd2TxOhwh2t56wmenhDJTaeae1hcOyKL4opqt/e64URtrY7rqnSJL4hvQ2hppNx3G6Yp4ZSuTCbWCqtKOVdktR+nuKKayUMyHfIk7j6zN1NP7YmxzoTWUGastfWoNkcxmV8fcCOjdX9ReTWHK+v454e/2Ma+9bTjvb4fcAw3LYmK48HTrmfhkHG8u+N9Qu+8E555Bh54wBz5FHr0q24yaX7ac8ShB4X1Xliv5b4neCTdkqKc7kePTjEMyjC59Nk0NEN5qo7bvVPzfRDufjD0Ft+G0ExkBdGGaUoYp6vJY86KHUwanGE7z9044SEGp0ijfy/7lapaE3NX7GT+mjzKjPUO56bGm89NdyOjdX/DGlHWKCZ7udyFpbqKFvrbTROI/PxTWLkSunaF666DnBz43/9sLe92FVdwzwebnO7FhUMybNdyF4mUk57Ag+f2dbof//hgE1vyS9zea/vVSWp8pNvSJb4ghQSFlkZWEG2YpvSMcDd5hBjgvbV7nRoC2Y/jruWotTqrNSMbLH9P6Ev/zua2oP06J/DQhL42M1PD/d7G9hSWag037T1thHO00KhR8M03mBYtpu7uuwm/8EKMAwcT/vBDFPQ+0eU1e6XF2a7laeyaOtcyHygxMqCr95Vd96QY5l46yKF0Sb+MBIcw2Ob0tWjpJlOCIAqiDeNxgmyAu8ljZHYyOenxdEmM4vQ+qRysqHYax925Q3t0ZGyfFIz1dTw8oS+HK2tJjA4jNARb5FF4eAgT+3cmq1OMbcKzj5BKiY1wOfao4zsxaVAXr5Njw+xpe0walvUcyh3nP8FZ61dw29dv0uWc8QzuP5Dxx4/n46wT0eroCiEuIqxRY6fGR7mUOc2yKmrMRF3ToM3q7IsGmmX2oY5TSzeZEgQJcz1G8GXi8XTuruIKn2L6N+87wuodB53amY7I7kTfLh0a9b7c/dpumG8QVl/Lhb9+xYNbPiLs99/YntyNucMu4ot+I5l6Wm8WrN3Dy1ef6FZu67V2F1dg0vDQkqMFCO8/J4e/HNeRbknei/V5yoMAfLqfLdlkyt3Y0mq17RDMtZiEIKIpq42mnOtr3SF3vSayOsV4VRDeJuKGstWGhPFWzmmcO2sGycs+JHH2k8z56AkO/fQu8345jwNZI9zK7epaD0/oS3ioQikDL676jR6doumWFOv1Xnu6Z65auDblfnpaUfmCVKg9NhEFcQzhy+Th3tzim93bvp+E/flpCd7P9xa141a2xFi45FJGFnZh5C/fcNO373LXoqe5PuolqM9l91+vY39MR4dfya6udd/izQ5tVO3fs6d77e2eBaMfQSKkjk1EQQg+0T0phv9eMZiyqnoqquuIiQwlLjLEwe5tn4WdnhBFTnq8zUeRkx7PIxP7OpULz0lP8HrtxjiDPdnkZ00ezG3vGvg0+yROPrCVWfu+JPU/s4n9z1P83Hs4s4dO5JpbJ3NmTprba2V2jGL6mJ4OTmZPmEwarWH2RQOIjQjlcEUNISEGh3vmTz9Cc81EBaVGEqPDmTQ4w1ZId+G6vVKh1gPtwSQnCkLwCZNJU1RW4zTBm0wag0G57ENhX+fJYFAkx4Xz5AUDqKipIyY8lLiokBaJ2vFm6nHcNwqjupHTHniPi3/4kMkbPmPiL1+x8dPnKL59KmnnXeDyWnsOVTF/TZ7NyeztXrnKRVmwdg83nZpNXZ2J8PCQZpsCm3P9xpqJrAUaG/qKrI55wZH2YpITJ7XgExv+OOyyIdCC3GEM6Jrodb8vheta+p/QvkZSTHUlF2xezqXrP6HXwT3omBj2jj2XOxL+zPcp2USGh9iS6/JLjI2S2d17tRY5fGPKUIZ079hkuRuLL/f6t8Jyl82XPr55BMelyAqiIcFSkFGc1EKrYi09YY99ToC3/b44uQ0Gxdg+qSzIHWYxX0WSk57Q7F9o9iuSiohoXv3TOSwYei7LT46ky8K3yHjnHRZUvE1Zz16sPXUCT31aQj5xpCdEMmlwBtsLygBs5qCG5gV379WayW7NLvcXvpiJCstcy15UbmyUgmgP5pam0F6aRomCEHwiPcFNToDFyextvy9ObmsRwZZaQbjzWaTnpMFZo1FPPQULFhD2/H859YXHOQXFhu79KJ0wibs+7cWz4XG2c8JDFVPf+tlhnF6pcS7fq9aO2eX+whczka+fU3swtzSF9pK06M+e1C8B44FCrXVfy7YHgOuAIsth92itl3ob61g1MXly7gYL3nwM3vabTJoV2wqcsopH90r1Onn4uox39asW8JpHYDJpVi39hg1PPs9lv39Lpz2/UacMfN19IEt6j2BN72FceNYg5ix3jMxaNn0Ev+SXufRBTD01mwn9OzuUWG8Onn6p+2Im8mWSb+7n1JZXHcGiFIPZxPQKMBd4rcH2p7TWT/rxuu0CbxNrsGAwKDpEh5E7MguTBoOCDtFhtn+C0FADEwd0ITsllgMlRtIsZiD79+Auq9gbvizjPf0DewsFNhgUI8f9hcyhA1h7oJRnnlrIOVtXcc7W1TzxyTOYPplD/qcDqU3uz+c9h7IzqSvGWnMl2DNz0uh508nsKCwnLjKUw5U1/H1sb8JCFPX1JqD5CsLbpOTOTFRY5t1M5EsejbvPqaDU/ecULBNsc/HlfgUTflMQWutVSqnu/hq/vbMlv8SmHMD8D3Xvos1kp8QyoGtiK0t3lF3FFTZTipWGvw5DQw0M6JrIgK6uz29ufL0vy3hf4/qteQ4Av3fpyeMpWTw+8ipyCn7jzN9/5KL9PzPjq1eZ8dWr7O6QxlfZJ9KpZwmG5PEcqarl9vc2OMn92l9P5MQeSV6v3dz3FB0e6vJ+RTdy1dLcPJrmXLc95F34K2kxkLTGT9GpSqmNSqmXlFJuZzqlVK5Saq1Sam1RUZG7w9otnpy7wYSvFUR9Od+XntMtVfnUQQal+K3r8aTP/jfLXlnCKdNe4x9j/8bvnbpy6YZPyb7uMujYkZ4Tx3LT8lc5afdGIupqSE+IZMrwLApKq31q8uPtPdXU1zNttGMfimmjs6mtNzmN1ZI057pSmTY4CLST+jngYUBbnmcBf3V1oNZ6HjAPzD6IQAkYLHhz7gYLvjrjfDnfl2V8SzkRXclQWVPHTW/9xPhxJ6LOPpEfNfxr3e88d1wNPTf9QPjST7nxu/e4+dsFVIeGcahXP5Yt7sbStF480e0E7rr2tGaZUry9p6SYCBas3eNQ1mTB2j2c2TetSddpKs25bntx8rZ1/JoHYTExLbE6qRu7ryHHopO6rfggfLUVt5at2Z/X9fbZVVXV8sl3O/jsv+8ypW4PId9/R07+TiLqawHIj+tE3KjhxA77MwwYYH506YItNrWZ76kt3eu27oMIFnx1UgdUQSil0rXW+ZbXtwJDtdYXexvnWFQQcDSKyZ1zN1jwtYKoPyuQttR1G0bUZCZGs+dwpdsIG1efnbWmU0GpkcSYMCqr69l3xMjNb/9MWH0tJxTkMWj/Ngbv/5Wx5buJ/MOut3bHjjZlYerVmwPp3difkkHH47rRvVOs7dreIt+8vWd/Rc415zMOxPfCW6SUt/3BHmkYtApCKfU2MAroBBQA91v+HojZxLQLuN6qMDxxrCoIITho+Gu2W1IUN4/OdlghNOcX8fQx2Zi05j8rdjqZUp67bDAjksMJ/WUzbNhge+jNm1F2vbYrwqOoO64n8QP6Qo/ubA7twJwdRn6PSeZQUiqPXH5So391t5VVa0vh64qrLdyvoFUQLYkoCKE1aRjHf9OpPZm/Jq9Jcf3ucgGmj8lGaxz6W1tzI+ZcPMgpYi2voJRrH3mfzoV7yTq0lx6H99Pz8H6G1R0kdN9eVH29w/FHouKI7pZBeOd0SEkxP1JTj75OSYEOHSAhgY1lJi56bQPGOu0go7UsSnvDW36Gt/3eysgEA8GcByEI7YKGETXW0hj2eMu/cBeVU1FTz8J1e5kyPIveabH8eqDcVt/JWo7EYZzyGvJiksnrkcyaHoNs29/JHYquq+fWp5fRpbSQLqVFdC4toktpIWcnKzpWHIG1a6GwEEpLXcrYH9hkCKEsIoayiGjKImIoD4+i88pkSOkAUVHmR3T00dfWR1gYhIaanxvzcHdsRARERkJ4uFefi694y6Pxtt9bGZn2gCgIQfCCu4iapkTYuBtDa3NI8/w1ebxyzYnc/PZ62z5XEWveonuOJKVwIL4T6+z2nTxtBB3tFZfRaFYU1kdJCRw5Qv7uA3y0eitRVRXEVVcQV11JfG0VMeUlcKQQqqocH9XVTbmNTceqLCIjj762PkdFQVwcJCRAfLzjIyEBEhOPrpCSkyEmxknheLuX3va3lUhDXxATk3BMYjJpdhdXsL+kijJjHZ07RHFCmmsHY3N8EA2dl31S4/hiW6FtjCHdEpg+phf5pUaiw0MIMyh+/L2IF7/+g25JUTxwTg4RoSGkJUQ6Ff+rq9fcu3iTrd2p9dqA17IlnpyqdXUmlm8roLZO23p7hIUoxvRKdW1TN5nMyqaqCmprzY+6uqOv7R6m6hoKiss4UlpBYpgiJTIEg6ne+djqavOY1md3r6uqoKzMrNxKS80PTworKsqsLNLSIDMTunXDlJnJxpAENhoSOJKaQX1srMP9Eh+EKAjhGMRa/2lHQblD4TpP/9z2ETXJsZHsPVLBut1HbOVF+ttNLO4mjnP7dWZvSRUlVTXsKKzgn4uP7n9oQl8GdY1j72EjRyrruPuDTbZ9cy8dRE2ddpioZp7fny4dIukYE2GLrPF1QqupqWfRxv1Ock30sUZUwEJWq6vNSqO0FIqLoajIcaVUVAT798Pu3bBnj5NCKYhLIuSEPiQNGYDKyYE+fTD17sOukBivUV/BGmkoCkIQmkheUTmL1u+z1X+y0lgHo6/Oyx9/L+aKl35w2v/6X08kKTbCaexpY3q6lLWhU9xXudbuOsTl87932u9rn4pg6Y3ggMnE7q27uGPWhyQfKiDzyAF6Fv9B9qE/6FeyH0NF+dFjMzLgz382P4YMgRNPNJux2gDipBaEJlJQasSkXTuaG+Ng9NV5eaC02k3xumrqTNppnztZGzrFfZfLfVE9XwjK3ggGA/sj4/kxJRtSsh12vXPdiQyLqIZffoFNm2DdOvjxR/jgA/MBSsGgQXDKKTBqFIwYYfZ5tENEQQjHHKnxkYQo147mxjgYfXVepsVHuNyfGh9BUqzzPneyNnSK+ypXupvzfe1TEaxlM9zKFR9ldmxnZMDYsUdPOHzYHAn29dfw1Vfwf/8HTz1lVhhDh8L48XD22eaERj9HYAWK4DGWCUKA6J4UQ7+MBKaPcSwg98jEvuSkezcdeCsSmJMezyMT+7odu196Ag+d67j/oXP70i89weXY/TISnLbNPL8/xRWOxf0antstKYp5VwyhoNRIXlE5fVLjPMvVOYGHJjSQa0Jf+nc276+rM7Hhj8Ms25zPhj+OUFfXuCJ/zS2qaDJp8orK+fa3gz4VMWwxuRIT4fTT4YEHYOVKOHIE08ovOXz7XZRXVsO995pXFpmZ8Le/mZWIyb+FEP2N+CCEYxL7KKZyYz3pCRGc0AQHY2NLVrhzXhqNdWzKL6GgtJrU+Aj6pScQGRnqdmw4GsVUW6+5z0UUk9VRvau4gkMV1ew7YmTGwo0OjuHTeqWwtaDUfW+Omno27i+xlZbo3zmB8PAQnyN2mlo2I1CObV/KeTSUMaP6CP/XsZB+679GLfsEKivNNbQmT4ZLLoE//SngKwtxUgvCMURjHb4t7RgOdNZwUDq2G+BRxmgFH30Eb78Nn3xiDuHNyYEbboDLLzdnrwcAXxWEmJgEoQ3R2D4JLd1PIdD9SdpCPwiPMsbEwMUXw+LFUFAA8+aZM9Bvvhk6d4YpU8yO7yBHFIQgtCGsjlV7PDmsvR3XWKwO7obj+StruKXl9weNljExEa67Dn74wezkvvxyWLDAHC47apR5hRGklhwxMQlCK+CtjLSn8xpjm29pG35dnYlPtuSzo7DclqXdMyWWs3LS/ZIY1hJ9Rqz3NyUukhCDeRXUlHvtVxlLS2H+fJg9G/buNUc+zZgBF15orlPVQogPQhDaGC01+XlzrLZkPwWTSfPJ5gPc/t5RmWddOJCz+vqvgU9z5XdXWv21b3dzuLKmRZ3dPt/jmhp46y14/HHYuhWys+Ff/4ILLmgRh7YoCEFoY7QFB2xD2pLM7mSdMjyLZ1fuDE65TSazv+K++2DLFnPW9mOPwejRPg0rTmpBaGO0BQdsQ9qSzO5ktf4gD0q5DQY47zxzY6iXX4YDB2DMGDjjDHNGd2uJ1WpXFoRjlLbggG1IW5LZnaxWY0mwyg1ASAhcfTVs3w5PPmku82HXQTDQ+E1BKKVeUkoVKqU2223rqJT6XCm1w/LcPguYCIIHmptZ3Jq0JZldyTp9TDbv/7Q3qOV2IDISbr8d/vjDnGDXSvizJ/VIoBx4TWvd17LtceCQ1voxpdRdQKLWeoa3scQHIbQ3WtKBHChaU+amRn01LM8eYjAXI2wod3OjydoKQe2kVkp1B5bYKYhtwCitdb5SKh34Umvdy9s4oiAE4djFX2U3AtanohVpa07qVK11PoDlOSXA1xcEoY2xq7jCNomD2cl827vr2VVcEZTjtieC1kmtlMpVSq1VSq0tKipqbXEEQWgl/BVB1ZYis1qLQCuIAotpCctzobsDtdbztNZDtNZDkpOTAyagIAjBhb8iqNpSZFZrEWgF8SFwleX1VcDiAF9fEIQgobH9HvwVQdWWIrNaC39GMb0NjAI6AQXA/cAi4F0gE9gDXKi1PuRtLHFSC0L7oqkOYn9FULXFaLKmENRRTC2FKAhBaF+0pdIdbZm2FsUkCIIgDuI2gigIQRACjjiI2waiIARBCDjiIG4btFxnCkEQhEZiMCjOzEmj97QR7dZB3B4QBSEIQqtgMCiykmPFKR3EiIlJEARBcIkoCEEQBMEloiAEQRAEl4iCEARBEFwiCkIQBEFwSZsotaGUKgJ2t8KlOwEHW+G63hC5mk6wyiZyNQ2Rq2n00lrHNffkNhHmqrVulXrfSqm1vtQx8RciV9MJVtlErqYhcjUNpZRPRezExCQIgiC4RBSEIAiC4BJREJ6Z19oCuEHkajrBKpvI1TRErqbhk1xtwkktCIIgBB5ZQQiCIAguEQUhCIIguEQUhB1KqV1KqU1KqfXW8DClVEel1OdKqR2W58QAy9TLIo/1UaqUukUp9YBSap/d9nEBkOUlpVShUmqz3Ta390cpdbdSaqdSaptS6owAy/WEUupXpdRGpdQHSqkOlu3dlVJVdvft+QDL5fZza+X7tcBOpl1KqfWW7YG8X12VUiuVUluVUluUUtMt21v1O+ZBrlb9jnmQq+W+Y1preVgewC6gU4NtjwN3WV7fBcxsRflCgANAN+AB4I4AX38kMBjY7O3+ACcAG4AIoAfwGxASQLnGAqGW1zPt5Opuf1wr3C+Xn1tr368G+2cB/2yF+5UODLa8jgO2W+5Lq37HPMjVqt8xD3K12HdMVhDemQC8ann9KjCx9URhDPCb1ro1ssrRWq8CDjXY7O7+TADe0VpXa61/B3YCJwZKLq31Z1rrOsuf3wEZ/rh2U+XyQKveLytKKQVcBLztj2t7Qmudr7X+yfK6DNgKdKGVv2Pu5Grt75iH++WOJt8vURCOaOAzpdQ6pVSuZVuq1jofzB8IkNJq0sHFOP7jTrUsb18KtOnLDnf3pwvwh91xe/H85fUnfwU+sfu7h1LqZ6XUV0qpEa0gj6vPLVju1wigQGu9w25bwO+XUqo7MAj4niD6jjWQy55W/Y65kKtFvmOiIBw5WWs9GDgLuEkpNbK1BbKilAoHzgXes2x6DjgOGAjkYzYLBBOuekcGPKZaKfUPoA5407IpH8jUWg8CbgPeUkrFB1Akd59bUNwv4BIcf4QE/H4ppWKBhcAtWutST4e62Oa3e+ZOrtb+jrmQq8W+Y6Ig7NBa77c8FwIfYF5+FSil0gEsz4WtJN5ZwE9a6wKLjAVa63qttQl4AT+ZIxqBu/uzF+hqd1wGsD+QgimlrgLGA5dpixHWsrwutrxeh9kOe3ygZPLwuQXD/QoFJgELrNsCfb+UUmGYJ7s3tdbvWza3+nfMjVyt/h1zJVdLfsdEQVhQSsUopeKsrzE7oDYDHwJXWQ67CljcOhI6/rKz/sNYOA+zrK2Bu/vzIXCxUipCKdUDyAZ+CJRQSqkzgRnAuVrrSrvtyUqpEMvrLItceQGUy93n1qr3y8JpwK9a673WDYG8Xxb/x3xgq9Z6tt2uVv2OuZOrtb9jHuRque+Yvz3tbeUBZGH28G8AtgD/sGxPApYDOyzPHVtBtmigGEiw2/Y6sAnYaPng0wMgx9uYl6y1mH+NTPF0f4B/YP71tA04K8By7cRsb11veTxvOfZ8y+e7AfgJOCfAcrn93Frzflm2vwLc0ODYQN6v4ZhNHhvtPrdxrf0d8yBXq37HPMjVYt8xKbUhCIIguERMTIIgCIJLREEIgiAILhEFIQiCILhEFIQgCILgElEQgiAIgktEQQjtCkslzdbKCRGEdoUoCEGwYMkkDnraipxC20cUhNAeCVFKvWCpkf+ZUipKKTVQKfWdXe3+RACl1JdKqUeVUl8B05VSFyqlNiulNiilVlmOCVHm2v8/Ws6/3rJ9lFJqlWW8X5RSzyulDJZ9lyhzb5HNSqmZlm0XKaVmW15PV0rlWV4fp5RaY3n9J0uBt3VKqU/tSkw4yBnY2ykcq8gvEaE9kg1corW+Tin1LubM1juBm7XWXymlHgLuB26xHN9Ba30KgFJqE3CG1nqfsjSAwZwBXaK1/rNSKgL4Win1mWXfiZjr7O8GlgGTlFLfYO4P8CfgMOYKwROBVcDfLeeNAIqVUl0wZ8SuttTV+Q8wQWtdpJSaDPwLc6VQBzkFIRCIghDaI79rrddbXq/DXNmyg9b6K8u2VzlaFRfsitMBXwOvWBSLtSjbWKC/UuoCy98JmJVQDfCD1tq6Engb82RfC3yptS6ybH8TGKm1XqSUirXU/OoKvIW5ec8Iy7V6AX2Bz81ldgjBXBLDlZyC4HdEQQjtkWq71/VABy/HV1hfaK1vUEoNBc4G1iulBmIuk3yz1vpT+5OUUqNwLpescV1W2cq3wDWYa+Gsxrw6OAm4HcgEtmitT/ImpyAEAvFBCMcCJcBhdbRxyxXAV64OVEodp7X+Xmv9T+Ag5l/6nwI3WkxAKKWOt1T8BThRKdXD4nuYDKzB3LTlFKVUJ0tVz0vsrrcKuMPy/DNwKlCttS7BrDSSlVInWa4TppTKabnbIAhNQ1YQwrHCVcDzSqlozKWXr3Fz3BNKqWzMq4DlmCtybsTcZ/gnS4nlIo62vfwWeAzoh3nS/0BrbVJK3Q2stIyzVGttLVG9GrPSWaW1rldK/QH8CqC1rrGYseYopRIw/38+jbkyqCAEHKnmKgjNxGJiukNrPb6VRREEvyAmJkEQBMElsoIQBEEQXCIrCEEQBMEloiAEQRAEl4iCEARBEFwiCkIQBEFwiSgIQRAEwSX/D70aNHoYcR1XAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "model=ols(\"mpg ~ horsepower + I(horsepower**2) + I(horsepower**3) + I(horsepower**4)\", data).fit()\n", "b0, b1, b2, b3,b4 = model.params.values\n", "sns.scatterplot(x='horsepower',y='mpg',data=data)\n", "x = np.linspace(40,240,200)\n", "y = b0+b1*x+b2*x**2+b3*x**3+b4*x**4\n", "plt.plot(x,y,'r')\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This approach is known as **polynomial regression** and allows to turn the linear regression into a nonlinear model. Note that, when we have more variables, polynomial regression also includes interaction terms. For instance, the linear model:\n", "\n", "$$y = \\beta_0 + \\beta_1x + \\beta_2y$$\n", "\n", "becomes the following polynomial model of degree $2$:\n", "\n", "$$y = \\beta_0 + \\beta_1x + \\beta_2y + \\beta_3x^2 + \\beta_4y^2 + \\beta_5 xy$$\n", "\n", "As usual, we only have to add new variables for the squared and interaction term and solve the problem as a linear regression one. This is easily handled by libraries. Note that, as the number of variables increases, the number of terms to add for a given degree also increases." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Residual Plots and Residual Q-Q Plots\n", "Residual plots are a way to diagnose if the linear model we are fitting on the data actually describes the relationship between the variables. For instance, if the relationship is not linear, and we try to force a linear model, the model will not be accurate.\n", "\n", "If the relation is accurate, we expect the residuals of the model (i.e., the $e_i=\\hat y_i - y_i$ terms) to be random and approximately Gaussian. \n", "\n", "**To check if the residuals are random, it is common to show a residual plot**, which plots the residuals on the $y$ axis and the true $y$ values on the y axis. We expect to observe a cloud of points centered around the zero with no specific patters. \n", "\n", "**To check if the residuals are Gaussian, we can show Q-Q plots**\n", "\n", "The graph below compares residual plots and Q-Q Plots of the residuals of different regression models:" ] }, { "cell_type": "code", "execution_count": 549, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABJQAAATrCAYAAADL3uhRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3zV1f3H8de5IzshYYQhINsoylBUUERcdeOotaLWn7UaW2tRHFVaB2KtWjdaLUitVRQHKmLrRIoMQWXJkCEEBMIIkD3v+J7fH997k5vk3uTm5q4kn+fjcR/Jvbn3fs/93pF73/dzPkdprRFCCCGEEEIIIYQQIliWWA9ACCGEEEIIIYQQQrQtEigJIYQQQgghhBBCiBaRQEkIIYQQQgghhBBCtIgESkIIIYQQQgghhBCiRSRQEkIIIYQQQgghhBAtIoGSEEIIIYQQQgghhGgRCZSEEEIIIYQQQgghRItIoCSEEEIIIYQQQgghWkQCJSFEu6SU2q2UOj7W4xBCCCGE6EjkPZgQHYcESkKIFlFK9VdKfaKUKlJK5Sulfh1v21NKZQG9gM2RHJsQQgghRLTIezAhRLyRQEkI0VJzgS+ArsBNwH2hXIlSaqpSamqEtnccsENrXRnK2HwppaytvY540F5uhxBCCNGByXuwNqi93A4h/JFASYg4oZS6USn1mVLqJc83QVuVUscopW5TSu1SSh1SSl3uOe81SqmvlVJvK6X2e0qLz/e5LotS6gHP6XuVUhcrpRyeb41aM8ZhQBet9dNaa7fn5IOtuc4IbW8YsF0p9ZxS6qBnH5zjuU6llLpHKfWTUqpYKfWOUqqTzzZvVEp9rpT6p1KqCLhLKfUfz/4vUUp90WCMNymlfvD87ROlVLbn9Obuo4DjUEqVK6X6eH7/rVJKK6W6e47frZSaFcT2G96OO1q6/4UQQoiOQN6DhXV78h5M3oOJDkQCJSHixzBgFOa3QV2B9cAnnr8NBB6m7puh44CRwHtAH+A54B8+1zUVOBsYDRwD/Ak4oLUu8t2g5590cYDDf/yM8VRgqefN0gnA08BLrbzdTQl1e959+THQHZgB3OP528PA+Zj7pgeQCDzQ4LJjgA+BLsClmPdDd89hqveMSqk/Ab8FJgDdgHzgL54/N3cfNTWOIiBdKaWA3wPbgCzP8ZuB54PYfsPbMb353SaEEEJ0SPIeLHzbk/dg8h5MdCASKAkRP4YDj2qtv/R8E/QDsF5r/ZzW2glsAGye8x4HPKO1fsfzt9eAvkqpJKVUN2AycIPWOl9rXQx8jvnmqB6t9UVa68wAh4v8jHEEsBL4n+dnJfC+949KqUeUUkuUUnOVUilh2CcBt6eU6qSU+tbzTdKxDS53HPCI1vozrbWBuS/xfMP0B+BqrfU+rXU15pvHUT6XHQ48qbWe77lsP8AKWLXW1VrrZZ7rysZ8czlRa71Na+0A/gmc6DOGQPdRc+MoBtKAn2G+kdkAZALnAfla6++D2H6926G1rmnRnhdCCCE6DnkP1oLtyXsweQ8mhJcESkLEj2GA7zdSx/g57m1weBzmPz+vbKDc80/xLGCb1nqbz9874+fNTAhGAN8BZwCDgELgbwCeNxQDtdanAQuAGxpe2PfbOOBe4N5mvo0LuD3MNzYXUn8/4PkG6VjgI5+Tj8V8Q3Ma5hvEvT5/6wrs8zk+DHjX5/g1wCXAXk/pcmfP6WcBCcC3PrfpU6DE8/em7qPmxlGE+Wbmdsxv1UqBLOAW6r7lam77DW+HEEIIIfyT92At2B7yHkzegwnhIYGSEHFAKXUk5j+mrT4njwDW+hwfBqxVSmVilu/6zmO/grrS7K5A7T9JZTYCPB9Y52e7n3i+XfJ3+KTBea3A0cAaz7ct24FlPmc5zWcMnwBjG27P99s44DHgsUDfxjW3Pa21U2vtby5/f89P3zdzIzH3ZTfq/tl7XQIs9WzzSMCOz8okWuuFWuuzMN9MDgeu9/ypM/BBg28UO2mtxwdxHzU5Dsxvx0YBPbXWizDfzAzHfFM2L4jtN7odQgghhGhM3oPJezDkPZgQIZNASYj4MBzz2xIDQCmVARxJ/Tcgw4HvMb91cQNXK6VsSqkLMb81meo53ybgFKXUIM/1TMec/++v3Pp8rXVagMP5Dc5+FJACnK+UsiqlRgC/Af7t+XsWdf+gSzD/2bZGc9sLZBjmvtQ+p43E3HffAWOUUgOVUmlKqWmYc/Jf8Zyv4f1wuVJqsOcbt3TPbVzrOe9q4Ayl1PGe82YopS7xnLe5+6i5cRRhlsx7vwkrBW4DZui6xphNbb/e7RBCCCFEQPIerDF5DybvwYQIigRKQsSH4TT+Jmyb9iy5qpSyYH4zshbzH+UbmM3+ioCHgEu11j8AaK2/BOYAazDnvK/FLE1u7TclIzFLlp/C/PbmVWCS1nqF5+9FgHeljk6YpdGR3F4gx2G+cQFAKdUFs+HiBq31SuARzG+h9mB++3amrlvatuH9MBb4CijDbC75mNZ6IYDWejkwDXhPKVXuGet5njdRzd1HzY2jCLNXw5ue46WY8/df9g6sme03vB1CCCGE8E/eg7V8e4HIezB5DyY6GFU/QBZCxDul1EvAVq31M0Ge/7fAhVrri1u53SeAQq31owH+fhwwRWt9tVIqF0jUWj8fqe35nO9VzMaHG0LdVri19D4SQgghRPyT92CNzvcq8h5MiA5NKpSEaHuOwyyp9kspNVopdaQyl3k9B/MblEfCsN2RTW1Xa70e+EkptQQ4l7rS4YhsD0Ap9THmKhwvK6Wub+X2wqnJ+0gIIYQQbZK8B/OQ92BCCKhb/lII0XYcS9Ol0yOB/2I2BNwKXB9EiXIwhjezXbTWU8KwnZZs74Iwbi+cmruPhBBCCNH2yHuwuu3JezAhhEx5E0IIIYQQQgghhBAtI1PehBBCCCGEEEIIIUSLSKAkhBBCCCFQSiUppb5VSn2vlNqolHoo1mMSQgghRPxqF1Peunbtqvv16xfrYQghhBAiglatWnVIa90t1uNor5RSCkjVWpcrpeyYy2rf1lQPGHkPJoQQQrQzLhccOAAFBWAYrIKA77/aRVPufv36sXLlylgPQwghhBARpJT6KdZjaM+0+S1jueeo3XNo8ptHeQ8mhBBCtBMlJfDss/D001BaCr/8JTz4IOqYYwK+/2oXgZIQQgghhGg9pZQVWAUMAv6utf4mxkMSQgghRCSVl8MLL8Df/gZFRXDppfDQQzBsWLMXlR5KQgghhBACAK21W2s9AugNnKSUOrbheZRSuUqplUqplQcPHoz6GIUQQggRBlVVZjXSgAEwZQqMGQMrV8IHHwQVJoEESkIIIYQQogGtdTGwCDjPz99maq1Haa1HdesmLa2EEEKINqWmxqxIGjgQ7rzTDI++/hr++1844YQWXZUESkIIIYQQAqVUN6VUpuf3ZOBsYHNMByWEEEKI8HA64eWXYfBg+MMfYNAgWLQIFiwwq5NCID2UhBBCCCEEQE/g354+ShbgHa31f2I8JiGEEEK0hssFb7wB06ZBXh6cfDL8859w9tmgVKuuWgIlIYQQQgiB1nodMDLW4xBCCCFEGBgGvP222WB7yxYYORI++gguvLDVQZKXTHkTQgghhBBCCCGEaA+0hvffh+HD4eqrwWaD996DVavgoovCFiaBVCgJIYQQ7cqizQXMWJzH7qJK+mSlcPO4AYzPyY71sIQQQgghhB/z1uTzxGdb2FtcRa/MZO4+9yguHXlEy6/j083krFrMH5e/yVF7t8GQIfDmm3DllWC1RmTsEigJIYQQ7cSizQU8MH8jdqsiM9lOQVk1D8zfyDSQUEkIIYQQIs7MW5PPlPfXU+V0A5BfXMWU99cDBB0qzVu9h4+eeo0X/vcaI/dtYVen7tx78R2MuX8Sl5x4ZMTGDjLlTQghhGg3ZizOw25VpCTYUMr8abcqZizOi/XQhBBCCCFEA098tqU2TPKqcrp54rMtwV3BV1/R7+cX8M83/0x2eSH3nnsrZ940g7eOOZO/fbk9AiOuTyqUhBBCiHZid1Elmcn2eqcl263sKaqM0YiEEEIIIUQge4urWnR6reXL4f774csv6ZnWmQfOvpm3hp+Hw1b3PrDZ6wgDCZSEEEKIdqJPVgoFZdWkJNT9e69yuumdlRLDUQkhhBBCCH96ZSaT7yf46ZWZ7P8Cq1bBAw/Axx9Dt27w1FNcVXE0OyqM4K8jjGTKmxBCCNFO3DxuAE63ptLhQmvzp9OtuXncgFgPTQghhBBCNHD3uUeRbK/fMDvZbuXuc4+qf8b16+Gyy2DUKLM66dFHIS8P7riD2y4aFtx1RIBUKAkhhBDtxPicbKZh9lLaU1RJb1nlTQghhBAibnkbbwdc5W3zZpg6Fd55B9LTzd9vvx06dQr+OiJIaa0jvpFIGzVqlF65cmWshyGEEEKICFJKrdJaj4r1OEQdeQ8mhBBCRMD27fDQQ/DGG5CcDLfdBnfeCZ07R30oTb3/kgolIYQQQgghhBBCiFj76Sd4+GF49VWw22HyZLjnHrNfUhySQEkIIYQQQgghhBAiVvLz4a9/hZdfBqXglltgyhTo2TPWI2uSBEpCCCGEEEIIIYQQ0XbgADz2GLz0ErjdcMMNcN990KdPrEcWFAmUhBBCCCGEEEIIIaLl8GF44gl4/nmorobrroP774cBbWtlXgmUhBBCCCGEEEIIISKtuBiefhqefRbKy2HiRHjwQRgyJNYjC4kESkIIIUQbtWhzATMW57G7qJI+WSncPG4A43OyYz0sIYQQQgjhq6wMpk+HJ580Q6Wf/9xcxW3o0FiPrFUssdy4UuoVpVSBUmqDz2lTlVL5Sqm1nsMFsRyjEEIIEY8WbS7ggfkbKSirJjPZTkFZNQ/M38iizQWxHpoQQgghhACorDSntvXvb/ZGOu00WL0a5s5t82ESxDhQAl4FzvNz+jNa6xGew8dRHpMQQggR92YszsNuVaQk2FDK/Gm3KmYszov10IQQQgghOrbqanjuObMn0h//CCecAN98A/Pnw8iRsR5d2MR0ypvWerFSql8sxyCEEEK0RbuLKslMttc7LdluZU9RZYxGJIQQQgjRwTkc8Mor8Je/QH4+jB9vViONHRvrkUVErCuUArlVKbXOMyUuK9aDEUIIIeJNn6wUqpzueqdVOd30zkqJ0YiEEEIIITool8sMko46Cn73OzjySPjyS/jf/9ptmATxGSi9BAwERgD7gKf8nUkplauUWqmUWnnw4MEoDk8IIYSIvZvHDcDp1lQ6XGht/nS6NTePa1vLzQohhBBCtFluN8yeDUcfDb/5DXTtCh9/DEuXwplnxnp0ERd3gZLW+oDW2q21NoCXgZMCnG+m1nqU1npUt27dojtIIYQQIsbG52QzbcJQstOTKKlykp2exLQJQ2WVNyGEEEKISDMMePddOO44+NWvICUF5s2Db7+F888HpWI9wqiIaQ8lf5RSPbXW+zxHLwM2NHV+IYQQoqMan5MtAZIQQgghRLRobTbWfvBB+P57szLpnXfg5z8HS9zV60RcTAMlpdQcYDzQVSm1B3gQGK+UGgFoYCdwc6zGJ4QQQgghhBBCiA5Oa/jsM7j/fli5EgYNgtdfh4kTwWqN9ehiJtarvE30c/I/oz4QIYQQQgghhBBCiIYWLjSDpK+/Nptt//OfcN11YIu7CV9R1/FqsoQQQgghhBBCCCGasnQpnHEGnHUW/PQTvPQSbN0KN9wgYZKHBEpCCCGEEEIIIYQQYDbWPu88OO002LQJnn0Wtm2D3/4WEhJiPbq4IrGaEKLDWbS5gBmL89hdVEmfrBRuHjdAGhsLIYQQQgjRka1dCw88AB99BF26wN/+BrfcAqmpsR5Z3JJASQjRoSzaXMAD8zdityoyk+0UlFXzwPyNTAMJlURYSXAphBBCCNEGbNwIU6fC3LmQmQkPPwy33Qbp6bEeWdyTKW9CiA5lxuI87FZFSoINpcyfdqtixuK8WA9NtCPe4LKgrLpecLloc0GshyaEEEIIIcDsh3TNNXDccfDpp2bj7R074L77JEwKkgRKQogOZXdRJcn2+kt7Jtut7CmqjNGIRHskwaVoi5RSfZRS/1NKbVJKbVRK3RbrMQkhhBBht2MH/PrXcMwxMG8e3H23edq0aWaFkgiaTHkTQnQofbJSKCirJiWh7uWvyummd1ZKDEcl2pvdRZVkJtvrnSbBpWgDXMCdWuvVSql0YJVS6gut9Q+xHpgQQgjRart3wyOPwD//CVYr/OEPcO+90L17rEfWZkmFkhCiQ7l53ACcbk2lw4XW5k+nW3PzuAGxHppoR/pkpVDldNc7TYJLEe+01vu01qs9v5cBm4AjYjsqIYQQopX27YNJk2DQIHjlFcjNhe3b4ZlnIhomzVuTz6mPLaT/vf/l1McWMm9NfsS2FSsSKAkhOpTxOdlMmzCU7PQkSqqcZKcnMW3CUGmWLMJKgkvR1iml+gEjgW9iPBQhhBAiNAcPmtPZBg6EF1+EX/0KfvwR/v53OCKy35fMW5PPlPfXk19chQbyi6uY8v76dhcqyZQ3IUSHMz4nWwIkEVHjc7KZhtlLaU9RJb1llTfRhiil0oD3gNu11qV+/p4L5AL07ds3yqMTQgghmlFYCE89Bc89B1VVZuPtBx4wK5Si5InPtvitVn/isy1cOrL9FP9KoCSEEEJEgASXoi1SStkxw6Q3tNbv+zuP1nomMBNg1KhROorDE0IIIQIrLTWnsT39tPn7lVfC1Klw9NFRH8re4qoWnd5WSaAkhBBCCCFQSingn8AmrfXTsR6PEEIIEZTycnjhBXjiCbM66dJL4aGHYNiwiG523pp8nvhsC3uLq+iVmczd5x5VW33UKzOZfD/hUa/M5IiOKdraRQ+lzfvLmDhzBYs2F8R6KEIIIYQQbdWpwK+AM5VSaz2HC2I9KCGEEMKvqiqzGmnAAJgyBUaPhpUr4YMPohImNdUj6e5zjyLZbq13mWS7lbvPPSqi44q2dlGhZLMoCsqqeWD+RqaBTDEQQggh4sSizQXMWJzH7qJK+kgvqbimtV4KqFiPQwghhGhSTQ3MmgWPPGKu4HbWWfDwwzBmTNg3FagKqbkeSd5KpUAVTO1FuwiUAFISbFQ6XMxYnCdvVIUQQog4sGhzAQ/M34jdqshMtsuXP0IIIYQIndMJr75qhke7d8Npp8GcOXD66RHZnLcKyRsceauQILgeSb7BUnvVbgIlMEvI9hRVxnoYQgghhMBc5c5uVaQkmG83mvvyR6qZhBBCCNGIywVvvAHTpkFeHpx0klmhdM45oCJXWNtUFVJH6ZHUnHbRQ8mryummd1ZKrIchhBBCCGB3UaXf/gH+vvzxVjMVlFXXq2aS/ohCCCFEB2UY8NZbcOyxcP310KkTfPQRrFgBP/tZRMMkaLoKqaP0SGpOu6lQqnS4cLo1N48bEOuhCCGEEALok5VCQVl1bYUSBP7yp6XVTEIIIYRop7Q2G2s/+CBs2ABDh8J775mrt1kiVxPTsF9SZoqdokpno/P1ykzuMD2SmtMuAiW3oclOT5LSeCGEaMdkOlTbc/O4ATwwfyOVDhfJditVTnfAL392F1WSmWyvd5pMZRdCCCE6EK3h44/h/vthzRoYMgTefBOuvBKs1uYv3wr++iXZLQq7VeF069rz+VYhdYQeSc1pF4HSUT3SmZM7OtbDEEIIESHhbu4s4VR0jM/JZhpm9dGeokp6N7GvW1LNJIQQQoh2RGtYsMAMkr75Bvr3N5tvX3MN2MITWfhbrQ3qKowsSuHWut5lnIYmM9lOaqKtQ1chNaVdBEpCCCHat3BOh5KVx6JrfE52UPu1JdVMQgghhGgnFi+G++6DJUugTx+YOdPsl2S3N3tRf3yDo07JdpSCokonCvDGRfnFVdz97vegqK0+ahgmeZVUOVn74M9CGktH0K6acgshhGifWtLcuTm+4ZRS5k+7VTFjcV64hitCMD4nm2kThpKdnkRJlZPs9CSmTRgqIZ8QQgjRHq1YYa7SdvrpsG0bPP88/Pgj3HRTq8KkKe+vJ7+4Cg0UVzlreyA1jIuchq43lS2QjrZqW0tJhZIQQoi4F87pUO29V097mM7X/Ns7IYQQQrRJq1bBAw+YvZK6doWnnoLf/Q6SQwtufCuS/E1ba42OuGpbS0mgJIQQIu6FczpUe+7V05an87XlsQshhBCiGevXm0HSvHmQlQV//Sv84Q+Qlhb0VTSczuZwual0GrV/D0eYZFUKQ2vplxQkCZSEEELEvZY0d25Oe+7VE85eU9HWlscuhBBCiAA2b4apU+GddyA93fz99tuhU6cmL9ZceFRc5WzVsOwWVa+HEpgVSY9efpyESC0ggZIQQog2IdjmzsFcT7jCqXjTlqfz7S6qxKog72A5DrdBgtVC17SENjF2IYQQQjSwfTs89BC88YY5ne3ee+Guu6BzZ79n9wZI+cVV9RpoQ+vDIy/v9R7hZ5U3qUgKjQRKQgghOpxwhVORFEovpLY8nS890caPBeVYLQqrReEyNPnF1QzODr4UXgghhBAx9tNP8Je/wL/+ZTbXnjwZ7rkHunXze/Z5a/KZOn9jvdCotRPXvNPWvKu8FVc6AwZGEiC1jgRKQgghRJwJtZ9QW57Op719D7zvInWD04UQQggRv/Lzzb5IL78MSsEtt8CUKdCzZ72zNVWJFA4ybS26JFASQggh4kyo/YTa8nS+coebIzKTOFTuqJ3y1iMtkQqHO9ZDE0IIIUQgBQXw2GPw4ovgdsMNN8B990GfPvXOFolKpIayUuw8ePFQCZOiSAIlIYQQIs60phdSW5jO5493ut6AbnVT3CodLrLTk2I4KiGEEEL4dfgwPPEEPP88VFfDddfB/ffDgMZV0fPW5DPl/fVUOcP3JVGK3UKi3drkdDYReTENlJRSrwAXAQVa62M9p3UG3gb6ATuBK7XWRbEaoxBCCBFtbbkXUqja8nQ9IYQQosMoLoann4Znn4XycrjqKnjwQeZVpvHEO1vIL95UbyqbRYHRylIkCY/iV6wrlF4FXgBe8zntXuBLrfVjSql7PcfvicHYhBBCtFGhNLSOJx0xXGnL0/WEEEKIdq+sDKZPx/H4EySUlfDxkFN4duzVbO3WD/61rd5ZffOjUMIkbwh1hIRHcS+mgZLWerFSql+Dky8Bxnt+/zewCAmUhBBCBCnUhtbxpKOGK211up4QQgjRblVWsuFPf+WImc+TVVXKV4NO4tmfX8PG7gPDvinpgdT2xLpCyZ/uWut9AFrrfUopv+8slVK5QC5A3759ozg8IYQQ8SzUhtbxRsIVIYQQQsRMdTXr7n+cni89x7EVRSzuN5KnT7uWtb2OCtsmpBKp7YvHQCkoWuuZwEyAUaNGtaiQbvqCrcxauoMKh5vUBCs3ju3PpLOHRGScQgghoqs1Da2FEEIIITqqeWvy+cv7azn324+59eu3GVZ+mBV9juV3l97Lyt5Dw7qtzGQ7ax/8WVivU0RfPAZKB5RSPT3VST2BgnBe+fQFW3lu4TYsCmwWs8npcwvNOZ8SKgkhRNvXERtaCyGEEEK0xgPvraHqn6/ywddv06fkAKt65XDnhZP5+sjhoFRYt5VstzJ1QngDKhEb8RgozQf+D3jM8/PDcF75rKU7PGGSBTDL7FyGwaylOyRQEkKIdqClDa3begNvIYQQQoiWmrcmn6nzN1JaUc3FmxZz27I5DCjay7oeg7j/nN+xaMAJYQmSvNParErh1lqmt7UzMQ2UlFJzMBtwd1VK7QEexAyS3lFK/QbYBfwinNuscLixWeqfZlHm6UIIIdq+ljS0bg8NvJsiYZkQQgghfM1bk8+U99dR7XBx/pavuX3pmww5vItN3fpx0+X38cWgk1sVJElj7Y4l1qu8TQzwp7Mitc3UBPPbaovPc8TQ5ulCCCHal+Ya7LWXBt7+tPewTAghhBDB8wZJVQ43Z2/7ljuWzuaYgh1s69yb30+4h49zTkUrS/NXhPnZ+ZHLjpPQSMTllLeIunFsf55buA2XYdSW3xnaPF0IIUTb15IgpT038G7PYZkQQgghAqsNj5xG3Ylac/qO1UxeOpsR+35kR1ZPbr/oTuYfPQ7DElxxhQRJoqEOFyh5+ySFssqbTB0QQojmxfq1siVBSntu4N2ewzIhhBBC1PH2Qyqucvr9+5if1nHnktcZlb+JPRnZ3H3+JN4/9izczQRJCrPaW/oeiUA6XKAEZqjU0gbcMnVACCGaFw+vlS0JUlrawDveTF+wNeAXJO05LBNCCCGEad6afO54Zy2Gn3n+J+z5gTuXzOaUXevYl9aF+352C28POwen1d74zA1cO7ovf7n0uAiMWLQnHTJQCoVMHRBCiObFw2tlS4KUljTwjjfTF2zluYXbPCuXmrfxuYXbAPOLk7YelgkhhBDCv/vmreeNFbsC9ooctm8rdy6Zzek7VnMwNZOHzrqJN0ecT40todnrlqbaoiUkUAqSTB0QQojmxcNrZUuDlPE52UEHSLGezudr1tIdnjDJbKBpUeAyDGYt3cGks4eELSyLp9ssIk8p9QpwEVCgtT421uMRQghR3zUvL2fZ9kK/fzvmQB6Tl87mnG3fUpicwaPjr+e1kRdRlZAU8PqkL5JoDQmUgiRTB4QQonnx8FoZqaqjWE7n8xfqVDjc2BosxmJRUOFw1x5vSVgWaLuxnsIoou5V4AXgtRiPQwghhA+/jbY9Bh3axeSlb3DhlmWUJqby5GnX8q8TJlCRGPj9lwRJIhwkUAqSTB0QQojmxctrZWuDFH9iNZ0vUKiTaLPgdJsrlnoZ2nyDGC7xMIVRRJfWerFSql+sxyGEEKJOoD5J/QvzuW3Zm0z4YTGVCUlMH/NLZp10GaVJaQGvS6a0iXCSQClIrfnGW6YLCCE6injpSRSJ191YTecLFOp0Traxr8yByzBDJUObhxvH9vd7PaHsk3iYwiiEEEJ0ZPPW5DP57bX1+iX1Lt7PpK/f4vINC3Fa7cw8+XJmnHQ5RSmd6l1WwiMRaRIotUAo33jLdAEhREcTieqglojU625rpvO1JuBqGOqUVjk5VF5DtcugZ3oChVUualxGo1XeGm4/lH0SD1MYRfxRSuUCuQB9+/aN8WiEEKL9atgvqWfpQW5d/jZXrvsCQ1n49wkX89LoKziUmlXvcrJCm4gWCZQiTKYLCCFE5PgLaiL1uhvqdD7fMMeqYM2uIn7z2ncM7pbGvecf3eyYfEOd0ione0uqAEi0KhITbHS1Wpk2YWiT1xPqPomXKYwivmitZwIzAUaNGhVokSEhhBAhmLcmn6nzN1Jc5aw9rVt5IbeseJer136C0vDW8HN5YcyVHEjvWu+yUpEkoq1DBkrRnIIm0wWEECIyAlXdVDpc9Miov5pJOF53Q53O5w1z3IZmX0kNSoFVKXYWVgZVJeQb6hwqrwFAocjOSAo6GPL9X1RW7eRgWQ01Ljd7iqpYtLmA8TnZAf83xsMURiGEEKIjaNgrqXNlCTd/8x7Xrf4vdreTucedzQun/JI9nbrXXkaqkUQsdbhAKdpT0GS6gBBCREagqhuHy6DK6Y7I624o0/m8Yc6OQxUoBRal0IDb0NitqtkwyDfU2Xm4kkSrGSalJ5kBUcOwzF8w5P1f5DY0e4ura8ehFDwwfyNX7Clm7ur8gP8bJUDqOJRSc4DxQFel1B7gQa31P2M7KiGEaL/um7eeN1bsqtcjKaO6nNxv3+fXK+eT7Kzhg6HjmX7qRH7K6lXvshImiVjrcIFStKegyXQBIYSIjEAVoAlWhdOt4+Z11xvmONwGVs+SbFpDgtUSdOWUN9SZOHNFk19SLNpcwF1zv6e8xoXb0Bwqr+Guud9z3egjmbs6n4LSakCDNkOt7ulJ2KyKWUt30C09UaZnC7TWE2M9BiGE6Ajum7ee2St21TstraaSG1Z+yI3fzSOjpoL/5JzGM6dezfaufRpdXsIkEQ/aR6BUVgbV1ZCU1OxZoz0FTaYLCCFEYK2ZghyoAnRw94zaXkrx8Lrr/WLBqhSGoVGAgaZrWlKLK6ea+5LisU82UVzpxKoUVqXQBhRXOvl4/T6mTRjKzbNXoQG7VdE1LYmMZDtaayocbvrarfW2JdOzhRBCiPDyFyIBJDuquX71R+R+8z5Z1WV8Nng0z4y9hs3ZjVduTbRZePznw6RPkogL7SNQKiyEc8+Fk06C8ePhtNMgI8PvWWMxBU2mCwghwiGa/d+iobVTkJsKV+Lpddf7xcLjn25ma0E5div08lQGNVU5FUxPo7REG3aL5r4PN9BncQrbDlZgUWDxVEIpBdrQ7DhcyficbI7vm+X3f2BqgjVi0wTDRkvvZyGEEG3TvDX53P3uWpxG/dMTnTVcu+ZjfvfNXLpWlvC/ASfw9NhrWd9zsN/rOXVgZ964aUwURixEcNpHoHTkkTB/PixZAgsXwuOPw9ChcMYZZsCUXfehIhZT0Nrbh0AhRPRFu/9bNLR2CnJbqgD1Blze/wd7iirJTk8KON7m7m/vdTU8j8vQWBVYLf7HEeh/4I1j+zN3dX7cTBNs5Ouv4aWXYj0KIYQQosUaNtoGSHA5+eW6z7h1+Tt0Ly9k6ZHDefq0a1l9xNF+ryM1wcojlx0nVUki7rSPQAmgUye46CLzUFUFK1bAokXwj39A795msDR+POOP6s+0CUOj9gGkPX4IFEJEX7T7v0VDOKYgx1MlUjCCHW8w97e/8yRYFQ63xtDarE7SYGgY3C21dvuBQrhhvTPjL5zLy4Nnn4U9e+D222H27NiOJ04opQYCe7TWNUqp8cAw4DWtdXEsxyWEEKKxP3+wvjZMsrldXLF+Abcuf5vepQf5tvcx3HbxXazoOyzg5aVXkohn7SdQ8pWcbFYnnXEGuFywerUZLt16KyQlMX78eMafcQYMPQksAb7GDZP2+CFQCBF90e7/Fg3xuApmKBWlkahCDeb+9neenp2S2F1UhQJcbgObxUJWip17zsupPU+gUCuuwrmSEpgxAz7/HG64AX7xC7Dbm79cx/EeMEopNQj4JzAfeBO4IKajEkIIUct3mpvFcHPpD4u4bdkcjizez9qeQ5hy3h9Y0m+kOT/dD6lKEm1B+wyUfNlsZm+lk06Cu++GTZvMcOnhh6G0FE4/3QyeTjghIm9W2+OHQCFE9MVj+NJa8bYKZigVpZGqQg3m/vY9T1m1k4NlNVS73CTaLPTrkkp5jSt+Ko2C5XLBu+/CK6/AOefA3LmQmRnrUcUjQ2vtUkpdBjyrtX5eKbUm1oMSQoiOat6afKa8v46qBk2SlDa4eNMSbl82h4GFe9jQfSA3/PwBFg48sVGQJM22RVvU/gMlX0rBMceYh1tugV274H//M78F3bkTTj3VnBp3yimQEp4Pae3xQ6AQIvriLXwJh3jrgRRKRWmkqlCDub+95zlUXs2hMgcosChFp2Q7FQ43D19ybNsJkgCWLYOnn4Zevcz/ywPa7mM7CpxKqYnA/wEXe06TEi4hhIiyQKu2oTXn/ricyUveIOfQT2zp2pebL/0Tnw8ZjVb1Z8hIJZJoyzpWoNRQ377wf/9nHg4ehMWLYd48mDYNjj/erFw67TTo3DnkTbT1D4HSUFyI+BBv4Uu4xNM0q1AqSiNVhRrM/e09z6S31qCBRKuFrmmJZCTb29bU6h074JlnzD5Jd9xhfrkToPxf1Po18FvgEa31DqVUf0AaTAkhRBSd8/QifiyoqH+i1pyRt5I7lszmuAPb2d75CCZdfDf/yRmLYbHWO6v0RhLtQccOlHx16wY//7l5KCszvyldtMj8tnTIELNy6YwzzG9OW6AtfwiUhuJCxJd4Cl/ao1AqSiNZhRrM/T0+J5uMZDt9O6egfEKYNjG1urQUXn4ZPvlE+iS1kNb6B6XUPUBfz/EdwGOxHZUQQnQM89bkc8fba6k3uU1rxu5cy51LZjNy3xZ2derOnRdMZt7Q8bgbBEkgYZJoPyRQ8ic9Hc47zzw4HPDNN2a49OqrZvB0+unm4aijgvoWta1+CJSG4kKIjiSUitJ4qEJtc1Or3W547z2YNcv8oubddyErK9ajalOUUhcDTwIJQH+l1AhgmtZ6QkwHJoQQ7VSgHkkAJ+3ewJ1LZnPy7g3kp3djyrm38u5xZ+Oy+v+oferAzhImiXZDAqXmJCSY095OOw0MA9auNafGTZkCNTV14VKEmnrHkjQUF0J0JKFUlEarCrWp6cfxEGoF7Ztv4KmnoEsX+PvfYfDgWI+orZoKnAQsAtBar/VMexNCCBFm17y8nGXbCxudPjJ/M3csmc1pP62lIDWLB86+mbeGn4fDFvgz4akDO/PGTWMiOVwhokoCpZawWMzeSscfD7fdZjby/uormDkT8vJgzBgYN87s/5CREevRtlqb+9ZbCCFaKZSK0khXoTY3/bhNTK3etQuefRa2b4fJk80vYqRPUmu4tNYlqv4+1LEajBBCtEeBGm4fu38bdyyZzZl5KzmcnMFfzriB2SMvoNqeFPC6pPG2aK8kUAqVUtC/v3m4/nooLIQlS+CLL+DRR82V5LzVSy3suxQv2tS33kIIEcdCWeDAe5nVu4pQCrqnJ6ESlN/px+EItSKyCEN5OfzznzB/Plx3HTz2mFn5K1prg1LqasCqlBoMTAK+jvGYhBCiTQu4YpvHUQd3MnnpG5y3dTnFSWn8bdx1vHrCxVQmJNc7n/RHEh2JBErh0rkzXHKJeaiuNsv6v/oKXnnFLO0fN85s7J2TY1Y6tQGR/NZbVo8TQnQUoSxw4HsZt2FgUYq9JVUAZCTbwz79OOyLMBgGfPgh/OMfZtXuO++Y/wtFuPwB+DNQA8wBPgMejumIhBCiDfO7YpvHwMO7uX3pm1y4eSnlCck8c+rVvHLiJZQlptY73+DsVL64Y3wURitE/JBAKRKSkuqqkwwDNmwwm3rffz9UVpr9mE4/HU48Me6/qY3EVA5ZPU4I0ZGEssCB72USbVZchkZpOFReQ0ayPezTj8O6CMPq1fDkk5CSAs89Z36RIsJKa12JGSj9OdZjEUKItqi5aiSAvkX7uO3rOVy6cRHVtgReGn0FM0+6nJLk9Ebnlaok0VFJoBRpFgsMG2YeJk2Cn34yK5f+9S/405/g5JPNcGnsWOjUKdajjQpZPU4IEU8iXTEZygIHu4sqsSrIO1hOjcvAbWgsCgwUlQ5X2KcfNzXGoPfP3r1mn6RNm8z/d2efLX2Swkwp9RFN9EqSVd6EEKJpwQRJR5QUcOvXb/GL9QtwWW38c9QlzDj55xxOzWx0XgmSREcXt4GSUmonUAa4MZtPjortiMLkyCPNPhLXXQdFRbB0qVm99Le/wVFHmeHSuHHQp0+sRxoxsnqcECJeRKNiMpQFDtITbWzZX4ZWoDUowK3BoiE7PSnsoVegMaYl2prfP5WV5pck770H11wDDz8MiYlhG5uo58lYD0AIIdqaeWvymfL+OqqcRpPnyy47zK3L3+Gq7z9DK5g98gL+PuZKDqZ1rnc+m0Xx5C+GS4NtIYjjQMnjDK31oVgPImKysuDii81DTQ18+y0sXgyvvWZWK40bZwZMQ4e2mb5LweiTlcLOw+WUVrlwuA0SrBYykm3065IWke1JvybRXshjOfyiUTEZygIHZVUODKitRfGWpHRPT2BO7uiwjCuYMdotOvD+GdIV/vtfePFFcwr3W29BtjweI0lr/VWsxyCEEG3JNS8vZ9n2wibP06WimN+teJdr136C1XDz7nHn8MIpV7I3o/H/NKlIEqK+eA+UOo7ERLO30mmnwZQp8MMP5tS4hx+G4uK6cOmkk9r8N79jBnTm252FWBRYFDjcBgVlDiae2Ln5C7eQ9GsS7YU8liMjGhWToSxwcLDCic0ChvZUKHleLw9WOCMSLAYa430fbvC7fxI3rofrXwSrFZ54Ao49tlXbF8FRSr2jtb5SKbUeP1PftNbDYjAsIYSIK8FWJGVWlXLzN+/zf6s/ItHl5P2hZzL91KvYndmj3vlSE6w8ctlxUpEkhB/xHChp4HOllAZmaK1nxnpAUWOxmG/Ojz0Wfv972LPHrFx6/XW47z7zm+Bx48y+S53DH8JE2vK8QrqlJVBWXVehlJ5kY3leIZPCvC3p1yTaC3ksR0Yo09FC4V3gwBsG3ffhBvosbjoMsiiF3VpXneo2DAxDNxssBgqcmgui/C3C0Gdx/f2TWXqY8xe+w9EFO+Bv98O557arCto24DbPz4tiOgohhIhDwVQjAWRUl/Ob7z7khpXzSHVU89HR43ju1Inkdeldex5ZsU2I4MRzoHSq1nqvUiob+EIptVlrvdj7R6VULpAL0Ldv31iNMTp694arrzYPJSWwbJkZMD39tNmTadw4s7Jp8OA20QB1d1ElXdMS6ZaeVHua1joiPZSkX5NoL+SxHBmhTEcLVUuqzAZ0TWXrgTKcbjcas4eSRUGi3dpksBhoG1fsKWbu6vwWB1He/eOqqODCNV9w6qqFfDlsPL2f+iuMODLs+0g0TWu9z/PrLVrre3z/ppR6HLin8aWEEKL9CqbJtldqTSXXr/qI3G/fp1NNBR8POYVnx17N1m79as+jgGtkWpsQQYvbQElrvdfzs0Ap9QFwErDY5+8zgZkAo0aNCrjiSbvTqRNccIF5cDphzRqzsfcf/wgOhxksjRsHo0bF7dS4aFUEeLe141B5o2qo/l0j069JiEiJ5vPGqz33bPK9bWkJVpRSlFQ5g5qOFqqWVJmdf2wPthwoq53TpD0HqzKDRK+yaicFpdXsPFzJxJkrKK50+N3GrKU76Jae2OIgatrFx/BC5n7czz/Phq79mHnzNH558UmMayePgzbsHBqHR+f7OU0IIdqtYCuSkpzVXLf6v9z8zXt0qSplwcATeea0a9nYfSAgfZGEaI24DJSUUqmARWtd5vn9Z8C0GA8r/tjtZk+lk06CyZPhp5/MyqV//xv+9Cc44QQzYBo7Frp1i/Voa0WzIsBfv6aD5Q6uPqntTRUUHVs0nzfQvns2Nbxt5r40ePiSYyN621pSZbY8r5Ds9MRGYXilw02V001Kgo2yaid7i6vRaJJsFgrKzGCpS4qd/SXVtZfrmpZAhcNNX58gquG2/YVd3Xb9CL95imEDs+D1Fxk5YgS/itC+EcFRSv0OuAUYoJRa5/OndGBZbEYlhBDRF0yYlOhyMHHtp/x+xTt0qyhmcb+RPH3ataztdRQgQZIQ4RCXgRLQHfhAmdO3bMCbWutPYzuk6GpxZYBS0K+febjuOigtha+/NgOm55+HI46oa/qdkxPTqXGhNKgNlfmhLKHRinKR6NckRCRF83kD7btnUyxu26LNBZRWOdlfUk2izULXtEQyPGGWvyqzQFOD95dU4XRrKh0uCkrNMAmga5pZfWRVUFDuINFmwWpRuAxNfrG5TW8Q5eW7bd+wq1NZERctfo/BP23i3ZMuZvy//iR9kuLHm8AnwKPAvT6nl2mtm/+aXggh2rBgm23b3U6uXPcFv1/+Dr3KDrGiz7Hccsm9fNfnWGwWxbO/GC4NtoUIk7gMlLTWecDwWI8jVsJSGZCRAeedZx5cLvj+e1iyBP78Z6iqMquWTjvNrG5KSmr++sLMX/PXSNhdVEmX1ES6pkW+X5MQkRat5w20nZ5NoUzLi/ZtW7S5gLvnfk+1043L0LgcbqqLK+nmSiTBZvVbZRZoiuPg7hncPG4AMxbnsfNwJUk+4RRgLgkH1JsrB3ROttUGUf4q3PpkpVBUVMr53/+P8Ss/Z/nwcdx/3UN06pIpYVIc0VqXACXARKWUFfMLOBuQppRK01oH10hECCHamGAqkqyGm8s3LGTS12/Rp+QAq3rlcNcFt/P1kcNBKalIEiIC4jJQam9a+oEn7N+e22zm9LcTToDbb4ddu8xw6c03zVXjRo6sWzWue/cQb2V8ikXfGSHag7bw3Ak1fA/mtoWzf9Tjn26mqNKJ1aJIsILT0LgNKK128eLVw/xeb1NTHL3B4sSZKxrdDjeQaFXYrKq2KrNHWiKGhmkThvqvcNOae+x7qPj30+zp3penr/0ze1I743Rr/hihKZWidZRStwJTgQOA96t6DQyL1ZiEECIS5q3J5/a31zZ5Hovh5uJNi7lt2RwGFO1lXY9B3H/O71g04ARSE208e9lxUpEkRIRIoBRhoXzgaerb87B8yOnbF665xjyUlcHy5WZj7xdfNAMlb2Pvo49u899MR7vvTGu05wbIIrIi8dhpC8+dUMP35m5buPtH5R2q8PRxU6AUVgu4DQO3oZtcYS1gANTE7bBZLGSl2OtNlat0uMhOT/Jf4bZ1Kzz5JCPKylg1bSrzCjPM7aUnyWtQfLsdOEprfTjWAxFCiEhpripJaYPztnzN5KVvMuTwLjZ168dNl9/HgkEnc82YI9kp1UhCRJzSuu0vkDZq1Ci9cuXKWA/DL3/fIHvf3M/JHd2iy9gtikqngd2q6n0ImjZhaHje9LvdsH692Xdp6VIoLq6bGnfyyZASP5UJLeH9oBaNvjOh8v0AG5H7VrRpTQVGkXzsxPtzZ+zjC8lMtqN8esJprSmpcrLknjObvGxTty2U1+2mHHXfJ2itsfoE9G7DQCnFlr+c36r7sOHtGDOgM3NX5zd/XYWF8NJL8NVX8NvfwqWXtokvEJRSq7TWo2I9jlhTSv0POEdr7Yr1WOL5PZgQom0JtkcSWnP2tm+5Y+lsjinYwbbOvXlm7DV8knMqT191vFQjCRFmTb3/kgqlCAulV0egb88TrJbINpK1WmHECPMwaRLs2WMGS3PnwoMPwvDhdY29e/Zs/faiJJp9Z0LVnhsgi9Zprlomko+deH/utGZaXlO3Ldw9lvp3SWHbwQqUoVHKbHNkaBjU1Rxna+5Df7djWO/MwEGg0wlvvw2vvgoXXADvvQfp6SHdLhFTecAipdR/gRrviVrrp2M3JCGECE0w/ZEA0JrTd6xm8tLZjNj3IzuyenL7RXcy/+hxWGw2npZm20JEnQRKERbKB55Aqznd9+GG6DbJ7d0brrrKPFRUwDffmNVLL78MXbrUhUvHHtsmvtmOZ22lAbKIvubCho782InUtLxw94+69/yjuWvu95TXuHAbGqtFkZlo597zjwbC//z3G5ZpbX5B8Mwz0KcP/POfcOSRIV2/iAu7PIcEzyFslFLnAc8BVmCW1vqxcF6/EEIEXYnkY8xP67hjyWxOzP+BPRnZ3H3+JN4/9izcFqs02xYihiRQirBQP/D4+0DQZ3H0m+Q2mmpz1S2Mf+AB2LDB/HDy17/C4cNw6qlmuDR6NKSmRmw87VVbaIAsYqO5sKEjP3YChe8trapq+DrnnTYWrqBqfE42T14xnBmL8/jxQCkOtznVfMbiPCAK92FeHjz9NOzfD3fdBaecEp7rFTGjtX4oEtfrWTnu78A5wB7gO6XUfK31D5HYnhCi47lv3npmrwh+QcoT9vzAnUtmc8qudexL68J9P7uFt4edg9tm5+krR0hFkhAxJj2UoiBcfUii3Wcn6O3t22euGrd0Kaxda1YsjRtnBkxHyIt8MKSHUscTbCNt334+ZdVODpbVUO1yk5pgY/pVIwEi3kOpPTeKD/Tcu+L4I1ieVxi2/lGLNhfw2Ceb+PFgOXaLhe4Zidisltpt+fY9OlxRQ2GFE7sVLMpCgs3C4Oz0lo+htBRmzIDPPoPf/AZ+8Qtz1c82THoomZRS3YA/AkOB2g7sWuumm4c1f71jgKla63M9x6d4rvfRQJeJ9/dgQojYC6Uiadi+rdy5ZDan71jNwdRMXhz9C94ccT41tgQGZ6fyxR3jIzdgIUQ9Tb3/kkCpjYlmk9yQGtNWVsK339Y19s7MNBt7jxsHxx1n9mmiY3xQbal4b4AswqclAaL3vE63m0NlDvD0n+6SmkCCzcq0CUOB1lfptGaMbVm4G3D7492XBWXVGIZGKYXW0CszCatFke1ZUW3G4jx+LCijrNpFst1CWY0Lt+e9d4JV0SnZzhNXDG9+/7vdZm+kl1+Gs84ym25nZobltsSaBEompdTnwNvAXcBvgf8DDmqt72nl9V4BnKe1vtFz/FfAyVrrWwNdpiO9BxNCtFzQ/ZE8ji7I444lb3DOtm8oTM5gxsmX89rIi6hKSMJmUTwpfZKEiDppyt2ORLNJbkh9PVJSYPx482AYsGmTWb30xBPmdItTTuH7fsfx6N5UXCmpYVmSO96EGpbFewNkET4tacLsndY16a01aCDRaqFrWiIZyfbay8zJHR32x05HaRQfjR5U3n3pNjRWpVBKYaA5WFZD/66p7CmqrH3+ewOu/KIq3EZtfojT0BRVOnn808319n/D15u7Mos5Ye4rZp+7l16CQYPCdjtEXOmitf6nUuo2rfVXwFdKqa/CcL3Kz2mNvnlUSuUCuQB9+/YNw2aFEO3RyY98wYEyR1DnHXRoF5OXvsGFW5ZRmpjKk6ddy79OmEBFYgoKpE+SEHFKAiURUKv7elgsMHSoefjtb6GgAJYuZe/f3+aJHZvJ79WfHwYcx8aBw/kptUu7+KDa3Ipcov0JJUBsaYgxPiebjGQ7fTunoJQK6jKt1VGafYejf1Ggx4D39G93FmKzKJxujRONRYHNonC4daNt7S6qxKqg2mWWJmk8n/C1+ZKad6ii3na9rzeDqgu56I2XqDq0l7X33MWIX10Kyl82INoJp+fnPqXUhcBeoHcYrncP0MfneG/PddejtZ4JzASzQikM2xVCtBMt7ZHUrzCf25bN4ZIfvqIyIYnpY37JrJMuw53RiUcuO06qkYSIcxIoiYDCvoJSdjZcfjmP/JhJN5vBUbs2c0zeOm555ymcVhur+wyF4QpGjoSEsC5aEzUdpapDmEINEEMJMaLdfLutNPtu7fTZlr7OBWrg3fAxcMWe4trTbQpqXHV9IwwNDrcmwaoabSs90caPBeX1tlkbKjUwY3EelspyzlrxMeM3L+ej4Wez5Kwb6FOdxRwJk9q7vyilOgF3As8DGcDkMFzvd8BgpVR/IB+4Crg6DNcrhGinWhogefUu3s+kr9/i8g0LcVrtzDz5cmaedDkXnHkc66QSSYg2QwIlEVC4VlBqyPtBdeOgEWwcNAK0pvPenZyyb7PZQHb7djjxRLOp96mnQteuYbk90dBRqjqEKdQAMZSwNuwBbzMiub3mKnoChUPBhjktqQhsyeucvwDx74u20znVTqdksy+y9zEwa+kOuqUnkpJg81SVmUUc3phHAzaLpVFPqkB9DTVmEDWoqyfQMwx6LvqUW1Z8xJrex3DH5VMoSs7AqNFUHygN6raLtktr/R/PryXAGWG8XpdS6lbgM8AKvKK13hiu6xdCtA+hNNn26lF6iD8sf4sr132BoSz8+4SLKfj97Uy5fjy/jcBYhRCRFVSgpJS63M/JJcB6rXVBeIck4kkk+vr4+6Ba0rk3v77+XMjJhuJi+Pprs6n3c89Br15muDR2LBx9tDnvI071yUphx6FyyqpdONwGCVYL6Uk2+ndNi/XQRASEGiCGEta2JuANpYonUoFyoKou34oef+FQS8KcllYEBvs65y9AdBuakkonXdNqF9oi2W6lwuGmr91chMCt66qRNJCaYKVrWgKGbhx8lTvcHJGZxIHSmtppb2AGUZkpdu49/2hYuRKeeYaxmw7xyDk38VN2PwAsgGFoHG6ZgdTeKaX+hZ/eRlrrG1p73Vrrj4GPW3s9Qoj2pTUhEkC38iJuWfEOV6/9FKU1bw0/l1fGTeS2/zuD38i0NiHarGArlH4DjAH+5zk+HlgBDFFKTdNavx6BsYl2qtkPqpmZcMEF5sHthu+/N8Olhx4yw6ZTTzXDpdGjITU1hreksTEDOvPtzkIsCiwKHG6Dg+UOrj6pc6yHFhayOl99rZkWFkpYG8plWtPXKxKBcqCqLt+KHt/TveFQoDDnQEkN+0pqaq+/U6IVh6tlb3aDfVz7CxATbRaqXe56p1U53aQmmGF5SoKNBKsFl2GGSjarYkC3tNqV5BryPqYGd0+nrNrJwbIaql1uUhNsPH9KF8a8/DiH1mxgxvAL+WefARgo7IaB1WKuHOeNGCbOXCHP0/btPz6/JwGX4afXkRBChEOo09oAOleWcPM373Hd6v9idzt577izyfrrQ/zqwtH8KszjFEJEX7CBkgEcrbU+AKCU6g68BJwMLAYkUBItEvQHVasVjj/ePEyaBHv3muHShx+aAdPQoWa4NHYs9O0b8ya0y/MKyU5PoLSqrkIpI9nG8rxCJsV0ZK3XmmCitUFUvAZZ0Z6GFop46+sVqKrLt6LH93RvtZe/yxla0zA6KqlxY7e5gh5Pw8f1zsPl3Dx7FWmJVoZ0z6j3WPMXIKYn2XBV6kaPgRvH9mfu6nwqHS66piWQX1wNQI+0RCodroCPE9/HVFqiDatFkVBexgsVyxn4yBI2nXMZvz/7XFRiAskl1VQ73bjcGq3NcCsxwUpZjYs1u4twG5pD5TXcNfd7nrxieFw8Z0R4aK3f8z2ulJoDLIjRcIQQ7di8NfkhhUkZ1eXkfvs+16/6iBRHNR8MHc+bP7uO956+PvyDFELETLBzh/p5wySPAmCI1rqQupVGhIi8Xr3gyith+nT47DOYOBF++gl+9zu4/HJ46in45htwBLdEabjtLqqkS2oiA7qlkdMjgwHd0uiSmtgueij5BhNKmT/tVsWMxXlNXs77gb2grLpeELVoc3CzZVt7+Ugan5PNtAlDyU5PoqTKSXZ6UqOeOLG2u6iS5CaCmmjrk5VClTNwRU/D073VXv4uZwSY2VVYGfy/Jd/HdXmNi8PlTgytqXYajR5rN48bgNNthkdamz8TbFZ+P35go8fApLOHcMXxR3CwrIY9xdUkWC30yEjE0DT5OPF9TJWXV3Hppq9489MnGNglGebOZVrnUajEBFISbHRNS8RiMaueEqyKHp2SKKtx4XZrtAFWpdAGFFc6eeyTTUHvE9EmDQb6xnoQQoj2Zd6afG5/e22LLpNWU8mkZXNY+o/fcOvyd1g0YBQ/+82LrPnLcxImCdEOBVuhtEQp9R/gXc/xK4DFSqlUoDgSAxOiWcnJMG6cedAafvzRrF6aMQPy8szG3mPHRrWxd5+sFHYeLm9UodSvS9vvoRRqv6DWVsjEW4VNQ5GYFhZO8bZaW6CqLt+KHn/VXv4uF4ihQ5vGdrCsBqXAgsLhNho91pqartuwAnHR5gLmrs6nW3oifX1uTzCB4/ijujF+30b45CU48kh489/Qv3+j8WZ4fh4qN/stZacn8dPhCmxWhcViVmsqBdrQ7Djc9kNtUUcpVUbdAoAa2A/cE9NBCSHajVCmuCU7qrl+9UfkfvM+WdVlfDZ4NFtvuYs/3P5zLorQOIUQsRdsoPR74HJgLOabl38D72lzOZqwrS4iRMiUgiFDzMMNN0BRESxfXtfY+4gj6qbGRbCxt78eSgVlDiae2PZ7KIUalrV25TtZOa914m1aXlOhzLDemQF7q/m73I5DFRi6/kxXrc1/UsFOz/QN3BxuTy8iAxKs5mtEw8daaxp4BxWEbtoEzzwDpaVw771w8smNxuuv8f+wrmnMyR3NUfd9EnClONF+aK3TYz0GIUT7dM3Ly1m2vTDo8yc6a7h27Sf8bsW7dK0sgfPPh2nTOHfUKM6N4DiFEPEhqEBJa62VUssAF2Y/pe+0vGNtV+K1R03IsrLqGnu7XLBuXYsbe09fsJVZS3dQ4TCn49w4tj+Tzh7S5GaX5xXSLS2h0Ye99tBDKdSwrLUVMvFWYdPWRGq1ttaOKdB0r+ZWuvP9++S3VvPB2n00/G/UJS3Bb5jz+KebG73O+QZudovC6ZlH5121LdTHWouD0IICeOEF+PZb+O1vYcIEv8F3w+dhldNNhcPN/tIahk39jPQkG8WVTpTWZnWSNiu2Bnfz/zrX7l77OwClVDJwDXCM56SVwFytdWzmegsh2rRQV29LcDn55brPuHXFu3QvOwxnnQUPPwxjxkRopEKIeBRUmYZS6kbgW8xVRK4AViilWr00rYgP8dyjJixstrqm3u+8A6++alYpffih+S3K734Hb7wBu+pKe6cv2MpzC7dR5XRjs5gf2p5buI3pC7Y2uandRZV0TavfQ6lrWvvooeQNyxKsFgxtVnB0S0tgeV7T32L56zsTTIXMos0FTJy5gq0HStlTVMWh8uoWXV7UGZ+TzZzc0Sy550zm5I5uN4HBM1cdz2UjemL1TO+yWhSXjehJkt3aqG+Uy22wtaC80escUNuzKCXRhkUpuqQmkJ5ka9VjLVCvqEbhVGUl/OMfcNVV0KMHvP8+XHppwCpKb+P/BKsFp1vX9pFSnnDpcLmDBJsF5bnNCshKsXPPeTmNrqvdv/a3Q0qp44BNwGnATuAn4FxgmVIqUyn1lxgOTwjRxtw3bz23v722RWGSze3il99/xrev3cLDX/yD7sOPhv/9DxYskDBJiA4o2ClvdwMjtdaHAZRSXYCvgVciNTARPfHeoybsvI29r7wSqqrgu+/M6qXZsyEpCcaO5ZtNNhK79kPbEwGzEsBlGMxauqPJKqW2Uk0TSlWCNyzr5rPUuda62bAslAoZ35W3enZK5lB5DYUVTpxuzeDsdKmiaKH2XIXyzFXH88xV9U+bOHNFo+fhgdKagK9zviGbd1+1pJrL3/5tdqqhYcB//gMvvQSjRsGbb5qBUjO8jf+7piWxcW9JbQMdNNgsFsBAa83IvlnN3oZIvvaHUuEpgjIduElr/YXviUqps4ENwMaYjEoI0ea0tE+SxXBz6Q+LuG3ZHI4s3g8nnQSzX4Vzzon5KstCiNgJNlDaA5T5HC8Ddod/OCIWOnSPmgCNvS/7dg6TSg6wodcQVvcZyuo+x1CYnE6FI3AjYIi/fjX+NFwmvan+Mr5aE5a1tHF1ww+63dKTSE20kZ2exJzc0UFfjwj9/m4r/AUXfp+HhkHvzOR6l/X3OtfSx2rA/TthKNMmDPUfTn37rdknKSUFnnwShg4Nenu+z0PD0y8K6t7LWxTUuMxvmpublx6p135vhadFUa/CE5BQqfV6NgyTALTWC5RSTsxKciGEaFJLwiSlDS7atITbl81hYOEedvQZAq+/DBdeKEGSECLoQCkf+EYp9aHn+ATgW6XUHQBa66cjMTgRHW2lqibifBp7T9t1BPbSYkbt28IJuzZy3bfz2JfehXVHHgs/9IOcHL9TUlrTryZaVSShViVEMyzr0CFnmLXnCsRAwcVtZw5qFOb49kfyCsfrXFP7t9H0wp07YfJk2L4dbrsNzjyzyTfjzVU+1VYnAVbP9bgMjYZG09iaa0gezn0ya+kOz31ivkYGW+EpgmJRSiVqrWt8T1RKJQFOrbW8SAohGpm3Jp+p8zdSXOUM/kJac+6Py7l96ZscfXAnP3Y7km+emMnJd/wmYovbCCHanmADpe2eg/e964ee32WVkXagLVTVRNuNY/vz3MJtLBwwikUDR6HcboYc2MGdSQfgwQehpMRs7H3aaeYqTD6NvUNZRj6aVSShhjXRbO4sIWf4tOdwrqngYmjPdJbvKAJgd1EVOd1Ta3t5hfN1Lqj9W1wMM2fCZ5/B9dfD449DQkKT1xtM5dPBshpKq11mg26LedvdBmQm24IKECP12l/hMHvPebncBi6tKa12MXHminY15TIGXgPeU0rdqrXeCaCU6oc5Fe71GI5LCBGH5q3J5+5319Kifttac0beSu5YMpvjDmwnr/MRfPfXFzjxj78Fq7X5ywshOpRgA6WPgT8B/Xwuo7XWwyIxKBFd8bgKVKx5v0WvnUqTmMDZV5/H6d5v1/Pzzb5LH3wAU6eaU1ZOO81cOa5v3xZvL5pVJNGcuhYqCTnDJ9Ay8/27psV6aK3WMLgAM1QqrXbVhklemw9UkNM9lazUpLC+zjX5fHI44O234dVX2T7yVP568b1s2Wulz6urm912sJVPDaf8JdqMRs/lQAFipF77UxPM56xFmWGStzJMQbubchltWuu/KKVuBRYrpbx3dAXwpNb6+RgOTQgRZ+atyef2t9cGfwGtGbtzLXcsnc3xe7ewq1N3/jThDk6+bxKXnHhkxMYphGjbgg2UZgN3YTZ8bNmakqJNiFZQ0JZMOntI4OkZRxwBv/yleaisrGvs/frrZmNvb7g0ciTY7f6vw0c0q0haE9ZEa1qehJzh03CZeYfb4GC5g6tP6hzroQHNP6aa+rtvcOFlNNE4aPOBCnY+Nj6s4x0zoDNzV+fXfz65DO617YYr/gqDBrHiT4/zx1Vl2N2KzGRrs6HKos0FrN5VhKE1CVYLXdMSyUi2174mNBzD9KtG1l6Pv4bkTQXGkXjt91Z4ugyzMskrOz2xXU25jBWt9QvAC0qpdM/xsmYuIoToQOatyWfK++tatHLbSbs3cOeS2Zy8ewOVPXrBjBn0/fWv+WsQ72GFEB2b0rq5tp2glFqqtR4bhfGEZNSoUXrlypWxHoZoZya/tZr56/bjNjRWi2LCsB48c9XxTV9Ia9i61QyXli6FHTvMVTDGjjWnyHXp4vdi/j4EVjpcEWtCHepKVt4pOL5B1LQJQ+WDYRybOHMFOw+XU1pVV6GUkWyjX5e0mDc4b+4x1fDvh8prKKp0kp5kY3B2Oj0yEpi/bn9tWGZo8+BuIlUaM6BLyIHoos0F3D33e8qqXbgMA5vFrPb61egjWZ5XyJ6iSkZX7uOODf+hZ6Iy+yWdeGKLnt/e21xQWo2hNQqFgaZXp2RsVoXdoqh0GrX7JL+4kuIqs59SWqKNs3K6sWpXScyfp97KqdJqc2zZ6YlkZ5grRGqtKalysuSeM1t8vUqpVVrrUWEermgFeQ8mRHwIZXrbyPzN3LFkNqf9tJaC1Cy+ufq3XPz8g5CYGLmBCiHanKbefwVbofSgUmoW8CVQ2whSa/1+GMYnRESFsnz15LdW88HafbXH3Yb2HF/ddKikFBx1lHn4zW+gqAi+/toMl555Bvr0McOlsWPrNfaO9hSvUKoSWjMtrz0vWx/vfJeZ99Jax0UPpeYeU75/L61ycrjCAUBljYuCsmryi6uYMKwHX24+WO/5/fSCHwNu01+zau9Ymnt8Pv7pZooqnVgtCpvVgsttcKjcwfMLt3FOppvH8hZw5K6tcMst5uo3nud3SyoQvbe5R6ck9hZXgwKl4UBZNdnpSSRYLbX75EBJFUWVrtrLVjndzF+3nwnDerC/1NEoMI7m89Bb4dnSiikhhBAt05IV27yG7t/GHUvf4Kzt33E4OYO/nHED7ptv5sFfnhShUQoh2qtgA6VfAzmAnbopbxqQQEnEtVCXr56/bj9QfwEmrc3Tn7mqBQPIyjI/WF54Ibhc8P33Zrj0wANQWlobLo0/+eTAS4zHiVCn5bX3ZevjXTw3OG/uMeX790PlNWgNhtY43Zr9JdVkJNvYX+pg3dRz613H8u2HGvVQAkiyWRqFV49/upkKhzuox2feoQpPNZQyG00bkOKo4hfrF3Dpjm95Z/gZnPzoPxg3on6viZbcB97brJSiVyYcLKuhxmWgtGLahKHc9+GGun3iCdi8L1M2iwWXYfDl5oON9kmsnofSD00IISLnmpeXs2x7YdDnP+rgTiYvfYPzti6nOCmNv427jnfHXMqff3kSl448IoIjFUK0V8EGSsO11sdFdCRCRECoy1cHmjLT1FSaZtlscMIJ5uG22+oae7//Pkydyvhjj2X82LFwzhjo16/J5cRjIdRgoj0vW98WxPMH+uYeU75/r3YZuA2Nwvs81hwqc1BRU8LEmSvqVd3cfPogVu1aicNd//naPaN+CX+y3cqPBeX0zkpu8ePTMNycuW0l16/6iJW9j+GpGx5iX2I6q7/d1yhQasl94Hub05PspCfZa6fHjc/Jps/iuibr3pcj7dkneH6WeVZT890nsXoeSj+0yPA05L4T6Ku1vkkpNRg4Smv9nxgPTQgRBS2d3jbw8G5uX/omF25eSkViMptuvoOjH3+AP3bqxB8jO1QhRDsXbKC0Qil1jNb6h4iOxodS6jzgOcAKzNJaPxatbYv2I9AqUBUOd5OXs1qU3/DIagljyNOgsfeauZ+z9Z1P6f3wdFJsVjLPOI3+E842ezBlZIRvuyEKNZgIR8NxmTIXunj+QN/wMbW3uIqiSid5BysYNvUzzsrpRn5xFZUOF779/mwWi1klhEGZZ/qbb9VNaoKVPp1T6gVVPxaUcaC0hozkhNrTqpzm60CyvW4Z5LJqJwWl1ew8XNloifv+XVLMAOrgLn674l2shptpZ93Enh79GJyeTnKAqYQtuQ9890lZlZOD5Q40sLe4iukLttZrsu7L4gmgnZ4QreE+qahx0rNTcr3LRKrxf0Oy6ENE/AtYBYzxHN8DvAtIoCREOxVKs+2+Rfu47es5XLpxEdW2BJb8/AZOn/k3ju4cHwtzCCHavmADpbHA/ymldmD2UFKA1loPi8SglFJW4O/AOZhvkr5TSs2PZqAl2odAq0ClJlgDXwiYMKwHH6zdR8Oe9ROG9YjAKGHRrnIe2N8J+2lXkXzG1aQX7OWoHRu58bW36T1tGgwYAKNHw5gxcOyxYG16/JEQajDR2ilXMmWu9eL1A73vY2rj3hJKq11YFNitqlE/oLyDFSjMUNeiwDA0hmH+M2pYdZN3qILB2Wn1ttU9PZE9nnDKNxDt3yWFQ+U1lFW7qHYZGIZGKTNsafhYu2RgOsXz/83YnWuZPfJ8Ph88Gq0sdPcEpuFYTc27T+7/cAMF5Q4U5nRdl6F5buE2enVKIjs9gdIqF263u3YOutvQKGVgaOicYm+0T5xuTZXTHZdTH0VIBmqtf6mUmgigta5SKs7KWoUQYRFKs+1epQX8Ydlb/GL9AlxWG6+edCk9H3mAC84aHrmBCiE6pGADpfMiOorGTgK2aa3zAJRSbwGXABIoiRbxXb7adxWoG8f2b/JyZuPtEFZ5I7Qm4A2no5T36M2Szj3Ykp7EnFnHm72Xli+Hxx+Hfftg1CgzXBo9Gnr1Cnp/tFYowURrp1zJlLk6oVZqRftyLeF9TA2b+hl2q2o0PdXbD2jizBW1U728q9U53JDcIBz2Vhs1DE9sVguDu6WRlZpYLxBdt6e4ts+aYWg0Zr+0lARr3WPtq+2M3/4dp0x5mOW9j+GuX/yZg9Yk0GC1mFVNaUm2Jh/XLXldGJ+TTclbznr7A8z9saeoiqG9MmqbrB8oqeJQhQNDm7c92Q69MhtXIiXYLDjdOi6nPoqQOJRSyZgzHlFKDcRn0RQhRPswb00+d7y9lmCzpOyyw/x+xTtc9f1nALw96kI6/2Uqv/lZ8+9fhRAiFJbmzwJa65/8HSI4riOA3T7H93hO8+unn37io48+AsDlcpGbm8vHH38MQHV1Nbm5uXz++ecAlJeXk5uby8KFCwEoLi4mNzeXxYsXA3Do0CFyc3P5+uuvAdi/fz+5ubl888035kD27CE3N5dVq1YBsHPnTnJzc/n+++8B2LZtG7m5uWzcuBGALVu2kJuby5YtWwDYuHEjubm5bNtmNob+/vvvyc3NZefOnQCsWrWK3Nxc9uzZA8A333xDbm4u+/ebTaK//vprcnNzOXToEACLFy8mNzeX4uJiABYuXEhubi7l5eUAfP755+Tm5lJdXQ3Axx9/TG5uLi6XuTLQRx99RG5ubu2+/OCDD7jllltqj7/77rtMmjSp9vicOXOYPHly7fHXX3+du+++u/b4q6++ypQpU2qPz5o1i/vvv7/2+D/+8Q8eeuih2uMvvPACjzzySO3xZ599lscff7z2+FNPPcVTTz1Ve/zxxx/n2WefrT3+yCOP8MILL9Qef+ihh/jHP/5Re/zgV69zhl5Hst2Ky4C09e9ypuWH2g9yd999N6+//nrt+SdPnsycOXMAM1S6sPxTnjihku1/vYBnrjqeW265hQ8++KD2/Lm5ufUeexf+4le8NPs9qpxubNqBZdnLvPjmB0xfsLXJx97uokoSXBUc/vR5qvM3AZDgKGX7B0/zzZo1cOKJ7Ln8cnLT0lh7331wxhkUL1rEDyedRPFZZ8Hf/kb+669z2//9X0Qfe2ddejWD7nybfvf+l5wbn+asS69u9rE3ul8G0yYMJWn/Ogo+eZ5uqXamTRhK2Y/fNPnYu+Xhv3P8+RNZnneYHYcq2L96AYVfvgyYH5B3rPgkrh97999/P7Nmzao9PmXKFF599dXa40099gAmTZrEu+++W3t84v/dyF1Pvsya3UUcKK1m89wnueupV1i0uaDe696izQX88sXFnHj+lVx0z9+ZvmAr989dSd68p0kq2ERBWTX3v/stV1776yZf96689tf8+eUPKCirJs1VQt68p/nzrPks2lwQkdc9texlrFVmY1HLoW0kfTMLa3UJFQ43X3/9Ne7FM7A7K+jRKYkjHT+RtvIVEo0q0pNsVP30PYc/fR7DUUWV002vsi2ULXiRispKtNYUb/mGsgUvcvc5g5mTO5o/HlNB+spXGJ+TzfK8QroeWkvayldrexGl7PkO17JXABhYtJeJT9/Kd3ffzZPn5vKfC39NSslGem15j76dU0iyWWHbV7i/eZNpE4YyPie70WPvhj8+wsvTnzBfFyxgbPyUl59/iukLtgZ87BnrPqqtrEzY+BEJmz/Bosz04PCytyhdZb7udO+UTPdtHzGkcDnrpp7L0F6dOPzV65R5PkwAHF70b7rsXc60CUPJTk+i4Mt/Ys9bWjve5h57zb3uRfN/rqj1IPAp0Ecp9QbmKrzSCkWIduaJz7YEFSZ1qSjmvi9fZvHMm7h67aesO+tSEvO2c8238zlfwiQhRAQFW6EUbf7KtutNPlJK5QK5AJ06dYrGmEQbNXpgV2bdaK54NGXKEo4a1DVi29pXUo1K8zQB1xaUMlPbWUt3cMPowJVEfbJS2F9QXu+0aqdBYsMGUIA7MxNOOIHiY47huaoqJl90EZklJaQuWMDvP/+c7gUFcOaZpGRnk+IJEsNhxlfbOFTuqO0tZWg4VO7glMe+ZPiAIzgluSTgZcfnZFN5xiDmlWzgxRtPxmaz8VHgld2ZvmAri7YcxK7NJsyGhrIaF2ku821VldPdqC+Tl7eqZseyPJJrili0uaBdVDLtPFxBZWc32gCrUmgNlQ43j32yif/84VQANu0t5cMNG7FpJzaLoqTKyd8XbSfTbmBVCpRZ4WXUKPaVVDW5vX0lVdh6mpVhrhqFVSlsVsWMxXk8+rOmp36u3FnIpn2l/PrV7ziyfxHnH+Fq8vxg3iZDm03zvHynp2am2DlhWE/e+L4IR1EVKS7N2TndWHfIwOEy0JgrwRU7XaTXuLEpRYLVQkmVk4xkO6ldUjndz+Ngd1ElqQk2rAk2HAlWXIbGYoFEp4NLF77FiI0r+HhQDouGdMOVcwxVZXXPqYxkOzarwpaVwvGdVMDH2ZrdxZ6pa97qK/O+aGpxALvVQo2m0XTdZLsFQ4PLrdHanMZmaDi+bxZgVgTe86nG6TZ8/q45uV/n2mqwX695k33AfR9uoM/iFOzljmbvHxFftNZfKKVWA6Mx3zPdprU+FONhCSHCLL+46f/VmVWl3PzN+/zf6o9IdDlZOuY8Tn/9eU4cINWnQojoULphk5g4oJQaA0zVWp/rOT4FQGv9qL/zjxo1Sq9cuTKKIxRNibcGytEcz8A/fYzNAhZVFwQZ2lxefPtfL2hyjN4+Qb7TUbwVBEFzu2HzZli1ClauhPXrzYbew4bBcceZh8GDzRXnQrhtbk9/mYYvGwO7pYY23gCGTf3MU81hwW14Phxjfrju3zXwtsK2H+PQUfd9gtYaq88UKLdhoJRiy1/OB2DizBWN+lX9sK+EJJuVAd3qegpprSmpcrLknjMDbm/s4wtrl69vyeVCvQ+mL9haO/XMd3rqbWcOYtLZQwJe7xXHH8HyvEJ+PFBKWY2bzql2uqQmBr1d331WVu1kb1EV47Z/x/WrPmLr4OHMHX0pf/zlyYzPyQ75toXyutDU/hjWO7PJXmbe1zx/f2/rzxGl1Cqt9ahYjyNWlFJNlhporVdHayxe8h5MiPC7b956Zq/YFfDvGdXl/Oa7D7lh5TxSHdV8dPQ4lkz8LU/ef1UURymE6Ciaev8VrxVK3wGDlVL9gXzgKuDq2A5JBCPeGihHezyhNgEPteG137Bs6FAYOhSuuw4MA3buNIOl9eth7lyzB1NOjhkuDRtmHoJY7cPfqnde4e5r5Ls6n7myngWn22w4nJ2eFHDfxGO/pWgGmv5W1Eu0Wqhx1S+YD6YZc6jN1IO5Dya/Fbg/WaA+Q4Gud3leIXNyRzcK04K97317fA0u3c/kL15HVVfz/Hk3YRk2nD/63F+hPk9DeV3w3u5A+6OpbTbV6ywenyOiRZ5q4m8aCJz2CiHiXnNBUmpNJdev+ojcb9+nU00FHw85hVfO/j+uvfFCnhwZsDuIEEJETFwGSlprl1LqVuAzzBkQr2itN8Z4WCII8fZhJdrjCbUJOLS84XVQYZnFYq4QN2AAXHKJeVp5OWzcCOvWwfvvw0MPQXp6XcB03HEwaBAkJNTbntWimgyVwrkEeWqClQqHC63daI05ddACqQk25uSODng5f4FKtJZG9yecgeaArqn8WFCO0nVVYoaGwd1Sa8/jLwTqlGKnsMLZ4mbMoTZTb+4+mPzWaj5Yu6/2b25D88HafXyy4WNG9u3M9KtG+t03zV1vqPf9+JxsHqmoYOdjz5KzdilLz/w5I2+7gbeP8T+tL5TG9KG+Lkw6e0izDf1bKhbPkXirWm3LtNZnxHoMQojIuObl5SzbXuj3b0nOan61+mN++81culSVsnnUODrNfJYLRo4kcP27EEJEXlwGSgBa64+Bj2M9DtEy8faBPtrjaa6qoCkt/dAVcliWlgYnn2wewKxi2rXLDJjWr4cPPoDdu6FfPzj66NrDZcd0Ye6GQ42mu2UGsWR6S52V061e6KA1oM3TmxJqVU2khDPQvOe8HO6e+z1l1S5cbgObxUJWip17zsupPY+/EMhutfL78X1ZnlfYoqqaUKtxmrsP5q8zm7wrBei65njVLs2W/WbfJYD0JFu9505z19vw76VVTg6UVaO1Oa3N79i1hk8/5bTnnuO0U06BmQs4MSurydsXita8LoRbtJ8j8Va12l4opZKAW4CxmE+jJcA/tNbha5wnhIiKeWvymfL+OqqcjdtvJ7ocTFz7KbeseJfsiiIW9xvJs+Ou5f1/3xGDkQohRGNxGyiJtinePtDHYjyhVBWE8qErbGGZxWKGR/36wYQJ5mnV1bB1q9mPaeNGmDuXJ3ftYiLpLLZ2ZXvWEezM6sWh7r3pmpVBpcMV1iXI95c6yEy2UVrtwvA0Js5IsrG/tOnmwaFW1bRGU0FgOAPN8TnZPHHF8CYDnkAh0Lo9xWzca66YVlLlZN2e4qA+zIdSjdPcfeBb5daw3q2w0gmYYVOV081zC81V4SadPaTZ6/X9u8ttkF9sfq4+IjOp8fNJa1i2DGbONPuO/e1vZnVeBEWi2igU0X6OxFvVajvyGlAGPO85PhF4HfhFzEYkhGixQFPc7G4nv1i/gFu/fpteZYdY0edYfn/JPXzX51iuHd03BiMVQgj/JFASYRWLD/RtaTyBhPKhK6JhWVJSXX8lr5oaTvjxR07YtAl+/JF9q1ZQ/PVmSpSdkl5HMmDMcAZvqwA9EPr3N68jRLs9YUjDhtDBTF8KpaomVM0FgeG+j4IJeBqex7e5s83SOKgJt+bug6amTnqKlkCbK6K5DKN2JbTmrtf376t3FWGzKHp0SiI9yU5ZtZOC0mpufn0lEx27+O3WhfRIUnDTTXDmmWao2kFE+zkSb1Wr7chRWuvhPsf/p5T6PmajEUK0yLw1+dz97loaFiVZDTeXb1jIpK/fok/JAVb1yuGuC27n6yOHg1KcOrAzf7n0uNgMWggh/JBASYRVtD+stLXxBBLKh66oh2WJiZz3xSE2H0gBhsPg4eScmsKnE3Pgxx9h2zZYsQLefNNsBJ6dbfZuGjQIBg40fz/yyEa9mfxpTRATSlVNqJoLAuMh0Jy1dIcnTPIuWU+9oKYpofa+aeo+mDCsBx+s3ddo6qQvb45oUWaD9mCu1/fvvivUeVduG7V7A1eu/ZRONnjsxAu59PZrGB+gT1JT2kM/oGg+R+KtarUdWaOUGq21XgGglDoZWBbjMQkhmtDU1DaL4ebiTYu5bdkcBhTtZV2PQdx/zu9YNOAEUIpEm4XHfz6MS6XxthAizkigJMIumh9WghFv4/EnlA9dkQzL/H1ofuyTH9h8oKLe+TYXVHLeW1v4dPJ4GDeu7g9ut9mHKS/PDJr+9z+YNQvy86FXLzNg8j306QPWuhWv4m3qWiDNBYHxEGj6rpjn1TCo8SdSvW/M1dzqVnkDSE2wUOkwaqfAWT2JUsOV0PzdR0Cj02qfT3YrR274jjtWf4rFMHj/+PM4NOoUKlwGB5bubHGg1HCf7DhUzs2zV5GeZGNwdnqbDJciLR5C1XbqZOA6pZR3rkxfYJNSaj2gtdYtnsOplPoFMBU4GjhJa70yXIMVoqMLNLVNaYPztnzN5KVvMuTwLjZ168dNl9/HF4NOliBJCNEmSKAkRJT5+1Ac6oeuSIRlgYKEXYX+q6UahkyAGQ55+zKdeWbtbd53sIQRupRf9zAY7jgMH38M27dDQYFZvTRgAAwcyPhBg3j8pCye31zJ7pLqmE9dCySYIDDWgaa/FfOUMlfMa0oke99cMqI3+0sd7C6qJC3BilKK/OIqSqtdWDwr+rkMo95KaP7uo7vnfo8GOiXb691vVxx/BCvf+4KfL30P3AZzhp/Ld/2O44isVDIsFpLtKqQpV777pLTKyeEKs6dXWZWTNbuK+M1r3zG4Wxr3nn90q/ZRe6iC8oqHULWdOi8C17kBuByYEYHrFqJDCliVpDVnb/uWO5bO5piCHWzr3JvfT7iHj3NORSvzW6BrR/eV6W1CiLgngZIQURQwuJgwlGkThsbFh65AQUKofG9zWnoK652J/KFQM23CGYy/xXP7qqthxw6zomn7dpg7lzF5eYwpKTFDqT59wOgL2/vwnSuFf+xwsaXaQp/OqWHZT6GGJ22h+iLUFfMi1fum4XPA3GcG068aybo9xQFXQvN3H+UXVWFoTZXDjcNtkGBRjCzdQ9//vsiIA3v49/EXsbCP2XdC+Ywh1ClXvvvkUHkNFhQaTY1bk2hTWJViZ2Flqyq52uOqaLEOVdsjrfVPSqksoA8+7+W01qtbcZ2bgHq964QQofNblaQ1p+9YzeSlsxmx70d2Zvbk9ovuZP7R4zAsdRW5EiYJIdoKCZSEiKKmgos5uaNj/qFr+oKtrMg7jMacFtUtLZHsjCSS7dZmLxtIUGFNUhIcfbR58Fi0uYBXv9iIkbedoWWlXHqgnKS1Czj83Ub+UHIQi1Lsy8xmxzvd6XHGSHJGH2dWOfXpA4mJLRpjqOFJW6i+CHXFvEj1vmnuORCor5O/+8jpNnBryC7cy7gdazg9byUoxWc5Y9l4QS4JKckcWe1kb3E1Gs2h8hpsVhVy6Oe7TxxuA6tSONwaBViUQmOuYme3qpAruWRVNBEMpdTDwPXAduoWTNTAmbEakxDCFKgqacxP67hjyWxOzP+BPRnZ/PG8Sbx/7Jm4rHX/Z2WKmxCirZFASYgoitaKR6FMmfGuBualNRwoqwEgLclGit1CpZ9GkjndU5u83lBus2+VRnL/o/jc6ea/bk1qzkk4Bl9Cit1KalU52YX7yTi4F7V+FzmFu+Gnn2DvXujSBfr2NcOl3r3rfh5xhN/V5xqGJ6VVTg6UVaM1TJy5osn9F+/VF7uLKumUbMfp1mYVj9VCp2R7s4+5SFVfNfV4mL5ga8AKpYb3UfbhfQxdu4RTd64lo6aCZUeO4Mlx1/Fjlz4opRiabN7P6Ul2emVCQWk11S6D7PSkkEM/332SYLXgcBtoDQlWs6LD/N3Sque0rIomgnQlMFBr3XQy3IBSagHgr3nYn7XWH7bgenKBXIC+fWUJcyEgcJB0wp4fuHPJbE7ZtY79aZ2572e38Pawc3Ba617rFXCNVCUJIdogCZSEiKJorHgU6pQZ72pgFovCaejar7wLympItFt58ZoTGjXmzumeajbkbkKfrBS27C+luMpZWyGTmWznqB4Z9cbsG4AVVdT4rdLIO1TB4Ow0UIqKlHR2pKSjjxjEV1VOrr/H88W8222GSrt2wZ49ZnPwlSvN3/fuhU6dzHCpd2/o2RN69uSuzon8ZVcJ5RmdcaDIL64G4IjMpDY/5Sgtwcq2gxVYlTkly+XW5BdXM6hbXRAYKICMRPVVoOeANgyeW7jNsyKdeZo34Jx09hBuHjeAF1/9kpPzVnPittUkVZaxoOex/GP0FfyQ3b+25wSYZRpVTnftNtKT7Fgtiuz0JObkjg557L77pKTSgcvQeHuGG4bGQNM1Lcnvc7qpsAzq7oODZTUcKquhR6ck0pPstftHVkUTDWwAMoGCllxIa312ODautZ4JzAQYNWpUE2s2CtExzFuTz93vfo/TqHs6DNu3lTuWvMH4Has4mJLJtDNv4o0R51Fjr6uiTk2w8shlx0lFkhCizZJASYgoikbPnVCnzHhXA7NYLICBW2sMbX44nzZhKONzsrnvg3X1LlNe3XxvpR4ZCSzPc9YeNzQUVjrpkZEA+A/Adh6uoHdmcr3r8U678w0KvMfrfdi2Ws2KpD59Gg/GMMwG4Lt3mwHTvn3w3XecsG8fs37cyeFd+zmkbVTbEyE5GUdaBqWpGRxOSmfTpoWMv2K0Wf3kPWRmmh2k41htPxTlOQDoutObCyBD7QMUqEIu0HOgsMrlCZPM/ZloOOl5eC9bX1kJ69MZ/803DMsv4JPsY3h17JVUH3Mc3+4qMhuN194maqefOd06bM+zQLdn0eYCHv90M1sLyrFboVd6kt8pdd7qv0Bhme990CMjkfziavYUVXFEpsZmtcRdXy4RFx4F1iilNgA13hO11hNiNyQhOqZ5a/KZ/Pba2i/iji7I444lb3DOtm8oTM7g0fHX89rIi6hKqKuQlh5JQoj2QgIlIaIoGj13Qp0yk5pgfvC2KLBZLdgwV9pKtlsZn5PN2EcXsKekpt5l9pTUMPbRBSydEvhL7y83H8TiCTK8q4x5Twf/AZjdYuFAWQ0ZyQm111PldNO/SwqVTiP0oMBigR49zMOJJ9b7Uxegi9vNbdP+QzebQbKjitSqcjIqSkkrL8F+qBC++QYOHYLDh81DWRlkZZnhUqdOkJoKaWnmT9/f09L8n56aGvFAqqzGxRGZSRwqd9ROeeuRkUh5jRkGhrtnTzABlfc5sO9QKUMtVfymn52X311Gr/LD9Cw7TJ+ifWSXF7IvvSs7s3rCz86He+6h8/DhXGOxcI1nW+c/u5gfC8qxWRRKmY8vt6EZlJ3GPeflhOV51vD27Dxczs2zV5GWaGVI9wzuOS+ndj/uKarEblEkWC3c9+EG+iw2t+ut/vOGZRZlPrdmLd3BpLOHNLoPQHGgrJr9pTUc3zcr7vpyibjwb+BxYD3QeC5yCJRSlwHPA92A/yql1mqtzw3HdQvRXvk23h50aBeTl77BhVuWUZqYypOnXcurJ0ygPLF+hamESUKI9kQCJSGiLNI9d4KZVuev4uLGsf15buE2XIaBRZmVRL7LtjcMk7wCne5V4XBjtyosPlOSDG1Q4XAD/gOw7hmJ7CmubhQc3X/hMUBkAjnvPslzJ7DDDT06ZZKebY6r0uEiOz2J2xpOl3K5oLDQDJnKy+sfKirM03/6yfzde5rveaqrzXApKws6dzZ/ZmbW/e576NzZDK2sLWuQ7n08DOiWVnua9/ZA+Hv21AtHtKaru5rEwkPMf2kTK10VsDefo8sLeN4opGtlCXTrBjt7MbSwkvzUzqzoN4J3R57P3k7ZVCuzH9Et1/v/THvPeTncPfd7yqpduNwGNouFrBQ795yXE7bnme/tKat2crjciUZT7TTqrdI4J3d0wDCtrNpFgq3+ylkWRcDnQEaynfQkGyVVzlZN0RPt2iGt9fRwXqHW+gPgg3BepxDt2bw1+byxYhf9CvO5bdkcLvnhKyoTkpg+5pfMOukySpPS6p1fprcJIdojCZSEaGeam1YXsIJkwlBuO3NQk31eApk4c0XABuC+lU9ehjZPB/8BmM1qYUh2GpkpCX6Do3AHciFPObLZIDvbPITCMKCkBIqKGh927oTVq83fi4vN4Kq01AygAgVOmZl1oZTN3J+39bfw2Ce7KK9xUYPClZCMLT2Fm883K2v8BpAOF0dmJEBlpRmaVVc3DszKyvyedvWyrXRy15BcU0laZTkOewKFSenssadhdOlKeWZXPu0zgqdTulHerScDemZy87gBGHuKecczLcxfoOnP+JxsnrhieNQq/g6W1aAUWFA43Eajaq5A1V4Wi6rtH1Z71zfzHJC+SaIZq5RSjwLzqT/lbXXshiRExzLztS95/MvXuXzDQpxWOzNPvpwZJ11OUUqneueTIEkI0Z5JoCREGxZKM+VQl21vSkFZdcAG4M1VPgUKwO6/MCeswUBTfX1iNuXIYqkLhILhL4AqLDQDpx07zN+9AZRhzoIZWFbDLbuLcRkaq+EmyeUgze1g8DwbpKfwomEl72A5Nu0mwXCj3G4wDHp1SaVklp38cidl2NBpaRx5ZHd6HtG1bgpferr5s1u32tO+TtvBXpcF0tIpTcnAZU/gxwNloGBwdjqlVU72llQBYHfpVgeakejz5Ms37HG4DawWhTbM1dygfjVXoGqv1AQrFQ53i58D7aVvUiirTopmjfT89C1h08CZMRiLEB3Lnj3smPwnPnz/TQxl4d8nXMxLo6/gUGrj/+XP/nKEBElCiHZNAiUh2qhQmymHOsWpd6dEv9PbrBaa7L/jDQQCBQXR6CvV3L6KxZSjkD5ktzSAAn71zFe1q7zV9hnSmkFdU/j0ltFkVVZS9eMhZn2zh92lDnp0SeOm8YPZr1TddDLDnE6WnmTjiSuGNznOc7Nzavd1ss1KlcOF0zBqm6wfKq/BgkJZwGnosASaLdWSlRB9wx67ZwVEgK5p5pRB30qiQJVGQ3t1YsyAzi1+DkDT1X9tQairToqmaa3PiPUYhOhw9u+HRx+FGTPo7XLz1vBz+fvoK9mf0dXv2a8d3VfCJCFEuyeBkhBtVKjNlEOdXrN0ytmNGnNbFRzdI6Pe+fyFU5POHtJkUBDpvlLN7atoTzmK5ofsHYcrzWlknvlWSoE2NDsKqyApCZKSGHtyZ8aeXP/+Of/ZxRRVOrFaFDarBa2hqNLJ459ubnKM/sIR3yDG4TawKoXWjat8wlnJ0pKKtKaeO763p6TKSVm1i6wUM3CsdLjqVRI1VWk0Pie7Rc+Bho+RHYfMZuDpSTYGZ6e3mXAp3E3fRR2l1IXAUKB26Sit9bTYjUiIdurgQfjb3+DvfweHA66/njPsp7CnU3e/Z1fANdJ4WwjRQUigJEQbFWqlUWum1zRczW3izBVtovdLc/sq2lOO2sKH7LxDFZ5+Rj5BlNLkHapo9rKBwpFKh4sEqwWH20Ch6JaeCJiPmbREW22AYlWwZncRv3ltJUM8K7a1ZL+0tCINgnvuJNmtdEtLRGtNSZXTb2+vQNV2LQ3LfB8jpVVODlc4AKiscbWpKp9wN30XJqXUP4AU4AxgFnAF8G1MByVEe1NUBE89Bc89Zy6qcc018OCDzCtLJv/ttX4vkplsZ+2DP4vuOIUQIoYkUBKijQq1qqY1U8wmzvia5TuKao/ndE/F6dZx3/uluX3Vmn0SSlVNJD9kNxxPdnoi+0qqUVrXTnkzNAzultrqbQWrXpVPpQOXoemcaictsa7Kx27R2K0Kl1uzt6QaC2awtONQRZPhib/9H86KtIbhlPcx/vAlx/odj79qu1Aq0nwfI01NE4z3QCnUVSfj/XbFgVO01sOUUuu01g8ppZ4C3o/1oIRoF0pL4dln4emnzb6FV14JU6fC0UcD8NC0z9F+LqaAqROGRnGgQggRexIoCdFGtaaqJpQpZg3DJIDNByrI6Z5KVmpSxPofhUMw+yqUfRLq1LVITbHzN54qp5vURCs1TgOX2+yFlJVi557zcpq8rv5dUth2sAJl1A+ieqTZQ+rr47t/vQGC72Pmvg83mFO7SiqwoLBYFBpwG2bQ5C88CbT/K2qc9OyUXO+8yXYrPxaUMXHmCrYeKKW8xk3nVDtdUhObfO6Eo5oslOto1Aw8CtMEIyHkVSeJ/+qrGKvy/KxUSvUCDgOBl0QUQjSvogJeeMGc3lZYCJdcAg89BMOHAzBvTT5T3l9HldPwe3EN0jNJCNHhSKAkRBsVjWbWvhqGSV6bD1Sw87HxEdlmuERqX4UaNkRqip2/8QDYLYqs1MQW3fZ7zz+au+Z+T3mNC7ehsVoUyRYLNW7d5Kp+wfAX3vVZbAYo3vAEqA1QAlVvBdr/TremyumuF9gdrqihrNqcLtazUzKHymsorHDidOsmexKFo5oslOvwfYwEmiaYmmANaxgTiXCqNatOSqDUpP8opTKBJ4DVmJ9lX47piIRoq6qq4B//gMceg4ICOP98mDYNRo2qPcu8Nfnc/e73tf0A/TkiMzng34QQor2SQEmINizSzazbk0jsq1DDhkgFXIHGU1Ll5NPJLVutbnxONk9eMbzeGIsrHTjcRrMf/kMJJrwBitWiMAyNwgyUuqUnBqzeCnR7E2yWRlMxCyucZKXYa8feLT2J1EQb2elJTa7kF45qslCuI5hpgglWS9jCmEhWCkVi1cmOTmv9sOfX95RS/wGStNYlsRyTEG1OTQ3MmgV//Svs3QtnnWUGSaecUnuWeWvymTp/I8VVzmav7u5zj4rkaIUQIi5JoCSEECFqTdgQiYAr3FPpGo5x7OMLm/3wH2ow4Q1QHvtkEz8eLMeuFD06JWK1qIDVW4Fu7+DsdMYM6MyspTuocJiVPHYrdE1LbHLs/oSjmqyl19EwkHvyFyOAxgGkd5pgS2+TP7GqFIr2CottnVLqRGC31nq/5/h1wM+Bn5RSU7XWhTEdoBBtgdMJ//43PPww7NoFY8fCG2/A+PH1znbfvPXMXrErqKvMTLbLdDchRIdkifUAhBBtw5j+WS06vbUWbS5g4swVjH18IRNnrmDR5oKIbKc1bh43oLYSRmvdaBn5eB9PS/dxn6wUqpzu2uNl1U62FZRTUFZTe3nfYEIp86e3B1IwslITyUpJIMFmoaLGRXZ6EtMmDPUbagS6vWMGdGbu6ny6pSdydI90uqUn4nSbza19+QsuGu4TgGkThpKdnkRJlbPJ8QQyPic76OvwBnINpxUCzMkdzZJ7zmRO7uja5uK+90eg2xSM3UWVJNut9U6LRqVQvD2H2oAZgANAKTUOeAx4DSgBZsZwXELEP7cbXnsNcnLgppugRw/47DNYvLhVYZI04xZCdGRK68BzgduKUaNG6ZUrV8Z6GEK0ew0bc4/pn8Wcm09p4hKm6Qu21qsWuXFsfyadPSTg+X2rXHwrOlr6QT4a/DWYjuUY/Y1n3Z7iRvt/WO/MFu9j3/vF5TbIL64G4IjMJGzWumlmPTKSUJ4+SABaa0qqnCy558wmxx3Kfe7v9s5YnNeo6uVQeTWFFU56ZyUHvP54eNxNnLmi0dgrHS6/U/PCOd6WbDfcWvIcUkqt0lqP8vvHDkAp9b3Werjn978DB7XWUz3H12qtR0R7TPIeTMQ9w4B334UHH4QtW2DECLM66cILwed/lVdLwiSAa0f35S+XHhfGAQshRHxp6v2XTHkTQgQtmPCooekLtvLcwm1YFNgsZgXFcwu3AQQMldpSo95462PVcDyB9n/PjEQS7dYm97G/XkjTJgxlxuI8Vu8qwmZVdE9PIsMz7arS4cLhMthbXEVxlRNDg0WZUwGO6pHR5LhDvc/97X9/U8G6pCbidGuy0wOvSBjJx12woWpLegqFsxdXpBrFByPenkNxzqqUsmmtXcBZQK7P3+Q9nRC+tIZ588wgaf16GDoU5s6Fyy4DS+NJGs2t4taQUvDMlSNkqpsQokOTNx9CiIiatXSHJ8ww37xZFLgMg1lLdwQMlIL9UB3vS6bHQsN98v2eYr/7P7+kmqE964c8vvs4YC+kCUOZkzu6tp+SbyVSst2K021QWl33ZtzQUFjppEdGQpPjDmdz5qZ6KzVVbROpBtEtCVVb2lMoXGFMtFeNFCGbA3yllDoEVAFLAJRSgzCnvQkhtIaPP4YHHoDVq2HIEHjzTbjySrDWn9rbkqbbvuxWxRNXDJcwSQjR4UmgJISIqAqHG1uDLwItyjw9kGA+VId7Var2EE752yeVDjd2P/tfa3OfBtrHzVXrBLqPHG6NxZMxaV03m+DLzQebHHufrBR2Hi6ntMqFw22QYLWQkWyjX5e0Fu+HQNU2YwZ0ZuLMFQHv40g1iG5JqCqVQqIpWutHlFJfAj2Bz3Vd3wIL8IfYjUyIOKA1fPkl3H8/rFgB/fvDv/4F114LtrrX9VBDJK+sFDsPXjxUwiQhhECacgshIiw1wYrRoFWboc3TAwmmUW9rmz/7CtQIOZKNwCPRdNzfPrEocBpQ43JT7XRT43LjMjQpdmuT+7i5Js2B7iPD0NitikSblSS7lUSbFbtVNRkgAowZ0JmCMgcOt4FFgcNtUFDmYMyAzi3eD/6aYF9x/BHMXZ3f5H0cqQbRFQ53bcjmFShUbUkDb9Exaa1XaK0/0FpX+Jy2VWu9OpbjEiKmvI21zzkH9uyBGTPMfknXX18bJs1bk8+Ihz7n9rfXhhQmXTu6Lzsfu5A1D/xMwiQhhPCQCiUhRETdOLY/zy3chsswgwJDm4cbx/YPeJlgpt+Ec3pStHs2hbu6ysvfPklLsFBaY9SGeloDGs4dls0lI3oH3MfNVesEuo8mvbWGKmf9AKW5ABFgeV4h3dISKKuuq1BKT7KxPK+QSSHsi4bVNhNnrmj2Pg512ldz1W2pCdYW7ROpFBJCiCCtWGFWJC1YYK7aNn26uYJbUhLz1uTzxGdbyC+uavVmpPG2EEL4J4GSECKivFN6WrLKm69A61CGc3pSpHrnBBKpAMvfPnG4PaWonjDPoiAjycb+UkeTwUUwU6/8XT6UABHM+6BrWiLd0pNqT9NaN3sfBDtVMdj7uKVhTjDhYKj7RAghRACrV5s9kv77X+jaFZ58En73O0gx3wOYDbbXU+Vsujo2GBImCSFEYHEXKCmlpgI3Ad6GG3/SWn8cuxEJIVpr0tlDgg6QILgP6eHsNROp3jmBRCrA8rtPDIM+nZPJSK5rih1MUBNqtU6oAWIoPZRaUukVqfs4mHCwtaGqEEIIj/XrzVXbPvgAsrLgr3+FP/wB0sz/FeGsSpJeSUII0by4C5Q8ntFaPxnrQQghYiOYD+ltecn0SIUb/vaJ3aIornKSd7C83lSy/l2bb3Yd6tSrlgaIYPZQ+nZnIRZFvR5KE08M3EOpJZVekbqPgw0HQ9knQgghPLZsgalT4e23IT3dDJUmT4ZOnWrPct+89byxYlfAyuZgpCZYeeSy4yREEkKIIMVroCSE6MAiNT0pkGgvmR7JAKvhPvFdst4b1Bwsd3D1SS1vdh2siTO+ZvmOotrjY/pnMefmU5q8TCg9lIJ9nHinxVXUOHG6NQk2C4Oz08NyH0e7uk0IITqU7dth2jSYPRuSk+Hee+Guu6Bz/f9h89bktypMkmokIYQITbwGSrcqpa4DVgJ3aq2LmruAECLygu1X01qx+JAezUbI0QywlucVkp2e0GgqWTDNrie/tZr56/bjNjRWi2LCsB48c9XxTV6mYZgEsHxHERNnfN1kqBRKD6VgHie+0+LSEm0cKK2hwuGiqKKmydsRrGhXtwkhRIewaxc8/DC8+qq5StvkyfDHP0J23f/J1k5vk95IQgjRepZYbFQptUAptcHP4RLgJWAgMALYBzwV4DpylVIrlVIrDx486O8sQogw8n4wb2rZ9XCJ1PLt8ag1pfnB2F1USZfURAZ0SyOnRwYDuqXRJTWx2R5Kk99azQdr9+H2LA/nNjQfrN3H5LeaXpm8YZjU3OlefbJSGjVPbS5EDOZx4p0W5zY0+0pq0IBVKXYWVobl8Ts+J5tpE4aSnZ5ESZWT7PQkpk0YKqu0CSFEKPbuhVtvhcGD4bXX4Le/NauUnnwSsrOZtyafUx9bSL97/8vtb68NKUzKSrHz7C9HSJgkhBBhEJMKJa312cGcTyn1MvCfANcxE5gJMGrUqEh/JhOiw4vUymT+RHsKWrS1pJl0a/XJSmHL/lKKq5y1q7xlJts5qkdGk5ebv24/AMpnqXutzdOfuap1Y/JX6dbSSh/vdRRV1FDpNNBak5Zo48ax/evtQ++0uB2HKlAKLEqhAadbU1Bazc2zV3F836xWPb6iWd0mhBDtUkEBPPYYvPQSuFxwww3w5z9D376AWY00df5GiqucIV19st3Ko5dLbyQhhAi3mFQoNUUp1dPn6GXAhliNRQhRZ3dRJcl2a73TwrEyWSDjc7KZkzuaJfecyZzc0e3qA7tvOKeU+dNuVcxYnBf2bfXISKCw0gyTwFyuvrDSSY+MhCYv561MCvb0YAWqdAOCrvTxXseOQ+VUOt24DY2hodrp5vUVP9WrOvJWPjncRm045jI0bkNT4zKocRms2V3EXXO/j0i1nRBCiCYcPgxTpkD//vDcc/DLX5oNuGfMqBcmTXl/fchh0hGZyRImCSFEhMRjD6W/KaVGYM4E2QncHNPRCCEAaT4cTsE2kw6HLzcfxOIJUrSuqzj6cnPTU4WtFuU3PLJalJ9z1xnTP8vv9LYx/bOApivdgg0OvddRUOrEbYB3RE5DU1Tp5PFPN9ee78eCMsqqXaA1hue8Ls/t0pjHtQHFlU4e+2RTuwouhRAibhUXwzPPmIfycrjqKnPltqOOqne2eWvyufOd73Hrln2ZYVWKp64cLiGSEEJEWNwFSlrrX8V6DEKIxqT5cPhEM5yrcLixWxUWVVeQamiDCoe7iUvBhGE9+GDtPhq+h58wrEeTl5tz8yl+V3m7+fRBTJy5gm93FpJks9A1LZEMT6jmDdOCbfruDeRqXIZ5gsJMhzRYLPBjQVntlMIeGUnYrTUcKnfgdGsS7QrcdRezWy1YLAptaHYcDm+gF60m9uHS1sYrhGiDysth+nR44gkzVLr8cnjoITj22Hpna80UN5neJoQQ0RN3gZIQIj61975G0RTNcC41wbx+38IiQ5unN8Vcza3lq7wBjVZz8+0ZlWhVONwGe0vMRqoZyXaqnG5SE6xB95XyBnINeauv3BqcbjeHy+tWtuualkBmcgKZKQkszzsMmGFScxVXoYpmn6xwaGvjFUK0MZWV8OKL8PjjcOgQXHQRTJsGI0c2Oqt3ilvDhRqCcURmMnefe5SESUIIESUSKAkhgibNh8MjmuHcjWP789zCbbgMA4sywyRDm6c355mrjg+pAffkt+oHUVkpdjol20lJsJGdkcTe4mo0mkPlNdisCqdbk2C1BN303RvI2SzgNKitorIqZTYeBw6VObBYFFaLwmVoDpWZFUqf3D6O859dzI8F5SgFGo327JPB3VJbfmMDiGYT+3Boa+MVQrQR1dUwcyY8+ijs3w8/+5kZJJ18cr2zzVuTzxOfbWnRqm3e/2kSIgkhROxIoCSEEDEQrXBu0tlDAJi1dAcVDrMS6Max/WtPD7fJb63mg7X7ao+7DW1ON3MZ9O1iIz3JTq9MKCitptplkJ2exM3jBnDfhxuC7ivlDeQe/3Qzm/aX1Z5uaE1qgtVToWRg8ZQsKQWG0jg8U+TuOS+H295eQ2mVq7aPUkayjXvOywnbfohmn6xwaGvjFeGnlHoCuBhwANuBX2uti2M6KNF2ORzwr3/BX/4Ce/bA6afDO+/Aaac1OmtLK5KkP5IQQsQPCZSEEAKYvmBr1EKXaJt09pCo3Zb56/YDddPPwKwgKql21R5PT7JjtSiy05OYkzsagD6LW9ZXyhvG3T33e8qqXbgMA5vFQpLdSpXT3JZhaLMKyVPBlGCtG5TdaiHRbqmtorJbw7voaVtrYt/Wxisi4gtgitbapZR6HJgC3BPjMYm2xuWC1183q5B27oQxY+DVV+HMM+v/Y/DxxGdbgg6TpD+SEELEl/C+gxZCiDZo+oKtPLdwG1VONzYLVNS4eHrBjxz34KdMnLmizS8nv2hzARNnrmDs4wsjfnv8rQznVelwobUmv6iSvIMVrMg7zLCpnzF9wVZuHjcAp1vXnqfS4Wq2r9SMxXlYPdPalFK1v1uUhS6pCdisCrfW2KyKLqkJDO6eUXu5Tsl2Bmenk9Mjg8HZ6XRKtjNjcV7Y9kNLb08076NwjFe0P1rrz7XW3uR3BdA7luMRbYzbDW+8AcccAzfcAF26wMcfw7JlcNZZAcOkeWvyg57mlpVilzBJCCHijARKQogOb9bSHVgU2CwWtDb78IC5Qpq3OXFbDZW8zZYLyqrrNVuO1O0J1ORaAdnpSewqrKSw0olSkGBTVDndPLdwG+v2FDNtwlCy05MoqXKSnZ7EtAlDm5wWuPVAKQfLa6h0uD1hiJuD5TVorUmwWenRKYmjuqfTo1MSCTZrbTiyu6gSl9sg72A5m/eXknewHJfbCOv0rvE52UHfnmjfR60dbyxMX7CVYVM/I6H7wOa7wotwuAH4JNaDEG2AYcDcuTBsGFx7LSQlwQcfwHffwfnnBwySoG6qW3OsSvHsL0ew5oGfSZgkhBBxRqa8CSE6vAqHWZkE4DKM2tMN3fabE0e72fKEYT34YO2+2mlmXpeO6MkzVx3PsKmfYbcqbBZzh1uUuc9nLd3BuqnntmhMVU4Dt2GGVUoBGtyGucrbtAlDAzY9T0uwsu1gBValsCqFy63JL65mUBibckPwfbLipSF2vDbd91YQerLKwCVwollKqQVADz9/+rPW+kPPef4MuIA3mrieXCAXoG/fvhEYqYh7WsNHH8EDD8D330NODrz9NlxxBViC+746mKluMsVNCCHimwRKQogOLzXBSpXTjcWn3w7g/QDbppsTR7vZ8jNXHQ/UX+VtwrAentPrh3deFmWevmhzATMW57G7qJI+Qax853TVhX++MYPTZbBuTzEb95ZQ4XBTUuVk3Z7i2utS3m/Mlefgubxq4pv0SJKG2E3zrSAUraO1Prupvyul/g+4CDhL64axcL3rmQnMBBg1apSEfB2J1vD553D//WYV0sCB8NprcPXVYLW26Kr2NjPVTVZvE0KI+CeBkhCiw7txbH+eW7ittjrJ++moa2oC0LabE8ei2fIlI3qzv9RRGwxdMqKuFYtveOdlaEi0Wnhg/kbsVlVv2tc0CBgqWSwKGxpDm59xlAKrMld781a02CzUTqsDs0F5WY2LIzKTOFTuwOE2SLBa6JGRSHmNy+92Ik0aYjfNXwgpwk8pdR5mE+7TtdaSZorG/vc/M0hatgz69oVZs+C668Bub/6yPuatyeeJz7YELDc8IjOZZfee2frxCiGEiDh5iyaE6PAmnT2E284cRLLdilJmMJGVYiM7I6nNNyeOdrPl5voB3Ti2P4Y2p7kZ2vD8hM6p9tppX0qZP+1W1WSj7P5dUgCF3WIh0WbBbrEAZg8sb0WLRVk8P81KF/6fvTuPc6o8+z/+uZLJrAwwLAMqIIsKFkVtcauUotVqW4tLtS3Vtj5PLbTV4lL5qa1SxfpUq9althWqrda9bhT3pRZxQ0VREcUNUEBwWGZg9iW5f3+czDBLMpNkkkkm832/XnllcnJyzp1zTjLnXLnu68YL4OT4fYwd2o8Jw/szdmg/cvy+tAVwVBC7c0W5fjqp9S7JcyNQDDxtZm+a2U3pbpBkiBdf9EZpO+IIWLMG/vIX+PBD+MlPEgomXfjgiqiFuAsCfuYcPT4ZrRYRkR6gDCUREbyg0uwj9wJo6XoVqf5ObzNtQinzIKH3c8MzH3DzC2uobghSlOvn9CljWrZRNF3VA2p+ffvl/uv19RQE2naX6Krb1wXf2Jvz7n+Lqvqmlu51A/MCbKtuoH1t8OZudeAFcOYuWklNQxMFAS9jKp0BnO7so76gfQahpIZzbo90t0EyzGuveTWSnngCSkvh2mth1iwoKIh7Uc1ZSZ2N6KYubiIivY8CSiIi7WRqceJEJfJ+WhdCjtRtLJpY6gG1Dt41e3n1NtZsqaKyrqmlG1pxfg5jhvTr9H1dfdJ+HQIxs+9ZHrFbXVGuv+V1J62v6BDUSuc+z7ZjLplaByHZWfVKRFLlrbe8QNKiRTB4MFx5JZxxBhQlNnBBc1ZSZwW4DdTNTUSkF1JASUQky8Vb7Bo6FkJuPRpbZwGlROsBHTp2EK+u3YbPvHU1BENsrmrgBwcN6vR1kQIxrTNafOYFk0LOm968Pe5/YwNDi/MYFc5Quv+NDUwaMTBtQZ1E9lFf0hyEtEs/fiPdbRHJWu++C5dcAvfdBwMGwGWXwezZ0L9/wotcuHwDv/rXWwSj13gHYNeB8Wc9iYhI+imgJCKSxZprGsVT7Bo6H42tM4l2J3t59TZKi3PZUbszQ6l/QQ4vr97G7C7eX/tATLRudc3Tu+qW19MS3UciIknx4Ydw6aVw111eFtJFF8G550JJSUKLa929zSBq8e1mqpskItJ7KaAkIpLFEg2eRBuNrbnbWDSJ1gNaV17D4KI8hvTLb5nmnOu0hlJngZhI3epar6urbnk9KdMCXCLSR6xdC/PmwT//Cbm5MGeOdxsyJOFFtu/e1lUwSXWTRER6NwWURESyWKLBk666jXUmkXpAiXSV6ywQ83aEGknNAaZEu+WlSqYFuEQky61fD5dfDrfcAj4fnHkmXHABDB/e7UVf9eT7ndZKalYQ8PP7E/dVIElEpJdTQElEJIslGjzpqttYZxIZHS6RrnLRAjErP9veUo8pUkHxTBvlLdMCXCKSpTZtgt//HubPh1AITj8dfv1rGDGiW4tt7uL2WUVtlxlJAH4zBZNERLKEAkoiIlmsO8GTzrqNRZPo6HCJdJWLFoipbgh2WlA80W55qZJpAS4RyTJbtsAf/gA33ggNDfDjH8PFF8Po0QkvMt46Sc2UmSQikl0UUBIRyWI9HTxJdHS45rbG065ogZhQyJGT03Z0+fYFxRPplpcqmRbg6g6NVieSQcrL4Zpr4PrroboaTjkFfvtb2GOPbi023jpJzQEn1UsSEck+CiiJiGS5ngyeJDo6XCKiBWJm37M8oYLi6ZRJAa5EabQ6kQyxY4cXRLrmGti+Hb77XbjkEth774QX2bpbm8+MoOs6J8mAXRVEEhHJagooiYhI0iQ6OlyiIgViulNQXBKn0epE0qy62uvW9oc/wLZtcNxxcOmlsN9+3Vps+4ykWIJJuw0s4MULjujWekVEJPP5up5FREQkNqdPGUPIed3cQi4Uvu/ZYM7sI/firCP2oCDgpynk1ew464g94q4HJfFZV15DQaBt4FCj1Yn0gNpauPZaGDvWG63t4IPhtddg4cJuB5Mg9pHbmhUE/Mw5eny31ysiIplPGUoiIpI03RkdLtnt6GydqvWTfBqtTqSH1dfDLbfA5ZfDZ5/BEUfAZZfBl7/crcW27t6268ACNlTUdvka1UkSEembFFASEZGkSmR0uJ6kWj+podHqRHpIYyPcdpsXPPr0U5gyBe68E6ZNi3tR7YNHh08YygOvb2jJSOpsFDe/GSHnVCdJRKQPU0BJRESSKtOzf1TrJzWyabQ6kYwUDHqBo3nz4OOP4aCD4G9/g6OOArOuX99O+9pIGypquXPppx2CRw46BJUKAn5+f+K+CiKJiPRxCiiJiEjS9Ibsn3XlNQwsCLSZplo/yZENo9WJZJxQCO67zxupbdUq2H9/WLQIjj02oUBSs0i1kaKV227uztacyaSMJBERAQWUREQkiXpD9o9q/YhIr+CcV1j7t7+FFStg4kS4/3444QTwdX9cnc9iqI3UTKO2iYhIJBrlTUREkqY3jPQ1a+pYGoOOmoYmnPPuu1PrZ/GqMmYsWMqUK59lxoKlLF5VluQWi0if4hw89hhMngwnngh1dV5Xt7fegu98JynBJIBdBxZEnN4+50mjtomISDQKKImISNKMLCns0IUi07J/pk0oZd70iZQW57O9tpHS4nzmTZ+YUAZVcxe/ssq6Nl38FFQSkbg5B888443S9q1vQXk5/OMf8O678IMfgN/f9TLiMOfo8RF/ADjlkFHsNrAAw8tMUq0kERGJRl3eREQkaXrLSF/JqvXTG7r4iUgvsGQJXHyxdz9iBMyfD6edBrm5KVtlc5Co9Shvqo0kIiLxSEtAycxOBi4B9gYOcs4ta/XchcBPgCAw2zn3ZDraKCIi8etrI32pwLeIdMsrr3iBpKefhuHD4YYb4Kc/hfz8Hln98QfspgCSiIgkLF0ZSu8AJwLzW080sy8A3wcmArsCz5jZXs65YMdFiIhIJupLI32pwLeIJOSNN2DuXHj0URgyBK6+Gn7+cyjUd4eIiPQeaQkoOefeA7COQ50eB9zjnKsH1pjZR8BBwMs920IREZGu9ZYufiKSIVas8EZte+ghKCmB//s/+OUvoV+/bi124fINUbuudfaciIhId2RaDaXdgKWtHq8PT+vAzGYCMwFGjRqV+paJiIi009e6+IlIgt5/Hy65BO69F4qLvaDSOefAgAHdXvTC5Ru48MEVLQMibKio5cIHV7Q8H+05BZVERKS7UhZQMrNngOERnvqNc+7f0V4WYZqLNKNzbgGwAGDy5MkR5xEREUm1vtTFT0Ti9PHHMG8e3HGHVxfpggvgvPNg0KCkreKqJ9+POLrmVU++3/J3pOcUUBIRke5KWUDJOXdkAi9bD4xs9XgE8FlyWiQiIiIi0gM+/RR+9zv4xz8gJwfOPhvOPx9Kkx98/qyiNq7pXT0nIiISK1+6G9DOIuD7ZpZnZmOAPYFX09wmEREREZGuffYZnHkm7Lkn3HYb/OxnXpbSNdekJJgEsOvAgqjTO3tORESku9ISUDKzE8xsPXAo8KiZPQngnFsJ/At4F3gCOEMjvImIiIhIRisrg1/9CsaNg/nz4cc/hg8/hD/9CXbdNaWrnnP0eAoC/jbTCgJ+5hw9vtPnREREuitdo7w9BDwU5bnLgct7tkUiIiIiInHauhWuvtoLHNXWwg9/CHPnwtieG+mxuRZSZyO5aZQ3ERFJhUwb5U1EREREJLNt3w5//CNcey1UVcH3v++N3DY+PZk/xx+wW9QgUWfPiYiIdIcCSiIiIiJ9nJldBhwHhIAy4DTnnAZGaa+qCm64wctKKi+HE0+ESy+FffZJd8tERER6XKYV5RYRERGRnneVc26Sc25/4BFgbprbk1lqarwg0pgx8JvfwGGHwRtvwAMPKJgkIiJ9lgJKIiIiIn2cc25Hq4dFgEtXWzJKXZ2XkTRuHMyZAwccAEuXwsMPe3+LiIj0YeryJiIiIiKY2eXAj4DtwOFpbk56NTTAP/4Bv/sdrF8PX/0q/Otf8JWvpLtlIiIiGUMZSiIiIiJ9gJk9Y2bvRLgdB+Cc+41zbiRwJ3BmJ8uZaWbLzGzZ5s2be6r5PaOpyQskjR8PP/sZjBwJzzwD//2vgkkiIiLtKENJREREpA9wzh0Z46x3AY8Cv42ynAXAAoDJkydnR9e4YBDuvRcuuQQ+/BC+9CX485/hG98As7Q0aeHyDVz15Pt8VlHLrgMLmHP0eI3WJiIiGUUZSiIiIiJ9nJnt2erhdGBVutrSo0IhuP9+mDQJTjkF8vPhoYfgtdfgm99MazDpwgdXsKGiFgdsqKjlwgdXsHD5hrS0R0REJBIFlERERETkinD3t7eBrwNnpbtBKeWcV1j7i1+Ek0/2Akv33gtvvgnHH5+2QFKzq558n9rGYJtptY1Brnry/TS1SEREpCN1eRMRERHp45xz30l3G3qEc/DUUzB3Lrz6qjd62z//CT/4Afj96W5di88qauOaLiIikg7KUBIRERGR7Ld4sVdY+5hjYNMmuPlmeO89+OEPMyqYBLDrwIK4pouIiKSDAkoiIiIikr1eegm+9jU4/HBYs8Yrtv3BB/CTn0AgkO7WRTTn6PEUBNoGuQoCfuYcPT5NLRIREelIXd5EREREJPssWwYXXwxPPAGlpXDttTBrFhRkfpZP82huGuVNREQymQJKIiIiIpI93nrLq5G0aBEMGgRXXglnnAFFReluWVyOP2A3BZBERCSjKaAkIiIiIr3fu+/CJZfAfffBgAEwbx6cdRb075/ulomIiGQlBZREREREpPf68EO49FK46y4vC+mii+Dcc6GkJN0tExERyWoKKImIiIhI77N2LVx2Gdx2G+Tmwnnnwf/7fzBkSLpbJiIi0icooCQiIiIivcf69XD55XDLLeDzwZlnwgUXwPDh6W6ZiIhIn6KAkoiIiIhkvk2b4Ior4KabIBSC00+HX/8aRoxId8tERET6JAWURERE0uyGZz7g5hfWUN0QpCjXz+lTxjD7yL3S3SyRzLBlC/zhD3DjjdDQAD/+MVx8MYwene6WRbVw+QauevJ9PquoZdeBBcw5erxGbBMRkayjgJKIiEga3fDMB1z/7Ef4DHJ8UNsY5PpnPwJQUEn6tvJyuOYauP56qK6GU06BuXNhzz3T3bJOLVy+gQsfXEFtYxCADRW1XPjgCgAFlUREJKv40t0AERGRvuzmF9aEg0k+fOYL33vTRfqkHTu8Yttjxni1kr7xDXjnHbj99owPJgFc9eT7LcGkZrWNQa568v00tUhERCQ1lKEkIiKSRtUNQXLa/bzjM2+6SJ9SXe11a/vDH2DbNjjuOLj0Uthvv3S3LC6fVdTGNV1ERKS3UoaSiIhIGhXl+gm5ttNCzpsu0ifU1sK118LYsd5obQcfDK+9BgsX9rpgEsCuAwvimi4iItJbKaAkIiKSRqdPGUPIQVMoRMiFwvfedJGsVl8Pf/kL7LEHnHsu7LMPvPgiPPYYTJ6c7tYlbM7R4ykItA0IFwT8zDl6fJpaJCIikhrq8iYiIpJGzYW3Ncqb9BmNjXDbbV6dpE8/hSlT4M47Ydq0dLcsKZoLb2uUNxERyXYKKImIiKTZ7CP3UgBJsl8wCHfd5dVF+vhjOPBAWLAAvv51MEt365Lq+AN2UwBJRESynrq8iYiIiEjqhEJw771el7Yf/QiKi2HRInjlFTj66KwLJomIiPQVCiiJiIiISPI55xXW3n9/+P73we+H+++H11+Hb39bgSQREZFeLi0BJTM72cxWmlnIzCa3mj7azGrN7M3w7aZ0tE9EREREEuScV1j7wAPhhBOgrs6rkfTWW/Cd74BPv2eKiIhkg3TVUHoHOBGYH+G5j51z+/dsc0RERESkW5yD//wHLr4Yli6FMWPgH/+AU0+FHJXtFBERyTZp+e/unHsPwJTqLCIiItL7Pf+8F0h67jkYMQLmz4fTToPc3HS3TERERFIkE38uGmNmy4EdwEXOuefT3SARERERiaC62hul7emnYfhwuOEG+OlPIT8/3S0TERGRFEtZQMnMngGGR3jqN865f0d52UZglHNuq5l9CVhoZhOdczsiLH8mMBNg1KhRyWq2iIiIiMRq1SrYsgWuvhp+/nMoLEx3i0RERKSHmHMufSs3Wwyc55xblsjzrebbDHyS9AbuNATYksLl93XavqmjbZs62rappe2bOr152+7unBua7kbITj1wDpYJevNnpidpO8VG2yk22k6x0XaKjbZTbKJtp6jnXxnV5c3MhgLbnHNBMxsL7Ams7up1qT65NLNlzrnJXc8pidD2TR1t29TRtk0tbd/U0baVZOoLAT59ZmKj7RQbbafYaDvFRtspNtpOsUlkO6Vl3FYzO8HM1gOHAo+a2ZPhp6YCb5vZW8D9wM+cc9vS0UYREREREREREYksXaO8PQQ8FGH6A8ADPd8iERERERERERGJVVoylHqhBeluQJbT9k0dbdvU0bZNLW3f1NG2FYmPPjOx0XaKjbZTbLSdYqPtFBttp9jEvZ3SWpRbRERERERERER6H2UoiYiIiIiIiIhIXBRQ6oKZrTWzFWb2ppktS3d7ejMz+7uZlZnZO62mDTKzp83sw/B9STrb2JtF2b6XmNmG8PH7ppl9M51t7K3MbKSZ/dfM3jOzlWZ2Vni6jt9u6mTb6tjtJjPLN7NXzeyt8La9NDxdx61InMzsMjN7O/x99JSZ7ZruNmUiM7vKzFaFt9VDZjYw3W3KRGZ2cvh7OWRmGnmqFTM7xszeN7OPzOyCdLcnU0U675eOop1nSlvRzhljeq26vHXOzNYCk51zW9Ldlt7OzKYCVcA/nXP7hKf9AdjmnLsi/E+jxDl3fjrb2VtF2b6XAFXOuavT2bbezsx2AXZxzr1hZsXA68DxwGno+O2WTrbtd9Gx2y1mZkCRc67KzALAC8BZwInouBWJi5n1d87tCP89G/iCc+5naW5WxjGzrwPPOueazOxKAH2/dGRmewMhYD5wnnNOP1oDZuYHPgCOAtYDrwEznHPvprVhGSjSeb90FO08U8dUW9HOGZ1zS7t6rTKUpMc455YA29pNPg64Lfz3bXgXkpKAKNtXksA5t9E590b470rgPWA3dPx2WyfbVrrJearCDwPhm0PHrUjcmoNJYUV4nyVpxzn3lHOuKfxwKTAine3JVM6595xz76e7HRnoIOAj59xq51wDcA/e/yxpR+f9sdF5Zmw6OWfskgJKXXPAU2b2upnNTHdjstAw59xG8D7wQGma25ONzgynnv9dXVu6z8xGAwcAr6DjN6nabVvQsdttZuY3szeBMuBp55yOW5EEmdnlZrYOOAWYm+729AL/Czye7kZIr7IbsK7V4/Xo4l+SJMJ5prQS5ZyxSwoode0w59wXgW8AZ4TTC0V6i78C44D9gY3ANWltTS9nZv2AB4Cz2/1aLd0UYdvq2E0C51zQObc/XpbAQWamtHiRKMzsGTN7J8LtOADn3G+ccyOBO4Ez09va9OlqO4Xn+Q3QhLet+qRYtpN0YBGmKRtQuk3n8F1L9JwxJ6WtygLOuc/C92Vm9hBeKuaS9LYqq3xuZrs45zaG+7iWpbtB2cQ593nz32b2N+CRNDanVwv3J34AuNM592B4so7fJIi0bXXsJpdzrsLMFgPHoONWJCLn3JExznoX8Cjw2xQ2J2N1tZ3M7MfAscDXXB8u1hrH8SQ7rQdGtno8AvgsTW2RLBHlHF6iaHfO2GXRd2UodcLMisLFuzCzIuDrxLBRJS6LgB+H//4x8O80tiXrhC8Wm52Ajt+EhAvV3QK855z7Y6undPx2U7Rtq2O3+8xsaPMIS2ZWABwJrELHrUjczGzPVg+n432WpB0zOwY4H5junKtJd3uk13kN2NPMxphZLvB9vP9ZIgnp5BxeWunknLHr1/bhHw66ZGZjgYfCD3OAu5xzl6exSb2amd0NTAOGAJ/j/bK3EPgXMAr4FDjZOacCcwmIsn2n4XUZcsBaYFZz7RSJnZlNAZ4HVuCNygLwa7w+2Dp+u6GTbTsDHbvdYmaT8Ipu+/F+QPqXc26emQ1Gx61IXMzsAWA83vfUJ8DPnHMb0tuqzGNmHwF5wNbwpKUaDa8jMzsB+BMwFKgA3nTOHZ3WRmUIM/smcB3e/66/69orskjn/c65W9LaqAwU7TzTOfdY+lqVeaKdM8b0WgWUREREREREREQkHuryJiIiIiIiIiIicVFASURERERERERE4qKAkoiIiIiIiIiIxEUBJRERERERERERiYsCSiIiIiIiIiIiEhcFlERERERERJLMzAab2Zvh2yYz2xD+u8LM3u3hthxvZl9o9XiemR2ZwHJGm9k7UZ6baGbPmtkHZvaxmV1qZkm/3uzsvZjZYjObnOx1ikhkCiiJiIiIiIgkmXNuq3Nuf+fc/sBNwLXhv/cHQslen5nldPL08UBLEMY5N9c590wS110ALAKucM7tBewLHASclax1tHI8KXwvIhI7BZRERERERER6lt/M/mZmK83sqXBABjMbZ2ZPmNnrZva8mU0IT9/dzP5jZm+H70eFp99qZn80s/8CV0Z6vZl9GZgOXBXOkBoXft1J4WUcaGYvmdlbZvaqmRWHM5GeN7M3wrcvd/F+fgC86Jx7CsA5VwOcCcwJr+MSMzuveWYze8fMRof/Xhhu70ozm9lqniozuzzcrqVmNqyr99KamX3dzF4Ot/8+M+sXnn6Fmb0b3pZXx7/rRKSZAkoiIiIiIiI9a0/gz865iUAF8J3w9AXAL51zXwLOA/4Snn4j8E/n3CTgTuCGVsvaCzjSOferSK93zr2Elz00J5wx9XHzC80sF7gXOMs5tx9wJFALlAFHOee+CHyv3foimQi83npCeD0FZjawi9f+b7i9k4HZZjY4PL0IWBpu1xLgp529l9bMbAhwUXi7fBFYBpxrZoOAE4CJ4W35uy7aJiKd6CwtUkRERERERJJvjXPuzfDfrwOjwxk0XwbuM7Pm+fLC94cCJ4b/vh34Q6tl3eecC3bx+mjGAxudc68BOOd2AJhZEXCjme0PBPGCVp0xwEWZ3pXZZnZC+O+ReMG2rUAD8Eh4+uvAUTEsq9kheN3iXgxvi1zgZWAHUAfcbGaPtlq+iCRAASUREREREZGeVd/q7yBQgNd7pCJcZ6krrYM31eH7eF7fLFog6Bzgc2C/8HLruljOSmBqmwWbjQW2OOcqzKyJtr1j8sPzTMPLijrUOVdjZoubnwManXPNbQsS37WrAU8752Z0eMLsIOBrwPfxuuUdEcdyRaQVdXkTERERERFJs3B20BozOxnAPPuFn34JLwACcArwQpyvrwSKI6x2FbCrmR0Yfk1xuLj3ALzMpRDwQ8DfRfPvBKa0Gm2tAK+b3G/Dz68Fvhh+7ovAmPD0AUB5OJg0AS+zqCvR3ktrS4HDzGyP8DoLzWyvcBbXAOfcY8DZeAXSRSRBCiiJiIiIiIhkhlOAn5jZW3hZP8eFp88G/sfM3sYL8EQbPS3a6+8B5pjZcjMb1zyzc64Br0bSn8KveRovQ+gvwI/NbCled7dqOuGcq8Urlv0bM/sA2IJXpPvO8CwPAIPM7E3g58AH4elPADnh93UZXiCoKxHfS7v2bAZOA+4OL3spMAEvEPVIeNpzeJlYIpIg25lFKCIiIiIiItI9ZnY88EfgcOfcJ2lujoikiAJKIiIiIiIiIiISF3V5ExERERERERGRuCigJCIiIiIiIiIicVFASURERERERERE4qKAkoiIiIiIiIiIxEUBJRERERERERERiYsCSiJZzMzWmdkX092Ovk77QUREpG/R//7MoP0gkloKKIkkwMzGmNnjZlZuZhvM7H8ybX1mVgLsCqxKZdv6mnj3hfZDbMzsNDOb1p15zSzPzG4xs0/MrNLMlpvZN5LbUhERSSedg/VdOgdLDZ2DSXcooCSSmPuBp4EhwE+BixJZiJldYmaXpGh9+wJrnHM1ibStNTPzd3cZmaCz95HCfaH9EEHzezGzWWZ2ws7JNrPV4/av6WreHGAd8FVgAHAx8C8zG52SNyEiIumgc7BeSOdgmUPnYJJMCihJRjGz083sSTP7a/jXhw/M7AtmdpaZfWpmW8zsxPC8p5jZS2Z2r5ltCqe0fqPVsnxmNjc8/TMz+7aZNYR/rehOGycBg51zf3TOBcOTN3dnmSla3yTgYzO73sw2h7fBUeFlmpmdH/4VocLM/mVmA1qt83Qzeyr8S0M5cJ6ZPRLe/tvN7Ol2bfypmb0bfu5xMysNT+9qH0Vth5lVmdnI8N8/MzNnZsPCj+eY2c0xrL/9+zg33u3f7n0msi+i7ocYtkGH9pvZ2Gj7Itp2CD8XdV/EcDykcl/8HRgHnA38HxAC/h1lW3Y6r3Ou2jl3iXNurXMu5Jx7BFgDfKmLfSQi0ueZzsGSuT6dg+kcTOdgOgfrExRQkkwzCZiM9wvEEGAF8Hj4uXHAZez8NWJf4ADgAWAkcD1wU6tlXQIcCRwCfAH4NfC5c6689QrD/xgqotweidDGw4AXzDtZ+hLwR+Cv3XzfnUl0fc3b8jFgGDAfOD/83GXAN/C2zXAgD5jb7rWH4v2jGAwcj7cfhoVvlzTPaGa/Bn4GTAeGAhuA34Wf7mofddaOcqDYzAw4A/gIKAk/ngX8KYb1t38fN3S92TqVyL7obD9A59sgUvv/SYR90cV2gM73RVfHQ6r3hWt1H2z1OJKY5w2fcO0FrOxkeSIi4tE5WPLWp3MwnYPpHEznYH2Dc0433TLmBjwHnNfq8WXAI60efw14O/z3o8D/tXquFO+LLR/vi7QS2KPV85cCjyWhjfPxovPPhdf3BlDc6vnLgefxTsgKu1jWJcAlia4PL6X0VaAK2Kfd614Gzm31+GTgGbx/gNuBXVs990PguXb74betHm8EZgO57dZRCtQAe7WadiiwPIZ91Gk78E5kDwKOBh4K3w7B+6f7XIzrb/M+UrwvDg1v8+eAu4FAZ/sh/HdX26BD+yPti662Qxf7YvcYjoeU7Qu8k6ETgdOAw8OPj4+y/eOZN4B3vM/v7mdeN910060v3NA5WFzrQ+dgOgeLYTt0sS90DqZbr78pQ0kyzSSg9S9SX4jwuLmw3r54JwzNSoEq51wd3knPR865j1o9PwjvS7m79gdew/sy3QPYBvwBwMz2AcY5576C90X6v+1f3PrXOOAC4IIufo2Luj68fx7fou12IPyrxT7Aw60m7wO8C3wFWOGc+6zVc0Pw/kk2mwTc1+rxKcBxwGfhdNlB4elfA3KBV1u9pyfw/jlC5/uoq3aUA/3wTh6uB3YAJcAv2PnLSlfrb/8+2kjyvvgEOMI591VgNXBcF/uBGLZBpPZH2hddbQeIsi+AA7toA6RwXzjn5jvnHtz50M13zi1sP18885qZD7gdaADOjLQsERHpQOdgcawPnYPpHEznYB3m1TlY36OAkmQMM9sd78vwg1aT9wfebPV4EvCmmQ3ESxlt3Xf6JHamZg8BWr6czSs+9w3g7Qjrfdy8/smRbo+3m9cP7I0X8Q855z4GXmw1y1dateFxYEr79TnnjnXODXTODQSuAK5ofuycOzae9TnnGp1zkfqPjwnftz6ZOwBvWw6l7T858P45vhBe5+54vyy0jIjhnHvWOfc1vJPJ/fB+nQDvBPGhVu0f6Jwb4JybFsM+6rQdQAVemvIuzrnFeP9A98M7GVgYw/o7vI/2krwvPnPO1YYfNuH1Le9sP3S6DaK1P8q+iLodwm0fSPR90dV+gJ7ZF7eGl92lzuYNn0DegvfL43ecc42xLFNEpC/TOZjOwdA5WMs20DlYdDoHk/YUUJJMsh9elD4EYGb98VJB3243z1t4kf4g8AMzyzGzb+FF6i8Jz/ce8GUz2yO8nBvw+v93+HXMOfcN51y/KLf2w12OBwqBb5iZ38z2B34C3BZ+voSd/xi2433Bd0dX64tmEt62dK2mHYC37V4DDjWzcWbWz8zm4X3x/z08X/v9cKKZ7Rn+J1Ecfo9vhud9AzjczL4Ynre/mTX/KtTVPuqqHeXAOez89WUHcBZe+mxzMcbO1t/mfSRBTPvCzMbgnTg/Quf7ATrfBh3a38m+6Gw7QOf7oqv9AJm3LzrzV7yTzm+3OrkUEZHO6RysI52DZc7/fZ2DZc6+6IzOwfogBZQkk+xHx1/CPnLhoT7NS6HcJzzPvsCdeP2Dy/H65h/vnHsXwDn3H7w+1MuBZeHX1NBJdD5GB+Clyl6D94vBrcBs59zS8PPleH3qCd9vS/H6otmXnf8wMbPBeIX+3nHOLcOrMfACsB7vi/8It3NI1fb7YQpe3+tKvKKGVzjnngVwzr0MzAMeMLOqcFuPCf/z7mofddWOcrwhSO8KP94BDAT+1tywLtbf/n10V5f7InzifBvwQ+dcA53sh3D7O9sGkdofcV90sR2gk30Rw36AzNsXEZn3K9wsvF/VN9nOX7lPSfW6RUR6OZ2Dxb++aHQOpnMwnYPpHKzPsLZBW5Hewcz+CnzgnLs2xvl/BnzLOfftbq73KmCbc+73UZ7fF7jQOfcDM5sJ5Dnn/pSq9bWa71bgaufcO4muK9ni3UeZLoZ9n4M3esY1zSd7mSLb9oWIiKSPzsE6zHcrOgdLKZ2DiWQuZShJb7UvXkp1RGZ2iJntbt7QokfhRe0vT8J6D+hsvc65FcAnZvY83mgMf482bzLWB2BmjwFfB/5mZqd1c33J1Ok+6oW62hczgIOBuWa22My+1zPNikm27QsREUkfnYOF6Rysx+gcTCRDKUNJeiXzRi/Y3zm3NsrzPwd+h1eE7gNgrnPusSSsdzPwFedcd9O2M3J9ydTVPupttC9ERER0DtYbZNv/fe0LkcylgJKIiIiIiIiIiMRFXd5ERERERERERCQuCiiJiIiIiIiIiEhcctLdgGQYMmSIGz16dLqbISIiIin0+uuvb3HODU13O2QnnYOJiIhkmaYm2LQJysrAOV6HqOdfWRFQGj16NMuWLUt3M0RERCSFzOyTdLdB2tI5mIiISJYoL4drroHrr4fqajj1VJg7F9tzz6jnX1kRUBIRERERERERkTjt2OEFka65BrZvh+9+Fy65BPbeu8uXKqAkIiIiIiIiItKXVFfDjTfCH/4A27bB8cfDpZfCpEkxL0IBJRERERERERGRvqC2Fm66Ca64wquT9I1vwLx5MHly3IvSKG8iIiIiIiIiItmsvh7+8hfYYw8491zYd1946SV47LGEgkmgDCURERERERERkezU2Ai33QaXXQaffgpTpsCdd8K0ad1etDKURERERERERESySTAIt9/uFdf+6U9h+HB48klYsiQpwSRQQElEREREREREJDuEQnDvvbDPPvCjH0H//vDww7B0KXz962CWtFWpy5uweFUZ85esZl15DSNLCpk1dSzTJpSmu1kiIiIiIiIiSbFw+QauevJ9PquoZdeBBcw5ejzHH7Bbyl/bY5yDf/8b5s6FFStg4kR44AFv9DZfanKJlKHUxy1eVcbcRSspq6xjYEGAsso65i5ayeJVZelumoiIiIiIiEi3LVy+gQsfXMGGilocsKGilgsfXMHC5RtS+toe4ZxXWPvAA+GEE7zi23fdBW+9BSeemLJgEiig1OfNX7KagN8ozM3BzLsP+I35S1anu2kiIiIiIiIi3XbVk+9T2xhsM622MchVT76f0temlHPwzDPw5S/Dt74F27bBrbfCypUwYwb4/SlvggJKfdy68hoKAm0PtIKAn/XlNWlqkYiIiIiIiEjyfFZRG9f0ZL02ZZ5/Hg4/HI46CjZsgPnz4f334cc/hpyeq2ykgFIfN7KkMGK0dURJYZpaJCIiIiIiIpI8uw4siGt6sl6bdK+84hXWnjrVCyD96U/w4YcwcyYEAj3eHAWU+rhZU8fSGHTUNDThnHffGHTMmjo23U0TERERERER6bY5R4+P2DNnztHjU/rapHnjDTj2WDjkEFi+HK6+Gj7+GM48E/Lyeq4d7aQ1oGRmfzezMjN7p9W0S8xsg5m9Gb59M51tzHbTJpQyb/pESovz2V7bSGlxPvOmT9QobyIiIiIiIpIVjj9gN35/4r7sNrAAA3YbWMDvT9w3ppHauvPabnvnHfjOd+BLX4KXXoL/+z9YswZ+9SsoTH+vInPOpW/lZlOBKuCfzrl9wtMuAaqcc1fHupzJkye7ZcuWpaaRIiIikhHM7HXn3OR0t0N20jmYiIhICrz/PlxyCdx7LxQXw7nnwtlnw4ABPd6Uzs6/eq5aUwTOuSVmNjqdbRARkd5j8aoy5i9ZzbryGkaWFDJr6lhlVIqIiIhIdli9GubNg9tvh4ICuOACOO88GDQo3S2LKFNrKJ1pZm+Hu8SVpLsxIiKSfotXlTF30UrKKusYWBCgrLKOuYtWsnhVWbqbJiIiIiKSuE8/9Qprjx/vZSWdc44XXPq//8vYYBJkZkDpr8A4YH9gI3BNpJnMbKaZLTOzZZs3b+7B5omISDrMX7KagN8ozM3BzLsP+I35S1anu2kiIiIiIvH77DOvsPaee8Jtt8HPfuYFkq6+GkozPws/4wJKzrnPnXNB51wI+BtwUJT5FjjnJjvnJg8dOrRnGykiIj1uXXlNxBE21pfXpKlFIiIiIiIJKCvzCmuPGwfz58Npp8GHH8Kf/gS77JLu1sUs4wJKZtZ6650AvBNtXhER6TtGlhRS2xhsM622MciIkvSPcCGSDcws38xeNbO3zGylmV2a7jaJiIhklW3b4MILYexYuO46+P73vQLc8+fDqFHpbl3c0hpQMrO7gZeB8Wa23sx+AvzBzFaY2dvA4cA56WyjiIhkhllTx9IYdNQ0NOGcd98YdMyaOjbdTRPJFvXAEc65/fBKDxxjZoekt0kiIiJZYPt2b9S20aPhyith+nR49134xz+84FIvle5R3mZEmHxLjzdEREQy3rQJpczDq6W0vryGERrlTSSpnHMOqAo/DIRvLn0tEhER6eWqquCGG7yaSOXl8J3veIGlffZJd8uSIq0BJRERkXhMm1CqAJJICpmZH3gd2AP4s3PulQjzzARmAozqhen5IiIiKVdTA3/5i5eNtGULHHsszJsHBxyQ7pYlVcbVUBIRERGR9AgPjLI/MAI4yMw6/ISqgVFERESiqK/3CmuPGwdz5sAXvwhLl8LDD2ddMAkUUBIRERGRdpxzFcBi4Jj0tkRERKQXaGjwCmvvsQfMng3jx8OSJfDkk3DwweluXcqoy5uIiIiIYGZDgUbnXIWZFQBHAlemuVkiIiJdWrh8A1c9+T6fVdSy68AC5hw9nuMP2C31K25qgjvugEsvhbVr4dBD4dZb4YgjwCz1608zBZRERCRtFq8qY/6S1awrr2GkimyLpNsuwG3hOko+4F/OuUfS3CYREZFOLVy+gQsfXEFtYxCADRW1XPjgCoDUBZWCQbj3Xi+Q9MEH8KUveTWTjjmmTwSSmimgJCIiabF4VRlzF60k4DcGFgQoq6xj7qKVzAMFlUTSwDn3NpB9BR5ERKRXiZZtFG36VU++3xJMalbbGOSqJ99PfkApFIKHHoK5c+Hdd2HffWHhQpg+vU8FkpopoCQiImkxf8lqAn6jMNf7V1SYm0NNQxPzl6xWQElERESkD4qWbbTsk2088PqGiFlIn1XURlxWtOkJcQ4eecQLJL35JkyY4GUonXQS+Ppuaeq++85FRCSt1pXXUBDwt5lWEPCzvrwmTS0SERERkXSKlm109yvromYh7TqwIOKyok2Pi3NeYe1DDvGykCor4fbb4Z134Lvf7dPBJFBASUSkV1m8qowZC5Yy5cpnmbFgKYtXlaW7SQkbWVIY8cRgRElhmlokIiIiIukULaso6FzU+eccPT7ij5Rzjh7fvcYsXgxTp3p1kT7/HG6+Gd57D049Ffz+Ll/eFyigJCLSSzTXHCqrrGtTc6i3BpVmTR1LY9BR09CEc959Y9Axa+rYdDdNRERERNIgWlaRP0p9ol0HFnD8Abvx+xP3ZbeBBRiw28ACfn/ivonXT3rpJfja1+Dww2H1aq/Y9gcfwE9+AoFAYsvMUqqhJCIppVG8kifbag5Nm1DKPLz3tb68hhE6PkRERET6tDlHj29TQwm8bKPvfGm3NjWUmqc3ZyEdf8Bu3S/AvWwZXHwxPPEElJbCtdfCrFlQkISuc1lKASURSRmN4pVc68prGFjQ9leR3l5zaNqEUh0LIiIiIgLQEhSKNJrb5N0HRZzebW+/7RXb/ve/YfBguPJKOOMMKCrq/rKznAJKIpIy2ZZRk24jSwopq6xr2Z6gmkMiIiIikl2iZRslJQuptXffhUsugfvugwED4LLLYPZs6N8/eevIcqqhJCIpo1G8kks1h0REREREuumjj+CHP4R99oHHH4eLLoI1a7x7BZPiooCSiKSMRvFKrmkTSpk3fSKlxflsr22ktDifedMnKttLRERERKQra9d6hbUnTIAHHoA5c7xA0mWXQUlJulvXK6nLm4ikzKypY5m7aCU1DU0UBPzUNgaVUdNNqjkkIiIiIhKH9evh8svhllvA54Nf/hIuuACGDUt3y3o9BZREJGUybRQvjTgnIiIiItJHbNoEV1wBN90EoRCcfjr8+tcwYkS6W5Y1FFASkZTKlIwajTgnIiIiItIHbNkCf/gD3HgjNDTAaad59ZFGj053y7KOaiiJSJ/QesQ5M+8+4DfmL1md7qaJiIiIiEh3lZd7gaMxY+Dqq+E734FVq+DmmxVMShFlKIlIn7CuvIaBBYE20zTinIiIiIhIL7djB1x/PVxzDWzfDt/9LlxyCey9d7pblvWUoSQifYJGnBMRERERySLV1XDllV5G0ty5MG0avPkm3Huvgkk9RAElEekTZk0dS2PQUdPQhHPevUacExERERFJr4XLN3DYFc8y5oJHOeyKZ1m4fEPnL6irg+uug7FjvdHaDj4YXnsNFi6E/fbriSZLmAJKItInTJtQyrzpEyktzmd7bSOlxfnMmz5RBblFRERERNJk4fINXPjgCjZU1OKADRW1XPjgishBpfp6+MtfYNw4OOcc2HdfePFFeOwxmDy5x9suqqEkIn1Ipow4JyIiIiIicNWT70csS3HVk+9z/AG7eRMaG+Gf/4R58+DTT2HKFLjzTq+Lm6SVMpREREREREREpMd9VlEbfXowCLff7tVDOv10GD4cnnwSlixRMClDKENJRERERERERHrcrgML2NAuqGQuxA/XvQr7nAerVsH++8PDD8O3vgVm6WmoRKSAkoj0KotXlTF/yWrWldcwsqSQWVPHqhubiIiIiEgvNOfo8Vz44Aqv25tzfP3DpZz74l1MKFsDEyfC/ffDCSeAT52rMpECSiLSayxeVcbcRSsJ+I2BBQHKKuuYu2gl80BBJRERERGRXub4A3YD53jhhtv50ZN/Z9Kmj6jcfSzcdRd897vg96e7idIJBZREskw2Z/DMX7KagN8ozPW+ugpzc6hpaGL+ktVZ8x5FRERERPoE5+A//+H4uXM5/uWXYcwY+Mc/KD71VMhRqKI3UN6YSBZpzuApq6xrk8GzeFVZupuWFOvKaygItP2VoiDgZ315TZpaJCIiIiIicXv+eTj8cDjqKFi3DubPh/ffh9NOUzCpF0lrQMnM/m5mZWb2Tqtpg8zsaTP7MHxfks42ivQmrTN4zLz7gN+Yv2R1upuWFCNLCiMOKzqipDBNLRIRyR5mNtLM/mtm75nZSjM7K91tEhGRLPPKK5Qd+lWYOpWyZW9z7bfPZNF9i2HmTAgE0t06iVO6M5RuBY5pN+0C4D/OuT2B/4Qfi0gMsj2DZ9bUsTQGHTUNTTjn3TcGHbOmjk1300REskET8Cvn3N7AIcAZZvaFNLdJRER6uYXLN3Da7Pn8Z4+D4JBDyHnrTX53+P8yddbfuP4Lx3D+ox+ycPmGdDdTEpDWXDLn3BIzG91u8nHAtPDftwGLgfN7rlUivdfIkkLKKutaagxBdmXwTJtQyjy8TKz15TWMyLIaUSIi6eSc2whsDP9daWbvAbsB76a1YSIi0ussXL6Bq558n6IP3+OcF+7i1g9eoiK/H3+Y+iNu/dK3qcktaJm3tjHIVU++7xXoll4lEzsnDguf0OCc22hmEa8UzWwmMBNg1KhRPdg8kcw1a+pY5i5aSU1DEwUBP7WNwazN4HFJWk42FzEXEUlU+Ae/A4BX0twUERHpZRYu38D8vz3O+Ytv59j3nqcqt4DrDpvBLQceT2VeUcTXfFZR28OtlGTIxIBSTJxzC4AFAJMnT07WtaVIr5btGTzNRccDfmtTdHweJPQek708EZFsYGb9gAeAs51zOyI8rx/1REQkstWryT395zyy/BnqcnL56yEnseCgE9leUNzpy3YdWNDp85KZMjGg9LmZ7RLOTtoFyI7hqUR6yLQJpVkbDGlddBygMDeHmoYm5i9ZndB7TvbyRER6OzML4AWT7nTOPRhpHv2oJyIiHXz6Kfzud/CPf3AEPm6ZfBzzD/4OW4sGdvnSgoCfOUePT30bJekyMaC0CPgxcEX4/t/pbY70ZurOlF3WldcwsKDt6A/dKTqe7OWJiPRmZmbALcB7zrk/prs9IiLSC2zcCP/3f7BgAUEHDx14LH844ATKigdHfUnAZ/TLz6GippFdBxYw5+jxqp/US6U1oGRmd+MV4B5iZuuB3+IFkv5lZj8BPgVOTl8LpTdTd6bsk+yi49lexDyVFKwVyUqHAT8EVpjZm+Fpv3bOPZa+JomISEYqK4Mrr4S//AWamlgz/Xv8ZLevs7owciDJ8Gqg7qYAUlZJ9yhvM6I89bUebYhkJXVnyj7JLjrel4qYJ1M6g7UKZImkjnPuBbxzfhERkci2bYOrroI//Qlqa+GHP4S5czn1X2vZEKWwtoJI2cuX7gaIpMq68hoKAv4209SdqXebNqGUedMnUlqcz/baRkqL85k3fWLCAYVkL6+vaB2sNfPuA35j/pLVKV1vcyCrrLKuTSBr8SqV2hMRERFJqe3b4ZJLYMwYLzNp+nR4910WnnU5h3USTDLgxQuOUDApS2ViDSWRpFB3puyU7KLj2VzEPFXSVXtKWYciIiIiPayqCm64Aa6+GsrL4cQT4dJLWdhYwiX3rKSitrHTl2v0tuymgJJkLXVn6l1i7cqkLk/pl65grYqoi4iIiPSQmhr461/hiitgyxZemHAIvz9uBquG70Hwjk8wPqGrYT41elv2U0BJsta0CaXMw8tqWF9ewwgFH+LSk4GbWGvyqNB6ZkhXsFZZhyIiIiIpVl8PCxZ4I7dt2sTnh3yV2d8+nldK9/Sed14Yqatgkuom9Q0KKElWU3emxPR04CbWrkzq8pQZ0hWsVdahiIiISIo0NsI//gGXXQbr18NXv8rzv/szp32UT9B1FT5qa7eBBbx4wREpaqhkEgWURKSDng7cxNqVqTd1ecr2rnnpCNYq61BEREQkyZqa4I47YN48WLMGDj2UF35zNWduGkjFh010nYvUlrq59S0KKIlIBz0duIm1K1Nv6fKkrnmpo6xDERERkSQIBuHee+HSS+GDD+BLX+Klcy/lF1tKqVjbBDTFvciSwgC//fZEdXPrQ3zpboCIZJ6RJYXUNgbbTEtl4GbW1LE0Bh01DU04591H6soU63zp1jrDy8y7D/iN+UtWp7tpIm0sXlXGjAVLmXLls8xYsJTFq8rS3SQRERFJpVAIHngA9tsPTjkF8vLgoYdYuGAhP/l8KBV1sQeSLHy/28ACrvve/iyf+3UFk/oYZSiJSAc9Xasm1q5MvaXLU2/qmid9lzLpRERE+hDn4JFHYO5cePNNKkfvwR9mXMwdIw+EpT7c0rfiWpyKbgsooCQiEaQjcBNrV6be0OWpt3TNk75NRe5FRET6AOfgqae8QNKrr8K4cbw+7zp+VLcH1cGuX95aQcDP70/cV0EkaaGAkohE1BsCN5lKo5FJb6BMOhERkSy3eDFbzjmfIW++yvr+Q7nhmNk8uM8RNFXHHwZQfSSJRAElEZEk6y1d86RvUyadiIhIlnrpJbj4Ynj2WZr6DeKir/+CeycdRaM/0PVr21EgSTqjgJKISAoow0synTLpREREssyyZV7Xtscfp27QEP5wxE+5c/9jqA/kxb0ovxnXfHc/BZKkUwooSVZbvKqM+UtWs668hpHKEpEspeNcEqFMOhERkSzx9tteIOnf/4bBg3ln9q/5fs6XqEogkAQQ8BtXnaRgknRNASXJWhrBSPoCHefSHcqkExER6cXeew9++1u47z4YMIB3fzGHHxUdzBZffsKLVBc3iYcCSpK1NIKR9AWdHefNz/eFzCVlafUO2k8iIiJJ8NFHcOmlcNddUFgIF13E78Yfw83vVMS9KGUjSXcooCRZSyMYSXf0lgvfaMf5h2WVvSJz6YZnPuDmF9ZQ3RCkKNfP6VPGMPvIveJahrK0egftJxERkW5auxYuuwxuuw1yc+G883js6FP59fMbqUggmKRsJOkuBZQka2kEI0lUb7rwjXacNzSFGFDQ8xl68QTibnjmA65/9iN8Bjk+r93XP/sRQFxBJWUj9g7aTyIiIgnasAEuvxxuvpmg+bhn8re5bvJ32Gwl8NSnMS1CRbYlFXzpboBIqsyaOpbGoKOmoQnnvHuNYCSxaH3ha+bdB/zW0o0sk0Q7zgN+oyDgbzNvqjP0mgNxZZV1bQJxi1eVRZz/5hfWhINJPnzmC9970+Oxrrymx9+rxE/7SUREJE6bNsHZZ8O4cYT+djN3T/o6h/1kPr+Zdjqb+5XEvBgDBZMkJZShJFkr00cw6i1dqvqi3tRdMtpxPn/J6h7P0Is3A6W6IUhOu581fOZNj4eyEXsH7ScREZHYPPbsCsouvozvvbqIQLCRB/b5Gn867PusHzAsoeWdcsgoBZMkJRRQkqyWqSMY9aYuVX1RT174JiOwGO04n7toJTUNTRQE/NQ2BlOeoRdvIK4o12uXz3ZOCzlvejxmTR3b4+9V4qf9JCIi0oWKCv4783ym/vt2ChvqWDhxGtcfNoNPSnZNaHFFuX4uP2FfBZMkZRRQEkkD1RLJbD114ZvKwGI6MvQ6C8RFCpydPmUM1z/7EU2hED7zgkkhB6dPGRPXejM9G1E82k8iIiKRPfL8KlZffDmnLX2Iw+ureWTCV7j2sB/w8ZCRCS1PxbalpyigJFklnmyPdHY5601dqvqinrrwTXVgsacz9KIF4g4dOyhy4Gz6RM46Yo9uj/IGmZuNKJG5dDdAREQkAzz80oe8f/Hv+clL93NsXSVP7XkI1075Ae+VJv4j5qmHjOJ3x++bxFaKRKeAkmSNeLI90t3lTLVEMl9PBCiyLbDYWT2naIGzu2ceklAASXqfdH/vioiIZIKFyzfw238t4zuvPsrPl97Ht2sq+O/YL/HHKaeyYpc9E16uspIkHRRQkqwRT7ZHurucqZaIQO8OLEbL8IsUiLvo3+9kVeBMEjN/yWoag0G2VjXREAyR6/fRvyBHXX0TYGbjgPXOuXozmwZMAv7pnKtIZ7tERKSthcs3cMmilVTUNgIQCDbyvbef5smX7mF41TZe3H0Ss6b8hjdG7B33slUfSTKBAkqSNeLJ9kh3ZohqiWSOdHZ97K2BxXgzTdIZONNoipnjw7JKttc04vMZfp/RFHJsqWygMViZ7qb1Rg8Ak81sD+AWYBFwF/DN7i7YzP4OHAuUOef26e7yRET6qoXLNzDnvrdoDDlygk2c+M6zzH7pHkbsKOPVEV/g7G+fx9JRk+JerjKRJJMooCQZKZGLwEgXrVur66muDzLlymfbLCcTMkNU8yX90t0Fp7cGFuPN8EtX4Czd+1faamgKgYHPvGH9zCBkzpsu8Qo555rM7ATgOufcn8xseZKWfStwI/DPJC1PRKRPuvThlQSbmjjh3ec468W7GV2xkTd32YsLjzmT50cf4P0jjIFqIkkmU0BJMk6iF4HtL1q3VtdTVtnA0H65HZbTWzNDJLnS3fURemdgMd4Mv2QGzuIJNmfC/pWdAn6jthFCIYcZuHBl7lx/bCfU0kajmc0Afgx8Ozwt0Mn8MXPOLTGz0clYlohIX3Xxg2/x5def5ZwX7mSPbetZWTqWn3znYv4z7qCYA0nq0ia9gQJKknESvQhsf9FaXR9kaL9chhbnd1jO3TMP6ZWZIZJc6e762FslkuEXLXAW78iM593/FlX1TQRDji1V9Zx3/1tcfdJ+EV+j/ZtZ9hrWnzVbqqis21lDqTg/wJgh/dLdtN7of4CfAZc759aY2RjgjjS3SUREnOOPZ1zJD+6fz96b1/L+kFH87PgLeXKvQ3Hm6/LlCiJJb5OxASUzWwtUAkGgyTk3Ob0tknh0p25Jdy4CW1+0Trny2U6Xk+7MENV2Sb9M6PrYGyUrwy/ebMQrHn+PippG/Gb4zXAhqKhp5IrH38u42k3N9Dnfqfm4GT4gR5mh3eSce9fMzgdGhR+vAa7oqfWb2UxgJsCoUaN6arUiIpnLOf4596/sf/O1nLvpI1aX7Mrsb5/HIxO+Qsjn7/LlCiRJb9V1mDS9DnfO7a9gUu/SfJFYVlnX5iJx8aqymF4/sqSQ2sZgm2mJXAQmazmp0N1tJMkxa+pYGoOOmoYmnPPudYHbtWkTSpk3fSKlxflsr22ktDifedMnxh0oaZ2NaObdB/zG/CWrI86/ZmsNPgOfzzAzfD7DZ970SLrav4tXlTFjwVKmXPksMxYsTfrnT5/ztpJ13AiY2beBN4Enwo/3N7NFPbV+59wC59xk59zkoUOH9tRqRUQyj3Pwn//wwR6T+NHvzmBgbSXnffNsjjr9ryz6wrROg0lFuX6u+97+rL3iW6ycd4yCSdIrZWyGkvRe3a1bkqzsh0yuk6TaLh31RCZHpHXMmz6x13d9TEcWTDIy/FLdJa2z2k09UbBbn/OO0p0ZmkUuAQ4CFgM4594Md3sTEZGe8vzzbDnn/zHk9aX0Kx7ChUefyf37fo1Gf/SSdgG/cdVJ+yl4JFkjkwNKDnjKzBww3zm3IN0Nkth09yIxWQV8M3kELdV2aasnLu6jrmP6RO6eeUhS1pEOvXkks3i7pI0dUsSHZVWY21nUOeRgz6FFUdcRLYCRSLAn3sCdPueSQk3Oue3WtrCrS8aCzexuYBowxMzWA791zt2SjGWLiPRWC5dv4MIH36a2McT+n73Puc/fwdS1ywkVlfDbI2dxz35HU5+T2+ky1K1NslEmB5QOc859ZmalwNNmtso5t6T5SfXfz1zJqFuSrF+xM/XX8Eyo7ZJJeiKTI1uzRXrz++osizBS8Ob8YyYw5/63qKxroikYIsfno6QwwPnHTIh73fEGexIJ3OlzLin0jpn9APCb2Z7AbOClZCzYOTcjGcsREckWC5dv4Nx732Tvzz/mnOfv4MiPX2NrQX9+d/j/cscB36QukN/lMg4bN4g7f3poD7RWpGdlbA0l59xn4fsy4CG81O7Wz6v/fobK1ro0yay3kq3bKFHrymsoCLTtY57sTI6eWEc6ZNr7iudzEq2mDhCx9hDAVSftxwGjSthlQAEHjCrhqigjvHUl3hpr8dZ7An3OJaV+CUwE6oG7gR3A2elskIhINlq4fAN/vXEhf37o/3j01rOYvOE9/jD1R3zlZ7dw80EnKpgkfV5GZiiZWRHgc85Vhv/+OjAvzc3KKJk8clAmdzVLVLK7FWXjNuqOnsjkyNZskUx6X4l8TiJlEc5YsDRq1tXdMw9Jyuck3hpriXRf0+dcUsU5VwP8JnwTEZEUOO+ye/jK3Tfx+HtLqMot4LrDZnDLgcdTmRe9q31reTk+rvzOJHVxk6yWkQElYBjwULg2QA5wl3PuiWSuIJMDMl3pDTVTMrWrWaJS0a0o27ZRd/REAfVMLtLeHel6X5G+Q5P1OemJ2kPxBnsSDdzpcy7JZGYP00mtJOfc9B5sjohIdlq9miWn/pIrlz5BfU6Avx5yEgsOOpHtBcUxL0JZSdJXZGRAyTm3GtgvVcvPpIBMIoGt3lwzpbdScd3U6olMjmSsIxMD0enIgon2HVpd38guAwrazJvI56Snsq7iCfZka0BSep2r090AEZFsddXfnmK3P/+Rk1c8w0E+P3+fPJ2bDj6JrUUD41qOgknSl2RkQCnVMiUgk2hgS8GNnpdJ3YpSIRMCJT2RydGddWRSILq9ns6Cmb9kNY3BIFurmmgIhsj1++hfkENj0FHbGOz25yQTgzfqviaZwDn3XLrbICKSdTZuZOHJZzB76cMA3Ln/N/jLISdTVjw4rsWUFAb47bcnqoub9Cl9MqDUEwGZWC7QEw1sZXtwIxNl4gVussQaKMmEoFM6ZUogOh6p2mcfllWyvaYRn8/w+4ymkGNLZQMFuf6WItTd+ZxkavBG3dck3czsX86575rZCiJ0fXPOTUpDs0REeqXf37qYoX+5nlOXP8a3QkHu2/dIbvzy9/isf9f/6089ZBS/O37fHmilSGbLmoBSPBdOqQ7IxHqBnkhga/GqMsqr61m7tZqAz8ew/nnk+H1ZE9zIVJl6gZsMsQRKMjk7p6f0tszAVO6zhqYQQecIBh3OgVfuzjNv+sSkfE4UvBGJ6Kzw/bFpbYWISG+2bRt3f/eXzF7yIPlNDTw08XCuP2wG6wYOj+nlh40bpGCSSFhWBJQq65riunBKdbZJrJkM8Qa2Wl8gjhhYwOeV9ayvqGOv0n5c/K0JuvjqIVGrofZSsQRKupOdE2uwN10ZULGuN5MzA1NZIDuSkAsRavVBcK75PqRAkEgKOec2hv/8hXPu/NbPmdmVwPkdXyUiIgBs386zsy5g8kP/5HsNtTy891SuP2wGqwePiOnlGrVNpCNfuhuQDJsr61sunMy8+4DfmL9kdcT5p00oZd70iZQW57O9tpHS4nzmTZ+YtIugdeU1FAT8baZFymSYNXVsS/cQ57z7zgJbrS8Q+xfksmdpMaMHFzKwMFcXcCnWHMwrq6xrE7RcvKos3U3rtpElhdQ2BttMax8oifWYbi/W7Zau7RvPeuP9vPaUaO/hg893JLTPYuEzH34Dn4Hh3fsNzLLiX4pIb3BUhGnf6PFWiIj0AvPufoU/fPXHVAwfwRH33sSLo/fnmP/9E2dNnxNzMOmwcYN4/3ffUDBJpJ2syFBqCIbivnBK5a/oI0sKWbu1ih21bQvWjh7cr0Mb4ulG1du63GST3lg/J1axZOwlmp0T63ZL1/aNZ72Z2u0x1QWyI8nN8VHbYPh8hpmXoRQKOXJzFFASSSUz+znwC2Csmb3d6qli4MX0tEpEJPNctHAF9z//Aacuf4xfvPIAQ2q288y4A7n2K6eycti4mJdjwCmqlyQSVVYElHL9PrZU1VNZt/OCqjg/hzFD+nX94hQ4dOwgXl27DV/4F/yGYIiyygZmHDiow7zxBLYyuctNtsvmYF4sgZJEu4nGut3StX3jXW8mdudKdYHsSPYsLeb9TTuoqG0k5LzvuYEFAfYsLY76mr5e1F0kSe4CHgd+D1zQanqlc25bepokIpJZplz6KF974WGWvPwvSqvLWTL6AP74lVN5c9fxMS9jz9Iinj53WuoaKZIlsiKg1C/Pz+aqhjYBnM1VDfzgoI4BnJ7w8uptDO2X2yHA9fLqbczuxnKzeaSxTDeypJA1W6oyJmiZbF0FShLNzok1CDqypJAV68upagi1TOuX62PfESWJvaEYZUOQtqEpBAa+cGVsMwiZV9QoWQWy22sOmvt9RsAg5GB7XROHjo38naui7iLJ4ZzbDmwHZpiZHxiGdy7Xz8z6Oec+TWsDRUTS5KKFK7jnxdWcvOIZ7n3pXnar3MzSkftwxnHn89rIfWJejs/gBwcrI0kkVlkRUKqqDzK+OLdDF7PuBnASta68hiH98hhanN8yzTnX7WyLTO1y0xdEyjpLZ9AyHRLJzok5COpCbYJJgPfYtZ2WbNkQpA34jdpGr8tZc/czgFy/pSyjKt6geTZ3GZUkcw4qK+Hzz6GsrONNADCzM4FLgM+B5i9KB0xKV5tERHrSwuUbuPDBt6ltDOEPBTlh5X959sW7GbX9c17fdQJzvnkWL+2+X9uhaDuhjCSRxGRFQKm6oYkdtU0M6ZdH/3D3ldYBnJ7uapHKrIdM7HLTF7y8ehulGRS07C1iDYK++klFxNdHm97T7ctkew3rHyF7LpDS7Ll4g+bZ0mVU3fa6KRSCrVsjB4o+/xw2b/b+DgSgtLTtbeJEOPxwuPHGdL+LTHE2MN45tzXdDRER6WkLl2/g7HvfxBcKMn3V85z14t2M27aBt4fvwdyjfsbisZNjDiQBnKoaSSIJy4qAUnPGyGfbawHoXxBoCeCkoqtFVxcV2ZD1IG2tK69hcFEeQ/olN+usL4glCBoMj0Hf+n+/czunt5bsi/reHqRt/r4ZPiCnW9838WzXeIPmnc0f7/5MV1BH3fa60NS0MyD0+ec7M4yaA0Wffw7btkH//jBsGAwd6t2XlsLYsTsDR0OHQmHv6XKaRuvwur6JiPQ58/69gmPef5FzXriT8Vs+5b2ho5l5wm94as9DYg4kqdi2SHJkRUApx+fDMByOLVX15Pit5YIq2V0tYrmoyIasB2krG2rtZDK/zyIGj/y+ticF6QgQJyrW5XZ3/Z1938TThni2a7xB82jzHzp2UFzrTWdQp0932wsGYcuWnYGiSLeKChg0CIYP3xkc2mUXmDRpZwBpyBAv+0iSYTWw2MweBeqbJzrn/pi+JomIpJhz3H7Rjdx+83VMLFvNR4NGcMb083lswmE463qkWQWRRJIvKwJKfp+x68B8ynbUUdcUorQ4v+XC6aJ/v5PUrhbxXlR0vERuS10oegdlnaXW9EnDeejNjS31f1pPby0dAeJExLrcZK+/9eaLZ9nxbtd4g+bR5o93vekM6mRLt70OQqG2waKyMti0qW2m0bZtUFKyM6No+HDv1hwsGj4cBg8Gvz/d76Yv+TR8yw3fRESyl3PceukC9l/wR3648QPWDtyFc751Lv/+wlcJ+br+3zOsOJdXfnNUDzRUpO/JioBSXWOQzZX1DCgMMHpwP+6eeUjLc8kenSuWi4qeuJhUIKpnKessta79/heBN1j09iaCIYffZ0yfNDw8fadkX9R3FqBofj6Rz1isgY9kBEiifY8U5fpjXnYi2zXeroKR5o834L+uvAa/werNVS3f50P65XbazmR9V/bKLMXWNYs+/7xjoOjzz73nBwzYGRgqLfX+3mcf737YMC+zKCcrTheyhnPu0nS3QUSkJ9zyu7+z7/xrOG39u6zvP5T/d8xsHtznCJr8Xf9fUkaSSOplzRlidUOQ6oYgfrwLiOYLhmSPzhXLRUWqLyZVyyM9enutnUw3Zkg/inL9VDcEKcr1Rwz6xnNRH0sgIVog5cOyym59xmIN0CQSyGn/vsqr6yN+j6zeUs2epW23YbRlpytYEu96i/Ny+LCsCr/P8PuMppBjQ0Vdh/fZLJnflRmZpVhdDRs3eoGi1vfNmUZbtkBx8c7AUPNt7713ZhsNHapuaL2QmQ0F/h8wEWgp7uecOyJtjRIRSaJLLljAUff8mZ988jab+g3ioqN+zr8mfZ2GnM7/ZymIJNKzsiKg5PDqr/mALTWNbS4Ykj06VywXFam8mIQ+XssjTjc88wE3v7CmJUhx+pQxzD5yr3Q3q1foySy4G575gOuf/QifQY7PCypc/+xHAG32V6wX9bEGEqIFNBqaQgwoSPwzFmugJN6ASqT3tXZrNYMKA2zaXtcma6d5WbEsO13BknjX65r7RDb37XPtpreTzO/KRLMUE/4cNWcXtQ4WtQ8cBYNenaLmLmjDh8OUKd59c92iXPWGylJ3AvcCxwI/A34MbE5ri0REumHh8g3Mue9NJmz4kHNfuINLVr/O5sKBzDvip9y5/zHUB/K6XMZ139uf4w/YrQdaKyLNsiKgZEB+jh/nHMGQI+C3lguGZI/OFctFRaouJpvFE4jqy13jYg1SNOtqW/WlbdnT3TFvfmFNeD95BRV9Bk2hEDe/sKbNvor1oj7WQEK0gEbAbxQE2vbJj6drXayBkngDKpHel9+MLVWN5Ob42mTtDO+fR2PQxbTsRAp7J+PzEG+QpqohyG4D89lS1dASPBveL4/qhmDE+ZPdRTLeLMVOP0djB0YOEjXfl5V52UXDh+8MGo0aBQcfvHNacXFcwyJLVhnsnLvFzM5yzj0HPGdmz6W7USIisVq4fAMXPvg2tY0hACaUreHPL9zJ1z9cSnl+Mb+fdhr/POBYanPzu1iS57BxgxRMEkmDrAgoET6fdg5y/b42FwwjSwpZu7WqQ4bS6MGJ1VCCri8qUnUxCV6QZOP2OtaX1+IzGFKUy7ABBREDUX29a1ysQQroelv1ptHFkqGnu2NWNwTJaTc4h8+IGCiI5aI+1kBCZ8Wiu9MFLNZASbwBlUjvywgn6rTL2umXl8MF39g7rsLZ7Z+Ltj9PWl/B7Us/obKuiaZQiC2V9cy5/y2uOmm/hIJKsb6mOQg/dujO7++ahiZKiyOfbCa7K1/Mn1nnYMcOFv3rv0zeuJHhtRUM2rGVgTu20b9iM4Nu3Q4D/TsLXDcHjL74xbbZRsoukugaw/cbzexbwGfAiDS2R0SkS+2DSADjtqzjnBfv4thVz7Mjr4hrppzCPyYfR1Ve7P+rT1UXN5G0yY6AkoNQyBHCMaRffpsLhkg1lMoqG5hxYGI1lGKRqovJ5oyb5qGwQg7KqhpoDIUozs/tEIjK9K5xqQ6oxBOk6Gpb9ZbRxZIlmd0xN1fWMfue5fQvCETdz0W5XkDV1yrZIuS86e3NmP8SL68pb3l86JgS7p715TbzxBNIiBbQ6G4XsFgDJYkEVFq/rybnyMvxkeOzDlk73a37Fe24v2nJahqaQvh9Ro7fh3NQXtPIlU+sSunxG28QPpld+Vp/Zgfl+Wjc8Bm3//VtBn2hH5MCdR2zjXJy+Ga5UVUylPL+gyjvP5hPh49ha/9BfBroz8OXHg++roc4Fonid2Y2APgV8CegP3BOepskIhJZc3e2VnEkdi//jLNevJvj3n2O2kAeNxz6PW4+6AR25Mf+o/9h4wZx508PTUGLRSRWWRFQcoD5YNfifHL81uaC4eXV2xjaL7fDKG+Pv7OJl1dvS1kwIxUXky0ZN34/wZCjKRQi5GBHXZBrvzsxKSM39ZSeCKjEE6Toalv15OhimRBQSlZ3zB21jWytbiDkHKMGFUbdz6dPGcP1z35EUyiEz7z9FHLe9NbaB5MAXl5Tzoz5L7UJKnU3kJCpo/rNmjqWOfe/xYbyWppCIXJ8PnxmlBQGGNoqS6ezrJ14RBtVraYhSK7f8IW7W5mBM8fqLdXdXmdn4t0vCe/H2toOdYu2PbaMC7aUMbS6nOKq7VQV9Wdz0UBWf1DKpG9Ohr32gqlTd2YbFRVxy4KlHT5HLftGwSTpBufcI+E/twOHp7MtIiLRLFy+gXPvfZNWcSRGbP+cX754D9955z80+gP87cDjmX/wdygvHBDzcoty/Vx+wr7q4iaSAWIKKJnZiREmbwdWOOfKktuk+I0eXMQBI0tYX15DaXF+mwuGdeU1DOmX1+Zia0dtAx+UVTF6cGHKghnn3NP1EOjxap1x441y5CfkQjSFIrc7ncNcd5V91BMBlViDFND1tkr2tszkYB8kHpBpv522VNUTCjkc8P7nlS1dTtvv5+YuiF0VUG8fTIo2PRkBoUwd1c8BGJgZGOT7fQRDsdVKile0UdXSWbUn3v3SYX7noKLCCxi1rlnU+nFd3c5uZ7vsArvswsule9LwhcOoGDCEin4DCflzcM6xvbaR438ZeWCtjBwZTrKCmf2DnR1dWzjn/jcNzRERaREpGwlgWOUWznz5X3zvradwZvzzi8fy10NOZnO/kpiXra5tIpkn1gylnwCHAv8NP54GLAX2MrN5zrnbU9C2mBXn53D3zEMiPhcpEPD5jsjDbCcrmHHOPW/w0JsbWx4HQ46H3tzIw28/xuwj9kh4lDFvSPUmnAvinJcVYAZFuZF3Y7ouZmLJPuqJgEqsQQroelsle1umM9gXi0gBmeH9c5l9z/JOt2Wk7RRyEPDvDEhsqWygMVjZYZ2zj9wrqSPwZWpAqDvmL1nNgIIAuwwoaJlW09BEwGeUFOUlPZsq2qhqOT4vOGsh52UnhYO1ewzJgOM3GITNmyMXum7+Oze3be2iXXaB/fff+bikpEOx6/XBjtlGXX1mMzXTTbLCI63+zgdOwKuj1G1mdgxwPeAHbnbOXZGM5YpI9opUG6nZ0Kpyfr70Pk5583HMOe7d7+v8+ZDvsqn/kJiWbcApCiSJZKxYA0ohYG/n3OcAZjYM+CtwMLAESGtAqTMRAwGhECMGFrSZL5nBjEVvb4o4vSnkOh1lrCtfmzC0TaDKOcB50yNJ18VMLNlHPRVQiTVI0dW2Sva2TGWwL1m1qVoHZGIdMa/9djIz/OZaCqObQcgcDU0dTziSXVMrk4ueJypaIHZ7bSNPnBM5qN4dXY2qVlXf1JKFOTAvwAXf2DvudcS9n+rrOwaIWt9v2QIDB+4MDg0fDnvuubM72i67QGH83zOJfmazMbAp6eece6D1YzO7G3imu8s1Mz/wZ+AoYD3wmpktcs69291li0j2idSlrVlJzXZmvfogP379EQLBRh7Y52v86bDvs37AsC6Xqy5tIr1HrAGl0c3BpLAyYC/n3DYza4z2onS44ZkPOmSkzJs+sU0gIOAzGkNtM8WTGcwIhjpkobfwGRFHGYvFph0NDCzIYUddEyHnLat/fg6bdjREfU2iFzPduRiPJfsoE7uCdLWt3l5fwcrPtlPdEGR7bSNvr69I+EIxVcG+VNWmimfEvNbb8UuXPeUdr60yWQBy/W2zP2Jt96FjSiJ2ezt0TNt06Uwvet5aPJ+1ns5sizaq2p6lO0fD687x22E/7ajlin+9SsGBgzm4sCFy0KiyEoYN2xkcGj4cJk/e+bi0NCWjoynbSDLcnsCoJCznIOAj59xqADO7BzgOUEBJRAC4aOEK7lj6adTn+9dVcfqrD/G/ry+isKGOhROnccOXv8/aQdGDQ3k5Pq78ziQFkER6oVgDSs+b2SPAfeHHJwFLzKwIqEhFwxIRLYvirCP2aNMlrvkiJlXBDL/PogaVoo0yFot14YsYa9UVwzmX9Lo73b0Yj+Wit7ddnMWaoROPVGQupKo2VTwj5rW217D+rNlS1a4ofoAxQ9qO4BFru2d9dQ9e/3QZDcGdn69cvzHrq3sktDxIbyZTvJ+1ng7Edra+hI7fmhooK/Numzbxwf1LmbFpE/22b2NQ5TaGVZfj9xl1i0phyj47A0YTJ+7smjZ4cNoKWivbSDKFmVUSHpMkfL8JOD8Ji94NWNfq8Xq8bPT2658JzAQYNSoZcSwRyVRdBZCaFdXX8D+vL2Lmqw/Rv76aR8ZP4bopP+CjIdG/I1QTSaT3izWgdAZwIjAF7+TlNuAB5xXYyJjRRWLNokh1MGP6pOFtuqY181v0UcZi0VPZCd0NSsR60dubLs7iydBJp0RrU3VVRD6eEfNaaz4Whg/I6fRYiLXd85esZuSgwg6jZrU/NmNdXrozmeL9rPV0IDau9VVXw+efe7eysp334eARZWXQ2OhlF5WWQmkp28or2dBvONuGTWBrvxLKigZRmZvPgIIAyy7+ekrek0g2cM4Vp2jRkWruRyr+vQBYADB58uToadki0ivFGkQCKGio40fLH2HWKw8yqHYHT+15CNdO+QHvlUb+sSvHZ1x98n7KRhLJEjEFlJxzzsxeBJrw6im95lqqtWaORLIoUvEmvAvxtoW5DfD5LOooY7HoqeyE7hbM7m3ZR7FINEOnpyUSdIxWRH7T9pfAfKwrr2FAQYDKOu/j39WIea1Nm1DKSesrOnRDbX8sxNruWI/NWJeXytEGI3W/bR98TOSz1tOB2GnjhzJtt4KdAaL3XoTnyjoGj0IhL1jUfCsthS98AaZNg2HDeH67j7+8Xsa6itqWTLC7fMupbQy2BGoBCIXaZKCJSFtmVgCcAnwhPGkZcL9zLnr/99itB0a2ejyCJBX7FpHM11lNpPbymho4Zfnj/HzpfQytqeC/Y7/EH6ecyopd9ow4v+oiiWSnmAJKZnY6MBd4Fi828qfw6G5/T2Xj4hVrFkVzVkJjMMj2mkY2bq/ljU/LOWPauKRlm1z7/S9y7ffbXlQWBKKPMhaLaIEagBkLliaty04yMqF6U/ZRLOIdYS8WqehqlUjQsbmIfOtBrZyDl9eUM25oEQMLAtQ2BulfkENDk3ex39mIee3f4/1vbGBocR6jwu25/40NTBoxsG1XthjbHeuxGevyUjXaYKxdJNM+2p9zsGNH22yiSFlGPl+bzCKGDYN994Ujj9w5vV+/DiOjNVu8qoy5z3bMBPPaACHXqsaWg9z20VsRAcDM9gUeBp4DXsc7JzsaOMfMjgLOc85d1I1VvAbsaWZjgA3A94EfdK/VItIbnPK3l3nx421dzhcINvK9t5/mjJfuZZeqrby4+yRmTfkNb4zoODCHaiOJZL9Yr4bnAAc457YCmNlg4CUgIwJKqzZVMmPBUr42YSiL3t5EU6jzLIr5S1bTGAyytaoRMwj4fQRDjj8v/rjDhW6ijrl2Mas+r255PGFYEU+cM63DfPEGFdoHalLRZaf9xfiWqnrKaxrZXtvIjAVLe322USLiHWGvK6nqapVIdlhnReRbZ+74rSHuzJFYM4BiDZYeOnYQ97+xIabulLFsh84COt0J+EXrIvnX5z7m5dXb4n4/CXHOK2C9adPOLmetg0XNj3NzdwaJmoNDX/xi2+BRUVG3mhLtOAAYUpzLjtqdNbb6FwUYPbhfZ4sT6ctuAH7qnHu69UQzOxJ4B1jZnYU755rM7EzgScAP/N05161likjmiyWYlBNs4sR3nmX2S/cwYkcZr474Aud8+1csHTWp7Xzq0ibSp8QaUFoPVLZ6XEnboo1plWNQVlnHhopapk8azn9Wbe6ym8n2Gi+Y5Av/ou43aAo55i9ZDdCtzJH2wSSAVZ9Xc8y1i9sElRIJKrS/yK2oaUh6l53WF+Mffr6Dyvogg4oCDC7Ky+jRslIpkRH2OpPKrlbxZod1VkS+WdmOOrbVeAM65uVYzEXJ48kAiiVYev8bGzjpi7vx8uptXQbMYtkOs6aO5bz732JDRW1L/ah+eTkct9+u3Qr4Reoi6ZyjttFRVlmX0PvpwDkoL4eNG3nrlXd54YV3sE0bGd2wg8m5dZRWhU8Md93VK2jdHBw68MCdwaOhQ6Ew9dlQ0Y6DXL8R8Pu7rLHVWjqLqItkgF3aB5MAnHPPhEfdPaG7K3DOPQY81t3liEjmiyWQ5AsFOe7d5zjrxbsZXbGRN3fZk18ffQZLxnyxTWayspFE+qZYA0obgFfM7N/hx9OBV83sXADn3B+T3TAzOwa4Hu8Xspudc1dEm3dE2af8+U9nUJuTR7UvwFH+ALX+XOpyC9jttRJYPNq7aCoogKIiZry/gZUVjTTl5VOXk09dII8afy6N+fls+2g7V27cTJUvh20NxNwdrvVFzvry2ojztA8yxRtUiHSBvXZrDSMG5reZLxlddpovxmcsWNomgyOZgY/epLmOUGPQtWRSDCgIJLydU9XVKhHNReTbV0Uryt0ZEdlcVQ94gTSf+WIuSt6dLl3RPh8vr97WZtTG7jIA5wV8cIYBj63Y2K2AX6Tut8GQt6643k8oBJs3w6efwrp18Mkn3v2nn8LGjZCXx+f9BvHudj++AYOpHLoLzxR+gTv6DeLn3zuMr3xpbNRuaD1pZElhhNH+cthzWH9mTR0bc0bd4lVlnHf/W1TVNxEMObZU1XPe/W9x9Un79anvI+nTfGaW55yrbz3RzPKBRudcz/8TEZFeJ5ai2+ZCfHPVi5z94l3suXUdK0vH8pPvXMx/xh3Ucm5x2LhB3PnTQ3uiySKSoWINKH0cvjVfcv47/HdKRhkxMz/wZ+AovOyo18xskXPu3Ujzrx+2Oxec/Wc+37SVpqpa8pvqKWiso6CxnvymBt5vKmLW+F29Iatrazl6WA71az4hv6GOwqZ68hobyGuqp79rJLe+lsJgI4G6GhxGXSCPupxc6h7IZ9NeuzB8l0FecKr5VlDA+zuCvPDeVsbn5bNXQSHvVYaoCeRTG8ijJpAf/jufBn/bzd1VUKH9L/Hl1fUdLnIDfuPzHfX0L8htWUYyarA0r/vVtdvI8xul/fMpzg90aGNf0S/Xz0ebq/Gb4TejKejYUFHHHkOjdwXqLJMi7bVzWmkuIt96lLeDdh/Ihu31LV2xmhOY/K2CE7EUJe9OIfmeCLrNX7Ka/gUBhg8oaJlW09DEmq017FnatttVPOs+fcoYrvvPhzQG226f0n65bR4XBPys31YN27a1DRY139av97qbjRq187bfft79rrtCYSFntwv6Nr+Hv7yxma9MHhfvJkmJQ8cO4tW128IBSWgIhthc1cAPDhoUV0bdFY+/R0VNY8vn0IWgoqaRKx5/TwEl6Sv+CTxgZmc659YCmNlovK5wt6exXSLSC8RUJ8k5vv7hUs554U723ryW94eM4mfHX8iTex1KYV6A61RYW0RaibXy6WPA/nip1CcDJwEnOecudc5dmoJ2HQR85JxbHR615B7guGgzN20vo3LN62wkn82F/dnx8eN8EtzO27uN55XdxvOXZc+x/5OrGffeYCZ9MoyzPvqADccdyfWH/5jLv/ID/jCkgCu+Op15P7yEc797AT8dN44Zx57BD398Nb/89llcvmspV+9/BNfsfxyff+tbXP3hh3w4dCiMH89m5/j3A/cyYPMnjN22gQnvvsz052/m1FfvZ/aL9zDv8euYf/ts7rnjPBbe/iuqDj6Yt3bfncpjj+Wyh6/llL9fwvF/PJ3D77yWgxfexiELb+Koe37Ny5dfy6Krb6Nk8UOMeeRKfCuXU7HmU3wfv0H549cTrN0BwODKj8l75RaqKrfjnGP7x8upfOYv/GjyMACeeuopZs6cSV1dnbcjH3uMmTNn0tTk1S95+OGHmTlzZsu2fOihh5jx49OZu2glZZV1FG14jcBrt/FZRR2VdY1Uv/scW/7zt5bAx+23386cOXNaXn/rrbdy4YUXtjy++eabufjii1se33TTTVx66c5D5sYbb+Tyyy9veXzddddx5ZVXtjy+5ppruOaaa1oeX3nllVx33XUtjy+//HJuvPHGlseXXnopN910U8vjiy++mJtvvrnl8YUXXsitt97a8njOnDncfvvOc/BzzjmHu+++u+Xx7Nmzue+++7BwIKVg2T/IWb+sZWDl7U//hYcffhiApqYmZs6cyWOPPcbiVWVc/OByVi/8I3mb3qGsso6L71/Gd0/9H5599llmTR1LQ00VZY/fQO2nK6hpaKKhajvBJfN56aWXANi0aRMzZ87klVdeAWD9+vXMnDmT119/HYC1a9cyc+ZM3nrrLQA++ugjZs6cycqVXrmL999/n5kzZ/L+++8DsHLlSmbOnMlHH3ld1d566y1mzpzJ2rVrOW7/EeyTu5Whb93GAYNCzPrqHpw6toGGxTdRvnUzfp+Rt/VD+i37O1bv9X71fb6KAcv+QUVFBQDPPvssM2fOpKqqCvCOvbv+eBEXHT2O0uJ8tq56hYbFN/Hbb45n2oTSiMfeL37xi5bHxZ8tY8vTO/dlKo691U//k4KAV7R/x2v/ZvvS+1seb1v6INtffbBl/m0v30fe+0+0PO7s2Js0YiADVj5I4ZrF3rYyKH3zbkYve4AvvbuUY15YyMk3nsGZN5zJglvOg5NP5pVTT+WdW2/1MimPPJLf5eTw4M9+Bk8+CX/7G7/YuJGH+veHI46APfZg5tln8/DDD7OuvIZ8P2x94k/UfLwMgHwL8vFDf+Spp54CoKqqipkzZ/Lss88CUFFRwcyZM1myZAkAW7ZsYebMmSk79v67dDmD3vgHeTWbCTnI37GeQW/8g+feeI8bnvmA/X55E/sddRKT5tzNDc98wCuvvMLMmTPZtMkrGP/SSy95x+pnn+MzCGx+n4JXb8HXVIPPYN3K1zoce/F+77U+9u677z5mz57d8vjuu+/mnHPOaXncV773mv3iF7/goYceank8c+bMiN97AHV1dcycOTNlx15f55z7HfAEsMTMtpjZFrwC3U875y5Lb+tEJBNdtHAFoy94lNEXPNp5MMk5pn28jEX/PIcFD11OXlMDs799Hsf/9M8cM/cM1lz5bVbOO0bBJBFpI9YMpTuA8/AKPsYykmR37UbbGk3rgYNbz2BmM4GZAAVFxTQ0dd6shqaQN9pSQ5D1FbVMAOaf+iX+8tTbrF3pY1j/An41fSJ/fuJNPgiP4tXkz6E6r5DGvAKCJUNZWrgLjQfsxQe77MKOKVO4obyYP39SRX7p7lTv8RWCA0cx1JXTmOejco+v0zRgN/yVG+n3/hNUjT+GvUfvzlVT+nHHjTdy5mmn8fqyzby29HVKPm3ABu1Kvi+Xftsr2bWxgU+WLOOghhAFOz7HX7aGAdvvJFjTQGFNOf1qtsG7K6nP70dlsIGamnL8NXVs8+XjQjUEaz7niGcfgDcHMeyjj9j3k0/wPfcclJTQ79NPGVRV5WVEDBxIh35OwPqKWnLDmVD98nKoBhyOsh11DAqGcI7kFA3uRSrrm9htYD47gFDIkeMzhvfPozbC9oOd3bWCZphBQW4OrsHYuN3rDjltQikXHDOeK171UdMQZPfifGYcNpxHNgQiLi+VXl29jRuXrcFqG8jxGVur65m7aCWnjoW9d+nPvJ9/mX+9s4M//+tDnIOQCxEMhfA72GVAfpfLnzq+lK/vN4rHHtvGwoUf8NUYM0mm7DGEf39MS3ZTQ/jYO3TsIGYsWMqapR+Rt2Mbi1eVJZydUpSXQ21jsEOm2NghRZR/7GgKNtc+ChIKOfYbMbDzBToHZWU8c9vDfOvztYxwaxn12UeUbttEYNNqNhQPoaKykvLBu7B8UCllw/fgZ785DyaP455zzuGggw5inxkzACh75BHG5+V1+R5GlhTy+fa23WlrG4PkpXiktIqaRn7775VseWIrpa6CnHCNrUg+r6wjx+9jREkhgZL+NPgK2OH38WFZJW8++xGBpiD5QG2TV5vr5JGRuw2LCDjnbgRuNLPi8OPKLl4iIn3QwuUbOPfeN7u+cHOOL3/yFr96/g6+9NkqPh0wjPO+eTYPTTycGV8ew3vH79sTzRWRXspclAviNjOZveCcm9ID7Wle38nA0c6508OPfwgc5Jz7ZaT5i0eMd8fOvY1X1mwl5DoOfw60ZB2AV/sl4POx38iBHbojLV5Vxqw7XifknNelwkEIx+CiXMYM6ddS6+SGZz7gj898GLH9w4rzKK9pOyJWpFHeJl3yJFX1TS3tbG53v7wc+hcEGFgQaMmMAdhR28D6ijpGDypgAEFcTTU5tTXMOWwEBw3Lh+pqr1tfVZX3d+vHradVVbGtrJwtm7bR2BQkVFTELrsOZsjwwVBUxD3vbcMV9aMur4C6vELKLUBZKIftvlx2330Yxx6yB5P3HeUNE15U5N37snuY7xkLlrJ2a1Xb0agKchg9uF/E+jdTrny2w/5zzrG9tpHnzz+iJ5vepfZ1ssAL4pQW57d5bzc88wE3v7Cm04L3kXSniHLza5vr6zSPihbwW5sudPOmT0woqNS6Lln75UEno8Q1NHjd0dau7XjLz2fR9lzKh+7K5sG78Pmg4ZQN3oVt/UrYWFnPnsP6x1+AO8H3kIxuYJH2HxDXOqMdY2u31rQZDQ+87+eCgJ+3Lzm6w3K+cd0SPiyrwu/zArXOeaMU7lnaj8fPntrt9yqZz8xed85NTnc7ZKfJkye7ZcuWpbsZIoIXRLrwwbepbYzt9/8D173Dr56/g0PWvcNnxUP405e/z/37fo1Gf4BTDxnF7xRMEhE6P/+KNUPpt2Z2M/AfoKUQpHPuwegv6Zb1wMhWj0cAn0WbefzwYu6eeQjn3PNGxOLCHUrSOkdNY7ClSOym7XVtCm+fMW0cf178MU0hR16Oj+L8ALk5/jZZOTe/sCZq48sq6xk5qLDLC7rqhiABv+GznRdTIReiuiHIxF0HdLgAy/H72Ku0HwMLc70L0uHDmDV1LAfFedHY+gK02EJQXUVObS3/77DdOKg0jw/ueY36iu30DzVQUF/LkIY6htVUMdg1cnzdFnj0Vbi3qiU4RU0N5OW1DTA137f/O9pzRUWQn98SVcu0kZwOHTuoJWAJ0BgMUtsYZMaBoyLOn84aSfFuu1hrFc0+cq+YAkjt2xLraGnR2t16vhkLlkYsln3lE6sSOl5aj2jYIcjT0MC0/OFeXaN1q2HRErgxXBx782avhtHuu8Po0d7IaSef7D3u35+7owRQ9hzWP6kFxbt8D90Ubf8VBnxxFS2PVksrFHLk5LT9hu6sNtf5x0xgzv1vUVnXRFMwRI7PR0lhgPOPmdDt9yoiItIbxVJgu739PnufXz1/B1PXLqesqITfHjmLe/Y7mvqcXIpy/VylOkkiEqNYA0r/A0wAAuzs8uaAVAWUXgP2NLMxeCPMfR/4QVcvilRc2Og4yFFjeLSlrdUN+DByfEbQOf68+GMmjRjI7CP3YtKIgZ1eoHVWjNgB1XUNnHbray3TRgzI44ULj2wzX6SRoELOmx7tAuzib03o9oVi69GzggADB1FZ2MS1G3K4+1sHMrV49+hZG5HWHQpBXd3OTKiqVsGm1vcbN+58HGnexkbo148tBGja1sip+YU05RdQ7c/l4/tzGbnfKMaNLvVqzOTn7xy5r/kW6XEgkJRRrh5bsRGcd9w4do4M9tiKjRGDLN0pRt0d8QRwmsUa/EokQynWkQxjbXek4FdTMMTarTWMHlwY83tu0dDAtNwqpo2vh3WfecGiG/7p3W/ZAsOHw8iR3m3UKDjsMO/vXXeFnOhfnz29/+MpbB2PaPsv3qLl0YJes+9ZHvU7MNpyrjppv5QEz0RERHqTRAJJEz//mHOev4MjP36NrQX9+d3h/8sdB3yTukC+MpJEJCGxBpT2c8712DeMc67JzM4EngT8wN+dcyujzV9Z18SUK/7Dhu11OAeFAT8/O2Iss4/cixue+YDrn/2IplAIn7FztCof+DB84SsZv0FjMNRyodvVBVpRrp8ddU1Rn99a0/a59dvrGf+bxxjaP78lg+L0KWM6tC3kvBGiUpl10FVGStzr9vl2jnpX6s2zeFUZ81esZl25n5Elw5n11Rja3tQE1dXMnb+E6m0VlIQayGuoI6+hHldbw6MVjtkFBV7wats2qK3deQuP4NfmcV2dt8zWAaZIgajOngs/Dn34Ibv5c2nMK6A+J0B9Ti5NDtZsje8Cun0QJdlZWLEGcFqLJfjR/Dnyuid5Aafrn/WKe3cWVIo1+2n+ktU0BoNsrWrbpbB9u0eWFHboetgYDHX+nuvqvO5pzaOmrVu381ZeDrvssjNgNG4cTJvmPR4+vNOgUWdS+fmNJNHuiF2Jtv+AiLWnYsnAa51A2tl3YDzLEelrzKwQ+BUwyjn3UzPbExjvnHskzU0TkRSJtztba3tu/oRzXriTb37wEhX5/fjD1B9x2xePpTqvUIEkEemWWK+WlprZF5xz76a0Na045x7DG12uS+u21VBfUdfyuKYxyHX/8eobNV9Utb7YGlacw6Yd9R1qLeX5fR0udKNd9J8+ZUzEGkrNGSyR1Add2wyK6RM564g9ol4IpirrIJaMlO6sO5EsGcC7eB8wgLddEQN3Hci2CPWHZv9vnPWHgsG2AaZIgafWj8vKIs539isfk9dUT35TI/mN9eQGG2nwB6gL5MLbf22bIVVUBEVFTCsqYlq/frBLuFvfJ9thq9e975VNdVz57FrKXIBKf4AtlfXMuf8trjppv27t81gCOJGO6XnTJ3Ya/Lj5hTVtat34zKt1c/MLazoNXMSa/fRhWSXl1Q1e+qODplCQunBgq7U2w8/jyK/aTmnVdsa6asZurGVAVYV3q9xGwfZyuM/nZcCNGOHdRo6E8ePhqKO8x8OHp6z+V6o+v+0lGuyLRbT9N3ZIEdUNwZgzsKJ+J3TxHRjzcoghGy0OmdblViSCfwCvA4eGH68H7gMUUBLJQqf87eXOR2iLYsy2DZz9wl18+70lVOfmc91hM7jlwOOpyiviFAWSRCQJYg0oTQF+bGZr8GooGeCcc5NS1rI4BMNFk1riD+FfuZsvdtvXfmkuvB10Dn+4sKtzMKAo0OZCt7OLl+bl/enZD2n+oSAvx8cZ08ZFn+7dcQABAABJREFULdbttdHaZFDcPfOQpGQSxCPV3XESyZJpLan1h/z+nfWautByEdlYw8hRbS8i/9SuGDChEDkN9ew9MJfDfrx/2wBV+8Lo5eVeNkyr7n91y9cyp7KKosY6ChrraDI/NYE8/PcWwb6jdmZ8FRW1vW/+Oz8fcnO92lW5uS1/H9iwlU2VIXIK8gn5/AR9fqqbQowdUAQNDSz+aBtzH36XQI6vw4V9Z7V9qhuCtB80rLNaN80iHmtNIWYdtrsXuGtshMZGCrZuIae+gUCoidxgI/lNDeQ1NlDiGmFRLVRUwJYt7P7Um1y3uYx+lRUMqNlOYyCPzQX9qSgaiA0dSkVxCeuHjeL1URPxDx/GUWccBSUlWV00PtFgXyw663oLsWdgdfadEM93YHe/W2LRU0ErkW4a55z7npnNAHDO1ZoloX+3iGSE7mQjAYys2MRZL97NCSv/S31OgJsO+Q4LDjqRifuMZsVPD+16ASIiMYo1oHRMSluRItEudqdNKG0pvN0YDJHn9zGgKEDA37bwdrSLl9YFgCePHtzhQqqzgFKzzuqNpFqqu+PE2s0pmnTUH+rqIjJSMeCCAcWc8Z39YET8223mRY/jnMPv84Fz5AYbya2vpbCpnufOOHjnCH01NTv/rq72uvqtX+8FYxoavFt9fcv9hVt2sOrTreQFGwkQwgWD+IJBxpTkw53GiE3b+VtTEPxesCnk89OIj9Atft4M5FAdhNy8XEYP68/QgYVeQC4nh6tXfE49BuEgVdDnoxEflpMDv37Byy7LyWmZHzOoqmJaRQX/+mQTG9ZuxF+5g0ILMbwwh/4PBLz6VoEA5OZy2cfbaPTl0Ojz0+gPUBvIozaQR0MgF5Y3QP/+MGwYi3fbh+CkwWwvHsSOogE0BXJ3jn44uLBjza/Bg5N/sGSYRIN9sejsu+KGZz5g5WfbqW4Isr22kbfXV0T9DunsOyGe7nrd/W6JRU8ErUSSoMHMCggnRZvZOFoNmiIivVN3A0m77NjML1+6l5NXPE3Q5+fvk6dz08EnUTVgEFd+Z5IKbYtI0sUUUHLOfZLqhqRCpMKurbsyjB1ShHOO6oZgxKBKogWARwzIY/32jud1Af/OHw97asSvaFLZHae7GUY9XX8Gur6ITGkxYDMacnKp9eWww/p7XbISVAq8u6qM69q1c2C4nadd+SwleX78OHyhIP5QkOrqOjZV1DBmQB5FfmisbyDUFOTcw8dx8O4DIBik9oWPueeVtQRckIALYsEQvlCQk/bbBfbbxatVFQx6901NXqH2/v1h4ECGh28UF3sZVTk5HTKGZl30OE3BEA4vW9DMS4PM8fuY9dtvtMy3qbrj6GkdRj/sY12UOivunwyRvivi7WY3sqSwZVTN5tpXxfk55Pgs7uWkevTEnghaiSTBb4EngJFmdidwGHBaWlskIglLpMB2a0OrtnHGy/9ixltPAHDn/t/g1qnf5+wfTeN1BZFEJIUSqzibYfzhLG/XqtyKzzoWdm2fhdKcyXDZcftEvPiMdPHy+Y76Ln+9fuHCI5ny+2faBJX8BqMGFeKc67ERv9IlGRlGPVV/plksF5HJbNOYwYV8tLkaCzks3O0y5GCPId2/MO6sna2P6aA/h0Zg9fYgFA2gYXAxDeH5ahqauO4Tx91He12bfjBxIlvGdcwkOSFJ3TXHDiniw7IqcsJdCp2DYMgxdkhRm/lSOfphsvVUHZ7uFLZOVLzd7NrUvjJoCIbYXNVATvhxrMvpiezFnghaiXSXc+5pM3sDOAQv/n6Wc25LmpslInFauHwD5977JonlI8Ggmu38bOn9/Gj5o/hDQd782vEcePMfOW3UKEWYRaRHZEVhkZGDChkxML+lhlJhwM/ZX9uzwwVJ6yyU5lpGAb8xf8nqiMudNXUsjUFHTUMTznn3jaEQw4rz2swX6dfrkYPaXnzsWVpEaXE+22sbKS3OZ970iRl3AZws0yaUMm/6xF71fkeWFFLb2LaLUCovIi/4xt4MLAxgPq8GmPlgYGGAC76xd5v5Fq8qY8aCpUy58llmLFjK4lVl3VpvxGM66BjWv+tjevaRe/H2JUfz8f99k7cvOTqptb/OP2YCJYUBDC8L0ICSwgDnHzOhzXy95dhqDl6XVda1yWTs7v6LZPaRe3HWEXtQEPDTFPL23VlH7JHS2mzVDW0zoqDzbnYvr95GaXEuuX4fIQe5fh+lxbnUB11cy+mJ/R/tM5KtPwBI72JmX2y+AbsDG4HPgFHhaSLSS5zyt5c5O8Fg0oDaSuY8dxvP3/QTfrLs37z7lWMIfPgBBz51vzdqrYhIDzHnev/gy5MnT3bLli3rcr4pVz7LwIIAFmH0sOfP3zl6WOvMgn65fsyMqvomRpQUUl5dT2PItfn1uqahidLi/JaixjPmv8TLa8o7rP/QMSXcPevL3XmrGn0oRVpnr7Wvw5Oq7du8L6N100pVm9qvt6KmgYZgqNNjuvXrUnXsdbU9epMZCzp2zatpaCLgM0qK8nr953fSJU9S2xhsySwCL7OoIODn7UuO7jB/tO/elRt3kOOzmJfTU7LpWMw2Zva6c25yutuRLmb2306eds65OIdC7b5Yz8FEZKdER20rrq/mJ68t5CfL/k2/hlrse9+DSy7pVrkEEZGudHb+lRVd3iC2i91YujJE7hYXaukW1/x8Z10uIgWTOpsez3vU6EOpEUvdpq6OsXgDLl11oUtVceD2643lmI527J20voKXV29LSoCkp7s5plL0+mu1jA65Xv/5jbebXbTv3t0G5LNxR31c3fXi/ZwlEgjNpmNRsotz7vB0t0FEEpdo0e3ChlpOe/1hZr76IAPrquDEE+HSS2GffVLUUhGR2GRFhtL4ffZ3w350bZeZHLFkfETLLGidrdHVr9ejL3g0alvXXvGthN9nLG2T1Fi8qmznKG8hb5S34vwcrjppvzaBxmRmE8WaUZcMXR3TkY69zZV1lNc0MqKkoMeyunqLSNvrw7JKcLDnsOKWaTUNTeT6fQwszO11WUvxjM7W2efj7fUVSVlOpG2WjsxDSa2+nqHUzMzygV8AU/BGenseuMk5V9fTbVGGkkhsEslKymus5ydvP85Zrz9EXvlWOPZYmDcPDjggRa0UEeko6zOUNlfWMyJKJgfQ5tfpk764Gy+v3hb1wrmnizMnc8jsZHZJSnfXunSsv7N1XvnEKsprGvH7jBy/D+egvKaRK59YxbQJpSnJJoqU1bG1up7q+iBTrnw26nZJRUZGpGOvObjW14dXj7S9oxWPHjEwv81rYxk1MlPNPnKvmOs0dZYBOG1CaczLifdzlqosP5EM8E+gEvhT+PEM4Hbg5LS1SEQiWrh8A3Pue5N4kpJymxr58cqn+NWyB8jfUgZHHeUFkg7RD8giklmyIqDUEPRqbrRWEPDzYVlly6/TfoPln5bz6tqt7Dm0X1wju0Urzhztwv3QMSVRayi1lsjQ29HalszucOnuWpeO9Xe1ztVbqsMjVHnZQmbgzLF6SzWQ2FDjXQV+2gcltlbXU1bZwNB+uVG3S6q2XaRjr74pRJ6/bV3/vja8etTtPX0i86ZPbBNAyfX7aAi2PZuMZdTIbJGMQHy8n7NEPpcivcR459x+rR7/18zeSltrRCSiixau4I6ln8Y8f06wiaur3+D4R/4B69bB1Knwu/vhK19JYStFRBKXFaO85fp9EUfoamgKEfAbwZBj4/Z6HOA3Y+22mqgjLsU6wk9nozjdPevLHYJHkQpytx5622e+8L03PZLO2hbvCHadSeayEpGO9Xd3nfGOEhfLKGDtR7Sqrg8ytF8uQ4vzo7YxVdsu0rHn9xkDCtterHdnZLxYR7Trzsh3yR41r7PtPW1CKXfPPITnzz+Cu2cewvnHTEh41EjxxPs56+nRG0V60HIza0lVMLODgRfT2B4RCbto4QrGXPAooy94NOZgkj8U5HvvPMNHD5zD8X+dB7vtBk8/DYsXK5gkIhktKwJKQ4vzIgZamutmbK6sx8LZJT7zAkzRLrJjHZa6qwv3u2d9mbVXfKvlFml0t3iH3u6sbevKayJmaSVyYZrMZSUiHevvap1jBhcSDDnqGoPUNgapawwSDDnGDPYuTOMdajzWwE/roET/ggBD+nUefFhXXkNlbSMrP9vOig3bWfnZdiprG7u97SIde2dMG0fA70/K8OqxBNjima8764hHZ8dN++AV0GEb7jm0HzntsrwU8Igu3s9ZvPOL9CIHAy+Z2VozWwu8DHzVzFaY2dvpbZpI37Rw+Qb2/LUXRIq1Qq25ENPffY6nb/kFVz56HZSUwKOPwksvwZFHeinxIiIZLCu6vBXn53ToXtKctVNWWUdDMIQ/HLlxzsto6ixAEUvXjGR0pSjK9WqrtA4qhZw3PZpobYunq15XkrmsRKRj/V2t85v77sK1z3zY5jUh502H2EaJay2R4yeW7WJAWVUDFv7bOe/xyJKCGLZCbJpPkiaNGMikEQOTMrx6rLVuulMTp6fqXNU2BumXlxO1K1zrAvqxjLAnO8X7OYt3/mwVT60+6TWOSXcDRMSTyMht5kIc/cHLnPPCnYzf8inb95gAtzwExx2nIJKI9CpZEVCC6IGWuYtW4jcjFHIYEMIxpF9+twMUyQh6xDv0NkSvuxOtCHAiF6bJXFYi0rH+rtb58uptDOufR2VdEw3BELl+b5S3l1dvY3Z4GfHUiEnk+Illu2ypqgfo8MtY8/REdVYrKBkjDMYaYOtOIDcV9XSi7ZOAz8UUvEpWwCOVAYN0F+hvL95aTMkcRKE3irdWn/QOzrlPzKwEGEmrcznn3Bvpa5VI3xNvjSSc44iPX+NXz9/BxLLVVI7eA268hwEnnwy+rOg4IiJ9TNYElKJd9MzDG6Hrg7IqAn7YtTifHL91O0CRjKBH88l8IkNmRyq4nKxf4tP9q3461t/VOteV1zCkXx5Di3eO0uWcSzgYkcjxE8t2aQg6cnxeYNI5wl09vendkerRsmINsHWnaH5xXg61jcGkZr5F2ycX/fudmINX0QIesQZyUhkwSHeB/lTLtGBZKrSu1Qfe90FTKMTNL6xRQKkXM7PLgNOAj9n5G4IDjkhXm0T6mriCSc7xlbXLOff5Ozlg4/tsHT4S/vlPin/wA/BH75kgIpLpsiKgVFnX1OlFz7QJpS0XDuvLaygtzu/2hUOygh7xDL3d1UV9Mn+JT/ev+ulYf2frHFlSyJotVR0ylMYM6ZfwuhI5frraLs3dKFuPvtYUClEY6N7JSqpHy4o1wDZr6ljOu/8tNlTUEgw5/D6jX14OF3/rC23mixQI2V7bSHMSeTIz3yLtk5FLupfBGE8gJ5UBg1QHEtMp24NlzaobguS0+9G7s1p90mt8FxjnnGtI1gLN7GTgEmBv4CDn3LJkLVsk25zyt5d58eNtMc178Kcr+NXzt3PQ+nfZ0H8oy+dexQEXnQWBQNcvFhHJcFkRUNpcWc+ILi56UhGg6OmgR18aAjvTMgcOHTuIV9duw9eS8RNic1UDPzhoUMLLTMXxk0g3yliMLClk7dYqdtTuDKj1L8hh9ODEAmrtxRNgMwDnZYjhjEiVBiIFQgACPqOkKC+pmW+RjtXuZjDGE8hJVsAg0vvI5u+cbA6WtdZVrb5M+66VmL0DDAS6N1Rlx2WeCMxP4jJFssrC5RuYc9+bxFIu6Ysb3uPc5+9gyidvsanfIBbN/DXTb5jLbnl5Xb9YRKSXyIqAUkMwlNZRyXpKuotl95RMzBx4efU2SotzOwRUWtdQygTxdqOMVaSAWlllAzMOTDyg1l4sAbb5S1bTvyDA8AE7i4xHCgJEC4Rsr23kiXO6X/OpWWe1pSINFBDr8RtPICeR4v6xvo9UdBPMFNkcLGutsyBzJn7XSsx+Dyw3s3eAliJ5zrnpiS7QOfcegKkgsEhEsXZx22fTR/zq+ds5fPXrVA0YBNdey/BZs5hekLwBUkREMkVWBJRy/b6svehpLd3FsntKJmYOrCuvYXBRHkP6JaeGUirF040yVi+v3sbQfrmdFiXvCbEGAXoq+NrZsXr3zEOSPnpcpPYnIyst2vtwztEYdFn5ndNXAvSdBZlnLFiacd+1ErPbgCuBFUDsQ0uJSEIWLt/QZTBpQtkazn3hTr7+4VIqCopZOftCJv7fb6CoqIdaKSLS87IioDS0OC+hi57eluqf7mLZPSUTMwdGlhTy/qYdVNQ2EnJels7AggDjh/dPeJnn3PMGi97e1FILaPqk4Vz7/S92u60z5r/Ey2vKWx4fOqaEu2d9uVvLTHZR8kTFGgToqeBrqo7VeNqfjKy0zjK6Ljtun6z8zukrAXqIHmTOxO9aidkW59wN8b7IzJ4Bhkd46jfOuX/HsZyZwEyAUaNGxdsMkV7nNw+tiPrcuC3rOOfFuzh21fPsyCvivZ+fx95XXMzA/omfI4qI9BZZEVDaXFlPcUMTDU0hcv3GnsP6d3nRk+pU/1QFq9JdLLsnZGLmwPD+uby8urHlccjBtppGhvfPTWh559zzBg+9ubHlcTDkwo/f6FZQqX0wCeDlNeXMmP9St4JKqa6hFKtYgwDJCL7G8hlO1bEab/u7m5XW2fvI1u+cvhKg70wmftdKzF43s98Di2jb5e2Nzl7knDsyGSt3zi0AFgBMnjy5e8OIimSohcs3cMmilVTUNkZ8fvfyzzjrxbs57t3nqA3ksfCbP+b4O66lf0lJD7dURCR9siKg1BQKMbx/fpuLy1hqsaQq1V91KbonEzMH/rNqc0uNGuegucTEf1ZtTmh5i97eBOxcTvNyF729iWu/n3g72weTupoeq56ooRSLeIIA3QmExPoZTuWxGk/7uxvAzsTPXE/I1mBZrPrqfs8SB4TvWxeFc8ARaWiLSNbprF7SbtvL+OVL93DSimdo9Af424HHs/x7pzP/3G/0cCtFRNIvKwJKPjPMLK6gUCpT/TOxBlBvkomZA9UNQQJ+w2c7h9MKuVDCQ28HQ5F/0I02Pd16ooZSrEGRWIMA3QmyxPoZzoRjNRkB7Ex4H9LztN97L+fc4cleppmdAPwJGAo8amZvOueOTvZ6RDJVVxlJwyq3cObL/+J7bz2FM+OfXzyWvx5yMr/5yeHMP2C3Hm6tiEhmyIqAUmuxBoVSmeqfDXUpbnjmg6SPFBaPTMscSMZIWq35fRYxeOT3ZeboOqmuoZTsrL7uLi+ez3C6j9VkBbDT/T4kPbTfey8z+xYwEWj5YnbOzUt0ec65h4CHktA0kV6ns4ykIdXl/Hzp/Zy6/DHMOf416ShuPPR7bOo/hOu+tz/HK5gkIn2Yr+tZepdYg0Kzpo5tKeTtnHefrFT/kSWF1Da2zVzpTXUpbnjmA65/9iNqG4Pk+KC6vok/PvMh+/72CWYsWMriVWXpbmKPO33KGELO614ZcqHwfXwjabU2fZJXE9W5nbfW0xN16JjI/fajTW+2eFUZMxYsZcqVz0bcx6k+plsHRZqzDQN+Y/6S1WlZXm/6DK8rr6Eg0Daw2dsC2CISHzO7Cfge8EvAgJOB3dPaKJFeaOHyDex98eMRg0klNdu5YPE/WDL/dH78+sMs/MI0jpg5n4uOPoNN/Ydw6iGjFEwSkT4vKwJKIefiDgr9f/buPD6q+vr/+OvMZGcLq8om4AKKKCq1rvzQunWRqtVatZut32Bb61Jr1VoRUauW1q1aBa217ruI+0YRUHFBlEUWWYUAhiWBQLbJzOf3x52EJGSZJDO5M8n7ySOPMHdm7py5d2Zy75nzOZ8xw/owcexw+nTJYltpiD5dspg4dnhcvqlNZLKqLTw4exUBg7RAAOeMqkKanRXh6kqPjpZUuuTE/bn0hH3JTg9SGfFO2C89Yd8WV23d8ZPDOGPkXtUVScGAccbIvVo9y9uT447eLXnU1CxvVdU8BcVltap5au7jRL+m450Uae36Uuk97Ffyq6kkpIgk1NHOuZ8Dhc65G4CjgAE+xySSEqbOy2fkDW8x6OpXuezpzykNRWpd37VsB3+Y+SizJl9I3kcv8Mb+R3Pihfdx1fcuZV23PQD46ZEDuen0EX6ELyKSVNrFkLe0QIBtpaFm939IVKl/qvel2FnhVSaBV5FTJeI6dj+og/vnMrxvt+qePAf3z23V+u74yWGtasDdkKZmc6vbW6hwZ3mTQ6YS/ZqO9xDU1q4vld7DfjRW1sQDIr4rjf4uMbO+wBagZSWzIh1IY0PbOpWXcMHcafzfxy/SrXwnrww9ljuPPY/lvQZW36Z7TjrXnzZclUkiIlHtIqE0pHcnZl2VXBObpHJfipr9glyNNj9V7X064nCaVDqBvvypz5g2fyPhiCMYMMYevGd15VN9z2P1lp30z82utY769nE8X9N1k1pHDenBc5/ltzgpEu/1Qeq8h/1IfjXWt6nq+pbOOCciMXnFzHKBScBneDO8PeBrRCJJrqFkUnZFGT+f9wrjPnqBHqXbeWu/I7nj2PNY3GfXMUPA4PYfq1+SiEhd7SKhJPF14bGDuWv68urqpKqcUq9OGUDy9pJJpFSZue/ypz7jxc83VF8OR1z08mfc8ZPD6n0e6YEA3xSX0zU7o/p+9e3j1k5NX3M9dZNaz32Wz+EDu/Hukk21GsHHOptbfes767B+fLhya9JXGMVDWye/Gmpa/tU321Mm8SqSypxzN0b/+7yZvQJkOee2+RmTSDKbOi+fx+skkzIrKzh/3uv85qNn6b2ziBmDD+f2485n/l612xmoKklEpGFJl1AyswnA/wGboov+7Jx7zb+IOp6qvkAPzl7FjkglALnZafTpmpXUvWQSKVVm7ps2fyMAVmOyOOe85Xf8pP7nsUfXTNYVlTVazRPPCq36klqbist4ZcFGgmYYjorKCI/OWcPB/XObXH9Dyb7XF24kNyeD3efSa3/aelbGhoYUVoQd3VIg8SqSqszsW8Ba59zG6OWfAz8C1pjZBOfcVl8DFEkiU+flM2HaIopKQ7WWp4dDnDP/bX73wdPstWML7+99MONOv5bP+h9QfRv1SBIRiU3SJZSi7nDO/d3vIDqyS07cv/qEtKoypSNUejQk3j1+EiUcqT99UrW8vueRFgywf5/O5OZkNLiP41mhVV9Sq7AkRCjsCKQZacEAznnLbntjSZPrr299leEIq7eUMKhnTtJXyrS28qtqVkavkb73urxr+nKAuCSV6ouvob5NGWkBzTiXYuJVeShtZjJwIoCZjQZuxZvpbSQwBTjLt8hEksjUeflc+ewXhGocF6WFKzlz4XQu+eAp+m8v4JN+B/KHH1zBh3sfXH2bThlBbj5jhKqRRERilKwJJUkiqdJLJpH8aHzcEsGA1ZtUqppNrqHncd33hzW6j+NZoVVfUqu80hteGYiWVpmBM8fKzTtbtL5vttffaPy2N5Yk1clzPCq/as7KCF6fh8pIhAdnr2p1QqnB+MYOZ+LY4bslmifPXNnsxKsSGv5Jpd5wUi1YowrpHGCKc+55vKFvn/sXlkhyueHlRdXJpEAkzNjFM7n0/ScYXLiBz/fajz+f8jtmDj6suqRbw9pERFomWRNKF0fLuD8FrnDOFfodkHRsqTLr19iD9+TFzzfUaqZetRwafh7z1xVxyVPzGhwyFc8KrfqSWkD1zIJNiakBdySyW6PxZKxaikflV81ZGasEzFueyPiezDuy3hibk3hVQsNfqdIbTmoJmlmac64S+A6QV+O6ZD2mE2kzNYe5mYvwvSXvc9n7T7DflrUs6jOEX//oOt7d54jqRJKGtomItI4vBx9m9g6wZz1XXQvcB9yI1wv6RuAfwK/qWUce0QOpgQMH1r1aJO5SoVLLm82t4VneYPfnEcuQqXhWaNWX1CqvqGRjcQWRiPOqkxxEHOzba/fG4Fc+9wXFZZVURiJsLi5neUExPzty71oNuNMDVqvMHbyqpQCOjdvKqAhHyAgG6JKV5uvJczwqv2rOylgl4rzlbR1fcxOvSmj4K1V6w0ktTwLvmdlmoBSYBWBm+wJqyi0d2tR5+VzzwgJKKyo5aflH/GHWYxywaTXLeg7kotOv4c39j8LZrm9gcrPTlUwSEWklXxJKzrkTY7mdmT0AvNLAOqbg9Qtg1KhRHaHvrvgs3kNzEtVI+Y6fHMYdP4n99rEMmYp3hVbdpNaMJQX8/snP2FkRJuK8GDplBLn6uwfUut9tbyyhsCREMFC719LrCzfy+mWja62vbgKsvDJCIACVYUfQjMqwY8vOCirD21v0HOIhHpVfNWdlDJiXTIo4b7kf8TUn8aqEhr9SpTec7OKcu9nM3gX2At5yrroeNYDXS0mkw7ph2kK+veQjLp/9OIds/IqV3ftyyWl/5JVhxxEJ1P6SJT1oTBg73KdIRUTaj6QrjzazvZxzVfOenwEs9DMeEYj/0JxENlJubuIr1iFTia7QykoPEgo7KiMR0gIBstJ3r7BZuXknAWu611J9CbANRWWEIhECgV33jUQcFWH/8tHxqPyqOStjvJOTie4dpoSGv1KlN5zU5pybU8+yZX7EIuKXujO4HbXmCx6c+SiHr1/C2m578MfvXcaLw48nHNj9WEL9kkRE4ifpEkrA38xsJN6Qt9XAOF+jESH+Q3MS1Ui5JYmvWIdMJbJ58uSZKwkGzGsq7qz6/60Z+lQ3ATbqprfZVhIh4nYNq8NBRqzNmxIgXpVfNWdlTMb4GqKEhr9SpTeciAjsnkQCGLVuEVfMeoyjvl7A+i69+PMpv+PZEScSCu5e/XrLmZq9TUQk3pIuoeSc+5nfMYjUFe+hOYlqpNySxFcsQ6YS3Tx52TfbKSoNEYl4meTKcJiyyjCV4Uit2w3umcPyTTuxJnot1We/Pl1YujH6ONFhdbnZ6ezXp0ur42+NZO/Nlcj4lNDwX7K//kRE6kskHbJ+KVfMeozRq+dR0Kk71584jqcOOYXytIzd7q+KJBGRxEm6hJJIMor30JxENVJuSeIrliFTiW6eXBqKEI6AEZ14xUE4AiWh2gmlq797AH987gt2lFdWNx3PzUzfrddSfY4a0oOPV28lGDDSo4mzbWWVHDWkR6vjl5ZTQkNERBryl6kLeHzO11QNTh/+zQoun/UYJ674hC3ZXbl5zK949LDvUZaeVe/9c7PTmTf+5LYLWESkg1FCSSQG8R6ak6hGyi1NfDU1ZGptYQlBg5WbdlTPkNarc0bcmieHKmskjlwDy/GSD38/65AWVbR8uHIrvTtnUFxWWWuWtw9XbuWSuDwLERERiZep8/Krk0n7bVrD5bMf53vLPmBbZif+Nvrn/PewH7Azs+HjGwM13hYRSTAllERiEO+hOYlqpJyonjSdM4Is37SToFn1DGn5RWXs27tTq9ZbJRAw0nBEnDeMzQyCRnUD7ZpaWtGytrCEXp0z6d1l17eYzjnNKCYiIpKEJr25lEFb87ls9hOctngmOzOyuPOYc/n3t06nOLPx4w8Dzj9yoIa5iYgkmBJKIjGK99CcRDRSTlRPGovOquaNSYsudDWWt1JVb6T0gFX3Rgo7x+Ceu3/zePc7y1qUiBvQPYdVm3fsVqE0uFfnuDwHaf8S2ZheRERqWLWKyx6/hTMXTac8LZ37j/wRU444k6Lsrg3epariu19uNleeMlTJJBGRNqCEkkg7M39dEYvWb2NnRZhtpSHmrytq9UlvcXkl/XKz2LyjojoZs2fXTHaUV8Yl5lh7I939zjLumr48OkOeN5zvrunLAZpMKlX1UAqYd9BZEY6waUcF5x2RWj2UlNTwR6Ib04uICLB2Ldx0Ezz0EGMJ8NCosdz/7bPY0il3t5uq2baIiP+UUBJpR1qTcGlMVW+mIb13VfOUVFTSp0v9TTCbK9beSA/OXhV9bt4UeQGDykiEB2evavL5fbhyK326ZLC9dFeFUtfs1OqhpKSGfxLdmF5EpEPbsAH++leYMsUrUx43jv+NvYDbZ22iNLRrBtyqoWw3nT7Cv1hFRKSaEkoi7UhrEi6NSVRvpppiGVK4syJMWqD2soB5y5uytrCEnp0y6dU5dXsoKanhn5bMoCgiIk3YtAluuw3uvRcqK+GCC+Avf2HqliCT3lxKaShM0IywcxrKJiKShJRQEmlHWpNwaUyiejPVFMtQrk4ZXjKrZq/uiPOWN6WlM+AlEyU1/NMeXj/10RBKEfHF1q3w97/D3XdDaSn87GcwfjwMGcLUeflc88KC6sqksHNkpweVTBIRSUKBpm8iIqmiU0aQiKu9LNaES1PGDOvDk3lHMuuqE3gy78i4J5PGT1tEQXFZraFcM5YU1LrdhccOJuK8qquIi0R/e8ubMm70EEJhR0lFJc55v+NdZZVoA7rn1Cr9h/aR1EgF7eH1U1es7zsRkbjZtg1uuAEGD4Zbb4XTToNFi+Dhh6uTSVc880W9f+smvbnUn5hFRKRBSiiJtCOtSbj4qeZQLjPvd3rQmDxzZa3bXXLi/lx6wr5kpwepjHjVOZeesG9Mw/nGDOvDWYf1Y1NxOYs3FrOpuJyzDuuXUtUY7TGpkSrGDOvDxLHD6dMli22lIfp0yWLi2OEp9fqpK9b3nYhIq+3YAbfc4iWSJkyAE0+E+fPhySdh2DCA6sqksHP1rmJ9UWkbBiwiIrHQkDeRdqQqsfLg7FXsrAjTKSPIhccOblX/pLbQnKFcl5y4f4uez4wlBTz3WT69u2QyMNoH6rnP8jm4f27KJAXaYuihNCyWPl+pREMoRSThSkvhX//y+iRt2gTf/z5MnAiHHVbrZlWVSQ0lkwD65mYnOloREWkmJZRE2pmWJlz81Jz+NHe/s6xFCbP20tC6vSU1xD/ttS+UtIyZTQJOAyqAFcAFzrkiX4OS1FVeDg884M3ctmEDnHSSl0g68kjASyBNenMp+UWlGNBwGslT1UNJRESSi4a8ibQzM5YUcO6UORx723TOnTInJfqhxDqU6+53lnHX9OWUhrzm46WhMHdNX87d7yxr8jHWFpaQnV67l5SqMaQj0xBKqeNt4CDn3MHAMuAan+ORVBQKwZQpsN9+8Pvfe7/few/eeqtWMumaFxaQHx3C1lQyKWjGLWeOUENuEZEkpISSSDuSqk12Y+1P8+DsVQQM0gIBAhaI/vaWN0UNrRuXiolIaZ322BdKWs4595ZzrjJ6cQ7Q3894JMVUVsJ//wtDh8K4cdCvH7z9NsyYAaNH17rppDeX7vb3uCHZ6UH+8eNDlEwSEUlSGvIm0o6k8rCuWIZy7azwKpNqCpi3vCnjRg9h/LRFlFRUkh3toaRqDE9VIjI9aLUSkRMh6V830joaQikN+BXwtN9BSAqIRODpp71G28uWeb2R7rkHvvtdMNvt5lPn5VdXJjVFlUkiIslPCSWRdqS9N9ntlOElggI1jlEjzlveFDW0blgqJyIl+cxYUsDkmStZW1jCAL3PkoqZvQPsWc9V1zrnXore5lqgEni8kfXkAXkAAwcOTECkkvScgxdfhPHjYdEiOOgg7/IPf9hgImnCtEUUlYZiWn12elDJJBGRFKCEkkg70t6b7F547GDumr6cykiEgHnJpIjzlsdC1Rj1a++JSGk7qnZLbs65Exu73sx+AfwA+I5zDU+35ZybAkwBGDVqVFMtcKQ9cQ5efdVLJM2bB8OGwVNPwdlnQ6B2CXFzG29X6Z6TzvWnDVcySUQkBaiHkkg70t6b7F5y4v5cesK+ZKcHqYx4SY9LT9g35Wa1SzbqLyXxUrPazcz7nR40Js9c6Xdo0gQzOxW4ChjrnFM2WWpzzmusfdRRcNppsG0bPPIILFwI55xTbzKpOY23AfrlZnPnOSOZN/5kJZNERFKEKpRE2pGOMKzrkhP3VwIpztRfSuJF1W4p7R4gE3jbvCFLc5xzF/kbkiSF996D666DWbNg4EB44AH4xS8g3XuvV1UirS8qpVt2OmZQWBLb0DbwEknvX31CoqIXEZEEUkJJpJ3RsC5pro6QiJS20d6H3bZnzrl9/Y5BksyHH3qJpHffhb594d574de/hszM6ptUVSJVVbnG2iOpSnZ6kCtPGRrXsEVEpO0ooSQiHYaaBTdMiUiJB1W7ibQDc+d6iaTXX4c+feD22+GiiyA7e7ebTnpz6W5DpmOlXkkiIqlPCSUR6RDULLhxSrZJPKjaTSSFzZ8P118PU6dCjx5w661w8cXQqVODd1kf7ZEUi6rG3P1ys7nylKFKJImItANKKIlIh1CzWTBATkYaJRWVTJ65ssOf7CrZFhsl3WKjajeRFLN4MUyYAM88A926wcSJcOml0LVrk3ftm5td3Xi7MUoiiYi0T5rlTUQ6hLWFJWSnB2stU7Ngj2bmalpV0q2guKxW0m3GkgK/QxMRaZnly+HnP4eDDoLXXoNrr4VVq7zhbjEkkwCuPGXobn9ba8pOD3LnOSN5/+oTlEwSEWmHVKEkIh2CmgU3TDNzNU0VbiLSbqxZAzfeCA8/DBkZcMUV8Kc/Qa9eMa+i7sxuWekBikpC1bO8FZWE6KuqJBGRdk8JJRHpENQsuGFKtjVNSTcRSXn5+XDzzfDgg2AGv/sdXHMN7Llns1ZT38xu2elB7jhnpJJHIiIdjIa8iUiHMGZYHyaOHU6fLllsKw3Rp0sWE8cOV3UJXrItFHaUVFTinPdbybbaBnTP2W0mIyXdRCQlfPMNXH457LOPl0z69a9hxQq4665mJZOmzsvnmFunc9nTn9f7eTjpzaXxjlxERJKcKpREpMNQs+D6aWaupqnCTURSzpYt8Le/wT33QHk5/OIXXn+kQYOavaq6VUn1ac6MbyIi0j4ooSQiIkq2NUFJNxFJGUVFcPvtcMcdsHMnnHceXH897Ldfi1c56c2ljSaTwJvxTUREOhYllERERGKgpJuIJLXiYm8Y2z/+4SWVzj4bJkyAAw9s9aqbqj7KTg9y5SlDW/04IiKSWnzpoWRmZ5vZIjOLmNmoOtddY2bLzWypmZ3iR3wiIiIiIilh505vaNvgwd6QttGjYd48eOaZuCSToPHqo3652dxy5gg15BYR6YD8qlBaCJwJTK650MwOBH4CDAf6Au+Y2f7OucZrbEVEUtSMJQVMnrmStYUlDNAwKhERiVVZGUyeDLfc4jXePvVUmDgRvvWtuD/UlacM3a2HUnZ6UIkkEZEOzpcKJefcYudcfVNB/BB4yjlX7pxbBSwHjmjb6ERE2saMJQWMn7aIguIycrPTKSguY/y0RcxYUuB3aCIikqwqKuC++2DffeGyy2D4cJg9G15/PSHJJIDTD+3HLWeOoF9uNoaqkkRExJNsPZT6AXNqXF4XXSYi0u5MnrmS9KCRk+F9FOdkpFFSUcnkmStVpSQiIrVVVsIjj3hVSGvWwDHHwKOPwvHHt8nDn35oPyWQRESkloQllMzsHWDPeq661jn3UkN3q2eZa2D9eUAewMCBA1sUo4iIn9YWlpCbnV5rWXZ6kHWFJT5FJCIiSScchiefhBtugOXLvSqkyZPh5JPB6jt0FhERaRsJSyg5505swd3WAQNqXO4PrG9g/VOAKQCjRo2qN+kkIpLMBnTPoaC4rLpCCaA0FKZ/9xwfoxIRkaQQicDzz8P118PixXDIITBtGvzgB0okiYhIUvClh1IjpgE/MbNMMxsM7Ad87HNMIiIJMW70EEJhR0lFJc55v0Nhx7jRQ/wOTURE/OIcvPQSHHoo/PjHXvLo2Wfhs8/gtNPaLJk0dV4+x9w6ncFXv8oxt05n6rz8NnlcERFJHb4klMzsDDNbBxwFvGpmbwI45xYBzwBfAm8Av9MMbyLSXo0Z1oeJY4fTp0sW20pD9OmSxcSxw9U/SUSkI3LOa6x9xBFw+ulQWgqPPw7z58NZZ0Gg7Q7bp87L55oXFpBfVIoD8otKueaFBUoqiYhILb405XbOvQi82MB1NwM3t21EIiL+GDOsjxJIIiId3fTpcN118MEHMGgQPPQQ/OxnkObP/DmT3lxKaaj2d7qloTCT3lyqxtwiIlIt2Ya8iYiIiIh0DLNne7O0fec78PXXcP/9sHQpXHCBb8kkgPVFpc1aLiIiHZMSSiIiIiIibenjj+GUU+C447yG23fdBV99BePGQUaG39HRNze7WctFRKRj8u+rDxERERGRjuTzz2H8eHj5ZejVCyZNgt/+FnL8nd1z6rx8Jr25lPVFpfTNzeb4Yb15fm5+rWFv2elBrjxlqI9RiohIslGFkoiIiIhIIi1a5DXWPvRQmDULbr4ZVq6EP/4xKZJJdRtwPz83nx8d3o9+udkY0C83m1vOHKH+SSIiUosqlEREREREEmHZMpgwAZ56Cjp39qqTLr8ccnP9jqxaQw24/7dkE+9ffYJPUYmISCpQQklEREREJJ5WrYKJE+GRRyArC666yqtG6tnT17DqDm278pShasAtIiItpoSSiIiISAdnZjcCPwQiQAHwS+fcen+jSkFr18JNN8FDD3mztF12mZdM6tPH78iqh7ZVVSPlF5VyzQsLyM1Jp7AktNvt1YBbRESaoh5KIiIiIjLJOXewc24k8Aow3ud4UsuGDXDJJbDvvvCf/3izta1YAf/4R1Ikk6DhoW3OeQ23a1IDbhERiYUSSiIiIpLU7n5nGQdPeJOMPfY5zO9Y2ivn3PYaFzsBzq9YUsqmTd5QtiFD4F//gl/8ApYvh3vugb59/Y6uloaGsG0rDXHLmSPUgFtERJpNQ95ERETagRlLCpg8cyVrC0sY0D2HcaOHMGZYclRGtMbd7yzjrunLCRigJEdCmdnNwM+BbcDxjdwuD8gDGDhwYNsEl2y2boW//x3uvhtKS+GnP/Uabu+zj9+R1dsn6fRD+9E3N5v8epJKfXOzOf3QfkogiYhIs6lCSUREJMXNWFLA+GmLKCguIzc7nYLiMsZPW8SMJQV+h9ZqD85eRcAgLaBDltYys3fMbGE9Pz8EcM5d65wbADwOXNzQepxzU5xzo5xzo3r37t1W4SeHbdvghhtg8GC49VY47TRYtAj++9+kSSZd88IC8otKcezqkzR1Xj5XnjJUQ9tERCSuVKEkIiKS4ibPXEl60MjJ8P6s52SkUVJRyeSZK1O+SmlnRZg05ZLiwjl3Yow3fQJ4Fbg+geGklh074J//hEmToLAQzjjDSyyNGOF3ZLU01Cdp0ptLef/qE6pvU7d6SUREpCWUUBIREUlxawtLyM1Or7UsOz3IusISnyKKn04ZQUpD4aohb5IgZrafc+6r6MWxwBI/40kapaVw331eNdKmTfD978PEiXBYcrbzaqhPUtVyDW0TEZF40nd+IiIiKW5A95x6qxL6d8/xKaL4ufDYwUQcVEYifofS3t0aHf42HzgZuNTvgHxVXu411t5nH7jiChg5Ej78EF55JWmTSeD1Q2rOchERkdZQQklERCTFjRs9hFDYUVJRiXPe71DYMW70EL9Da7VLTtyfS0/Yt6r3i+qUEsQ59yPn3EHOuYOdc6c55/L9jskXoRA88ADstx/8/vfe7/feg7fegiOP9Du6JqlPkoiItCUllERERFLcmGF9mDh2OH26ZLGtNESfLllMHDs85fsnVbnkxP2ZP+EUKr5Z8ZnfsUg7VVnpNdYeNgzy8qBfP3j7bZgxA0aP9ju6mJ1+aD9uOXME/XKzMaBfbja3nDlCw9xERCQh1ENJRESkHRgzrE+7SSCJtJlIBJ5+GiZMgGXLvOFsr74K3/0uWGoWxKlPkoiItBVVKImIiIhIx+IcvPACHHIInHceZGR4lz/9FL73vZRNJomIiLQlJZREREREpGNwzmusffjh8KMfeT2TnnoKvvgCzjhDiSQREZFmUEJJRERERNo357zG2kcdBaedBtu2eT2TFi6Ec86BgA6JRUREmks9lERERESk/XrvPbjuOpg1CwYO9GZx+8UvID3d78iabeq8fCa9uZT1RaX0zc3mylOGql+SiIj4RgklEREREWl/PvzQSyS9+y7stRfcey/8+teQmel3ZC0ydV4+17ywgNJQGID8olKueWEBgJJKIiLiC9X3ioiIiEj7MXcufP/7cPTRsGAB3H47rFgBv/1tyiaTACa9ubQ6mVSlNBRm0ptLfYpIREQ6OlUoiYiIiEjqmz8frr8epk6FHj3g1lvh4ouhUye/I4uL9UWlzVouIiKSaKpQEhEREZHUtXix11j7kENg+nS44QZYtQquuqrdJJMA+uZmN2u5iIhIoimhJCIiIiKpZ/ly+PnP4aCD4LXX4NprYfVqGD8eunb1O7q4u/KUoWSnB2sty04PcuUpQ32KSEREOjoNeRMRERGR1LFmDdx4Izz8MGRkwBVXwJ/+BL16+R1ZQlU13tYsbyIikiyUUBIRERGR5JefD3/9KzzwAJjB734H11wDe+7pd2Rt5vRD+ymBJCIiSUMJJRER4e53lvHg7FXsrAjTKSPIhccO5pIT9/c7LBER+OYbr8H2ffdBOAwXXugNb+vf3+/IWmTqvHxVGYmISLughJKISAd39zvLuGv6cgIGaQFvGuq7pi8HUFJJRPyzZQv87W9wzz1QXu71S7ruOhg82O/IWmzqvHyueWEBpaEwAPlFpVzzwgIAJZVERCTl+NKU28zONrNFZhYxs1E1lg8ys1Iz+zz6c78f8YmIdCQPzl4VTSYFCFgg+ttbLiLS5oqKvMbagwfDpElwxhneTG4PPZTSySTw+h9VJZOqlIbCTHpzqU8RiYiItJxfFUoLgTOByfVct8I5N7JtwxER6bh2VoRJq/P1QsC85SIibaa4GO66C/7xDy+pdPbZMGECHHig35HFzfqi0mYtFxERSWa+JJScc4sBzMyPhxcRkRo6ZQQpDYUJ1PhIjjhvuYhIwpWUwL33wm23ecPcxo6FG26AkSP9jizu+uZmk19P8qhvbrYP0YiIiLSOL0PemjDYzOaZ2XtmdlxDNzKzPDP71Mw+3bRpU1vGJyLSrlx47GAiDiojESIuEv3tLRcRSZiyMq8iacgQ+NOf4Fvfgo8/hpdeapfJJIArTxlKdnrtZH12epArTxnqU0QiIiItl7AKJTN7B6hvHtdrnXMvNXC3DcBA59wWMzscmGpmw51z2+ve0Dk3BZgCMGrUKBevuEVEOpqqxtua5U1E2kRFhdcP6aabID8fjj8enn8ejjnG78gSrqrxtmZ5ExGR9iBhCSXn3IktuE85UB79/1wzWwHsD3wa5/BERKSGS07cXwkkEUmsykp45BG48UZYvdpLID36qJdQ6kBOP7SfEkgiItIuJNWQNzPrbWbB6P+HAPsBK/2NSkRERERaLByGxx6DAw6AX/8aeveGN96AWbM6XDJJRESkPfEloWRmZ5jZOuAo4FUzezN61Whgvpl9ATwHXOSc2+pHjCIiIiLSCpEIPPssjBgBP/sZdOrk9Uf66CM45RTQ5CwiIiIpza9Z3l4EXqxn+fPA820fkYiIiIjEhXMwbRqMHw/z58OBB3qJpTPPhEBSFceLiIhIK+ivuoiIiIi0nnPw+utwxBFw+ulQWuoNdZs/H846S8kkERGRdkZ/2UVERESkdaZPh2OPhe99DzZv9mZx+/JLOP98CAb9jk5EREQSwJchbyIiIiLSDuzY4TXWnjED+veH+++HCy6AjAy/IxMREZEEU0JJRERERFpm6VIoKoK77oK8PMjK8jsiERERaSPmnPM7hlYzs03AGr/jaKZewGa/g5BatE+Si/ZHctH+SC4ddX/s7Zzr7XcQskuKHoMlQkd9T9akbeDRdvBoO2gbVNF28KTydmjw+KtdJJRSkZl96pwb5Xccsov2SXLR/kgu2h/JRftDJLnoPaltUEXbwaPtoG1QRdvB0163g5pyi4iIiIiIiIhIsyihJCIiIiIiIiIizaKEkn+m+B2A7Eb7JLlofyQX7Y/kov0hklz0ntQ2qKLt4NF20Daoou3gaZfbQT2URERERERERESkWVShJCIiIiIiIiIizaKEUhsws4fMrMDMFtZYNsHM8s3s8+jP9/yMsSMxswFm9j8zW2xmi8zs0ujyHmb2tpl9Ff3d3e9YO4JG9ofeIz4wsywz+9jMvojujxuiy/X+8Ekj+0TvEZEkYWY3mtn86HvxLTPr63dMfjCzSWa2JLotXjSzXL9j8oOZnR39vI6YWbub1akxZnaqmS01s+VmdrXf8fihvnO/jqah4/uOpqFjuPZEQ97agJmNBnYAjzjnDooumwDscM793c/YOiIz2wvYyzn3mZl1AeYCpwO/BLY6526N/gHs7py7yr9IO4ZG9seP0XukzZmZAZ2cczvMLB2YDVwKnIneH75oZJ+cit4jIknBzLo657ZH/38JcKBz7iKfw2pzZnYyMN05V2lmtwF0xL8VZnYAEAEmA390zn3qc0htwsyCwDLgJGAd8AlwrnPuS18Da2P1nft1NA0d33fA10K9x3DOuTk+hxY3qlBqA865mcBWv+MQj3Nug3Pus+j/i4HFQD/gh8B/ozf7L15SQxKskf0hPnCeHdGL6dEfh94fvmlkn4hIkqhKJkV1ooO+R51zbznnKqMX5wD9/YzHL865xc65pX7H4YMjgOXOuZXOuQrgKbzjhw5F5346vq/SEY7hlFDy18XRkuCHNHzEH2Y2CDgU+AjYwzm3AbwPQaCPj6F1SHX2B+g94gszC5rZ50AB8LZzTu8PnzWwT0DvEZGkYWY3m9la4HxgvN/xJIFfAa/7HYS0qX7A2hqX19EBkwhSWz3H9x1KI8dw7YISSv65D9gHGAlsAP7hazQdkJl1Bp4HLqvzzaL4oJ79ofeIT5xzYefcSLxvlo8wsw5Zrp1MGtgneo+ItCEze8fMFtbz80MA59y1zrkBwOPAxf5GmzhNbYfoba4FKvG2RbsUy3bogKyeZe2qGkOaR+db7f+4Os3vADoq59w3Vf83sweAV3wMp8OJjmF9HnjcOfdCdPE3ZraXc25DdNxvgX8Rdiz17Q+9R/znnCsysxl4vXr0/kgCNfdJzd5Jeo+IJJ5z7sQYb/oE8CpwfQLD8U1T28HMfgH8APiOa8fNWpvxeuhI1gEDalzuD6z3KRbxWQPnWx1WnePqdtOwXRVKPomekFU5g3b0okp20eZo/wYWO+dur3HVNOAX0f//AniprWPriBraH3qP+MPMelfNymNm2cCJwBL0/vBNQ/tE7xGR5GFm+9W4OBbvc7PDMbNTgauAsc65Er/jkTb3CbCfmQ02swzgJ3jHD9LBNHK+1aE0clzdbmiWtzZgZk8CY4BewDd431iNwRum4IDVwLiq/iSSWGZ2LDALWIA3AwfAn/HG9T4DDAS+Bs52znXohnptoZH9cS56j7Q5MzsYr+l2EO9Lh2eccxPNrCd6f/iikX3yKHqPiCQFM3seGIr3d2wNcJFzLt/fqNqemS0HMoEt0UVzOuhsd2cA/wR6A0XA5865U3wNqo2Y2feAO/H+Zj3knLvZ34jaXn3nfs65f/saVBtr6PjeOfeaf1G1vYaO4fyNKr6UUBIRERERERERkWbRkDcREREREREREWkWJZRERERERERERKRZlFASEREREREREZFmUUJJRERERERERESaRQklERERERERERFpFiWURERERERE4szMeprZ59GfjWaWH/1/kZl92caxnG5mB9a4PNHMTmzBegaZ2cIGrhtuZtPNbJmZrTCzG8ws7uebjT0XM5thZqPi/ZgiUj8llEREREREROLMObfFOTfSOTcSuB+4I/r/kUAk3o9nZmmNXH06UJ2Ecc6Nd869E8fHzgamAbc65/YHRgBHAJfG6zFqOJ0EPhcRiZ0SSiIiIiIiIm0raGYPmNkiM3srmpDBzPYxszfMbK6ZzTKzYdHle5vZu2Y2P/p7YHT5w2Z2u5n9D7itvvub2dHAWGBStEJqn+j9zoqu41tm9oGZfWFmH5tZl2gl0iwz+yz6c3QTz+c84H3n3FsAzrkS4GLgyuhjTDCzP1bd2MwWmtmg6P+nRuNdZGZ5NW6zw8xujsY1x8z2aOq51GRmJ5vZh9H4nzWzztHlt5rZl9Ft+ffm7zoRqaKEkoiIiIiISNvaD7jXOTccKAJ+FF0+Bfi9c+5w4I/Av6LL7wEecc4dDDwO3F1jXfsDJzrnrqjv/s65D/Cqh66MVkytqLqjmWUATwOXOucOAU4ESoEC4CTn3GHAOXUerz7Dgbk1F0QfJ9vMcpu476+i8Y4CLjGzntHlnYA50bhmAv/X2HOpycx6AX+JbpfDgE+BP5hZD+AMYHh0W97URGwi0ojGyiJFREREREQk/lY55z6P/n8uMChaQXM08KyZVd0uM/r7KODM6P8fBf5WY13POufCTdy/IUOBDc65TwCcc9sBzKwTcI+ZjQTCeEmrxhjgGljelEvM7Izo/wfgJdu2ABXAK9Hlc4GTYlhXlSPxhsW9H90WGcCHwHagDHjQzF6tsX4RaQEllERERERERNpWeY3/h4FsvNEjRdE+S02pmbzZGf3dnPtXaSgRdDnwDXBIdL1lTaxnETC61orNhgCbnXNFZlZJ7dExWdHbjMGrijrKOVdiZjOqrgNCzrmq2MI079zVgLedc+fudoXZEcB3gJ/gDcs7oRnrFZEaNORNRERERETEZ9HqoFVmdjaAeQ6JXv0BXgIE4HxgdjPvXwx0qedhlwB9zexb0ft0iTb37oZXuRQBfgYEmwj/ceDYGrOtZeMNk7s+ev1q4LDodYcBg6PLuwGF0WTSMLzKoqY09FxqmgMcY2b7Rh8zx8z2j1ZxdXPOvQZchtcgXURaSAklERERERGR5HA+8Gsz+wKv6ueH0eWXABeY2Xy8BE9Ds6c1dP+ngCvNbJ6Z7VN1Y+dcBV6PpH9G7/M2XoXQv4BfmNkcvOFuO2mEc64Ur1n2tWa2DNiM16T78ehNngd6mNnnwG+AZdHlbwBp0ed1I14iqCn1Ppc68WwCfgk8GV33HGAYXiLqleiy9/AqsUSkhWxXFaGIiIiIiIhI65jZ6cDtwPHOuTU+hyMiCaKEkoiIiIiIiIiINIuGvImIiIiIiIiISLMooSQiIiIiIiIiIs2ihJKIiIiIiIiIiDSLEkoiIiIiIiIiItIsSiiJiIiIiIiIiEizKKEkInFlZmvN7DC/45DWMc8aM9snxttrv4uIiPhEf4fbBx1/SapRQkkkRZjZYDN73cwKzSzfzC5Itsczs+5AX2BJImPraNp63wM4z97OuRUxxNfkfo/GPTKOIYqIiCScjr86Lh1/iTRNCSWR1PEc8DbQC/g/4C8tWYmZTTCzCQl6vBHAKudcSUtiq8nMgq1dRzJo7HkkeF+0pUb3u5n1AvoAi9s0KhERkdbT8VcK0vGXjr+kbSihJB2emV1oZm+a2X3RbyCWmdmBZnapmX1tZpvN7Mzobc83sw/M7Gkz2xgtM/1ujXUFzGx8dPl6MzvNzCqi3yC0JsaDgZ7Oududc+Ho4k2tWWeCHu9gYIWZ3WVmm6Lb4KToOs3MroqW8RaZ2TNm1q3GY15oZm+Z2b/NrBD4o5m9Et3+28zs7Tox/p+ZfRm97nUz6xNd3tQ+ajAOM9thZgOi/7/IzJyZ7RG9fKWZPRjD49d9Hn9o7vav8zybvS/i+Dym1rhdY6/txvb7vsBavL83W8xsi5mltWabiIhI6tPxV1wfT8dfOv7S8Zf4QgklEe/DeBTetxC9gAXA69Hr9gFuZNc3EiOAQ4HngQHAXcD9NdY1ATgROBI4EPgz8I1zrrDmA0b/UBc18PNKPTEeA8yO/lE5HLgduK+Vz7sxLX28qm35GrAHMBm4KnrdjcB38bbNnkAmML7OfY8CXgJ6Aqfj7Yc9oj8Tqm5oZn8GLgLGAr2BfOCm6NVN7aPG4igEupiZAb8DlgPdo5fHAf+M4fHrPo+7m95sjWrJvojX8/iixjon0PBru8H97pxbDvwReM4519k519M5V9myTSEiIu2Ijr/i93g6/tLxl46/xBdKKInAIcAtzrl3o99AfAkscM7d5ZwLAQuBqoz+COAO59wz0eseAQaaWZaZ9QYuB37lnMt3zhUBb+EdINXinPuBcy63gZ8f1BPjSOBT4H/R3yXAC1VXmtnNZjbLzJ4zs5w4bJMGH8/MupnZx9FvYQ6qc78RwM3OuTedcxG8bUn025nfA+c55zY458rwDiBH1bjvIcDfnXPTovcdBASBoHOuzDn3fnRdffAOMM91zi13zlUA/wa+VSOGhvZRU3EUAZ2Bk/EOAhYCucCpQL5z7osYHr/W83DOlTdry+9uJA3vi6PM7EMze8/MnjSz9Dg/jy+ij9PUa7ve/V7DIcDnrdwOIiLSvuj4qxmPp+MvHX/p+EuSkRJKIl52v+a3UgfWc7mq2d0IvD+AVfoAO6J/GL8DLI9+I1ClB/Uc0LTASOAT4HhgX2Ar8DeA6EHFPs6544B3gF/VvXPNb+SAq4Grm/hGrsHHw/uD+n1qbwei374cBLxcY/FBeH/cjsM7SFxf47pewIYalw8Gnq1x+Xzgh8B688qXe0SXfwfIAD6u8ZzeALZFr29sHzUVRyHegcBleN+sbQe6A79l1zddTT1+3edRS5z3xRrgBOfc/wNWRrdXPJ/HFzVuW+9ru4n9XvM51Py2TURERMdfzXg8dPyl4y+Pjr8kqSihJB2ame2N96G+rMbikdTO5h8MfG5muXglvDXHT5/FrvLsXkD1H0rzmgF+F5hfz+O+Hv2Gqb6f1+vcNggcAMyLfuOyAni/xk2OqxHD68CxdR+v5jdywK3ArQ19I9fU4znnQs65+saQD47+rvlH71C8bdmbXX8oq/wQmB19zL2BdGrMUuGcm+6c+w7eAeUhwC+jV/UAXqzzrWI359yYGPZRo3HgfbM0CtjLOTcD70DgELw/0FNjePzdnkddcd4X651zpdGLlUAkjs8jDe8gCRp/bTe23zGzQPRxP29om4iISMei4y8df6HjLx1/SbughJJ0dIfgfWMSATCzrsDe1D4IqSo9HQGEgfPMLM3Mvo/3jcOE6O0WA0eb2b7R9dyN1wOgvpLr7zpvPHN9P9+tc/OhQA7wXTMLmjf156+B/0av786uP9Lb8P5QtUZTj9eQg/G2paux7FC8bfcJcJSZ7WNmnc1sIt5Y74eit6u7H840s/2i3750iT7Hz6O3/Qw43swOi962q5n9MHrbpvZRU3EU4pUWV32LtB24FJjsdjVkbOzxaz2POIhpX5jZYLwDjKpv2OLxPObX2JeNvbYb2+8A2dEf/b0REZEqOv7anY6/dPyl4y9JOXqBSUdXd2zxwXilpSWwW3Z/BPA4XsO/QuAG4HTn3JcAzrl3gSeBeXhjrT/HK09u8NuSGB2KV776D7xvPh4GLnHOzYleXwhUzdbRDa8kN5GP15AR1CirNbOeeE0XFzrnPgVuxvsmah3etz4nuF3TnNbdD8cC7wHFeI0Gb3XOTQdwzn0ITASeN7Md0VhPjf5BbWofNRVHId43Q09EL2/HG/v+QFVgTTx+vMeqN7kvogcY/wV+5rxx+PF6HvNr3Lax13aD+z163514TTm/NLN1rdoaIiLSXuj4q/mP1xAdf+n4S8df4hurndQUkYaY2X3AMufcHTHe/iLg+86501r5uJOArc65Wxq4fgRwjXPuPDPLAzKdc/9M1OPVuN3DeM0PF7b0seKtufso2cWw79PwZjP5R9UBXxvFFZfXtoiISFN0/LXb7R5Gx18JpeMvkdipQkkkdiPwSk/rZWZHmtne5k0vehLetw83x+FxD23scZ1zC4A1ZjYLOIVd5cMJeTwAM3sNbwaLB8zsl618vHhqdB+loKb2xbnAt4HxZjbDzM5JRBAJfG2LiIg0RcdfUTr+ajM6/hKJUVrTNxGRqINovHz6UOBVvKaAy4BfxlCmHItDmnhcnHPXxOFxmvN434vj48VTU/so1TS6L5xzjwKPtkEciXpti4iINEXHX7seT8dfbUPHXyIx0pA3ERERERERERFpFg15ExERERERERGRZlFCSUREREREREREmqVd9FDq1auXGzRokN9hiIiISALNnTt3s3Out99xyC46BhMREWlnQiHYuBE2bQLnmAsNHn+1i4TSoEGD+PTTT/0OQ0RERBLIzNb4HYPUpmMwERGRdmLzZvjb3+Cee6CiAi64AK67Dhs8uMHjr3aRUBIRERERERERkWYqKoJ//APuvBN27oTzzoPrr4f99mvyrkooiYiIiIiIiIh0JNu3w113ecmkbdvg7LNhwgQ48MCYV6GEkoiIiIiIiIhIR7BzJ9x7L9x2G2zdCmPHwg03wMiRzV6VEkoiIiIiIiIiIu1ZWRncfz/ccgsUFMCpp8LEifCtb7V4lYE4hiciIiIiIiIiIsmiogLuuw/22QcuvxwOOghmz4bXX29VMglUoSQiIiIiIiIi0r6EQvDII3DjjbBmDRxzDDz2GBx/fNweQhVKIiIiIiIiIiLtQTgMjz4KBxwAF14IffrAG2/ArFlxTSaBKpRERERSyowlBUyeuZK1hSUM6J7DuNFDGDOsj99hiYiIiIifIhF47jm4/npYsgQOOQSmTYMf/ADMqm82dV4+k95cyvqiUvrmZnPlKUM5/dB+LXpIVSiJiIikiBlLChg/bREFxWXkZqdTUFzG+GmLmLGkwO/QRERERMQPzsHUqXDooXDOORAIwLPPwmefwWmn7ZZMuuaFBeQXleKA/KJSrnlhAVPn5bfooZVQEhERSRGTZ64kPWjkZKRh5v1ODxqTZ670OzQRERERaUvOwWuveY21zzgDSkvh8cdh/nw46ywvsVTHpDeXUhoK11pWGgoz6c2lLQpBCSUREZEUsbawhOz0YK1l2elB1hWW+BSRiIiIiLQp5+Ddd70m29//PmzZAg89BF9+CeedB8Fgg3ddX1TarOVNUUJJREQkRQzonlPvt0r9u+f4FJGIiIiItJmqxtonnghr18L998PSpXDBBZDWdIvsvrnZzVreFCWUREREUsS40UMIhR0lFZU45/0OhR3jRg/xOzQRERERSZSPPoKTT4bRo72G23fdBV99BePGQUZGzKu58pSh9Va7X3nK0BaFpVneREREUsSYYX2YiNdLaV1hCf01y5uIiIhI+zVvHowfD6+8Ar16waRJ8NvfQk7LqtOrZnOL1yxvSiiJiIikkDHD+iiBJCIiItKeLVwI118PL7wAublw883w+99Dly6tXvXph/ZrcQKpLiWURERERERERET8tnQp3HADPPUUdO7sVSddfrmXVEpCSiiJiIiIiIiIiPhl5UqYOBEefRSysuCqq+CPf4SePf2OrFG+NuU2s4fMrMDMFtZYNsHM8s3s8+jP9/yMUUREREREREQk7r7+GvLyYOhQePppuOwyWLUKbrkl6ZNJ4H+F0sPAPcAjdZbf4Zz7e9uHIyIiIiIiIiKSQBs2wF//ClOmgHPebG1//jP07et3ZM3ia0LJOTfTzAb5GYOIiIiIiIiISMIVFMBtt8G//gWhEPzqV/CXv8DAgX5H1iK+DnlrxMVmNj86JK6738GIiIiIiIiIiLTI1q1eBdKQIXDnnfDjH3sNuKdMSdlkEiRnQuk+YB9gJLAB+Ed9NzKzPDP71Mw+3bRpUxuGJyIiIiIiIiLShG3bYMIEGDwYbr0VTjsNFi2C//4X9tnH7+haLekSSs65b5xzYedcBHgAOKKB201xzo1yzo3q3bt32wYpIiIiIiIiIlKfHTu8xtqDB8MNN8B3vgNffAFPPgnDhvkdXdz43ZR7N2a2l3NuQ/TiGcDCxm4vIiIiIiIiIuK7khK47z6vT9KmTfD978PEiXDYYXF7iKnz8pn05lLWF5XSNzebK08ZyumH9ovb+pvD14SSmT0JjAF6mdk64HpgjJmNBBywGhjnV3wiIiIiIiIiIo0qL/f6If31r7BxI5x0kpdIOvLIuD7M1Hn5XPPCAkpDYQDyi0q55oUFAL4klfye5e3cehb/u80DERERERERERFpjlAI/vMfuOkmWLsWRo+Gp5/2fjdDrFVHk95cWp1MqlIaCjPpzaUdL6EkIiIiIiIiIpJSKivhsce8KqRVq7xKpIce8nolmTVrVc2pOlpfVFrvOhpanmhJ15RbRETib8aSAs6dModjb5vOuVPmMGNJgd8hiYiIiIiklnAYnngChg+HCy6A7t3h1Vfhgw/gxBObnUyCxquO6uqbm13vOhpanmhKKImItHMzlhQwftoiCorLyM1Op6C4jPHTFimpJCIiIiISi0gEnn8eDjkEzj8fMjLghRfg00/he9+LKZE0dV4+x9w6ncFXv8oxt05n6rx8oHlVR1eeMpTs9GCtZdnpQa48ZWgLnlTrKaEkItLOTZ65kvSgkZORhpn3Oz1oTJ650u/QRCSJmNkAM/ufmS02s0VmdqnfMYmIiPjKOXj5ZTj8cDjrLG+o21NPwRdfwBlnxFyRVDWsLb+oFMeuYW1T5+U3q+ro9EP7ccuZI+iXm40B/XKzueXMER1zljcREUm8tYUl5Gan11qWnR5kXWGJTxFJfWYsKWDyzJWsLSxhQPccxo0ewphhffwOSzqWSuAK59xnZtYFmGtmbzvnvvQ7MBERkTblHLz9Nlx3HXz8MQwZAv/9L5x3HqQ1P43S2LC2K08ZWquHEjRedXT6of18SyDVpYSSiEg7N6B7DgXFZeRk7PrILw2F6d89x8eopKaqYYnpQas1LHEiKKkkbcY5twHYEP1/sZktBvoBSiiJiEjHMWOGl0iaPRsGDoQHHoBf/ALS05u8K9Q/Y1tjw9qqkkOxzPKWbJRQEhFp58aNHsL4aYsoqagkOz1IaShMKOwYN3qI36FJVM1hiQA5GWmUVFQyeeZKJZTEF2Y2CDgU+Kie6/KAPICBAwe2bWAiIiKJ8sEHXiJp+nTYay+491749a8hM7PBu9RNHh0/rDfPz83fbca23Jx0CktCu92/alhbMlUdNYcSSiIi7dyYYX2YiJe0WFdYQn8Np0o68R6WqOFz0hpm1hl4HrjMObe97vXOuSnAFIBRo0a5Ng5PREQkvj79FMaPh9dfhz594Pbb4aKLILvxmdOq+iLVTB49Pudr6v5hLA2FyUwLVH+xW8XPZtrxooSSiEgHMGZYHyUUklg8hyVq+Jy0hpml4yWTHnfOveB3PCIiIgkzf76XSHrpJejRA269FS6+GDp1iunu9fVFauhblm2lIe44Z2RKDmtrjBJKIiIiPovnsMRYhs+pgknqY2YG/BtY7Jy73e94REREEmLxYpgwAZ55Brp2hRtugMsu8/7fDA31RapP39zslB3W1hgllERERHwWz2GJTQ2fi7WCSUmnDukY4GfAAjP7PLrsz8651/wLSUREJE6WL/eSR088ATk5cO21cMUV0L17THev2y+pob5IRu1KpfYwtK0hSiiJiIgkgXgNS2xq+FysFUwaNtfxOOdm4x0Hi4iItB+rV8ONN8J//wsZGV4S6U9/gl69Yl5Fff2S0gNGetAIhXelj7LTg/zo8H78b8mmdjW0rSFKKImIiLQjTQ2fi6UBuGadExERkZSXnw833wwPPghm8LvfwTXXwJ57xnT3mhVJATPCrnaHpFDEkZudTqfMtA6RPKqPEkoiIiLtSFPD52JpAB7vWedERERE2szGjV6D7fvvh3AYLrzQG97Wv3+9N6+ZOOqWnY4ZFJaEag1dq5tMqrKtNMTn15+cmOeRApRQEhERaWcaGz4XSwPweM46JyIiItImNm+GSZPgn/+Eigr4+c/huutg8OAG71J3KFtR6a6eSA3N2FZT39zs1kad0gJ+ByAiIiJtZ8ywPkwcO5w+XbLYVhqiT5csJo4dXisBNW70EEJhR0lFJc55v1s665yIiIhIQhUV7UocTZoEZ57pzeT20EONJpMAJr25tDqZ1Fztudl2rFShJCIi0sE01QA8nrPOiYiIiCREcTHcdRf8/e+wbRucfTZMmAAHHljvzRsa2tYcQTMiznXIfkn1UUJJREREdhOvWedERERE4mrnTrj3Xvjb32DLFhg7Fm64AUaO3O2mVUmk/KLSWj2Rag5ti1V2epBbzhzR4ZNINSmhJCIiIiIiIiLJrazMa7R9yy1QUACnngoTJ8K3vrXbTafOy2fCtEXN7olUV1USqp8qkuqlhJKIiIgPZiwpYPLMlawtLGGAhpSJiIiI1K+iAv79b7j5ZsjPh+OPhxdegGOO2e2m9SWSmiM3OhSuqCSkYW0xUEJJRESkjc1YUsD4aYtIDxq52ekUFJcxftoiJoKSSiIiIiIAoRA88gjceCOsWeMlkB591Eso1dHaRBJ4VUjvX31CayLucJRQEhERaWOTZ64kPWjkZHh/hnMy0iipqGTyzJVKKImIiEjHFg7DE094fZFWrPCGtE2eDCefDGa1bhqPRBJoxraWUkJJRESkja0tLCE3O73Wsuz0IOsKS3yKSERERMRnkQg895w3U9vixXDIIfDSS3DaaXFLJFX1RNLQtvhQQklERKSNDeieQ0FxWXWFEkBpKEz/7jk+RiUiIiLiA+e8xNH118P8+XDggfDss3DmmRAI1LppayqSuuekc/1pw5U4iiMllERERNrYuNFDGD9tESUVlWSnBykNhQmFHeNGD/E7tN2oebiIiIgkhHPwxhtw3XUwdy7stx889hj85CcQDO5286nz8rnmhQWUhsLNehglkhJHCSUREZE2NmZYHybi9VJaV1hC/yRN1Kh5uIiIiMSdczB9updI+vBDGDQIHnoIfvYzSKudopg6L59Jby4lv6i02Q+jRFLiKaEkIiItpuqVlhszrE/Sbys1DxcREZG4mjXLSyS99x707w/33w8XXAAZGdU3aU0SCZRIaktKKImISIuoeqX9U/NwERERiYuPP/YSSW+9BXvsAXfdxbQjvs9tM9aQP/7t6mbZraFEUttTQklERFpE1Svtn5qHi4iISKvMmwfjx8Mrr0CvXjBpEi8ffTp/ev0rSqcuqb5Za5JJSiT5RwklERFpEVWvtH+p1DxcREREksiiRd6sbc8/D7m5fPm7q7iw65Gs35wO05bG5SGCZvzjx4cokeQjJZRERKRFVL3S/qVK83ARERFJEsuWwYQJ8NRT0LkzS/7vMn7e7WgKgjkQid/DZKcHueXMEUom+UwJJRERaRFVr/ijrRuhp0LzcBEREfHZypUwcSLu0UcpC6bzn2//iClHnElRdte4P1S/3GyuPGWokklJQAklERFpEVWvtD01QhcREZFk8ubrn1B83QR+OO9NwoEgjx12GvcfeRabO3WP6+MoiZSclFASEWlDbV1dkmiqXmlbaoQuIiIiyeD1tz5jy7UTOHve65iDJ0aeyr1H/piCLj1bve6AQcQpiZQKfE0omdlDwA+AAufcQdFlPYCngUHAauDHzrlCv2IUEYkXVZdIa6kRuoiIiPhq0yZm/98fOf7Vp0gLV/LsiBO55+ifkN+t5ceymqUtdfldofQwcA/wSI1lVwPvOuduNbOro5ev8iE2EZG4UnWJtJYaoYuIiIgvtm6Fv/+d8jvu5KjycqYOH8NdR5/L1933atHqOmUEufkMNdVOdb4mlJxzM81sUJ3FPwTGRP//X2AGSiiJSDug6pLEaW9DCRuiRugiIiLSprZtgzvuIPSP2wnu2MGbBxzHXcecy4qeA1q0OiWS2he/K5Tqs4dzbgOAc26DmbW/MwIR6ZBUXZIYHWkooRqhi4iISJvYsYO3fnMtRzz3ELllO3h3/6O449jzWdp7ULNWY4BD/ZDaq2RMKMXEzPKAPICBAwf6HI2ISNNUXZIYHW0ooRqhi4iISMKUlrLw2lvYa/LdnFyyjXf3+Ra3H3s+i/bct1mrUV+kjiEZE0rfmNle0eqkvYCC+m7knJsCTAEYNWqUa8sARURaQtUliaGhhCLxU9+EKSIi0gGUl8MDD1B2w40ctLmAWXuP5Pbjfsq8fsNiuruGsnVMyZhQmgb8Arg1+vslf8MREYkfVZfEn4YSisTVw+w+YYqIiLRXoRD85z9w002wdi2L9h7BbSf/gY8HxP6dwk+PHMhNp49IYJCSrAJ+PriZPQl8CAw1s3Vm9mu8RNJJZvYVcFL0soiISL3GjR5CKOwoqajEOe+3hhKKtIxzbiaw1e84REQkwSor4eGHYehQGDeOrbm9+dV5N/Ojc/6qZJLEzO9Z3s5t4KrvtGkgIiKSsjSUUERERCRGkQg8/TTF1/yFLmtWsmCPfbj9rOv535BRYBbzajTETSA5h7yJiIg0S0cZSjhjSQGTZ65kbWEJA5Q4E59oYhQRkRQUifDx7Q/S429/Zd9Na8jvtTd3nPFn3tzvqGYlktRsW2pSQklERCQFzFhSwPhpi0gPGrnZ6RQUlzF+2iImgpJK0qY0MYqISApxjg/vfoRut0zkiG9WsqJHf35/2pW8csBxOIutA44Z3PHjkUoiyW6UUBIREUkBk2euJD1o1c3HczLSKKmoZPLMlUooiYiISG3Owdtvs/WKqzlq4TzW5O7JH75/OS8dOIZwIBjzagwlk6RhSiiJiIikgLWFJeRmp9dalp0eZF1hiU8RSXsUnTBlDNDLzNYB1zvn/u1vVCIi0izvvcfq31zOoMXzKOnam9tO/T3PH/QdKoPNP/0//8iBSiZJg5RQEhERSQEDuudQUFxWXaEEUBoK0797jo9RSXvTyIQpIiKSxP4ydQFfPv8mf5j1GMeu+YLszj247qSLePrgU6hIS296BfXQDG7SFCWUREREUsC40UMYP20RJRWVZKcHKQ2FCYUd40YP8Ts0ERERaWNT5+VzzQvzKQ1FOGjjcq6Y9Sg3rZzLppxcbjzhQh4b+V3K0zNbtG413pZYKaEkIiKSAsYM68NEvF5K6wpL6K9Z3kRERDqMqfPymTBtEUWloeplwwpW8YfZj3PyV3MozOrCrf/vl/z3sB9QmpHVrHUrgSQtpYSSiIhIihgzrI8SSCIiIh3M+Q98yPsrtlZf3mfzWi5//wl+sGQW2zNyuP3Y83lo1A/ZkRn7MPhOGUFuPmOEkkjSKkooiYiIiIiIiCSZqfPyufLZzwlFvMt7F67n0vef5IdfvkdZWgb/POocHjjiDLZndW7WetUbSeJFCSUREUk5M5YUMHnmStYWljCgFUO/4rUeERERkXiaOi+fPzzzOREH/bYV8PsPnuKsBe8QCqbz4LdOZ/K3f8TWnG7NWqeGtkm8KaEkIiIpZcaSAsZPW0R60MjNTqeguIzx0xYxEZqVDIrXekRERETi4S9TF/DYnK+rL+9RvJmLP3yGc754C2fw6GHf519H/phNnbvHvE4NbZNEUkJJRERSyuSZK0kPGjkZ3p+wnIw0SioqmTxzZbMSQfFaj4iIiEhL1JypraZeOwv5zZzn+Om81wi4CM8cfBL3HHUOG7r2bnKdSiBJW1JCSUREUsrawhJys9NrLctOD7KusMSX9bQ1DdMTERFJfXWrkQC6l2xj3Mcv8PPPXiGjMsQLB53A3Uf/hHW5eza4HgPOV08k8YkSSiLSpnQyLK01oHsOBcVl1ZVFAKWhMP27xz6zSTzX05Y0TE9ERCQ1NVSNBNC1bAcXfvwiv5o7jZyKMl468P9x1zHnsrpH/VVGmWkBbvvRwapCEt8poSQibUYnwxIP40YPYfy0RZRUVJKdHqQ0FCYUdowbPcSX9bQlDdMTERFJHfVVIdXUqbyEC+ZO4/8+fpFu5Tt5degx3HnMeXzVe+8G76MZ2iSZKKEkIm1GJ8MSD2OG9WEi3utpXWEJ/VtY6Rav9SRKfdV8qTpMT0REpCNorAqppuyKMn4+7xXGffQCPUq38/a+3+aOY8/nyz0a/1LrmH16KJkkSUUJJRFpMzoZ7lgSObxxzLA+cVlXvNYTbw1V83XJTKM0FG6TYXoanpq8zGwfYJ1zrtzMxgAHA48454r8jEtEpCObOi+fy57+vNHbZFZWcP681/nNR8/Se2cRMwYfzu3Hnc/8vfZv9H4Bg/O+rcokST5KKIlIm0nFnjXSMh1xeGM8EzANVfM55wiFXUzD9FoTT0fcfynmeWCUme0L/BuYBjwBfM/XqEREOqimhralh0OcM/9tfvfB0+y1YwsfDDyYi07/M3P7H1jv7dVoW1KFEkoi0mZSsWdNqki2apJ4DG9MtufUmHgnYBqq5ttWGuLGHx7U5DC9uvGs3rKDcY/NpXNmkP336NrkttTw1KQXcc5VmtkZwJ3OuX+a2Ty/gxIR6UiaSiIBpIUrOXPhdC754Cn6by/gk34H8ocfXMGHex+8220NuOOckWq0LSlFCSURaTPJ3rMmVSVjNUlrhzcm43NqTLwTMI1V88UyTO+2N5ZQsL2MsHMEzaiMOMygLBSJaVtqeGrSC5nZucAvgNOiy9Ibub2IiMTJ1Hn5/OHpz2msS1IgEmbs4plc+v4TDC7cwBd77se1p/yO9wYfBma73b5TRpCbzxihZJKkHCWURKRNJWvPmlSWjNUkrR3emIzPqTFNJWCaW23Vmmq+GUsKWFawg6BBMGCUV0ZwDtIDRkU4UmtbAvXGpeGpSe8C4CLgZufcKjMbDDzmc0wiIu3e+Q98yPsrtjZ4vbkI31vyPpe9/wT7bVnLl30Gc+GZ1/HOvkfUSiQpgSTthRJKIiIpLhmrSVo7vDEZn1NjGkvAtKTaqjXVfFXJOBcBw8B5ZfSVEUdORhDwtuVXBcUNxqXhqcnNOfelmV0FDIxeXgXc6m9UIiLtV5PD25zjpOUf8YdZj3HAptV81XMAv/nh1bwx9GicBdQTSdotJZRERFJcMlaTtHZ4YzI+p8Y0loBpabVVS6v51haWsEeXTNZvK6OqHt9Fr+vVORPwtmVFZYRu2fXH9WTekRqemsTM7DTg70AGMNjMRgITnXNjfQ1MRKQdiaVHEs4xZuVcLp/9OIds/IpV3ffi0h9cwcsHjCYSCHLMPj14/P+OapuARXyghJKISAqbsaSAwp3lrN6yk/RAgD26ZpIWDPheTdLahtrxrpBJdIPvxhJof3lpYZtWWw3onsPqLTsIABXhSHUyKT0AXbK8pFEo7EgPGtnpwQbjitfw1FRqrp5CJgBHADMAnHOfR4e9iYhIK8XSIwngqDVf8MeZj3L4+iWs7bYHV373Ul446ATCAe9v609VkSQdgBJKIiIpquZQqv652XxTXM66ojL279OZ674/zLeT9ng01I5nA/e2avDdUAKmraqtqhI3i9ZvY3tZJQGDjDQj4qAy7NizWzbbSkPV23LyzJUJjyvVmqunkErn3Dar3djVNXRjERFpWkwVScCodYu4YtZjHPX1AjZ07smfT/kdz444kVAwHUOJJOlYlFASEUlRdYdSdc3OoKSiktycDF9P1uPVUDteFTJ+N/hui35ENRM3leEIQYOIg1DYkZ0epGenNPp3z+HJvCNr3S/Rcfm97duxhWZ2HhA0s/2AS4APfI5JRCTlTJ2XzzUvzKc01FQ9EhyyfilXzHqM0avnsalTLhO+k8eTI0+lPC1DQ9ukw1JCqR3RsAKRjiVZG1cnW1x+xxPPaquG1EzchCKO9LQALgJpQWNI784453Z7vm0Rl9/bvh37PXAtUA48CbwJ3OhrRCIiKaI5SSSA4d+s4PJZj3Hiik/Ymt2Vm8f8ikcP+x5l6VmkBYw7zz5Es7VJh6WEUjuhYQVSHyUZ27dkbVydbHElQzwtqbZqzvu3ZuImIxigMuIw83oogfd8O2UEOXfKnN3Wl8jPhGTY9u2Rc64EL6F0rd+xiIikkqnz8rns6c9juu1+m9Zw+ezH+d6yD9iW2YlJx/2Mhw8/jZ2Z3t8wVSWJQMDvACQ+an47beb9Tg8ak2eu9Ds08UlVkrGguKxWknHGkgK/Q5M4GTd6CKGwo6SiEudcdbNlv6d2T7a4ki2eWDT3/Tugew6loTAAvbtk4hyEnSMjGKCkopJtpSG27Kxo88+DVNz2yczMXjazaQ39+B2fiEgyizWZNHhrPndNm8SbD13McavncdfR53LcRf/m3qPPYWdmDp0ygtx5zkglk0RoJxVKSzYWc+6UOR26+kLDCqQu9S5p/9piyFJ7iCvZ4olFc9+/Nfs0dc5Mo2fndLbuDJGdHqBPlywyggEqwpE2/zxIxW2f5P7udwAiIqmkOcPb+hdt5NL3n+LMRdMpT0tn8rd/xORvn0lRdldVI4k0oF0klNIC1uGHeGlYgdSlJGPHkOghSy2VbHElWzxNae77t27iZlDPztxyxq7EzbG3Tfft8yDVtn0yc86953cMIiKpItZZ2/bavonff/A0Zy94m4gF+M/hp3H/kWexuVN3MtMC3Pmjg9UjSaQB7SKhBIn5tjWV+s80dxahVHpu0jJKMoqkrpa8fxtL3OjzoH0ws2eccz82swWAq3u9c+5gH8ISEUkK5z/wIe+v2Brz7Xvv2MrvPnyGc794A3PwxMhTuffIH1PQpac3rO2MEUokiTSh3SSUIL7ftqZak+vmDCtItecmLdMWU5WLSGK05P3b2BcF+jxoNy6N/v6Br1GIiCSRWCuRqvQo2cZFc57j5/NeJS1cybMjTuSeo39CUe+9uFlJJJFmaVcJpXh+25qK/WdiHVaQis9Nmk+9S0RSV3Pfv019UaDPg/bBObch+t/fOueuqnmdmd0GXLX7vZrHzE4F7gKCwIPOuVtbu04RkXhrbjUSQLfSYvI+foFfzn2ZrMoKpg4fw11Hn0vm0H15/w9jEhOoSDuXtAklM1sNFANhoNI5N6qx28d75pj23H+mPT83qU29S0RSV3Pev7F8UaDPg3blJHZPHn23nmXNYmZB4N7o+tcBn5jZNOfcl61Zr4hIazSnsXZ9upTv5FefvMSvP5lK14oSXh52HHceex4reg5Qs22RVkrahFLU8c65zU3dKBxx9OmSFddvW2PpN5GqfYjUS0MkNaTqZ0xj2uNzakpbPGd9UdAxmNlvgN8CQ8xsfo2rugDvx+EhjgCWO+dWRh/vKeCHgBJKIuKL5g5nqymnopRfzn2ZvI9fILdsB2/sfxR3HHs+S3sPUo8kkThJ9oRSTIbu2YUn846M6zqb6jeRyn2I1EtDJPml8mdMQ9rjc2pKc55zaxJPVV8UhCOOTcXlVIQjBM0Y3KtTAp6V+OgJ4HXgFuDqGsuLnXPNG/tRv37A2hqX1wHfrnsjM8sD8gAGDhwYh4cVEdmlNUkkgMxQOT+b9yoXffQ8vUq28e4+3+L2Y89n0Z77csw+PXhTFUkicZPMCSUHvGVmDpjsnJvSlg/eVL+JVO5DlMheGh2x+kAkEVL5M6Yh8XhOqfYZE+tzbm2ybdzoIVz53BcUloQIGBhQGXFs2lHOjCUFSb2NJHbOuW3ANuDc6PC0PfCO5TqbWWfnXMvPwDxW38PWE8cUYArAqFGjdrteRKQlps7L5w9Pf07LBrZBRmWIn3zxBr+b8yx77NjKrL1Hcsdx5/NZvwNUkSSSIMmcUDrGObfezPoAb5vZEufczKor2+Lbscb6TbTV8IJEnTwlopdGR6w+EEmU9jiEqbXPKRU/Y6qe8/bSEJt3eJVDGcEABdvLOHfKnOrP9qKSCtKDRjjiWLV5Z3WF0W1vLInpuY0Z1oeenTIoLq8kHHFkBAP06pxJWtBSOgkp9TOzi4EJwDdQfe7lgINbuep1wIAal/sD61u5ThGRJrWmKiktXMnZC97h4g+epl/xJj7qP5yXr/47F157AcfFOU4RqS3gdwANcc6tj/4uAF7EG9df8/opzrlRzrlRvXv3bvP4BnTPoTQUrrUs3n2Iqk6eCorLap08zVhSELfHiKea38Sbeb/ToyczItI8bfEZ09Za+5xS8TNmQPccNu8oZ/22UirDjqAZZZVhisvDrNq8o/qzfVnBDopLQ6wvKqMy4ggGjIhzLCvYEfNn/o6KMPv27sywPbsypHdnumanp3wSUhp0GTDUOTfcOTci+tPaZBLAJ8B+ZjbYzDKAnwDT4rBeEZEGnf/Ahy1KJgUjYX604F2mPzCOW968h4LOPfjP9ZP59tcLuPDaCxIQqYjUlZQJJTPrZGZdqv4PnAwsbOs4Ziwp4Nwpczj2tumcO2VOrYP6caOHEAo7Sioqcc7FfZY5SL2Tp7WFJWSnB2st08mMSMu0xWdMW2vtc0rFz5hxo4ewZWcFobCjIhyhPBwhHIGgQXFZZa3P9k07KjCDgBlV/5rzmd8ek5DSoLV4Q9/iyjlXCVwMvAksBp5xzi2K9+OIiEydl88B173OoKtf5f0VzWsBZy7C2C/f461//5Z/vHYHaT27wyuvcGj+Yi6YkAdW3+hdEUmEZB3ytgfwonkfBmnAE865N9oygKaGViSyD1GVVBvyotnjROKnLT5j2lpLn1PV0N9NxeVs3lHOHl2y6Br9bEyFz5hwxGsx4wCLdpsJGFSEd3WJ2KNLJmu2luKcwwHOQQRH3y5ZMX/ma8KFDmUlMMPMXgXKqxY6525v7Yqdc68Br7V2PSIi9Zk6L58rn/2cUEsaJTnHKcs+5C8fP8mA9avgoIPgwX/S9/TTlUQS8UlSJpSi09Ue4mcMsTRSTUQfoppSLUGjkxmR+Er0Z4wfmvucaib39+yaSX5RGflFpYAjLRhI+s+YyTNXkpEWwEUgEPAOdstCYUIR6JSxq0g4LRggOz2Agxo9kLJICxp9umTF9FjtMQkpDfo6+pMR/RERSWqtTSSdsOIT/jD7cQ76ZgUMHQpPPgk//jEEknLAjUiHkZQJpWSQDNVBqZag0cmMiFSJ14QCdZP7ZsbGbWVs3F7OYQO7J/1nzNrCEvboksn6bWUQ8b5ADQagMgJdstJwzlV/tv/m/+3Dc5/lkx60Fn/mt8ckpOzOOXeD3zGIiMTq/Ac+bPawNgCc46Ly5Vw95yn46CMYMgT++1847zxI02msSDJoH+/E5cvhL3+BESO8n/32g/T0pu/XiGSoDmpJgsaPKbVTbRpvEUmseM7GVje53yUrnc6ZaWwrDfFk3pENPn68P5Naus6qvyV9u2VXz/KWFgywZ9cMBvTotNtn+8H9c5M+Ka/PfP+ZWW/gT8BwoLqEzTl3gm9BiYhETZ2XzzUvzKe0ReVInm9/vYDbvniWQV9+BgMGwAMPwC9+0epzPBGJr/aRUBowAI44AhYsgBdfhHXrYP/9dyWYRoyAPn2aNbY2WaqDmvNtc6Km1G7s5KGtp/HWiYz4Qa+75ollyHCsmpvcT8RnUmvWWfW3JD1oDO7VqfpvycSxw2t9jk6euZK/vLQw6V9fbf2ZLw16HHga+AFwEfALYJOvEYmI4CWTLnv68xbf/7D8xVwx6zGOWfMF7LUX3HMPXHghZGbGL0gRiRtzzvkdQ6uNGjXKffrpp7sWlJTAokVegmnhQu93WpqXWDroIO/3AQdAVuN9KaoO8pP5m+Kazp0yZ7cTr5KKSvp0yWrwm/ym1Dx5qJlYqzoZSsRjtjQWkUTQ6675jr1tOrnZ6ViNJL5zjm2lIWZd1bwCiuZu/0R8JrV2nY39LWns+QHNTmQmOvlZ37bYvKOMopIQ0d7jDOnViatOHZaQ94eZzXXOjYr7ilNMdDscbmbznXMHR5e955z7f20dy27HYCLSoQ39y+uUVza/Mumgjcu5YtajHL9yLvTuDddcAxddBNnZCYhSRJqjseOv9lGhVFdODnzrW94PeNPlbNjgJZYWLIA774QVK2DQoF0VTAcd5FU61TgBak0vCj8qGhLR96mpSoO27DUVz6oHkVjpdVdbLJ9t8Rwy3Nyhv/H+TJqxpIDPvi4k4qoaZWfSNTu9Wets7G9JQ6+vW19fTEko0qxKoLaoHqq7fYvLQnyzrZwIkBH0/n5+VbCDK5/7gklnHdIh3yNtJBT9vcHMvg+sB/r7GI+IdHB/mbqAx+Z83ez7DStYxRXvP8FJyz6EHj3gllvg4ouhc+cERCki8dY+E0p1mUHfvt7PKad4yyoqYMkSr4Jp1iz417+8yqaaw+SGD2/Rh5lfQwJiPYlrTrKrqZOzeJ04xhJTMjRKl46nPb/umpv4jvWzLd5DhpuT3I9nMqvq+RpgQGXYsX5bKQBpQWvxOmtu82XfbGevbrW/fc1OD/JVwQ76d89uViKzLZKfdbfvpuJyHN72CUZn2jHnKC7ruEnXNnKTmXUDrgD+CXQFLvc3JBHpiKbOy+cPT39Oc2uS9tm8lis+eILvLZ4FXbvCDTfAZZd5/xeRlNExEkr1yciAgw/2fqps2rRriNy//w2LF3tjd6uGyY0Y4c0u0MT0lH5VNMRyEtfcZFdTJ2fxOHGsL6Y/PvcFvTtnUlxeWX2imwyN0qXjSaXXXXMSRC1JfMf62ebnjI/xTGZVPd89u2WxvqgMDMzBN8Vl9OmStds6m9r+9W3zHeVhNu8op3eXXUOwS0NhwEss1dRUIrMtkp91t29ZZRgHpAd2VfeaQWU40i6SrsnKOfdK9L/bgOP9jEVEOqaWViTtXbieyz54itO/nIFlZ8Of/wxXXOFVJ4lIyokpoWRmZ9azeBuwwDlXEN+QfNS7Nxx/vPcDUFnpDY1bsAA+/xwefRQ2b/Yql6qGyR100G4fgH5VNMRyEtfcZFdTJ2fxOHGsG1Nl2FFUEmJHWSX79ulcfaJ71mH9eO6zfN8bpUvHkiwN+pvS3ARRSxLfzfls82v6+ngms6qer5nRN9erximvjGDOduvhNGNJAVc+9wXFZZVURiJsLi7fbdhXfdu8R6d0tu4M0Skzrdbra0i0gXdzEpltkfysu307ZaRRFgpj1OyXBWmBQFImXdsLM/sPsFsTTOfcr3wIR0Q6kJYmkvptK+CSD57irIXvEszMgD/8Af70J+/8S0RSVqwVSr8GjgL+F708BpgD7G9mE51zjyYgNv+lpcHQod7PWWd5y7Zt29Xw+5lnYPx4rzSzxlC5QV0z2FBS6UtFQ1Mncc1NdsVyctbaE8e6MW3eUU7AIOwcZlZ9ovvhyq1MHDs8pRqlS+rzs9qmOZqbIGpJ4jtVqrXilcyq+Xy7ZKXTJSu9uhl33fXf9sYSCktCBANGWjCAc1BYEuK2N5ZU37a+bd6zUyahsKNPl6xary+g2YnMusnPLTvL2bozRFFJBedOmRO3123N7TtjSQF/fO4LikpCuGhX7oiD7jnpSZd0bWdeqfH/LOAMvD5KIiJxNXVePhOmLaKoNNT0jeuxR/Fmblr0Eid98IpXwnrx7+Dqq71RICKS8mJNKEWAA5xz3wCY2R7AfcC3gZlA+0wo1adbNzj6aO8HIBKBNWt2zSj30kvcu2wlswM9+HqvweT335clvQexLSc3KQ6uW3JCmOhKg7oxVYQjGJAR3DW0sOpE16+qB+nYUuF119wEUUs+C1KlWitemvN8V27eScAgEJ3YwQycOVZu3ll9m4a2+X59utQ7W1xzE5k1k59fFRRTXFZJ95x0enXOpKC4jCuf+4KenTLYURGO22QRY4b14e9nHcKtry9m1RbvtbZf78TN8iYe59zzNS+b2ZPAOz6FIyLt1PkPfMj7K7a26L69dhbymznP8bPPXyMDB7/+NVx7rTcJkoi0G7EmlAZVJZOiCoD9nXNbzaxl6er2IhCAwYO9n7FjAehWUsKer81m7cszGbHgA3685Wn69+xEj82H7xoqd8ABCZ0Gs6FeHsl4Qlg3pmDAqAw7enfJrL6Nn1UQfszYJ9JczU0QteSzIFWqteIl3s+3udu8JYnMqvucO2VOrddDOOIoLAlRXF7Jvr07x3WyiFRIuHYA+wED/Q5CRNqPliaTcku3c9FHz/Pzz14hM1xJ8Bc/h+uu886VRKTdiTWhNMvMXgGejV4+C5hpZp2AokQEltJycjj8rJM5/KyTvcvOwYYNXhXTggVw112wfDkMGlR7VrkBA7yvtVupqV4qyXZCWDemQT1y2LKzgmDAcM75mvRK1Ix9SlJJvLUkWdGSz4KOljyI9fkO7pnD8k07sYjzqpOcN/Rr3167Enpt+flbt2JtU3F0KHGk9lBizcSWmsysGKon2HPARuAqX4MSkXZh6rx8rnlhPqWh5s3b1rVsB7/+ZCq//vQlckJlBM49F66/HvbfP0GRikgyMOd26+m4+43MDDgTOBbv4GU28LyL5c5tYNSoUe7TTz/1O4zmqaiAJUt2zSq3YAGUlOxq9H3QQcxO6829n29pdtKh7jfTQHXfj/qGVSSjqoSL30mvRGzLmkmqmif+dZv8ijRXLO8bJTMTo6qX0I7ySsIRRzBgdM5M4+81mnK3pbqfXUs2bseA9GCAIb07A+CcY1tpiFlXndDm8bWUmc11zo3yOw7ZJSWPwURkNy1ttt2pvIQL5k7j/z5+kW7lO8k/8fv0u/M2bxIjEWkXGjv+iqlCyTnnzOx9oBKvn9InyZJMSlkZGXDwwd5PlU2bvATTokWsv3syXT6ex8U5XVnXdwjLew/k4cWDsAtO4f8d3PjYY79mmYunllZBxPtkORHbsiWza4nEoqn3TaIq7mRXL6FkSIRDPUOJzaiMOHp1To6hxNJyZpYNnA8cGF30KfCcc67Cv6hEJJW1JJmUXVHGz+e9wriPXqBH6Xav9ccNN9Bv5MjEBCkiSSmmhJKZXQiMB6bjVSj9Mzq720OJDK7D6d0bjj8ejj+eKzLmsOnwEgbt2MzADavYe8NKvr3kI/Z8+W448mAv6z98uFfNNGiQ18spqi1nYkqmaodEnCwnYlu2h4SfpCY/k5nJ9FmRKMk0HLDu8LreXTLZsK2UdUUlZBYH6JaTTnowmNChxB1hn7c1MxsBvAy8B8zFOyY7BbjczE4C/uic+4uPIYpIimluMimzsoLzPn+d3855lt47i+CUU2DiRDjiiMQFKSJJK9YeSlcChzrntgCYWU/gA0AJpQSpSjp8k9WXb3r15ZMRx+Cco6R4J9NP6wuLFsFHH8FDD8HWrXDggdVJpouH78E175fG1EulNQf8dRM4qzbvYNxjc+mSlcZ+fbq0+clDIk6WE9HEPFWmXpfa2sPJsV/JTFVG+aMqwVW1/Xt1zqS4rJLyyghbd4b43ZiBCdv+2ucJczfwf865t2suNLMTgYXAIl+iEpGU1JzG2+nhEOfMf5trP3+B7IKN3pfgN94IxxyT4ChFJJnFmlBaBxTXuFwMrI1/OFKloaTDHr1zdx8qt22bl2BauBBeeoljFi3ixQrHh1l7sKBbf3buO5RTzjqB4+rppdKaA/6aCZztpSG27PSq7UvKK305eUjEyXIimugm40x70rj2cnLc0OdK58w0zp0yJ2HJMg3z9FfV9u+WnUXvLt6ykopKPly5lUsS/Jja53G3V91kEoBz7p3orLtn+BCTiKSgWJNJwUiYMxe+y6XvP0X/7QVw9NHw5ONwQur03xORxIk1oZQPfGRmL0UvjwU+NrM/ADjnbk9EcB1Zs5IO3bp5H+5HH+1ddo6eGzbwg4UL+cHChbDoA7jsYdhzz1pD5R6csaVVB/w1Ezibd5QTwLAAhCLOl5OHRFX+tGYYS0NVLck20540rr2cHNf3ubK9NIQDKsKRhCXLln2znbJQhIpwhIxggF6dM+mSlebrMM9UqDiLV4x+VKZpaG/CBMws0zlXXnOhmWUBIeecNrCINOkvUxc0mUwKRMKMXTyTS99/gsGFGyg88BD4x3+9IW5xmJVaRNqHWBNKK6I/VY24X4r+v0sigupIGjphaFXSwQz69vV+Tj7ZW1ZZCStXelVMCxfCc8/xp4++5Js9BrB2r8F8vddg1uw1mE3delcf8Dd1MlMzgVMRjhA0wznICHr9nLLTg3xVUBz3yoeG4ho3eghXPvcF+YWlVEYipAUCdMlK47rvH9j0ShOgqaoWP3tNJfuJdLJJlpPj1u67+j5X0gNWnQSG+CfLZiwpYEd5mIhzXmPosGP9tlJ6VmYwuFfnVq+7JdsjFSrO4hmjH8NsY3lMfRa1yCPA82Z2sXNuNYCZDcIbCveoj3GJSAp5vJGeSeYifHfpB1w++3H227KWbfsfCA/fT/fTTlMiSUR2E2tC6TXgz8CgGvdxzrmDG7yHNCmWhEPcDq7T0mD//b2fM88E4B/3zCB7xTL23/w1I776jO/PfJ608nIKBuzDstK5PPtNJqV9B5HbrXu9JzM1qx0yggEqwhEMo3cXbxahLTvLKS7zhr9VPb8/PvcFvTtnUlxe2aITiMa2GUQzngZmBrYrA+qHZKxqSYUT6WSUDH2v4rXv6n6uHHvb9IQmyybPXEmPTuls2eFVQlkAiEBhSYhbWzHMszXbIxnfm3XFM0Y/htk29Zj6LGoZ59xNZnYxMNPMqj6AdgJ/d87908fQRCRFnP/Ah/UfHzvHScs/4g+zHuOATavZPng/uP9Zup15Zq3Jf0REaoo1ofQY8Ee8ho+RxIXTsfh9UnPBiQcyvsTxVf/9yf6Wd8Cfs72Iifsas1+fzcmrlzHkna8pyerE13sOYnnvgby5/WvG/PlsyMmpVe2wraSCyoijR6d0Omd6z2PrzhDdc9Krn19l2FFUEmJHWSX79uncohOIxrYZQLfsdPbqll19++Zsz3h/W54sVS01xfM1l0rVBa2NNRn6XiXq8yLRybK1hSX07JRJZlqQTcXlVIQjpAeMnMy0VsXdmu3RVu/N1rzuYo0xlsfwY5htU48Z0/6LRODrr+HLL3f9CM65e4B7zKxL9HJxE3cREWHqvHyufPZzQnXP5JxjzMq5XD77cQ7Z+BWru/fl05vuZtTVv4Vg0JdYRSR1xJpQ2uScezmhkXRAficc6j3g//7RHDqsD79f34XcI8cScI5eRQXsvWElAzasZvhrj7PkqdvZkJPL1oH7MOyEI3nyxCNh6KHMWLWt1rqKSiro1Tmz+vE27ygnYBB2DjNr0QlxY9vMQYu3ZyK+LU+Gqpa64vWaS6XqgnjEmgx9r9YWlhA0WLlpR41eRBmt/ryIR7KssaRG1fugS1Y6XbK8115JRSV9umQ1az11tea13Bbvzda+7mIdMhbrY/gxzLaxx9xt/zlH35JCei5ZAWUfe8mjxYu9HoEHHuj9HH88/Oc/bRR98lMiSUSaMnVePhOmLaKoNFTv9Uet+YIrZj3GqPzFrOvah8m/+DPjHryBQWmxniKKSEcX66fF9Wb2IPAuUN0I0jn3QkKi6iCSIeHQ0AF/zdg29diTTT325PWBh1E4IsTArhkM3v4Ne+avZMtbH9NrxlvssWUDY/bemzFVB/4H9uWn/6tkQ0ll9fPzhsTt6rEEzU9mNLXNWro9E1H9kQxVLXXF6zXnd3Vdc8QrVj/7XgF0zgiyfNNOgmbVvYjyi8rYt3enVq23sWRZLAmeppIasb4PmpuAac1ruS3em6193cUSYyq9D+salhGi07JF7Ld5LQM3rmLAxtWEHRQM2AeO+A78/OdwwAHQvbvfoYqIpJy/TF3AY430SRq1bhFXzHqMo75ewIbOPbn25N/yzMEn8dWk09suSBFpF2JNKF0ADAPS2TXkzQFKKLVCS05q2mqYUX2xFZaE6NEpnazsTDZkD2TDHgN5v6KS/3XJ4slfHgZffQWLFsGCBfDUU9y7Yg0fksvaPQexod9gytL7sLprH3rn7hqS1txkRlPbrKUniYmoFkuGqpa64nUi7Xd1XXOkUqyNsapGmBb9AXA1lrdCfcmyWBM8NZMaxWUhNhWXU1YZ5pKn5nH3Tw6N+X3Q3ORIa17LbfHebO3rLpYYU+a1vWNH7WFrixYxaXMRMwK9WLvXID4ccSz/HXMem7K7MfGHB0GSJ8NERJJVU4mkQ9Yv5YpZjzF69Tw2dcplwnfyeHLkqZSnZfDTIwe2YaQi0l7EmlA6xDk3IqGRdBB1E0JnHdaPD1dujemkpi2HGdV3MrOtNETPTpm1bld98pKRAcOHez9R3UpK6PXGh3z12mwGLV/AdzavJXt7IRv3GMj6voNZ3msgy3sNZNx3x9T7XFsy+11LTxITVS3md1VLXfE6kU6G6rpYpVKsjSkur6Rfbhabd1RUD3nbs2smO8orE/J4sSZ4qpIaxWUh1heVYQZpAaOkItysWQ0bS4409HnQmtdyot+b8XjdNRVjUr62y8pg2TLvy4Vo8ohNm7wJIYYPhxNOgIsvpvuAAXRfuolnauy/iUnchy3ZRBtyXwEMdM79n5ntBwx1zr3ic2gi0kaaGs5W04HfrOTy2Y9x0vKP2Zrdlb+OuYBHDvs+Zene8PNj9unBTafrVE9Ems+ca3oeLDN7ALjDOZeUHTFHjRrlPv30U7/DaFLNhFDNb9Qnjh0e00H0uVPm7HbyUNWL5Mm8IxMZetwef9anK3jz+RnkLF/KiO3rObr8G3papTe0ITpc7oP0Plz9QQHpaYEWbaeWaO2+SaTWTI2eqGq2ZN5edaVSrNDwfmvr93/V7G81K6Ccc2wrDTHrqhOql1XFtXFbGZURR8CMSMSRFjT27JYVc3zfvXMmqzbvJOwcGcEAvbtkEgwY6QGjJBRJmf1XpebrrjIc4Zvt5YQiEfbr3Zmrv3tAXGJv6LVd9UVFwhvmV1bC8uW1q4/WrIEhQ3b1PTrwQO9ynBq7mtlc59youKwshZnZ08Bc4OfOuYPMLBv40Dk3sq1jSZVjMJH25PwHPuT9FVubvN1+m9Zw+ezH+d6yD9iW2YkpR5zJw4efxs7MXV88HLNPDx7/v6MSGa6IpLjGjr9irVA6FviFma3C66FkgHPOHRynGDuE1va78Ht4QzyGSx03ah+OG7VP7YVbt3rNVxctgpdfpvObH3BHZZj8voNZu+cgvt5zEMt69E9oX5BkHJ4GLa9KS3Q1W7Jur/qkUqyN7be27skVa/VLVVxllWHSAkYkAhEcvTpnNasp/qYd5YTCESIOQuEwO7eU0C07jb7dspO6T1BT1ZS3vbGE1VtKSA8a/XOzCUVc3N6L9b22jxrSg+c+y2/Ve7/e57R/Ly9ZVFV19OWXXjKpb99diaMzzoD99vMqViXR9nHOnWNm5wI450qtleNfzexsYAJwAHCEc05ZIpEkFEsyafDWfC6b/QSnLZ7Jzows7jr6J/z7W6ezPatzrdv99MiBqkwSkVaJNaF0akKj6CBamxBq6+EN9Z1UTBw7PP4n5j16wDHHeD/Ab299l73DO9l742oGfLOG0XPf5bxvVlMSSIdlx+06eTngAG8GoDhp6RCYRFYCtTQJ2RbNepNtOF9jUiXWxvbbk3lHtmliLNYEVlVS45Kn5lFSESYzzejVOYuu2emUVFTG3BQ/LWDUrJc1YGd5JZt2lLNn19ozwiVLn6CmErdjhvVh8syVDOqZs1tlWbzei1XrqPoMWjR7GzkZQYwgq7btpCIcIRgw/vLifAb07Nzk59SMJQWMf2khe+7cyv/bspa9PlzJ9n+vpiiyhdy+vb1hawccACeeCMOGQU5qDR1tRyqiVUkOwMz2ocakKS20EDgTmNzK9YhIgkydl99oMql/0UYuff8pzlw0nfK0dCZ/+0dM/vaZFGV3rb6NAecrkSQicRJTQsk5tybRgXQErU0ItWWFQoMnSmOHJ3x43YAendhYHGT7/oexYP/DACgpDzEsXMxRh2Z534w/9BAsWQK5ud5JzbBh3knOAQd4y9pIoiuBWpqE9LuaTVqmqf3Wlomx5lR2jRnWh7t/cmit4VclFZUxTzLw8eqtOOcIAOnp3tAohyMUjlBRGaE0FE6uPkFRsSRuE/1erPsZtGFbKTvKKzEz0qIzAoYqI6zbVk4Yb5bNeV8X8utHPtk1/K5XoHrIWtkz07lj3QoIpnkVonsN5u0jTmXqvkN56NIT4xKzxMX1wBvAADN7HDgG+GVrVuicWwzxafQvIolxw8uL6l2+1/ZN/P6Dpzl7wdtELMB/Dj+N+488i82dds2U2T0nnetPG87ph/Zrq3BFpAOItUJJ4qC1CaHWDN1pbhVNIitcmoql3u0UgbN/eKQ3+8/JJ3s3jERg7VovsbR4MTz8sPf/Ll12JZeqEk1xnHq6ZvzbS0PkZATplu1VUMS7EqilScikbNabItpqJsX6JNt+a04Cq7mfTzUTIZlBoyTkiAAWjpAWDOAcZAYDZASNUNjF/LnZlvsvlmRRovdp3c/qNDPKIw6cw5kjLRConpp1c3E5udsLGbl1LftsWcf+W9eRc996Cntm0f2wg2H4cF7d90i2fuenbO/ao/oxqnpnSfJwzr1tZp8BR+IVHFzqnNvsc1gikiBT5+VzzQvzKQ1Fai3vvWMrv53zLOd9/jrm4MlDTuXeo87mmy69AMhMC3Dbjw5WEklEEkYJpTYUj14uLalQaEkVTaK+VY8llpi3UyAAe+/t/Zxyirf+Lzfy3LQ5pH+1jJFvLuCkt96j78Y10KlT7QTTAQd4Q+0aiLGhE9L6qgFKQ2Ey04J0jW6veFYftDQJ2db9dtqLtpxJsT6pvt+a8/lUMxHSp2sWa7aU4ICwcwScwzno1imdQT07M270kJg+N9t6/8WSLKq5T2s2504PGDOWFLQ6rpqf1dtLQ4Srxg06R5/iLQzZso59t6xl363rGLJlHc4CrOjZn+U9B/DGvkfy9KB96DZoAE+O8xqybq5q/l7jMZSMTh5mdlidRRuivwea2UDn3GdN3P8dYM96rrrWOfdSM+LIA/IABg7UVOMiifSXqQt4bM7XtZb1KNnGRXOe4+fzXiUtXMmzI07knqN/Qn4372+KqpFEpK0oodTG/Ojl0pJqo0R9qx5rLC1OnL2ymPT0XLIPOYr5oTD/DjsmnnYgY7qEvCqmxYvh8cdh8WK2hIPMyejNwm59Kd1nf0484/9R2b1HoyekdePPSgtSEY6weUd5dUIpnidfLU1CplIj6mTSFr2nGtOR9lvNREiXrHT6dMnkm+JyIg6C5iWT0oPBWk2um9LW+y+WBGCim3MP6J7Dpm0lDCwpZM9lSzi54Gv23ryWfbauoywtgxU9+rOy1wBeGXYcy3sOoDCnK5jhnFfWkpMepEdRabOek/jqH41c54ATGrke51xcxi0656YAU8Cb5S0e6xSRXabOy2fCtEUU1akO7VZaTN7HL/DLuS+TVVnB1OFjuOvocxkwajjva6Y2EfGBEkodQEuqjRJ1UhFrLC0ZttLgyeSsVYzJOxL694eTTvLWv/gb7n7sPfbZvJZ9tqxl2OzXyHnhfiJp6VzSZ2829h3Muj0GsnaPvVkUyuDXj3iT3USco1en9OrH6N0lk/zCUsorIzjnEnLy1dIkZDI0ovZz+FhLJEPvqXjut2Te/nWT1n26ZhEIwM7yMN2y01uUTGvr/RdrAjCuzbkjEVi92hveu2QJ/5gzj02ffsHO7C4s6roXK3v256WDTmBlrwHsyOkK5qiodLUanlddSAtAeWWkVgK8IyU1U5Fz7ni/YxCRxKqvIqlL+U5+9clL/PqTqXStKOHlYcdx57HnsaLnAHKz03lcySQR8YkSSh1AS6qNEnVSEUssLR220pyTycmzVrGtRx+W7NmXJXwb8Bp/V6zN57jwZgZ88zXHzvsfe+SvpDRiLO85gNV9BrKke39W9OjPN643e+Tm0CUrnV5dwuwsD7OtNBTXk69kTgbEouZ+DBq7NwJuzRTmCdoOydbDqDVa+j5qq+1dX9I6PRjk7p8c3OLH82P/xZoAbFGyq7ISVq6sTh6xZAl89RX06lU9fLfvH3/PCuvBv+Zt5rOvCzFgz25ZdHZQtqOc8kpHl6w0umYGKdhRQUXYYQZpBkSbdtc3c1889/nd7yzjwdmr2FkRplNGkAuPHcwlJ+4ft/V3RGaWBfwWOBYvRTgLuN85V9aKdZ4B/BPoDbxqZp87506JR7wi0riGKpJyKkr55dyXyfv4BXLLdvDG/kdxx7Hns7T3IMCrNJ0wdnjbBywiEmXOpX6l8qhRo9ynn37qdxhJq+aJZc1qo4ljh7d5giKWWM6t6uERPSncXhrim+IynIPDBnZv8AS37v3AqwDo0yWrema6mrNKZQaNPl2z6JLlneQ55/iqYAf9u2dXr2NRfhE9dxSy/5a1DC1az6DNaxm86Wswo3DgEFb2GsDKXgM552cnccwxwyFOs+O0dJ8lUxKqan+EI471RWWYeds4EDD6dMmK6fXX1q/duo+3eUc5hSUhumSlsV+fLimV1Ivl/VCXH9u7ZtL6qCE9+HDl1ha/fv36rIvlfdfk/qiogBUrdk0ysGSJd3mvvXb1fhs2DIYOhc6dY3r+W3aWs3VniM6ZQXp3zmTLzgrSgsa2khDl4QhpgQC/G7NPQpM7d7+zjLumLydgEDCIOO/n0hP2bdHjmtlc59yoBISaUszsGaAYeCy66Fygu3Pu7LaORcdgIi3XULPtzFA5P533Gr/56Dl6lWxj+pBR3H7cT1m45761bvfTIwdy0+kj2jJkEemAGjv+StqEkpmdCtwFBIEHnXO3NnRbHcw0re6Jm58nxk3Fcuxt08nNTsfM2F4aYv22UgxvuNnePTs1eILY1MlkzevXRYepAWSlBdizWxbBgJERDLCzIly9joXrtwPeVNvBgJcsqqyspNuOIo4qL2Dkzo2cEthK/2++Bud2b/y9xx7MWLqp2UmeVEgGNKVqP67avJPKiCNghnOOsHMM7JHT6HOp0pLt0FpVr8+vvtlOcXmYHp3S6dkp0/ft2Vw130dVqmbrmnVV/W1WWrO9W5vMjNfrt60/62KNu+btuliYnuu/pu/GNfyqRxmDt6z1hrH17w8HHMCXXfbikaJsPsnoRZ89ejTrOVS/fguKKS6rpHtOOplpAb4pLqeiMkJWepCc9AD77dG1Rett7v49eMKblIbCpAUC1csqIxGy04PMn9D84hcllDxm9oVz7pCmlrUFHYOJtMzUeflc+ewXhCK7zsUyKkP85Is3+N2cZ9ljx1Zm7T2SO447n8/6HbDb/ZVMEpG20tjxV1IOeTOzIHAvcBKwDvjEzKY55770N7LESmR1STL006nSVCw1h61s3lFOAAPzphD3lpVxyVPz6JqdXms7NTVMr6rHUjjiqAzv+iaorDLCusJSuuekM+msQ6pvu66wJJpEctXJJAACASp69uafE366a5lzvP/Bl7z74ntkv/MVBz3/Ht8uL8DCYbZaD47ac28G9x3Mip39GP9SCRM5KG7D96r43VC6rqr9WBGOVG8/57zkXKx9bfzoaVT1WqqbXPF7ezZXS4Z/tXR7x2N2tXi8flvzGdrS+zYZd0kJfPUVYxYv5pGv57L+o8/psmkD2/boR79vH8rg4w6HA34K++4LWVm7tmWul6BavWUH4x6bS+fMIPvHkASq+/qtDDvWbyslgJEWMCIRR05merO3TUv3786KMGmB2ssC5i2XVplnZkc65+YAmNm3gfd9jklEmmHSm0urk0lp4UrOWvAOv//gafoVb+Kj/sO55LQr+Wjg7gmjThlBbj5jhGZwE5GkEGj6Jr44AljunFvpnKsAngJ+2NCN16xZw8svvwx41SN5eXm89tprAJSVlZGXl8dbb70FwI4dO8jLy2P69OkAFBUVkZeXx8yZMwHYvHkzeXl5fPDBBwBs3LiRvLw8PvroIwDWrVtHXl4ec+fOBWD16tXk5eXxxRdfALB8+XLy8vJYtGgRAEuXLiUvL4+lS5cCsGjRIvLy8li+fDkAX3zxBXl5eTwz/TPGT1vE+hWLCM+czMYN+Yyftogpz71JXl4eGzduBOCDDz4gLy+PzZs3AzBz5kzy8vIoKioCYPr06eTl5bFjxw4A3nrrLfLy8igr89oqvPbaa+Tl5VFZWQnAyy+/TF5eXvW2fPHFF/ntb39bffnZZ5/lkksuqb785JNPcvnll1dffvTRR7nyyiurLz/88MNcc8011ZcffPBBrrvuuurL999/PzfccAMzlhRw7pQ5fPunV3LCTy9hxpICAO688056r3ydUNhRUlFJYOErZCx+Fee8Btib33+aHZ9Oo6QiTG52OqvffZSrb5pUff/3nr6P/xf5nFlXncCTeUfy7uP/5MEHHwS8k+XyDx+n8PO3SAsGSA8YXec/Rfaa90kLGj07ZfDS5FvYMO9dnsw7kllXncDw1c+T+fUnVEYiRFyEzI8eIm3tp1x47GAA8vLyePnll5mxdBNXz9rAq1/O4I2BA/n7937DD793NefldGf6XgMIZGTyrQWzuPT+S7jznnFUjhtH6V//yt3f/S4fP/00RCK1XnsDuuews2gLW974J+XrvdfOzsICmD2lwdfemtUrKZl+HxWbvUaOoa3rKJl+H1+vWs6MJQWccdPTfOu7P+bMW19gxpKC6tfe6tWrAZg7dy55eXmsW7eOGUsK+OH4h/nWd3/MWbe/zowlBc1+7X07Yy3F7/yLYCREJOIIrJtH9sf/pmdOGqWhMF0L5jf52gvMeZjSkHfiufPL99j67gPVSZGWvvaq3HPPPdx8883Vl++8805uu+226ssr//cUoc+nVV/eNuc5Ql+8Up1cufnmm7nnnnuqr7/hhhu4//77Ae8E/Pif/IYjf/Fnzp0yhxlLCrjmmmt4+OGHq29/5ZVX8uijj1Zfvvzyy3nyySerL19yySU8++yz1Zd/+9vf8uKLL1ZfrnrtQf2fe+GZkyldNY+SikrC5SUUvH43pWvmM270kAY/93rsWE1pKEx4Z2H1a680FGaPYEmjn3t3T51N+Yz7SNu+HjMjfcdGymfcx90veOtv6HOv5mtv+Yu3k15WCED5+qVseeOfZFRsZ11hSUyvvR//9AKue+5TCorLyNy4kJVTb+e6F+YxY0lBk597t973CH/6wyUUFJeRm53O2s/e5U9/vLz6c6Wxz721hSWEl/yPwvf+S1Z5Cft8vZTjX76Tk27/DZx1Fpx0EkvHjePdBx5g0HeO5uhH7mbWZRfy3tjRDL77Vjj7bO585x1uu+suwEtQVX4+jdDn09hRXsmWHSEyFr1M5fxXqxM5v7vyLw2+9gCuu+46Vr0/rXrYZs4Xz5C5aiaBgFEZcWx/7z9cfONd1a/Npl571111OW7VR+RkpGFmlE6/D7fmUy/WJv7mdrIQ2R89RHCj9zeRip1kf/QQnQuX1Xrtxfo3V6p9G/jAzFab2WrgQ+D/mdkCM5vvb2gi0pSp8/LJLyolGAnzowXv8u6DF3Hrm/dQ0LkHP/3xjZxz3q27JZO656Rz5zkjWTTxVCWTRCRpJGWFEtAPWFvj8jqIdk6OMrM8IA+gW7dubRdZgjz96VrSg90IpgUJAVnpQSqCxqvzN7CH38HF2Yai0upvu7PSApSWhqu/7Qbo1z2HM8cOZ/LMlWyKDtfpm+v1OiqqiEAgSGZaADMjLRAgYhZTFcOA7jmsjjjCkWhT2mAAwxvmNqB3Z7aVhtiyo4L/frCae7+ezoDuOXTJSmPM4N7MDgfZWREmEDC+M6zPbr0/qqufzACvWsFVVrAhkE7FwP1YM+QwIhWlFHZOY4+9D2cPsjk6N8h+GzYw5J574J576DxgAKesWEH3WbO47ODj+NPaEGHncM5LroXCjr7dsht8fnt2zSK/zhDWiHN0SgswftoiyreVUBmOsCC/iHGPzeXswfVXCHy0cgt3zdmKlVZgwKL12/j1I58yqHItPUtC9d6nPgf27cagnp3Y3rMTX22tIMMgIy1AWtAIhR2nDu3NV02MkhjQPZu10eSiwxsuVzWL3tpPvoo5lpqqKlFWzllDWmUps++cSXF5JVlL13Ngn13bt0tmGiV1qigqI469m2jwXFXNEQqFyeocrE4C7F9cztAWRdwyuTnpHD2qPx9VZLG2YCcZwQA//tYAxgzrw6uffMXiDdu56vn5DFqSwbkH5wLwvYP25Ik1jkhFGPf/2bvz+Ljq6v/jrzOTyZ626RJKN9qytFh2+0UQqJVFQLQs4gL4RX+ooKiAKAICBQooyCLLF7EF/KKCIALfgsgii6VsBYGyU0ppKW26pFvapFln5vP7486kk3QmmUlmy+T97GMeSWa598ydO9N7z5zP+QCtwRAu5DjpgLE8uTjxutZsacHXpX+Yz4y1DYn7A9c3tfPz+99irVvKsOZacI7lG5sINm2hdHMzZWFHS3uYMSPLgXDC5USt3tzcUSnUbOA3I+D3Phv+e0z3j52/eB1m26qMiv1+Wp3rqISsXPkJNS1tnR5T0toKr77KyYvmUfXGM+y0vpZhC19l1YgxLA428/GIkfDrX8PEifz7jjtYu3Ythx1/PADhZ55JGMuKTU0U+b1tua6hFTOvNVvYuY4KzZc+Xs9rq1t5sXhB3Bkl125uoaXdx6I1DYTCjqrI9aHI559z3vDH6L45vrFtu2XEam0PUenv/P1TwO9LqlLw1AN34i+vQsg5wi6MC4dxwJd2L7T/2bLuqFwHICK9c/Hcd7jn5U+Y8cHznP3iX9l5Yy3v7rAz/+/ES/n3xKnb9eM8aOehmsVNRPJWXvZQMrOvA0c6574f+fu/gf2dcz+Nd/9CGL/fm34n/VUqfVq69if5YM0WfGaMGlzGoLJtzbST2U7RZdVtaSHsHIYRxkvSFPm375+USkPmRK9f1ybfCZ9rYyMsXtxpNqfNSz7hncBQFg3ekcYJu3DQMQfxX186AEpLu31+XXu5VBT7qW9uY0Nje8fJaSjS02j2tz+bsHlw7FAZh3f/mkHJNdOOF1tv+9qksydO7DYKhsLU1nsJj6HlAba0BGkPhztmoQN61dMnF32fUpFMr7FUt3eqzzle8/O6hlYMOoZHhp2XFLvuxL2Ter378hna9bENLe3UbmrGAZNHVhHeupXRqz/h5zu2MXnTSu89Wl8PkyaxZNhY5tQFWDVyJzbXjKYp5PrUayt2Wy5aswW/z3BhKPIbI6pKOsUVb5/sSGiGQqxvaCMYdjigyOcN9/X7vJndivzGxBGVSe2bfd2n0znLm3oobWNm1cBYYr4cdM69ke04CuEYTCRb5r6xkieuuI1zXriHyeuXs2j4TvzukFN4ctcDt0sk+QxO/pz6JIlI7vW7Hkp4FUljY/4eA6zKUSxZUUjTlfcklT4tXfsiVRQXUV7s70gmQeLtFK8nyqwZU7jmiUUsrmsk4IdRVaUdFTMBn+uocNjS3M6Grd639k2twR57hiR6/SYMK6epPdxpavRohU0nlZWw337eJWJwSwsHf/QRB3/4oXcCe/8dcM1FMHq01/g7OuPTbrtBVVXCHlIXP/wum5u8ZFK0isRvXrVNvMqu6OuzbPNWfBg+n+HwklDRio9UT5T70sMrnf2/YvvdLF3XiN+MYDhMXaRCw4Cl67d6r/WMKcyKVMqlklzJRd+nVPTU86c32/uMaROZ+ch7Pe/nCWJoaAl2JDr8PqMtFKbIZ4yoLEk6lmQ/Q+N9LsQ+1sJhSj79hEPXLGP3DZ+y7+aVjKivY/mw0fxnp92Y/P0vw09+4jXQ9vnYBfhyZJn1Se4n3fVrit2W5hyt7V5CCPOxur65o59ctKKqa5+p6LYdXFZKSZGf1fXNtIa2VWb6DMI4hld6ielk9s1UX9+uzjp8t4zOJDcQmdkVwHeBj4HoN4MOKKxvoEQKhXPwz38y6fSfcdzqJXw8dAw//ep5PLr7ITjrXAF64zf30ZA2Eek38jWh9B9gVzObANQC3wJOzm1ImdXXA/b+JNXkWewJbvTb9562U8ImsjOm8Pg50zpVYdRUlXYkXqKJgGgzcPNBe9j12CA40et3yTGfARI3Cu9WaSnsuad3iWpvh2XLtlUyPf00fPQRDBsGkyYxffJkpu85GSbtA0OHett7fnlkONC2AxbnoKQo/pCVTs20LbVm2plsLJ8OscmetlAYHIQip2Jm3vNsCznaQyFmz1/KvacfkHL8+Z4c7inh1ZvXMFEyE7zqlq7L6hpDWyiMz7xhUbuO8AZoRauLkpXMZ2i8z4Vr/vYKpw1uZPmLr7Lr2mVMrFvOGivhoxHjqRu/G3874DBW1Ywl6POzubmd/z5y+/P1VJJwPTW4jm7Lqx//gKDzMgR+87ZHW8jhMxg+uKRjeV3fk7Hbtqo0QNXIAFua21izpRXw9vMdqko7kvLJ7Js9TXggOfENYOdIn0kRyVfOwVNPsfHnFzD03YWUDxnJucf8jIc/M52Qz7/d3UcPKVMySUT6lbxMKDnngmb2E+BJwA/80Tn3Xo7Dyqh8OGDPVjKgL8mzZLdTb6owxs7flgiIJlOiiRTYduKWaDt1F1fatmMg4FUk7bYbzJjhXRcOw/LlXoLpww/hT3/yfi8vh8mTuWzIKK5YEWbJ0NHUV1bjIkP9qkoDcU8kD5w4lFvnfUx7yBHEUeQ3DG+4TXcnn72dCSqbSajYZE+x37ddjyTwTrg3N7Wz0te7iqJ8Tw53l/Dqy2xeXd9T3S2rawzFfh9toXDHey02pmQl89lw+78Xs8u65Uxa/yk7rV7KTquXUt64mbqxu7D3tP35686T+EP5jtRaKeXFfkZUbRte2twWTEtSMJnZ7KZPrmH2/KVMGO5VFq1raKUtFMbwhq51V6EZ7/Ut8vvYb1x1x75Z5Deccyl/9iqBlFfeBYYAdTmOQ0QSee45uOQSeP55mqtGcMGRP+GBPQ8n6I9/+hXwG+cdmc1uiyIifZeXPZRSpfH7fddTX5VMrC+TybPe9FOJ3QZrNrdETuCsoyF4U1uwU5+lYCjM2oZW2kOO3WoqOf+oyflzwuUcrF7dUcn05lMLaHzrXcyF+XT4WFaN3IlVNeP4+jenc8Ch+0GRd3AT3QZtwRCbtrbRGinfqakspqos0O0+0Zs+K/F66STqW5WOxFPXHkrLNzZvd5+Az2sBvf/4Yb3ueZTp/bsvunuvz56/NG39n7rbH6KJjdjXfV1jGzVVxQyrKOnz5090+zesqOWAxlV8q7SeXeo+4e1nXqV+6AiWj9qZ5TtOZPmOE1kzdCT1raFOnwuZ/DxM9rMp3v22NLexsr6F8cPKE8aViR5Z+UQ9lDxmNhV4GC+x1Bq93jk3I9ux6BhMpIuXX/YSSc88Q13lUG458Bv8ba8jaSsKJHxIRbGfq47fU9VJIpKX+mMPJcmyZL41T6dMf9vdm2FHsRUOm5u8ZrZDKwJUlhR1zLIW7bPkNaxuwYfhN1gW7btD76uR0lqpYwajRnmXQw9lnzPPZN4Ha/nrY28Q+OhD9tm6lq/zKeP+cDVctgbGjYNdduGDlca+lTVs3HEc9TsMZUtLkLUNLWxuCbJzD43Je9M7KHa/665vFZCw2iW6nGS2W+xr/NHaLRjbmo941R/etisy61NFUTaqOXq7v3RXyRM77DOqp8q8RHraH8oDPpZt8H6fOLyCk/cfx8tLN/Y+0dHSAh98wAdPvsiqJ17gZ2uWEXBhPh45ngdqJnDEN77BLft8mxVttl2Sq+vnQiYrRpP9bEpUabRbTSVDyosTxrV93zk/xX4fFz/8LmPne/fPh+bw0md/Aq4B3iGZaRBFJPNefx1mzoTHHqO1ehi/O/wH/O9eR9EaKOn2YUPKArx56ZeyFKSISHopoSRA/jcSTlUqw44SnSjH+yY/esKdzobV0Rh6O9QoWdN334Hpux8NHN35htZWWLoUliyh/c3HOeLjdxn1TC2BYDurh49m9fDRLBk0kiu+dhyMLku4/N4k8WL3u+76VgFxE55XP/4BTe3hlLZb9Hpv6I+PDVvbOqZSDztvSNGPp++c11Ubfd1fEiW8qkqKWFLXSMg5iv0+RlSV4PcZlSVFKa1v3qI6tjS3s3pzM6VFfkZUlVBVGqC5PdRpWbvWVNLcHmJrW4i9xgxJvnGzc7BiBbzzzrbLJ5/ALrvw+tZBvLPbfjx52DfZOHg4mNHUFuStTaWccUTynwt9SQom23S7uxgS92XruRIyGns2PlckZ9Y7527OdRAiArz9Nlx6Kcydy+bSSv7whe/wp/2+QlNx4mOmKAMumzEl8zGKiGSIEkoC5H8j4VQlW2GQTIPcWNE+S71pWN2dbFeIdVJSArvvDrvvzsurR/BwZD+oaGpg5PpVDFuznD0a1sLNN8PHH3sz0u2yS+fLuHEpJ/GufvwDauubWbmpmdIiH+1hR8AXv2+Vg7gJz4/qGhlTXZbydus6E9b6xlZag2HKi/3c/K198/5kOxP7y7xFdaxrbCUY9ho/t4fCrNzUTHV5gGEVxR2Vecs2b/X2f59x9eMfJHxPlRd7+0BbKEztpmaGV4UI+P2dZlNMOvYtW+C997zE0bvvepeKCq9h/R57wJe/7M16WFzMH+IMFYvuR9noVZds0+2eYkhHrNn6XMn3ZvwF6nUz+w3wCJ2HvL2Ru5BEBpgPPmDl2ecz5ql/sKW4nDsOPoU/Tj2WxpLkj51POWCchrmJSL+mhJIA+d9IuDeSqTBI9YQrup38PiMcdt6QKUePDat7ki8VYmdMm8gvHniL2vpmQmGHv3QUlZPGcd2Je8PkGq8B+Jo1sGSJd3nhBbjrLli5kulDh3Jv1Qiea6vgw5JqwuN24ugv78/ndxveaR3zFtXxiwfeor6pHR8QAlqC0REbDr95lTHQOakZL+EJ3naKlcx2i93eg8oCDCoLdPSx6Q8nwn3dX25+ejF3vLCMrW0hKor9fP/gCby8dCODywJUFBexvtFrAl3kN4ZVFNPYFsJvxAzz9Pb/j9Y1Mm9RXadtlihZt7U1xM3f2qvHYXVz5n2EW7KE/RtXcXzRRsavXgrr1nlJzz33hBNO8IYUDB/e9WkBXnL8kw2NbNraTmtkvwr4jZ1HVAKZH46Y6DPl6sc/6NXseX2JNRufK6qCypl9Iz9jxy86IH6TQBFJnyVLYNYs3D33UO0v5n8O/Aa3/9fxbC6rSnoR6pkkIoVCCSUB8mOWuVxI9YQrdkrvj9Y1EjBj5GBvWFBfEnDJVIilUgXQl4oBA3Beo2CcYbE3+nzbejNNm7bt+nAYVq9m9PLlnPzJJ96sc8tfg6sfgs2bYcyYjsubi5rYtbWEuvKhbBg0jK2+AEEXGXIWhprBnftWRbdpvITnxOEVNLeHUq6s6+8VeX2J/+anF3PTs0vwmdczqrk9xE3PLqGi2M+4oeVY8bZZxKJJtrHV5SxcsaljmCd4+0nAtg3zjO5zr36ykRK/UTOoNG6yLnY2xaJgOyM3rGLYqk8Yv24ljQ9ezwXrV7Jl8FCW1Iznjh3G89Xv/4LPfWl/8G8/vXI8B04cyivLNhCOmW+iLeSojSSsMv2ZFu8zJRgK88mGZsaHXVaTLtnYz3NaXTmAOee+mOsYRAac5cvhiivgrrsIBgL8cepx/OFzX2Nj+eCkF1FdHuDSr05RIklECoYSStJhIE4L3dvm3V17LEVnrurt9uupQiyVKoC+VAzMnr+UQWUBRg7eNu4/qZNDnw9Gj/Yun/9859uamrx+NytXwsqVlC1/l6PX1zGycSMjtm6iOVBKXWU1ayqH0lA9guLRo1jsqyQwZjQnfHkq0yLrjZfwhPiJpp4Se/29Iq8v8d/xwrJIMskbVugzCIbDbG0LdSTnGlraWdfQSkswREVxEV//7FBe/WQjfvNKIJzzLiMHl3RUFkX3udIiH22hMKvqWxg1hI7eSZOK2+HVV7lk8xu8+uQCdtqwkpH1dawZPILlw8dSN3Icb0zci/Vjdqa51Hv/NbUF+XiFcW+SySSAl5dG4owklMy859gWcllJcsT7TFnb0ErA50tL1VIqsrGf50t15UBkZscAU4DS6HXOuVmJHyEivVJbC7/+Ndx+O5jx8ddP5b9HHMqq8uqUFjOkLMDCmWq+LSKFRQklGdD6csKV7qa90Wnb41WIdTeM5ponFrF0/VYAJgwrx8x6XTGQkZPD8nKYNMm7APNaJ7FwxSZcGPzmGNzcwIgtG6hp3MjU4hZ+ON4Ha5bC2y/BkzdT3xrmfSqo95VwyqAqpkway4SqneCdFTBiBNft7ufODxv5sDHAjsO7n4kuqr9X5PUl/q1tIW82uxg+g2DI0R5yrG9sYX1DGxj4zCgv9vPAG7WMGlzKuoZWQuHODbtrqko79s/KImNyaAtWu5Idt6xnp81rmNy0jh3Wr2aXYaXw/u58ZrfdCJ1wOHetL+YNfzUjRwzmjGkTuSMyFC5e76NUrNjUBGaUFFnHshyOYCjMR3UNnDRnQUZ7/ST6TBkzpLTT/TJRtZTq50o69Pdqv/7KzP4AlANfBO4ATgRezWlQIoVm7Vq4+mpCv78NFwzyt72O4NYDv8mqQSNSXlTAb2q+LSIFSQklGdBykVhIWEE0Y0rC6bwTDaNZtr4ZnxmRUUgsWbeVsHOMre48s0iyJ+bZODmM9mmqb2rHARtKq1hXUsXqnXbl29FeTRHzPljLNfe/Sk3TJoYFm7GtW3lpy1a+s6GFSZuXwMsvs//69ey/bh1s3Oglr56ohiFDtr9Ud75++phqpv/gc14JS4rS3YS4N8vrbUKzItIs2xfztMMOqkqLmDVjCmfdtxAHlPh9DK8sYVBZgKa2IAGfj0C5n2GtDdS0NlD68Uaq69dx8igfb778LqMaNzCksZ6GikGsqhzO8rJqlg7agfr9D+LoGZ+n+oDJHdt6T+D6LnHFDoWL6s2+N7a6nPWNrbjwtpfWOS851tASpK6hJaPDzuJ9phT7vaqtWF2rlkJhR92WFs64+3X2G1ed8j7Vm8+VdOjv1X792Oedc3uZ2dvOucvN7HrgoVwHJVIQNmxg8c8vYexf/5fiYBsP7nEoN3/+W6wcMrJXi9MwNxEpZEooyYCX7aF+vek5kmgYjXPg9xu+yJmzhR2hsOPTjc0U+Vs6VZIkc2KejZPD6ZNruO7Evbn68Q9YtsFLcu06ooLzj9p+OvTZzy+jrbKKjUOr2Ri5rqktyLKq0u1PksNhaGyETZugvt67RH/fuNGboa7r9W1tMHhw52RTdbV3XXk5lJZud/nP6q3MeWEFlJSwU1kZW9Y1c/n/NcBxezF99x1S3h6ZaGo8b1HddpVrFxy9O9N3GcqZ+47grmfepyLYSkV7CyXtrZS0tfLN3auZ/lY9J737GtW0U9rWSnnrVqq2bmFQYz1lDfXsXFXE0lAJa4orCFcPY9LU3Zm432TuCuzE3wODaRlWQ7Ao0PE61VSVcmOSyYx07XudEpaRRkph5yWXhpYHMtrrp2ti8Ipj9+gYHttd1VJDSzur6lvwaqno1T6Qq15G/b3arx9rjvxsMrNRwAZgQg7jEen3/jn/feou/w0nvvAgu7S18MhnpnHTQSezbGhqiaDRQ8o478hJSiCJyICghJJIlvVmWFmik22fdS6wCTvvhBS8psmxU79fcsxneowt0ckhkJahQl1PuC84evdul5PMtopb3bP3Tp1va21i7OhyzjipS9xtbduSTF0vGzdCS8t2l6a3V/CD5mbKQu0E2tsoDrbhb2uleA4wdnjcJBSlpVBS4jWWjl6KisDvZ9Xrqzi5PUxRoIiwz0/I56cl7PjonX8x/Qs7e/2pgI6u5dGfsb87B+3tsHUrn65Yx5p3V3BaUxNlwVbK2lsobW+l8nftbBlSzA+HDeHIJsfixjCN/mKCJWXsMqGGzwbHwPIt7BBwrA+XsHnYUJpLythSOZi64kqKd9iBP551KPvGqeg6dK865j3yHoGwUeZcr5JB6UpMJEpY1jW0MLyypNN909nrp6fEYHdVS+saWr33sds2XDXVZFAy75V4s/uddfhufX7uA7H/Xh541MyGANcCb+C1N7s9pxGJ9DNzF9Zy7ZMfUr92A6e9/gjff/X/GNy6lX9OOogbDzqZj0bslNLyAn7j2hP3ViJJRAYUJZRE0qyn4Uu9bQQe74R02fqtOLctqRQMOwwo9htFkRPW6NTvyZ7wdT05TFcFTW+W09O26m6ZQM/rKy6GmhrvkqSLrnl2u14/zjkaG1uYd/bn4yahaGmB1lYIhTpfgkEWvd9KZZXhd2F8Ye9SFA6ypbHZS3iBlzTy+bZd/H4IBCIdp33ez6IiqKjg7o3LeWe3nWgOlNJaXEpzoIQmfwnNJaXsMX4E955xIBNIXMowcVEdd0W2W2zyctaRUxIOD0xnMigdiYl4yzlpzoKMDufsWiHU2BKkrqGV7971HwaVFvH9gyd0qqqLrVpqDYbwmeGA4ZVe1VKqya6e3iuJZvcD4iaVEn2OpXu4p/SOc+6KyK8PmtmjQKlzbnMuYxLpT+YurOXyv/2Hr7/yCD985UGGNm/hqV3253cHf5v3d0i9KlvD2kRkoFJCSSSNoieJbcEQDS1B1mxu4Y1PN/Hj6Tt3nLT1dmhPvETPeQ+8xaamdpx5dUkOr8HyyMFl20393lvpGkrTm+X0tK26WyaQkSFAiU7cdxxeBRUV3iWORCfiH60ftd3yosPF6EXvm8c+fJY15c0U+X0YkabUzhFyjpX1zT08uvfJob4mgzKdqIjdl4KhMGsbWmkPeQ3G5y2qiztbYirxxFYI1W1pYW1Da8dtja1Bbnj6I+54YRlTRg3uWNa27dyMGexQVdrxvk012dXTeyXR7H53vLBsu4RSokTtiSvreeCN2rQOz5TUmNl/ASucc2sif58KfA1YbmaXOec2drsAEeGRBR/zzsW/5V8L7mfE1nqem7AfNxx8Cm+NmpTyslSVJCIDna/nu4hIsmbPX0pbMMSGrW0EQ44inxF2jlvnfcy8RXVA5IR9xhRqqkrZ3NxOTVUps2ZM6VU1x7Un7s2uNZWYeTNalQV81FSVdJyUQt+rMFZsaqIs0Hna9t7OvpXqcnraVt0tc/HaLazZ3MKiNVtYuq6RLc3taRnidMa0ibSHHE1tQZzzfvaUEIyeoHdtCD1vUV3H8tY1tLB0XSMfrN7Cyk3NHDhxaK/iG1tdTpHPh3Neo+fWYIiWYJhQ2FFR7O/x8bGJlGz1w+lu+/R2eUffOJ9JFz/OpIsf56jfPQfArBlTCPjMS6w5GDOklLZQeLt19SaesdXlNLeHAFjX2Eq0lsvwejgBHU3Bo8uaPrmGe08/gNnf/iw1VaUU+S3pfaqrnt4rW9s6N2IHL6nU2BrkpDkLOPiaZzlpzoKO1z+ajDXzfgb8xh0vLIt7fTSBK1kxG2gDMLNpwNXAn4HNwJwcxiWS/9raePOiq9n/S5/jkmfm8NGwcZx4yjV85xuzepVMqi4PKJkkIgOeKpRE0mjFpiYaWoL4MHyRsze/eb2MYitjMjW0J1Hz37401U7XzG+9XU68bRU96V3X0Mr6hlZGDi6lqnRbZUdFsZ+6hlbCzuE3IxhyrNrczLBgMROGV6YUd7x4Uq3giT1Bb2hpZ11DKy3BEGfdt5Cbv7UvJ+43mlvnfUwwHKbE72NweYAH3qhlrzFDUt5Pzpg2kfMeeIuNW9sIuZgbHGzY2ha3Gieqr8Mbe1tllM6G0rGVe7GzH/7igbe47sS9qa4oYXzYbVcRFruuvlbThWO2e2xPM5dgWdkYMhhvdr9gaFsT8NjXu6ktyMhBpZ0eXxbws7UtxLg0JJelT/wxVUjfBOY45x7EG/r2Zu7CEsljwSD8+c9sveQy9lm1gtdG787PjjmXl3faO6XFqNm2iMj2lFASSaOx1eWs2dxCkS+2v443BXv0pCuTQ3syMeNSqkP0Ej2/dM3iFZv0GDmohNr6FlZuamb0EEeR39cxjGloRYANje2EnDfzXdh5M+OdvP+4Xm+LqFQTgtHhUNHZvMygyGc0tYWY+ch7VBT7GVNd1m2SI5XYrj1xb8786xs0tYU6emrtOKQMv8+6XWZfEjt9SUZ111A61ffL7PlLaWgJ4vd1nv2wsTXYsZyemlf3dJ9EMUXfe0vXebPrFfmMYHhbo/zox0K8JEymG1t//+AJ3PTsEoLhMD7zqqZCDqrLi7Z7vduCYZrbQ9slf6NJqUz1oepOR+XUiPF7Znxl+c1vZkXOuSBwGHB6zG06phOJFQrBvffC5ZfDkiUs3XFXrvv65Tw3Yb+EPQGjop+TSiKJiHRPBx8iaXTGtIm88ekmQs7hNy+Z5BwMrggwprq8U4+lTU3trNzUzMtLNzBmcAlXHr9XxhoS93V5ySapUp3pqjfJrq5JDzDWNrSwZksr+42r5oxpE7n44XcZVlFCOAx1Da04vAoRg15X/sR7rskmOqLVWdHZvHxmhMNQUuTN6rV0/VZ2relcOdWXyo/pk2sYWlHMxOHbNw/vbpkrNjXhN/hobQOtQW8GsmK/JdWDqy/JqETVa5UlRSknqVZsaiIYDlPk3zai28wb/rcy8lr1VCnX3X162senT67paIDdsdM5rzqpJjLLXLaSMLGifZJiZ3krLXKMHtI5jrKAn2K/dQzrjE3+fv/gCTzwRm1aKyCTEbvNceFgRleW/+4FnjOz9UAz8DyAme2CN+xNRMJhePBBuPRS+OAD2Gsvzv/vK/jbjvv0mEhSAklEJDVKKImk0fTJNfx4+s7cOu9j2kOR4UsVAQJ+P2dMm9jRY2l9YxvBmHExKze3dgzJycfmtskmqXpKKqQj2dW1emRQWYCq0iI2N7d3zKI1dr6XEGhsDVJc5IskcBxFfuvo+dLXBtLRE1y/wcJPN/G9P/+HXUdUcsHRu2+37Gh1Vksw5PXVCkMYx/DK0o4eUOmu/OjNEMOqkiIWr20g5OjoAdQacoSb27sdKgfJTVufSKLqtYDPpZykGltdzvqG1k6zHzoHfp91JDF7qpTr7j7x9vF1DS2cdd9CBpUFOpKLZx+6C3e8sIyGliCG12tjRFVJr/ojpctZh+/WqQF3opnvdt1hUMdz7Zr83WvMkLRWQCZj+yTywOWcu8rMngF2BP7lnOsogAN+mrvIRPKAc/DIIzBzJrz9Nlsm7MpvT57JPWOm4ixx29iygJ/fnLCnkkgiIr2gozORNDvr8N0SnnRd/PC7NLQECYWdd8IeU70QHZKTjwmlZKVz6FIiySRKekrg9LXnS/QENxR2rN7sVR35zfhkY1PcCppoddZZ9y2kqS1ESZExvNKb0aupLciEYeU0tYfTUvkR3c6L126hsTXE0IoAwypKklqmNxtc5PfON/S4b/al11ai6rWLH3435SRVtIdU7OyHYQdDSgJxZleLnxTp7j5dY9rS3M6GrW2EnaO6PMDCFZv43p9fY7eaSm7+1r5Mn1zT8ZpkMwmTjO4SZ4mSv5kemhdPvM+Vgcw5tyDOdYtzEYtIXnAOnnjCSyS99hrssguvXXkz32mayNZQ9w/1mymZJCLSB0ooiWRAopOuaI8lR+eqa2PbkJx0yvRU7F0lSipUFPv71Ow5VjIVJj0lcPo63Ch6grts/daOIWwO7zVMVAE1fXINN39r347tUBbwd1SrXHLMZ4C+DweMrZzacXAZ6xtb2bi1nfaQY9eaqh6X2RgzE1i0wsdvXnKpp32zrz2y4r1nopVmqSSpoj2krnliEUvXe72Mdhle3qlyLJmkSHfv4diY1je2AlBkxqrNLfgwDMeiNQ2dqtai1XP5JBM91zIh3ueKiAgAzz4Ll1wCL70EO+0Ed94Jp57K2dfNZ2uouduHqjJJRKTvdHQmkkXRHkvBsOtUAuL3WceQnHSJJhfaQyE2N7WzenMzb3y6iR9P37nTsJd0SpRUKPb70jaLV7Inwd0lcLpLciSThIue4LaFwvgjGRjnoNjv67Eiq7vYE81ml0pD6tjtPKKqlIqSImqqSjsSGt0ts7LYG34Xdl5DUr95sxUaJDUbXzYawm9ubqfY7+Pga57tiD/63GOf0+PnTOv1eiH55vKtwbDXKsln+CJv61DY+9ld1Vq+yEXFUapit7lkjpldC3wVaAM+Bv6fc64+p0GJJPLCC14iad48GD0abrsNTjsNiosBWFXffTIJUDJJRCQNbNvw+/5r6tSp7rXXXst1GCJJufnpxdzy7yW0R8YWFfkAjCHlgbT2UDppzgI+2dDIhsZ2zCAcDhOMnOjuPrKK84+anJETyXjDe6LDhLo2iN7c3M7z5x+a9hh6iifR846t8IlNiM2aMaXTY6L3q9vSQtg5DCOMY9TgMq9Pk89oag8T8BvBUJi1W1ppD4fj9lhKlLhINpZYB1/zbLfbubtlApz3wFts3NrWMewNvMYswyqLuTZH/b1iX7+KYj8btrYxqCzQEf+W5nYcMDhy3YatXlVWZYmf3SK9gPpS6RVv28fGtLm5nYoSP+sb2/Cb0RYKd1R3Fft9hJxj3NDyTkk9SV10mz948UltbXXLSnIdTyEysy8BzzrngmZ2DYBz7vyeHqdjMMmqV1/1hrY9+STssANceCGccQaUlna620FXP0ttN0ml0UPKePGCzB5/iIgUCjN73Tk3Ne5tSiiJZN+8RXWdhuRMGFYet5lzXxx8zbNsbGwl5CAcdrTHNAEvLfJRM6i02+REOsVr/tvUFuw4ye6aVDlw4lBeXroxa0P1ko0zVvQ1XFzXSMBv7FBVQpHfR3vIUVHspy0UJhR2rKpvwcxL7Ph8Rk1VaafERKLExez5S5OOJdn4u7sdoK6hhVDYsWZzC63BMA4oL/bz+5P3y1oyqbsKqnjxf7S2AQx2ramioaWdVfUtOBw+8yqrEiXyupPqfjDzkfeoa2ghHHa0hbz+aAG/DwOK/MaE4RVZSZ4OBN0d0Ej6mNnxwInOuVN6uq+OwSQr3nzTSyT94x8wbBicfz78+MdQHr96du7CWi586B2a27dvoqShbiIiqenu+EtD3kRyIBvDTMZWl7N6czOBSJUERGYxNwi5xL1+MqG7/jpdp2Fftr6RVz/ZSE1VMcMqSvrUbylVqcxUFn0NY6tVaqpKO1Vkxeux1BYMdcwItiVS3TK4zEvoxA4FTDaW2CbczW1hWoIhiot8nRJc0WFh3S3TQUd1U1Wpd59odVM2k0ndzZ4XL/5gONxRkbWuwWuQ7sLQGgpTUuTr1bCzVPeDWcDVj3/AR+saMbzhgsa2RvB9nbGvv8l27zbJiNOAvyW60cxOB04HGDduXLZikoHovffg0kvhwQdhyBC48ko46yyoqur2YdFk0bVPfkhtfTN+M0LOMXpIGecdOUnJJBGRNFFCSaRARfs1hcKOcOwQJrNOvX6yobv+OifNWdCp709DSxCfwZbmIMMrS/vUbylVvZmprLtm0l17LPmgY0awcUO9Bu3NbSFKivwdSZzo65JMLNEETFswxJYWr7+M4VWkraxvZtcRlVxyzGc64utpmb2dpS1depo9r6qkiOb2UKcYi3w+70lDx/YOhl3SzdLjSXU/iE0uRqvWzAejqkop8lta+nb1F10TxNlMCEvPzOxpYGScmy5yzj0cuc9FQBC4J9FynHNzgDngVShlIFQZ6BYvhssvh3vvhcpKr1/Sued6SaUkHbfvaCWOREQyTAklkQKQ6IT0x9N35tZ5H2ORDuB+n+EzY0RVSVaSBcmcKHetBmkLhfGZ9zMqW8mvvs5U1nU5fjPCYddRreLzxr5RWuTHzCgp8tESDPHpxib8Pi/RN6isiPHDKpOKJZqA2dAYxIfXQDtsjiKfMXZwKdUVJZ22d0/LTMdz74ueZs9zztEecp1irCotwuENSQv4jPawwwGBmNnqUk2g9nY/6K5qLZm+XYWQgOnaGD6bCWHpmXPu8O5uN7PvAF8BDnOF0BNB+p9ly2DWLPjzn72+SL/8JZx3njfMTURE8o4SSiL9XHcnpGcdvht7jRnSMRynyGfsMKgEv6/nqol0xHXeA2/R0BIkGA6zvqGV8x54a7vmzl2rQYr9PtpCYYr9vo77ZKtSJlElFXh9deI1zo6XMIsuZ1uPJa9apba+BQNGVHk9hSuK/Wxt8/o7BCJJtLqGNk76r6FJzZoWTcC0hcL4I8O+LLKceAmUnpbZm1na0lld09PseZub27ni2D245olFfFTXCHj9x7685468vHQjm5vbaWgJEvA5LJLM62nYWW9m40t2W1xx7B49PqbQEjCpDBeU/GJmRwHnA19wzukFk+xascIbzvbHP4LfD2ef7fVJ2mGHlBYzd2Et1z75Iavqmxml4W0iIhmnptwi/VyiBsLFfh9Dyou3a3Sdrinde3L0jfP5qK4Rv88iTam9SpNdayo7TenetTH1+sZW1jW2dfRQSmZ2s0xK1Dj7xP1G88AbtUnNCNd1RrDhlV7PpKXrGjsahkYrlKpKi5gwvDKpGcGir/2azS0EQ17T77DzKpRGDi7dbh+Ifc3TkQjqzUx0ySwv0ex50WqfnmZgS9QsPdFsfemIv7fL6mlmvv4mlYbmvaGm3JljZkuAEmBD5KoFzrkf9vQ4HYNJn6xeDb/5Dcye7R0o/OAH8KtfwejUk0DxGnGrAbeISN91d/zli3eliPQfKzY1URbwd7ouGAqzuK6RuoaWjqqlB96o5YxpE3n+/EO59/QDMp6cWbp+K77IsCXDG2rnMzpmtouaPrmGWTOmUFNVyubmdiYMr+TsQ3dh/LBKNje3d5oVLRdiK0jMvJ8Bv3HHC8viXj97/tLtnt+9px/A8+cfys3f2peA309TWxDnHC3BEH6fMba6nMkjBzFxRCXDK0tSGprVHnJUlRYRxhEMhwmHHYPKitjS3M66xtZO+8DMR95j3qK6TjOTdb0tHdum6zZIVnRfmDC8gpDD60M0uHMfop7WOX1yDY+fM407T53KvmOrCTsS7kPpjL+3yxpbXb7dLET9uYl3dJ+M7uNNbcGsD52U3nHO7eKcG+uc2ydy6TGZJNJr69bBL34BO+8Mv/89nHoqfPQR3Hprr5JJ4DXgjvd5eu2TH6YjYhERiUND3kT6uXgNhNduae1Xw2jiNbY+K0exdJVoCM/WthDjuiTyehra03UoVUVxEeXFfgbFLD+VZELs8oKhLbSFHMVFPsYPq2TT1lbawy7uPgB0NL9etn5rx5C5a55YlNL+kYnhTT31IYrOoNfTOpOZSTGd8fd2Wenq25UvejtcUEQGiI0b4frr4aaboLkZTjkFZs6EXXbp86JX1TendL2IiPSdEkoi/VzcE9JwmDFDyjrdL9t9TCYMK2fJuq1YZMYt5yDsYJfh/avyItGMXxXF/u1mHEsmGRSb6IhWCvUlmZAocRIdShUrug84wG9sm0nN5/UbWlzXyLxFdUmf/PdmVrxkJXpe6VxntpeVzn5N+SyZZJ6IDDCbN8ONN8INN8CWLfDNb8Jll8HkyWlbxaghZdTGSR6N6nI8JCIi6aMhbyL9XNchYzVVpew6opIif+e3d7aH0Vxw9O4MKQ9gPgg5h/lgSHmAC47ePWsxpMMZ0yaypbmdj9Y28MHqzXy0toEtze18/+AJfR7aE++1S9fwvkRDqSqK/Wxpbmf5xmbaI0PkLPIv1eFeuRjelM51ZnNZXYcZfrKhkTPufp3PXvEvZs9fmtXhqCIiWdPYCFdfDRMmeAmkQw+Ft96C++5LazIJ4LwjJ23XAqAs4Oe8IyeldT0iIrKNKpRECkDXioB0VL6kI6brTty7ICovHICBw2gLhVnf2MZj76zmxP1G96rRebpmRutuOfEq1zY3t2NARYmfLS1BnIN253AuhPmMUVWlKVWx5aK6Jp3rzOayYnssNbS0s6GxHYejpT3caWbG/vj+EBHZTnMz3Habl0xatw6+/GWYNQs++9mMrC46u1tzewi/GSHnGK1Z3kREMk6zvIkUqNgeNP05mZMuvU3iRGetCoUdq+pbIsP3vBnVelNRlK6ZxbouZ8PWVjZubaeyxM9uOwzqSB7G7gP1TW20hcKUFxfx0doGWkNhnAOfeRVN0ZnU0jEbl3QWO5vb0nWNBMMOw6vemzxyUFpnQitkmuUt/+gYTDppbYXbb4df/9qbwe3ww71E0oEHZmyVmt1NRCSzujv+UoWSSIFSH5NtYpMvsbOaJVMREm22vGz9Viwya50DQmHXMUQsle0cW6kCvW+YnlTFy4wpnRIUsX2VRg4uZVV9C+Bw0GkmNUm/2B5LbaEwfp/hwlAcGZqa7R5nIiJp1d4Od90FV1wBK1bAIYfAvffCF76Q8VV3N7ubEkoiIpmVdz2UzOwyM6s1szcjly/nOiaRTJq3qI6T5izg4Gue5aQ5C1Keul161pfp4aO9iNpCYcy865zzEgG9SQKs2NQUt8dDX5azriHSXNusowIp3vOL7atUVRpg1JBSfGb4rHfVVpK82B5LAZ83w14Yx/DKEiCzPc70GSMiGRMMwp/+5PVDOv10GDUK/vUveO65jCeT5i6s5aCrn43biBs0u5uISDbka4XS75xz1+U6CJFM60vljCSvL9PDR3sR+c0iDayJJAJKe5UESNfMYqlUvESH+y1eu4XG1hBDKwIMqyjB7zNqBmU/kZSuHlL9SWyPpc3N7TS0BKkuD1BVWpTRZuaxnzF+g4UrNvG9P7/GbjWVnH/U5ILf7iKSIeEw/O1vcPnl8OGHsO++8OijXq+k6LcvGRRvmFtXmt1NRCTz8q5CSWQg6UvljCQv0YxnySRxojOxTRheQciB+WDU4NJeDxGLVqqsa2hh6bpGPli9hZWbmjlw4tBeLaenipfY2cV2HFxGdXmAjVvbWbOlJSdVSV1nO4smUQdC1cz0yTXce/oBvHbxEcz+9meZMLwy7bP7dRX9jAmGHKs2t+DC4DdYtn5rn7e7Kp9EBiDn4KGHYO+94eSTIRCABx+E11+HY47JSjIJ4g9zi6XZ3UREsiNfK5R+YmanAq8BP3fObep6BzM7HTgdYNy4cVkOTyQ9+lI5I8mLN+NZKsmgaD+q2EbnNVWlvaqsmT65hhNX1nPrvI8JhsOU+H0MLg/wwBu17DVmSNzlzVtUx9WPf8CSdY2EHBSZsUtNZccsc91VvHTt2TSiqpSKkqKcNYCO10NqXUMLZ923kEFlgQFVsZSN59jRA2zzVnwYPl/feoBFqbpSZIBxDv75T5g5ExYuhEmTvB5J3/gG+LL3/XR0NrdEw9wAze4mIpJFOUkomdnTwMg4N10E3AZcgTdT9xXA9cBpXe/onJsDzAFvhpGMBSuSQeka/iTdS9f08OlKAry8dCNjqss6ve6JGnPPW1THLx54i42NbYQj17U7x+K1DaxvbOXaE/feLtkV+/wufvjdvEpadk2ibmluZ8PWNsLOMW5oedoSEwNxWF080c+YtlAYf6RyoC89wKLS1VxeRPKcc/D003DJJfDKKzBxotd8+5RToCi7pxHJDHMbPaSMFy84NItRiYgMbDlJKDnnDk/mfmZ2O/BohsMRyZm+Vs5I8vJp1rtUKtNmz19KY2uQaNbcDHAQdtDQsu0EPtHzy7ekZdd41je2AlBa5O8Y9hlNTAC9Sgpt1zfo001878//YdcRlVxw9O55sx9kQ0cPMN+2HmDOwYiqkj7tB6quFBkAnnvOSyQ9/zyMHQtz5sB3v+sNc8sBDXMTEck/eddDycx2jPnzeODdXMUikmnR/jw1VaUZ76Ui+SOVnk4rNjURCjs6lWGaV8IZDId7PIGP7bXknMtoA+hkdI2nNRiGSIIjqizg56O1W5j5yHt8sqGRjY2tvPrJBs64+3Vufnpxj+uIVs+Ewo7Vm1txeDPgLV2/lTPufp2pVz6VFz1/stGDKPoZM35oOSHnJZR2HOw1ZO/LftCXvmQikudefhkOPxymT4clS+B//gc++gh+8IOcJZOg+1nbRg8p4zcn7KlhbiIiWZaPPZR+a2b74J0vfQKckdNoRDIsnypnJDtSqUwbW13O+sZWgqGYpJIDA4p8vo4T+ERDvNI13C9dusZTXuynosRPVem2k5Tm9hBtIUcgFGJDYztmEPD7CIUdt877OGGvqaiOvkHrt2IGPjOCYUd72BHwQ1NrsM9D6/o6pK43PYh6u8509gCLUnWlSAF6/XWvR9Jjj8GIEXD99fCjH0FZfsyWNmpIWdzeSRrmJiKSO+Zc/28/NHXqVPfaa6/lOgwRGYB6e5KfqOdRvPt17aEE3kxdQyuKufbEvQE6khPBUJi1W1ppD4f7xRCv2MRKbGKiqS1IU2uQkPMSQgDOOYJhx3+NH9ptQ/GT5iygrqGFTzc24fcZhtESqaYpCXiJqckjB9HUFuxVc/JEMadSXRiNsWsfrYDPqK4o2W5/Ssc60y3ZfTidzOx159zUjK5EUqJjsALwzjteImnuXKiuhl/+En7yE6iszHVkQOdG3JFR3x3KAn5VJomIZFh3x1/5WKEkItIv9GWmq2Qr06ZPruG6E/eOO8vb+UdNZvrkGk6as6DTEC8zr4JpcV0j3/vza+wWc998k6iCavb8pbz6yQYC/m0js52DkiJfUsP8Zj7yHn6L6RsEBHzbGlJD73v+pKMhdbweRMFQmE82NDM+7Lbbn/KxCbaqK0X6uUWL4LLL4P77oarK+/2cc2Dw4BwHtk3XRtwOOj7TNZubiEjuKaEkItJL2TrJ7+nEvesQL+cgGClnKvbBsvVb83pK90TP741PNxEKO/yR5xTGUVUa6LFPTzRJdc0Ti1hc10jADyUYYbY1pIbe9/xJR0PqeM3S1za0EvD54u5PaoItImnz8cdw+eVwzz3ecLYLL4Sf/xyGDs11ZB1iq5K6iiaTNMxNRCT38q4pt4hIf7FiUxNlAX+n63Jxkh9tkNwWCmPmNesG8Bn4fEbIOQJ+65g5rT+YPrmGH0/fuaP/UZHfGFZRTHGRP6k+PdMn1/D4OdO489Sp7Du2mqrSInxmDKsMUFlS1Kfm5OloSJ2oWfoOg0o63S+6P+VbE+xsNBQXkTRbvhy+/32YNAn+/nc491xYtgyuuirvkkkXPvRO3GRSVHcNukVEJHtUoSQi0kvxqkxycZLfdYhXONJgwm/WMcSrP1SzxOtHNfvbn+1Tn57Y6qdUev501xsrHQ2p4w31K/b7aAuFO90vuj/lUxPsvgz1FJEcqK2FX/8abr8dzODMM72qpB137PmxOXDtkx9ul0DvatSQ/GgULiIy0CmhJCLSS/lykt91iJcv0kPJ57OOIV75PqV7wiTFjCkpN81OJNmePz0lTNI1c17XeKLrjbc/5dNsffnYz0lE4li7Fq6+Gm67DUIh+N734KKLYOzYXEfWrZ6qj8oCfs47clKWohERke4ooSQikoREFSv5cpIfOzX81Y9/wEfrGjFg5OAS/D7L+ynd8ylJkUwsmWhI3dP+lC9NsNXPSSTPbdgA114Lt9wCLS1w6qlwySUwMX//D4g1akhZwuFuasQtIpJflFASEelBMhUr+SI2sRRNTNRUlWY10dXdcLFE8ilJkctY8m1/iidfhnqKSBf19XDDDXDjjdDYCCedBJdeCrvtluvIehRtwr2qvpnBZQECfu+LkKiygJ/fnLCnEkkiInlGCSURkR7kU/VMsvqSmOhNQij2sb3pr5NPSYp8iiUf9XaoZ1/2KxHpRkMD3HwzXHedl1Q68US47DKYMiXXkSUl2oQ72jepvrmdgM+oLg9Q39TOKFUliYjkLc3yJiLSg3yZzS0bogmhuoaWTgmhZGfxik2+mXk/k5lhLtGsZ7kYppdPseSj6ZNrmDVjCjVVpWxubqemqpRZM6Z0mxzq634lInE0NXlD2yZMgIsvhkMOgYULvRnc+kkyCeI34W4PO8qLi1h29TG8eMGhSiaJiOQpVSiJiPRgIFWsxKvGWt/Ywln3LWRQWaDHypLeDhfLt35U+RBLPlf0pFoB1x+r/ETyVksLzJ4Nv/mN13j7yCNh1izYf/9cR9YriZpw99ScW0REck8JJRGRHuTLbG7Z0DUh1NDSzvqGNhwwbmh5j0PY+pJ8y6f+QbmOpbdDB/NVPvXIEum32trgj3+EK6+E2lqYPh0eeAAOPjjXkfVJoibco4aU5SAaERFJhYa8iYj0oDdDfPqrsdXlnYYerGtoBYOSIl9SQ9g0XCw9ejt0MF913a+gcKv8RNIuGPQSSZMmwY9+BDvtBM88A//+d79PJgGcd+SkuMPKzztyUo4iEhGRZKlCSUQkCb2tWMnnYUvxdK3GagmG8JkxvLKk4z7dVZbky3Ax6Pu2z+VrV2gVPQOpyq+/MrMrgGOBMFAHfNc5tyq3UQ1woRDcey9cfjksWQJTp8Jtt3lD3MxyHV3aRPsjRWd5UxNuEZH+QwklEZEM6Y/DlromhCqKiygv9jMoJrnRU2VJroeLQd+3fa5fu0Lr25VPiUZJ6Frn3CUAZnYWMBP4YW5DGqDCYXjwQbj0UvjgA9hrL5g7F2bMKKhEUqzj9h2tBJKISD+khJKISIb010bEsQmhaGKlv1WW9HXb5/q1K8SKnnxINEpizrktMX9WAC5XsQxYzsEjj3iJpLfegt13h/vvh699DXzqUiEiIvlHCSURkQwphGFL/bWypK/bvqfHZ3o4XH/d7tK/mdlVwKnAZuCLOQ5n4HAOnnwSLrkEXnsNdtkF/vIXOOkk8Pt7fnw/M3dhrYa3iYgUCCWUREQypFCGLfXHypK+bvvuHp+t4XD9cbtLfjOzp4GRcW66yDn3sHPuIuAiM7sQ+AlwaYLlnA6cDjBu3LhMhTswPPusl0h66SWv2fadd8Kpp0JRYRyid00efXHyCB58vbajSX9tfTMXPvQOgJJKIiL9kOpnRUQyRDOe5U5ft313jy+0Gdhk4HDOHe6c2yPO5eEud/0r8LVuljPHOTfVOTd1xIgRmQ26UL3wAnzxi3DYYbB8uddse/FiOO20fplMmruwloOufpYJF/yTg65+lrkLa5m7sJYLH3qH2vpmHF7y6J4Fn8ad8fHaJz/MTeAiItInSiiJiGTI9Mk1zJoxhZqqUjY3t1NTVcqsGVNUdZIFfd323T1+xaamuFNc96ehjCJdmdmuMX/OABblKpaC9uqrcNRRcMghXsPtG2/0ZnD74Q+huDjX0fVKvMTRhQ+9w+X/eG+75FGixlyr6pszHqeIiKRf//sKREQkAzLVE0fDlnKnr9s+0eMLZSijSBdXm9kkIAwsRzO8pdebb8LMmfCPf8CwYfDb38KZZ0JFRa4j67Nrn/wwbtVR1+u6M2pIWbrDEhGRLFBCSUQGvFxPES/5p7sEYyHOwCbinEs4xE364L334LLL4IEHYMgQuPJKOOssqKrKdWRpk2p1kdG5Uqks4Oe8IyelNSYREckODXkTkQFPPXEkVjTBWNfQ0inBOG9RHaChjCKShMWL4ZRTYM89t83gtmwZXHRRv00mxeuTBImri4aUBeIODz7lgHGMHlKGAaOHlPGbE/ZUQ24RkX5KFUoiMuD1dYp5yW+pDmeMTTAClBcX0dQWZPb8pR2P01BGEYlr2TKYNQv+8hcoKYFf/hLOO88b5taPRfskxZud7bwjJ3W6Dbz/Qy+bMQWg0yxv5x05SckjEZECooSSiAx46olTuHoznFEJRhFJ2YoVcNVVcOed4PfDT38KF1wAO+yQ68i6NXdhbVIJn0R9kq598kNevODQjvvEW44SSCIihUsJJREZ8NQTp3AlU23UlRKMIpK01avhN7+B2bPBOTj9dPjVr2B0/idRuqs66poEStQnKXr9cfuOVuJIRGQAUg8lERnw1BOncK3Y1BS3h0d31UZnTJtIe8jR1BbEOe+nEowi0sm6dd5Qtp13ht//Hv77v+Gjj+DWW/tFMgm6rzrqKlGfJM3OJiIysKlCSUSEwuuJk2rfoELVm2qj6ZNrmIVX3bRyUxNjBvD2E5EuNm6E66+Hm26C5mav8fbMmbDLLrmOLGU9VR3FStQnSbOziYgMbEooiYgUmN70DSpUvR3OWGgJRhHpoy1b4He/gxtu8H7/5jfh0kth991zHVmvjRpSRm2c5FG8qqPocDY12BYRkVhKKImIFJje9A0qVL2pNlJ1l4h0aGyE//kfuPZarzrpuOPg8sthr71yHVmfpVp1pD5JIiLSlRJKIiIFRrOUdZZKtZGqu0QE8Iaz3XYbXH211y/py1+GWbPgs5/NdWRpo6ojERHpKyWUREQKjGYp6z1Vd4kMcK2tcMcdcNVV3gxuhx0GV1wBBx6Y68gyQlVHIiLSF5rlTUSkwGiWst7rzaxwIlIA2tvh9tth113hJz/xmmzPmwdPP12wySQREZG+UkJJRKTATJ9cw6wZU6ipKmVzczs1VaXMmjFFFTZJGFtdHncabVV3iRSoYBD+9CeYPBlOPx1GjYJ//Queew6+8IVcRyciIpLXNORNRKQAaZay3untrHAi0s+Ew3D//XDZZfDhh7DvvvCPf8Axx4BZrqMTERHpF3JSoWRmXzez98wsbGZTu9x2oZktMbMPzezIXMQnIiIDk6q7RAqcc/DQQ7D33nDSSVBUBA8+CK+/Dl/5ipJJIiIiKchVhdK7wAnA7NgrzewzwLeAKcAo4Gkz2805F9p+ESIiIumn6i6RAuQc/POfMHMmLFwIu+0Gf/0rfOMb4Pf3/HgRERHZTk4qlJxzHzjnPoxz07HAfc65VufcMmAJsH92oxMRERGRguAcPPWU11j7q1+F+nq46y547z2vQknJJBERkV7Lt6bco4EVMX+vjFwnIiIiIpK8aGPtL30JVq2COXO8fknf+Y431E1ERET6JGP/m5rZ08DIODdd5Jx7ONHD4lznEiz/dOB0gHHjxvUqRhEREREpMC+/DJdcAs88AzvuCLfcAj/4AZSU5DoyERGRgpKxhJJz7vBePGwlMDbm7zHAqgTLnwPMAZg6dWrcpJOIiIiIDBCvv+71SHrsMRgxAq6/Hn70Iygry3VkIiIiBSnfhrw9AnzLzErMbAKwK/BqjmMSERERkXz1zjtw/PEwdapXnfSb38DSpXDuuUomiYiIZFBOEkpmdryZrQQOBP5pZk8COOfeA+4H3geeAH6sGd5EREREZDuLFsG3vgV77w3PPguXXQbLlsEFF0BlZa6jExERKXg56UjonPs/4P8S3HYVcFV2IxIRERGRfuHjj+Hyy+Gee7wKpAsvhJ//HIYOzXVkIiIiA4qmuBARERGR/Ld8OVxxBdx1FwQC8LOfwfnne/2SREREJOuUUBIREUmjeYvqmD1/KSs2NTG2upwzpk1k+uSaXIcl0n/V1sKvfw233w5mcOaZXlXSjjvmOrKcm7uwlmuf/JBV9c2MGlLGeUdO4rh9R+c6LBERGSCUUBIREUmTeYvqmPnIewT8xpCyAHUNLcx85D1mgZJKIqlauxauvhpuuw1CITjtNLj4Yhg7tufHDgBzF9Zy4UPv0NzutRutrW/mwofeAVBSSUREsiLfZnkTERHpt2bPX0rAb5QXF2Hm/Qz4jdnzl+Y6NJH+Y8MGr7H2xIlw881w0knw4Ycwe7aSSTGuffLDjmRSVHN7iGuf/DBHEYmIyECjCiUREZE0WbGpiSFlgU7XlQX8rNzUlKOIRPqR+nq44Qa48UZobPQSSZdeCrvtluvI8tKq+uaUrhcREUk3VSiJiIikydjq8rgVA2Oqy3MUkUg/0NAAV10FEyZ4Tbe/9CV45x1vFjclkxIaNaQspetFRETSTQklERGRNDlj2kTaQ46mtiDOeT/bQ44zpk3MdWgiSTGzX5iZM7PhGV9ZUxNce62XSLr4YjjkEHjjDXjgAZgyJeOr7+/OO3ISZQF/p+vKAn7OO3JSjiISEZGBRkPeRERE0mT65Bpm4fVSWrmpiTGa5U36ETMbCxwBfJrRFbW0eP2QfvMbr/H2l77kVSbtv39GV1tooo23NcubiIjkihJKIiIiaTR9co0SSNJf/Q74JfBwRpbe1gZ//CNceSXU1sL06V410sEHZ2R1A8Fx+45WAklERHJGQ95EREREBjgzmwHUOufeSuK+p5vZa2b22rp163peeDDoJZImTYIf/Qh22gmeeQb+/W8lk0RERPoxVSiJiIiIDABm9jQwMs5NFwG/Ar6UzHKcc3OAOQBTp051Ce8YCsG998Lll8OSJTB1Kvz+93DUUWCW+hMQERGRvKKEkoiIiMgA4Jw7PN71ZrYnMAF4y7xEzxjgDTPb3zm3JuUVhcPw4INw6aXwwQew114wdy7MmKFEkoiISAHRkDcRERGRAcw5945zrsY5N945Nx5YCeyXcjLJOXj4YdhvP/jGN7zr7r8fFi6EY49VMklERKTAKKEkIiIiIr3nHDzxhDdL23HHwdat8Je/wDvvwNe/Dj4dboqIiBQiDXkTERERkQ6RKqXkNDR4jbVfeslrtn3nnXDqqVCkQ0wREZFCp//tRURERKR3Fi/2KpJuuw1OOw2Ki3MdkYiIiGSJOZd4co7+wszWActzHUeeGQ6sz3UQA4y2efZpm2eXtnf2aZt3tpNzbkSug5BtenEMpn26e9o+iWnbJKZtk5i2Tfe0fRLTttkm4fFXQSSUZHtm9ppzbmqu4xhItM2zT9s8u7S9s0/bXAqN9unuafskpm2TmLZNYto23dP2SUzbJjnqkigiIiIiIiIiIilRQklERERERERERFKihFLhmpPrAAYgbfPs0zbPLm3v7NM2l0Kjfbp72j6Jadskpm2TmLZN97R9EtO2SYJ6KImIiIiIiIiISEpUoSQiIiIiIiIiIilRQqkAmNkfzazOzN6NuW6omT1lZh9FflbnMsZCkmB7X2ZmtWb2ZuTy5VzGWGjMbKyZ/dvMPjCz98zs7Mj12s8zpJttrn09Q8ys1MxeNbO3Itv88sj12s+lIJnZL8zMmdnwXMeSL8zsCjN7O/L5+i8zG5XrmPKJmV1rZosi2+j/zGxIrmPKF2b29cj/HWEz08xUgJkdZWYfmtkSM7sg1/Hkk3jnM5L4+FcSU0KpMNwFHNXluguAZ5xzuwLPRP6W9LiL7bc3wO+cc/tELo9lOaZCFwR+7pzbHTgA+LGZfQbt55mUaJuD9vVMaQUOdc7tDewDHGVmB6D9XAqQmY0FjgA+zXUseeZa59xezrl9gEeBmTmOJ988BezhnNsLWAxcmON48sm7wAnA/FwHkg/MzA/cChwNfAY4KeY4RhKfzwx03R3/ShxKKBUA59x8YGOXq48F/hT5/U/AcdmMqZAl2N6SQc651c65NyK/NwAfAKPRfp4x3WxzyRDnaYz8GYhcHNrPpTD9Dvgl3j4uEc65LTF/VqDt04lz7l/OuWDkzwXAmFzGk0+ccx845z7MdRx5ZH9giXNuqXOuDbgP7/9TQecziej4N3VKKBWuHZxzq8F7YwA1OY5nIPhJpAT7jxqSkjlmNh7YF3gF7edZ0WWbg/b1jDEzv5m9CdQBTznntJ9LwTGzGUCtc+6tXMeSj8zsKjNbAZyCKpS6cxrweK6DkLw1GlgR8/dKlBiQFMQ5/pU4lFASSY/bgJ3xhqmsBq7PaTQFyswqgQeBc7p8iysZEmeba1/PIOdcKDLUZQywv5ntkeOQRHrFzJ42s3fjXI4FLmIAJ0p62DY45y5yzo0F7gF+kttos6+n7RO5z0V4Q1PuyV2k2ZfMtpEOFuc6VfxJUnTOkbyiXAcgGbPWzHZ0zq02sx3xvu2WDHHOrY3+bma34/U9kDQyswDeB/s9zrmHIldrP8+geNtc+3p2OOfqzWweXn8D7efS7zjnDo93vZntCUwA3jIz8JKnb5jZ/s65NVkMMWcSbZs4/gr8E7g0g+HknZ62j5l9B/gKcJhzbkAlCFLYd8SrSBob8/cYYFWOYpF+JME5hySgCqXC9Qjwncjv3wEezmEsBS9ykhd1PF5jREkT88467gQ+cM7dEHOT9vMMSbTNta9njpmNiM5YZGZlwOHAIrSfSwFxzr3jnKtxzo13zo3HO+nbb6Akk3piZrvG/DkD7zNAIszsKOB8YIZzrinX8Uhe+w+wq5lNMLNi4Ft4/5+KJNTNOYckYAMssV+QzOxeYDowHFiL903WXOB+YBzeDCpfd86p8VoaJNje0/GGADngE+CMaM8T6TszOxh4HngHCEeu/hXemGbt5xnQzTY/Ce3rGWFme+E13fbjfeFzv3NulpkNQ/u5FCgz+wSY6pxbn+tY8oGZPQhMwvvcXQ780DlXm9uo8oeZLQFKgA2RqxY4536Yw5DyhpkdD9wCjADqgTedc0fmNKgcM7MvAzfi/b/6R+fcVbmNKH/EO59xzt2Z06DyQKLjX81qnJgSSiIiIiIiIiIikhINeRMRERERERERkZQooSQiIiIiIiIiIilRQklERERERERERFKihJKIiIiIiIiIiKRECSUREREREREREUmJEkoiIiIiIiJpZmbDzOzNyGWNmdVGfq83s/ezHMtxZvaZmL9nmdnhvVjOeDN7N8FtU8zsWTNbbGYfm9nlZpb2883unouZzTOzqelep4jEp4SSiIiIiIhImjnnNjjn9nHO7QP8Afhd5Pd9gHC612dmRd3cfBzQkYRxzs10zj2dxnWXAY8AVzvndgP2BPYHzk7XOmIcRwafi4gkTwklERERERGR7PKb2e1m9p6Z/SuSkMHMdjazJ8zsdTN73swmR67fycyeMbO3Iz/HRa6/y8xuMLN/A9fEe7yZfR6YAVwbqZDaOfK4EyPL+C8ze8nM3jKzV82sKlKJ9LyZvRG5fL6H53My8KJz7l8Azrkm4CfAeZF1XGZmv4je2czeNbPxkd/nRuJ9z8xOj7lPo5ldFYlrgZnt0NNziWVmXzKzlyPx/93MKiPXX21m70e25XWpv3QiEqWEkoiIiIiISHbtCtzqnJsC1ANfi1w/B/ipc+6zwC+A30eu/x/gz865vYB7gJtjlrUbcLhz7ufxHu+cewmveui8SMXUx9EHmlkx8DfgbOfc3sDhQDNQBxzhnNsP+GaX9cUzBXg99orIesrMbEgPjz0tEu9U4CwzGxa5vgJYEIlrPvCD7p5LLDMbDlwc2S77Aa8B55rZUOB4YEpkW17ZQ2wi0o3uyiJFREREREQk/ZY5596M/P46MD5SQfN54O9mFr1fSeTngcAJkd//Avw2Zll/d86Fenh8IpOA1c65/wA457YAmFkF8D9mtg8QwktadccAl+D6npxlZsdHfh+Ll2zbALQBj0aufx04IollRR2ANyzuxci2KAZeBrYALcAdZvbPmOWLSC8ooSQiIiIiIpJdrTG/h4AyvNEj9ZE+Sz2JTd5sjfxM5fFRiRJBPwPWAntHltvSw3LeA6Z1WrDZRGC9c67ezIJ0Hh1TGrnPdLyqqAOdc01mNi96G9DunIvGFiK1c1cDnnLOnbTdDWb7A4cB38IblndoCssVkRga8iYiIiIiIpJjkeqgZWb2dQDz7B25+SW8BAjAKcALKT6+AaiKs9pFwCgz+6/IY6oizb0H41UuhYH/Bvw9hH8PcHDMbGtleMPkLo3c/gmwX+S2/YAJkesHA5siyaTJeJVFPUn0XGItAA4ys10i6yw3s90iVVyDnXOPAefgNUgXkV5SQklERERERCQ/nAJ8z8zewqv6OTZy/VnA/zOzt/ESPIlmT0v0+PuA88xsoZntHL2zc64Nr0fSLZHHPIVXIfR74DtmtgBvuNtWuuGca8Zrln2RmS0G1uM16b4ncpcHgaFm9ibwI2Bx5PongKLI87oCLxHUk7jPpUs864DvAvdGlr0AmIyXiHo0ct1zeJVYItJLtq2KUERERERERKRvzOw44Abgi8655TkOR0QyRAklERERERERERFJiYa8iYiIiIiIiIhISpRQEhERERERERGRlCihJCIiIiIiIiIiKVFCSUREREREREREUqKEkoiIiIiIiIiIpEQJJZFumNkKM9sv13FI35hnuZntnOT98/517w8xDjSFuJ+JiOSCPh8LQyH+v9gfYhxoCnE/60+UUJKcMLMJZva4mW0ys1oz+3/5tj4zqwZGAYsyGdtAk+3XHsB5dnLOfZxEfD2+7pG490lHbNo3C0c+72ciIqDjr4FMx1/bLUv7ZoHI5/1sIFBCSXLlAeApYDjwA+Di3izEzC4zs8sytL49gWXOuabexBbLzPx9XUY+6O55ZPi1yKZuX3czGw7UAB90txDtm9nV9XlEvq3aN8799s6T55yW/UxEJEU6/uqHdPyl4698peMvUUKpwJjZ983sSTO7LZJxX2xmnzGzs83sUzNbb2YnRO57ipm9ZGZ/M7M1kfK/o2OW5TOzmZHrV5nZV82sLZLZ7UuMewHDnHM3OOdCkavX9WWZGVrfXsDHZnaTma2LbIMjIss0MzvfvPLKejO738wGx6zz+2b2LzO708w2Ab8ws0cj23+zmT3VJcYfmNn7kdseN7OayPU9vUYJ4zCzRjMbG/n9h2bmzGyHyN/nmdkdSay/6/M4N9Xt3+V5pvxapPF5zI25X3f7dnev+y7ACrzPzg1mtsHMirK5PSLSuW+ea2YTE+2f/XjfHA/8y8yOilnWIcAzwO5xXouC3c9EJPNMx1/pXJ+Ov3T8peOv/rtvjkfHXwOLc06XAroANwMbgMMAP/AgsBw4GwhEfr4Rue/VQDPwjchtvwCWxyxrFjAfGA0MAV4GVsRZ56NAfYLLo3Hu/yPgbrw362fxSg6/08vnexlwWQ/36dX6gDmRbXlk5LGXAk9HbrsSmAfsCJQCDwPXd3kdGoAZkce+DPw48pqUAgfF3PdXwOvALkAxcAcwJ8nXKGEceB+InwEMeAf4CJgc+XsJsHcS6+/6PEqy/Vqk8Xlcnsy+3d3rHrn9x8DfCmjfLAFeIM7+2cM2zft9E5gW2U5fBPbHO1g8qpD2M1100SU/Luj4K9598uH/OB1/9fK1SOPz0PFXgtcUHX/12/1Ml5jXMNcB6JLmFxSeA34R8/cVxBxU4B3ovB35/Z/Ar2NuqwFc5MNnROTDYpeY2y8HHktDjLOBcyKxOuANoCrm9quA5/FKUct7WNZl9PyfRsL1AYOBV4FGYI8uj3sZODfm768DTwM7AJuBUTG3/TfwXJfX4dKYv1cDZwHFXdZRAzQBu8VcdyCwMInXqNs4Ih/K+0c+MP8vcjkAODrmPj2tv9PzyPBrcWBkmz8H3AsE0vw8Toj83u2+neh1j/l7DnBhFrbHDsBLkdueBXbMxL6ZaP9MYpv2i30zso4NQB1wfDf365f7mS666JIfF3T8ldL60PGXjr+67NuJXveYv3X81Y/2TXT8NWAuGvJWePbC+8Yq6jNx/o42IdsT76AhqgZodM614B34LHHOLYm5fSjem76v9gH+g5e13gXYCPwWwMz2AHZ2zh2C9wF9WtcHR0pD682sHrgAuCD6t5k92vX+3a0P78PpGDpvB8zMgD2Af8RcvQfwPnAI8I5zblXMbcPx/lOI2gv4e8zfpwDHAqsiJaJDI9cfhpdlfzXmOT2B958BdP8a9RTHJqAS7z/Mm4AtQDVwJl4mP5n1d30enaT5tVgOHOqc+wKwNLK90vk83oq5b9x9u4fXPfY5vEUcad4e64GDI9vjz8D3IutI974J8ffPfr1vxvgUCOJ90/VJN/frN/uZiOQlHX+lsD50/KXjL4+Ov3T81W/2M4lPCaUCYmY74b3ZFsdcvQ/wZszfewFvmtkQYCydxwufCDwe+X040PFhZF4TtaOBt+Os9/HI+Nd4l8e73NePN352oXMu7Lxu/C/G3OWQmBgeBw7uuj7n3Fecc0Occ0Pwyj6vjv7tnPtKKutzzrU75+KNmZ4Q+Rn7YbQv3rYcwbYPsKhj8cpWo69DgJjZA5xzzzrnDsM7oNwb+G7kpqHA/8XEP8Q5N9g5Nz2J16jbOPBK3qfifbMyD+8Dem+8D865Sax/u+fRVZpfi1XOuebIn0EgnMbnUYR3kATd79vdve6YmS+y3jezsD1CzrnoNqgC3ov8ntZ9M7KuePtnv943I893Z7yGm+cDPwQeM7MpCe6ejpiysp+JSH7R8ZeOv9Dxl46/dPzVQcdfA4sSSoVlb7ysdBjAzAYBO9H5IGRvvKzrnkAIONnMiszsGLxM8GWR+30AfN7Mdoks52ZgZ+J8Q+acO9o5V5ngcnSXu08CyoGjzcxv3pSM3wP+FLm9mm0fhJvxPkD6oqf1JbIX3rZ0Mdfti7ft/gMcaGY7m1mlmc3CKzH9Y+R+XV+HE8xs10hWvCryHN+M3PcN4Itmtl/kvoPM7NjIfXt6jXqKYxPwM7Zl97fg9XCY7bY1IOxu/Z2eRxok9VqY2QS8D/7oN0rpeB5vx7yW3e3b3b3uAGWRSzo+O3vcHma2j5m9Avwk8hzpIcaU9s3IOhLtn/163zSzUXgNIK9yzt3lnHsQr8/Av8xsYpyHFOp+JiKZp+Ov7en4S8df+fr/oo6/dPyl46800sYqLHuz/bdhS1xkWkTrnHXdE7gHb/zpJryxpcc5594HcM49gzeOeiHwWuQxTfSQkU7CvnhlhdfjZaTvAs5yzi2I3L4Jb1w9kZ8bM7y+RPYkptzRzIYBI4F3nXOv4fUZeAFYifctx6Fu2/STXV+Hg/HG9jYAj+F9a/IsgHPuZbzGcQ+aWWMk1qMiH3Q9vUY9xbEJL2P/18jfW/Aa090eDayH9Xd9Hn3V42sR+eD/E/Dfzrm2ND6Pt2Pu292+nfB1jzx2K/AH4H0zW9mnrZHE9nDOvemc+xxwCXBh5Op07puQYP8sgH1zA/Bz59xtMcu8B+/Aqy7O/Qt1PxORzNPxV+rrS0THXzr+0vFX/943dfw1wFjnBJ0MFGZ2G7DYOfe7JO//Q+AY59xX+7jea4GNzrnfJLh9T7xGaCeb2el4Mwfckqn1xdzvLuA659y7vV1XuqX6GuW7JF77IrbNRPFsFuNKy77di/X2tD1KnHOtkd+PBI50zp2bzRgTKbR9MxtytZ+JSH7R8dd297sLHX9llI6/tluvjr8GEB1/ZZ4qlAauPfFKAuMyswPMbCcz85nZEXhZ4avSsN59u1uvc+4dYLmZPY/X7f+Pie6bjvUBmNljwJeA283su31cXzp1+xr1Qz29FicBnwNmmtk8M/tmJoLI4L6dqp62x35mNt/M/o3XqPDarESVnELbN9Muj/YzEckvOv6K0PFX1uj4qzMdfxWwPNrPBoyiXAcgObMH3ZdP74s3LWUAr8nkd5MoU07G3j2sF+fchd3dnoH1fTmN60unnl6j/qbb18I59xfgL1mII1P7dqp62h4vA9OyF05KCm3fzIR82c9EJL/o+Gvb+nT8lR06/upMx1+FLV/2swFDQ95ERERERERERCQlGvImIiIiIiIiIiIpUUJJRERERDCzUjN71czeMrP3zOzyXMckIiIi+asghrwNHz7cjR8/PtdhiIiISAa9/vrr651zI3IdR6EyMwMqnHONZhbAm3r67O76T+gYTEREpMC0t8Pq1bB+PQCvO5fw+KsgmnKPHz+e1157LddhiIiISAaZ2fJcx1DInPctY2Pkz0Dk0u03jzoGExERKRBr18LVV8Ntt0EoBD/4AVx8MTZuXMLjr4JIKImIiIhI35mZH3gd2AW41Tn3So5DEhERkUzasAGuvRZuuQVaWuDUU+GSS2DixB4fqh5KIiIiIgKAcy7knNsHGAPsb2Z7dL2PmZ1uZq+Z2Wvr1q3LeowiIiKSBvX1MHMmTJgAv/0tHHccfPAB/O//JpVMAiWURERERKQL51w9MA84Ks5tc5xzU51zU0eMUEsrERGRfqWhAa66ykskXXEFfOlL8M47cM89sNtuKS0qpwklM/ujmdWZ2bsx111mZrVm9mbk8uVcxigiIiIyEJjZCDMbEvm9DDgcWJTToERERCQ9mpq8oW0TJsDFF8Mhh8Abb8ADD8CUKb1aZK4rlO4izjdfwO+cc/tELo9lOSYRERGRgWhH4N9m9jbwH+Ap59yjOY5JRERE+qKlBW66yRvG9stfwmc/C6+8Ao88Avvu26dF57Qpt3NuvpmNz2UMIiIiIgLOubeBvh1ZioiISH5oa4M//hGuvBJqa2H6dK8a6eCD07aKXFcoJfITM3s7MiSuOtfBiIiIiIiIiIjkvWDQSyRNmgQ/+hHstBM88wz8+99pTSZBfiaUbgN2BvYBVgPXx7uTZhgREZG+mreojpPmLODga57lpDkLmLeoLtchiYiIiIikLhTitStvZsXI8fC97/FBewkv3fJneOEFOPTQjKwy7xJKzrm1kSlrw8DtwP4J7qcZRkREpNfmLapj5iPvUdfQwpCyAHUNLcx85D0llURERESk/wiH4e9/Z8uuuzP1krNp9AX4wQkXc/Qp1/G9tSOY++aqjK06pz2U4jGzHZ1zqyN/Hg+82939RaR/mreojtnzl7JiUxNjq8s5Y9pEpk+uyXVYMoDMnr+UgN8oL/b+KywvLqKpLcjs+Uu1L4qIiIhIfnPOa6x96aXw1ltsqBnHBcdewOOTPo8zr3aouT3EtU9+yHH7js5ICDlNKJnZvcB0YLiZrQQuBaab2T6AAz4BzshVfCKSGdHKkIDfOlWGzAKdyEvWrNjUxJCyQKfrygJ+Vm5qylFEIiIiIiI9cA6efBIuuQReew122QX+8hcOf3sQIZ9/u7uvqm/OWCi5nuXtpDhX35n1QEQkq1QZIvlgbHU5dQ0tHfsheN/ijKkuz2FUIiIiIjIQzV1Yy7VPfsiq+mZGDSnjvCMnbV9Z9OyzXiLppZe8Ztt33gmnngpFRYy8+llq4ySPRg0py1jMeddDSUQK34pNTZQFOmfPVRki2XbGtIm0hxxNbUGc8362hxxnTJuY69BEREREZACZu7CWCx96h9r6ZhxQW9/MhQ+9w9yFtd4dXngBvvhFOOwwWL4cbrsNFi+G006DIu/L0fOOnBT3HOu8IydlLO6866EkIoVPlSGSD6ZPrmEWXsXcyk1NjFEvLxERERHJgWuf/JDm9lCn65rbQzx6x8Mc9/Ej3hC3HXaAG2+EM86A0tLtlhGtZuqxyimNlFASkaw7Y9pEZj7yHk1tQcoCfprbQ6oMkZyYPrlGCSQRERERyamufY4+s3YpP3vhbo5Y8ioMGwa//S2ceSZUVHS7nOP2HZ3RBFJXSiiJSNapMkRERERERAaCZHojjRpSRm19M7uuW845L/6VYz58kc0lFcw54v9x+oM3QVVVjqLvnhJKIpITqgwREREREZFCFu2NFB3OFu2NBHRKKl02OUDLxVdwzHvP0VRcyk2f/xb3fP5r/OrkA/M2mQRKKImIiIiIiIiIpF2i3kjXPvmhl1BatgxmzeKIv/yFYKCYv077BjfsPYOyUSP5VYb7H6WDEkoiIiIiIiIiImnWtTdSlPv0U/jhD+HOO8Hvh5/+lKILLuDbO+zAt7McY18ooSQiIiIiIiIikmbR3khRIxo3cuaCv3PKm0+ADzj9dPjVr2B0flciJaKEkoiIiIiIiIhImp135CQufOgdyjZv5IxXHuTUN/5JINTOymO/wfgbr4addsp1iH2ihJKIiIiIiIiISC90N4vbcTuVsfuqxxh79+2UtLfxr30Oo+jSmRxx7ME5jjo9lFASyYB5i+qYPX8pKzY1Mba6nDOmTdSMZiIiIiIiIgUk0SxuRY0NfOXZv8ENNzBpyxb45jfh0ks5evfdcxxxeimhJJJm8xbVMfOR9wj4jSFlAeoaWpj5yHvMAiWVRERERERECkTXWdzK25r5zoJHOeT6h6C5AY47Di6/HPbaK3dBZpASSiJpNnv+UgJ+o7zYe3uVFxfR1BZk9vylSiiJiIiIiIj0Q/GGtkVncStpb+XbCx/jR688wPCmzTw7cSqH3v8H+Oxncxx1ZimhJJJmKzY1MaQs0Om6soCflZuachSRiIiIiIiI9FaioW0jih1HLvgnP3n5fnZo3MgLO+3NDYd8m7VT9uPQAk8mgRJKImk3trqcuoaWjgolgOb2EGOqy3MYlYiIiIiIiCSjazVSU1uw09C2olCQY998grNf/hs7blnHK2OmcNZXz+OVcXtSFvDzmyMn5TD67FFCSSTNzpg2kZmPvEdTW5CygJ/m9hDtIccZ0ybmOjQRERERERHpRrxqpCh/OMRx783jrJfuZaf6NSzccRJLr76JX9bXsGpzC6O7zPJW6JRQEkmz6ZNrmIXXS2nlpibGaJY3ERERERGRfqFro20Ac2G+8sHznPPivey8cSXv7rAzp31tJh9+dhov/ugwXsxRrLmmhPORkm8AAJKwSURBVJJIBkyfXKMEkoiIiIiISD+zKqYiCec4cvHL/OyFe5i8fjkfDh/HGcf9iid3O5Cy4iJ+c9Tk3AWaB5RQEhEREREREREBRg0po3ZTE19c+ho/f/5u9lj7MR8PHc0FX7uAF/c7lJVb2gbc0LZElFASEREREREREXGO3w5eS+X/XM7etR/y6eAd+PmXf8aT+xzGlSfuw9UDPIHUlRJKIiIiIiIiIjKwzZ8PF1/MQc8/T9PIUVx9/LncufM0aoZVcaWqkeJSQklEREREMLOxwJ+BkUAYmOOcuym3UYmIiGTYggXUnfNLal55nrWVQ7nnqz9ll4vO4YLPTeSCXMeW55RQEhERERGAIPBz59wbZlYFvG5mTznn3s91YCIiImn3+uswcyY89hj+8sFc8cXvcfe+X6Y1UELZo4sJF5eoKqkHSiiJiIiICM651cDqyO8NZvYBMBpQQklERArHO++w6uzzGPXvJ6kvrWTOF77DXft9habiso67NLeHuPbJD5VQ6oESSiIiIiLSiZmNB/YFXslxKCIiIr02d2Et1z75Iavqm9m7cTU/eu5ujnh3PpXFZfzuoJP5438dS0NJRdzHrqpvznK0/Y8SSiIiIiLSwcwqgQeBc5xzW+LcfjpwOsC4ceOyHJ2IiEhy5i6s5cKH3mFE3Uque/GvHPf+c7QUFfP7A7/O7f91PJvLqrp9/KghZd3eLkooiYhIDsxbVMfs+UtZsamJsdXlnDFtItMn1+Q6LJEBz8wCeMmke5xzD8W7j3NuDjAHYOrUqS6L4YmIiCTtz/fNZ+YTd/H1d54m6C/izqnH8ocDTmRj+eAeH1sW8HPekZOyEGX/poSSiIhk1bxFdcx85D0CfmNIWYC6hhZmPvIes0BJJZEcMjMD7gQ+cM7dkOt4REREkhU7tG3X9s187/n7uO/1x3EGf9nvGH5/wNdZVzm022X4zQg7x6ghZZx35CT1T0qCEkoiIpJVs+cvJeA3you9/4LKi4toagsye/7SAZVQUpWW5KGDgP8G3jGzNyPX/co591juQhIREeledGhbef0GLlrwd/574WP4XJi/73kEt3z+m6weNKLHZZQF/PzmhD2VREqREkoiIpJVKzY1MaQs0Om6soCflZuachRRz9Kd/FGVluQj59wLgOU6DhERkWREq5K2rl7LWa88xHfe+AclwXYemnIoNx/0LVYMGdnt4w1wwGhVJPWaEkoiIpJVY6vLqWto6ahQAm9q1jHV5TmMKrFMJH9UpSUiIiLSe3MX1vLrv77MKS89yGmvPUxFWwuPfGYaNx10MsuGxk8MDSkLYAb1Te0a1pYmSiiJiMSh4UiZc8a0icx85D2a2oKUBfw0t4doDznOmDYx16HFlYnkT3+s0hIRERHJB4++8CEfX3QVT73yEINbt/LYbp/ndwefwkcjdkr4mNFDynjxgkOzGOXAoISSiEgXfalIUSKqZ9Mn1zALL1GzclMTY/J8O2Ui+dPfqrREREREcu0fLy1hyWXX8J0X7ucrzVt4apf9ufHgU3hvh527fZxmbMscJZRERLrobUWK+uIkb/rkmn6zTTKR/OlvVVoiIiIi2RbtkbR+/WZOfvNxzlzwd766tZ754/fl+kO+zVuj4ieJNLQte5RQEhHporcVKeqLU5gykfyZPrmGE1fWc8cLy9jaFqKi2M/3D56g/UREREQGvLkLa7nskffY2tjEN95+ip+89Dd2bNzAy+P25EfHXchrY6bEfZxmass+JZRERLrobUWK+uIUpkwM0Zu3qI4H3qhlRFUJ4yJJqgfeqGWvMUOUVBIREZEBa+7CWi5+4E2OXvgvznrpb4zdvJbXRu/OuV85l5d32jvh4/xmSiblgBJKIiJd9LYiRX1xCle6h+ipmk1ERETEEx3atnpjI1/9YD6PvHgvEzet4q2Ru3LJET9i3sTPglnCx6syKXeUUBIR6aK3FSnqiyPJUjWbiIiIDHTRoW2bm1o5+sOX+N8X/spuGz7lgxHj+cEJF/PULp/rNpEEUF0e4NKvTlEyKUdymlAysz8CXwHqnHN7RK4bCvwNGA98AnzDObcpVzGKyMDUm4qU/jZ7meSOqtlERERkIJu7sJYLH3ybgz54mXNfuJvP1C3jo2FjOfPYC3h80udx5uv28Uok5YdcVyjdBfwP8OeY6y4AnnHOXW1mF0T+Pj8HsYmIpKw/zV4muaNqNhERERmwnOOpG+7i3mf+xD6rP2JZ9Y6c85Wf88ju0wj7/HEf4jMIOxitWdvySk4TSs65+WY2vsvVxwLTI7//CZiHEkoiIlJA0lnNNm9RHbPnL2XFpibGqipORERE8tm//82Gn/2SW996jZWDajjv6LN4aI/DCCVIJPnNuP4beyuBlKdyXaEUzw7OudUAzrnVZhb3qNjMTgdOBxg3blwWwxMREem7dFSzzVtUx8xH3iPgN4aUBahraGHmI+8xK7J8ERERkbzw4otwySXw73/TVjWMi750JvfvdQTt/kDCh6jZdv7Lx4RSUpxzc4A5AFOnTnU5DkdERCTrNFuciIiI5LX//MdLJD35JA1DhnHDYT/gr/scTWtRcdy7a2hb/5KPCaW1ZrZjpDppR6Au1wGJiIjkI80WJyIiInnpzTdh5kz4xz9oHVLN74/4PnP2OIrm4tKEDxlSFuDNS7+UvRilz/IxofQI8B3g6sjPh3MbjoiISH7SbHEiIiKSV95/Hy69FB54AIYM4emTf8I5NdNoLOn+2KQs4OeyGVOyFKSkS/dz8WWYmd0LvAxMMrOVZvY9vETSEWb2EXBE5G8RERHp4oxpE2kPOZragjjn/dRscSIiIpJ1ixfDKafAHnvQ/tjjzJ52Mnt95w98f+xRPSaT/GbqldRP5XqWt5MS3HRYVgMRERHph9I5W5yIiIhIKuYurGXOn57hu8/+hRPefZa2ogB/3v8EZu9/ApvKBye1DAPN4taP5eOQNxEREUlSOmaLExEREUnFtXc8xahbb+Dht58ibD7+9NmvctsBJ7K+ojrpZRhwygHjlEzqx5RQEhGRAWveojpmz1/Kik1NjFV1j4iIiEj3Vq/m43Mv4qy//wVzcO/eR3HrgV9nbdXwlBZTXR7g0q9OUTKpn1NCSUREBqR5i+qY+ch7BPzGkLIAdQ0tzHzkPWaBkkoiIiIisdatg9/+Fm69lZ1aW3lgj8O55fPfonZwasdM0aqkK4/bMzNxSlYpoSQiIgPS7PlLCfitY4a08uIimtqCzJ6/VAklEREREYBNm+C66+Cmm6C5GU45hcPKDmF59aiUF6WqpMKjhJKISJppGFX/sGJTE0PKAp2uKwv4WbmpKUcRiYiIiOSJLVvgxhvhhhtg82ZWHvFVfrnH8bxUnPoxbUWxn6uO1yxuhUgJJSlIOqEvfPn6GmsYVf8xtrqcuoaWjgolgOb2EGOqu5/aVkRERKRgbd0Kt9wC114LGzfCccdxyxe+zQ1rSnEpLkoVSYVPCSUpODqhL3z5/BpnaxhVvibU+pMzpk1k5iPv0dQWpCzgp7k9RHvIcca0ibkOTURERCS7mpvhttvg6qth3TrWHHwoP/vMCbxcPR7WJLeIT64+JqMhSv7x5ToAkXSLPaE3834G/Mbs+UtzHZqkST6/xis2NVEW8He6Lt3DqKIJtbqGlk4JtXmL6tK2joFg+uQaZs2YQk1VKZub26mpKmXWjClKzImIiMjA0doKt94KO+8MP/85dRMmcdJ3r+eAg871kklJGj2kLHMxSt5ShZIUHPVFKXz5/BpnYxiVmkmnz/TJNdpmIiIiMvC0t8Ndd8GVV8Knn8Ihh3DHmVdxZWPqx0UGnHfkpLSHKPlPFUpScMZWl9PcHup0nfqiFJZ8fo3PmDaR9pCjqS2Ic97PdA+jykYVlIiIiIgUoFAI/vxnmDwZTj8dRo6EJ59k7o1/5apeJpNOOWCc+iQNUEooScHJxgm95FY+v8bZGEaVzwk1EREREclD4TDcdx9MmQLf+Q4MHgz/+AcsWABf+hKXP/p+yk23Rw8p43ff3Icrj9szIyFL/tOQNyk40yfXMAtvWNDKTU2MUcPigpPvr3Gmh1GpmXTy1Ly8Z9pGEsvM/gh8Bahzzu2R63hERKSPnIO5c2HmTHj3XS+h9OCDcNxx4PMxd2EtFz70Ns3t4aQX+e0DximJJACYc6nmIfPP1KlT3WuvvZbrMESkgOXbSXc0nnxMqOWL2NkAYxNvary9TX/bRmb2unNuaq7jKGRmNg1oBP6cTEJJx2AiInnKOXjsMS+R9MYbsNtucNll8I1vgN9rnXDx3He4e8GnSS+yujzApV+douFtA0x3x1+qUBIR6UHsSXfsrGqzIGcn3Wom3TM1L++ZtpF05Zybb2bjcx2HiIj0knPw9NNwySXwyiswYYLXfPuUU6Bo2+l/KsmkG7+5j5JIEpcSSiLS72W6eqjQTrrzrdoqU/J5NsB8oW0kvWFmpwOnA4wbNy7H0YiISIf5871E0vz5MHYszJkD3/0uBLb9X5/qELfRQ8qUTJKElFASkX4tG9VDhXTSnY/VVpkytrqcuoaWjkQgqHl5V9pG0hvOuTnAHPCGvOU4HBERWbDASyQ9/TTsuCPccgv84AdQUgJ4SaTLHnmP+ub2lBYb8BvnHTkpExFLgdAsbyKSNfMW1XHSnAUcfM2znDRnAfMW1fV5mbHVQ2bez4DfmD1/aRoi9hTSrGrZ2F75Ip9nA8wX2kYiIiL92OuvwzHHwIEHwptvwvXXw8cfw09+wtz317P7JY8z/oJ/cs7f3kw5mVRR7OfaE/dWdZJ0SxVKIpIVmaqMyUb1UCHNqlZI1VY9yffZAPOBtpGIiEg/9M47cOml8H//B9XV8Otfw09/CpWVKTfa7qqi2M9Vx++pRJIkRQklEcmKTPUhysaQnUI66R5oQ5zUvLxn2kYSy8zuBaYDw81sJXCpc+7O3EYlIiIALFrkzdR2//1QVeX9fs45MHgwcxfWct7fnyPJ1khxffuAcVx53J5pClYGAiWURCQrMlUZk63qoUyedGezSXYhVVuJSPo5507KdQwiItLFxx/DrFlw991QVgYXXMA/v3Qyv3hmBc2/eSEtq1AySXpDPZREJCsy1Ydo+uQaZs2YQk1VKZub26mpKmXWjCn9puIiOhSwrqGl01DAdPSXiqe/by8RERGRAWP5cq+59qRJXlXSz34Gy5Zx8f4n8eMnlic9U1tPlEyS3lKFkohkRSYrY/rzkJ1MDQXsTn/eXiIiIiIFb9UquOoquP12MIMzz4QLL2TumjAX3vxa2hJJ1eUBLv3qFPVLkl5TQknSKptDd6R/KaQ+ROk0kJpki4iIiEg36urg6qvhttsgGITTToOLL+bi1+u5+6Y3+rx4NdyWdFNCSdImU7N4SeGIVsZEE48XP/wuY+cP7MTSQGuSLSIiIiJdbNgA114Lt9wCLS1w6qn864QfcParm2m+9e0+LbqkyMc1X9tLSSTJCPVQkrSJHbpj5v0M+I3Z85fmOjTJI9nuGZTvzpg2kfaQo6ktiHPeTzXJFhERERkA6uvh0kthwgT47W9ZMe0Ijj7jD4zf4UROf3FTn4e2ffuAcXx45dFKJknGqEJJ0kZDdyQZuegZlM80FFBERERkgGlogJtvhuuug/p6npx8ENd//iQWjxiflsWrN5JkixJKkjYauiPJUOJxe2qSLSKpMLOdgZXOuVYzmw7sBfzZOVefy7hERKQHTU1w663w29/C+vV88F9f4BdTTuC9HXbu02J9Bjd8Yx8lkCTrlFCStMnkLF5SOJR4HHiy1axfkwLIAPIgMNXMdgHuBB4B/gp8OadRiYhIfC0tMGcOLbOupHTDOuaP35cbjr6QN0dN6vOi1WhbckkJJUkbDd0ZmFI9iVficWDJVrN+TQogA0zYORc0s+OBG51zt5jZwlwHJSIiXbS18eblN7DDLdezY8N63hy7B9cd9QteGzOlz4vWsDbJB0ooSVpp6M7A0puTeCUeB5Zs9cxKx3pU4ST9SLuZnQR8B/hq5LpAN/cXEZFsCgbhL3+h7ryL2GfDal4fNZmff/kcXtppbzDr9WI1Y5vkGyWURKTXensSr8TjwJGtnll9XY8qnKSf+X/AD4GrnHPLzGwCcHeOYxIRkVAI7ruP9eddxPDVy1kzchd+eeJlzJv42T4lklSNJPlKCSUR6TU12JaeZKtnVl/Xo9kHpT9xzr1vZucD4yJ/LwOuzm1UIiID19zXV/DCNXM4/dk/s9uGT1k3YjwXnnAxT+3yuV4nkpREkv5ACSUR6TU12JaeZKtnVl/Xk0xyVEPiJF+Y2VeB64BiYIKZ7QPMcs7NyGlgIiIDzMX/9zZr7n6Ac1+4m+PqlrFk6Bh+PON8Hpt8EM58KS9PQ9qkv1FCSURSEntSXVVSxObmdgA12Ja4stUzq6/r6Sk5qiFxkmcuA/YH5gE4596MDHsTEZEMu3juO9z98nK+sOwNfvbC3eyz+iOWVe/IOV/5OY/sPo2wz5/yMg045YBxXHncnukPWCSDlFASkaR1Palubg9hQMBnbG5uL8gG26pK6bts9czqy3p6qnCKNyRufWMLZ923kEFlAe0bkm1B59xm6zyMwuUqGBGRQjZ3YS3n/f1N2sPe3wcuf5u/P383/1X7PisH1XDe0Wfx0B6HEUoxkaQhbVIIlFASkaTFO6kGqK4o4YmfHZDL0DJCVSkDR08VTl2HxDW0tLO+oQ0HjBtanrZ9QwlMSdK7ZnYy4DezXYGzgJdyHJOISEGYu7CWCx96m+ZoBinisyvf5+fP383nP32b1ZXDuPhLZ/K3vY6g3Z/8JJtFPuO6r++tJJIUDCWURCRpA60Jtxo1DyzdVTh1HRK3rqEVDEr8PswsLfuGEpiSgp8CFwGtwL3Ak8AVOY1IRKQfu3juO9y94NO4t+21ejE/f/5uvrDsDdZVDOHyw37AX/c5mtai4pTW8W0NaZMClLcJJTP7BGgAQnil3VNzG5GIJOozU1lSxElzFhRcVcVAS6BJYl2HxLUEQ/jMGF5Z0nGfvu4bSmBKspxzTXgJpYtyHYuISH82d2Et5/7tTcJxbtu9binnPn8PRyx5hY1lg/jN9O/y532/QnNxadLLV28kKXR5m1CK+KJzbn2ugxART7w+M1ua23FAWyicl1UVfRlCpFnsBp5E+0vXIXEVxUWUF/sZVBagoaWddQ2ttARDVBQXMW9RXa/2fSUwpSdm9g+66ZWkWd5ERJLTtS9SrF3Wf8rPXriHYz58kS0lFVx3yLf538/OYGtJcsd/FcV+rjp+Tw1rkwEh3xNKIpJH4vWZCfiM9rDLy6qKvg4hytaU99I36eo71NP+EjskLnrf9Y0trG9oAwOfGeXF/l4nVJXAlCRcl+sARET6u0TD28ZvrOXsF+/l2Pefo6m4lJsP/CZ37H88W0ore1ymKpFkoMrnhJID/mVmDpjtnJuT64BEZPs+Mwdf82zeVlX0dQhRqlPRD/SGyrl4/unsO5TK/hLdN866byEOr5fS8MoSBpUFep1QVQJTeuKcey7XMYiI9Gen3P4yL368sdN1Y+rXcNZL93HCu8/S7g8w53MnMHv/E9hUPrjbZSmJJJLfCaWDnHOrzKwGeMrMFjnn5kdvNLPTgdMBxo0bl6sYRbImX5MV+VxVkY4hRMlORT/QGyrn6vlf88Qi6ra0EHKOYr+PEVUlBPzWq4ROsvtL7HuxNRhm9JBSBpUVd/uYZKSawJSBx8zud859w8zeIc7QN+fcXjkIS0QkbyWasQ1g5Jb1/PTl+/jG208RNh9/+uxXue2AE1lfUZ1weRrOJtJZ3iaUnHOrIj/rzOz/gP2B+TG3zwHmAEydOjVhPwGRQpCLk/VkE1j5XFWRzWRXOhoq52vSMBm5aCg9b1Edi+sa8Rv4fUYw7FhV38KOg0t6ldBJZn/p+l5c39hKbX0LZkZVaSDuY1KRbAJTBqyzIz+/ktMoRETyWHcztgGMaNzEmQvu5+Q3n8Cc4969j+LWA7/O2qrh291XCSSR7uVlQsnMKgCfc64h8vuXgFk5DkskZ7J9sp5KAiufqyqymezqazVUf69wykVD6ej7woXBMMwgjGPtllb2Hbft28V0Jke7vhd3qCqltr6ZNZtbqCwp6vU+1p+TiZI9zrnVkV/PdM6dH3ubmV0DnL/9o0REBoaeEklDmzZzxisPcuob/yQQaueBPQ/nls9/i9rBnf+/3bWmgqfOnZ7haEUKQ14mlIAdgP8zM/Bi/Ktz7onchiSSO9k+WU81gZWvVRXZTHb1tRqqv08Zn4uhjys2NbFDVQmrNrdAGMzAOUfQbUvopDs52vW9OKgsADjWbGllc3N7r/ax/p5MlJw4gu2TR0fHuU5EpGB1N5wt1qCWRk5/9SG++/o/KGtvZe5nvsDNB53E8upR29332+qJJJKSvEwoOeeWAnvnOg6RfJHtk/VCmr48W8muvlZD9fdtnouhj9H3xajBZaxvbKUtFMbvMyYOreh4zdOdHI33Xizy+9hvXDX3nn5Ar55Hf08mSvaY2Y+AM4GJZvZ2zE1VwIu5iUpEJHt6qkKKVdnaxGmvPcz3/zOXQa1beXTyIfzuoJP5ePjY7e6rRJJI7+RlQklEOkv2ZD1dw2byudF2vuprNVR/3+a5GPoYfV8E/MaE4RUd74sLjt694z7pTtR1917s7fuvvycTJav+CjwO/Aa4IOb6BufcxvgPERHp35KtRIoqa2vhu2/8g9NfeYjqlgae3PUAfnfwKSyqmbDdfYt8xnVf31s9kkR6SQklkX4gmZP1dA6byedG2/msL9VQhbDNsz30MZn3RboTdYnWCfT6/dffk4mSPc65zcBm4CQz8+O1CCgCKs2s0jmX3Nf23TCzo4CbAD9wh3Pu6r4uU0QkVXMX1nLe398kyRwSACXtrXz7zcf50YK/M7xpM89OnMoNh3ybd0fuEvf+qkoS6Ttzrv9PkDZ16lT32muv5ToMkZw6ac6C7U5Km9qC1FSV9mooTrTaIt8abReydG/zXDR67rrOAycO5eWlG3PWbDo20RqbqJs1Y0pa4+jL+y9bMRYCM3vdOTc113Hkmpn9BLgMWAtET7ecc26vPi7XDyzG69G0EvgPcJJz7v1Ej9ExmIikS6qVSFHFwXa++faT/Pjl+xnZuJEXdtqbGw75Nm+M3r3T/TRjm0jvdHf8pQolkQKR7mEz+dpou5Clc5vnotFz13UuW9/Iq59spKaqmGEVJXFjyHTSK1tD8fry/svnmRIlb50DTHLObUjzcvcHlkR6WWJm9wHHAgkTSiIifZVKX6RYRaEgX3v3GX760n2M2bKOV8ZM4eyvnscr47ZVHSmJJJJZSiiJFIj+OGxGU6X3TjLbLReNnruus6EliM9gS3OQ4ZWl28XQXdIrurx07BvZSI729f2nBK6kaAXe0Ld0Gx1ZdtRK4HNd72RmpwOnA4wbNy4DYYhIoettNRKALxziuPfncfaL97JT/Rre3HE3Ljzqpzw/fl9vylc0nE0kW5RQSoFOfiWf9acePPMW1XHNE4tYXNdIwG/sUBW/ekW2l2zlUV8r1nrzedd1nW2hMD7zfsaLIVHS65onFrG1LZTwOebjZ3F/ev8lKx+3s3RYCswzs38CrdErnXM39HG5Fue67XojOOfmAHPAG/LWx3WKyADRm75IscyF+coHz3POi/ey88aVvLvDzpz2tZk8u/N/UVFSxI2qRBLJOiWUkpSL4SMiUcmc2PWXYTPR91Ldlhb8Bi4MqzZ7U78H/Kap0nuQbOVRXypmevt513WdxX4fbaEwxX5f3BgSJb0+qmtkTHVZ3OcIvW9+nUn95f2XLP2fl/c+jVyKI5d0WQnEzqc9BliVxuWLyADU10QSznHkRy9zzgt/Zfd1n/Dh8HGccdyveHGPg7jyhL35o5JIIjmjhFKScjF8JJNy/c1zrtffn6RyYtfdsJl82ebR91LIOfw+wzAIw/rGViYMr8jKVOn5si16I9nKo75UzPT2867rOqtKi1jX2MagsiKcc9vFkCjpFX1O8Z5jsrHl4jUupGFrhfZ/XqFxzl2eoUX/B9jVzCYAtcC3gJMztC4RKXC97Y3UwTm+uPQ1zn3+bvZc+zEfDx3Necefz0G/OpPZUzXcViQf+Hq+i4B3EpfoBKe/6agQaWjplKCYt6huQKy/P5m3qI6z7ltIbX0Taza30NgapLy4qKOSJ5Xl5Ms2j76Xiv0+opNMWmRYVDZ6PuXTtuiNsdXlHUmXqHjbbfrkGmbNmEJNVSmbm9upqSpNetaw3n7edV3nhOGVnH3oLowfVhk3hjOmTaQ95GhqC+Kc97M95JgwLPFzTCa2/v4a54NC+j+vEJnZCDO71sweM7Nno5e+Ltc5FwR+AjwJfADc75x7r6/LFZGB54gb5vU+meQcBy9byEN3/4L/feByhrRu5fXLf8fOaz/h2oeu5jglk0TyhiqUktQfGx4nkqlvnpOtCCiEb76zUf0QPSluagtR5DOCYceq+hZGDYHKkqKUTuzyaZtH30sjqkpYVd9CGIeLVCtlo+dMPm2L3kil8qi3FTN9+byLt86zurlvvGFiQMLnOHv+0h5j6++vcT4opP/zCtQ9wN+ArwA/BL4DrEvHgp1zjwGPpWNZIjJw9LkaKWL/Fe/y8+fv5nMr3qVp5CiYM4ex3/0uYwOBnh8sIlmnhFKS0tlwNZlkRCYTFumeXh5SG5aVifVnU7Z6i0RPikuKfARDDp/PCONY19CK32cpndjl0zaPvpcCfmPHwSWs3dJK0DkmDq3ggqN3z/gJfz5ti97IRq+ebDaYTpT06u459hRbf3+N80EhNhkvMMOcc3ea2dnOueeA58zsuVwHJSIDz9yFtZz7tzfpbXukqH1rF3Hu83dzyPI3Yccd4ZZbKP/BD6CkJB1hikiGFERCadGaBk6asyCjPTLSdRKXTDIi0wmLTHzznEpFQH//5jtb1Q/Rk+LhlSWs2twMYcAcLcFwyid2+bTNu76X9h1XndUeRpXFfpasayQUdhT7fQyvLKHIn1qCLtcy3asn00mrZJvMx1tfMrHl0/7eXxVak/EC1B75udrMjsFrnD0mh/GIyACTroqkKWuWcN5Lf2X6R6/C8OFw/fXwox9BWVkaohSRTCuIhFKRz7IyA02qJ3HxTpqSSUb0JWGRzIlaJr55TqUioL9/852t6ofoSfGgyLrWN7bSGnRUFBcl3QsnKt+2ea6aF89bVMeGrW1exZdBeyhMbX0zQ8oDXHLMZ7IeTz7L1GuUjoR5T7Hl2/7eXxVSk/ECdKWZDQZ+DtwCDAJ+ltuQRKTQzV1Yy4UPvU1zr6dr22bPjcuZveQfjPr3E1BdDb/+Nfz0p1BZmYZIRSRbCiKhBPnXIyPRSVNTW5CRg0o73bdrMqK3CYtkT9Qy8c1zKhUB/f2b72xVP8SeFFeVFlHk93oMpZpMgv6/zdNl9vylDCoLUFFSxLqGVtpCYYp8xojKkgG3LdKpayL7wIlDeXnpxriJ7WxU+Gl/l0LnnHs08utm4Iu5jEVECle6qpBi7bFlFX/4+FHGPPUPqKqCyy6Dc86BwYPTuh4RyY6kEkpmdkKcqzcD7zjn8mbanHzqkZHopKkt6M1k1V0yorcJi1RO1NL9zXOqFQH9+ZvvbFU/pPukuC/bPBdTsGdCNFlrZlSVeklb5xybm9t7eKQk0jWRvWx9I69+spGaqmKGVZRsl9jOVoVff/6MEemJmf0v4Lpe75w7LQfhiEiBSVdfpFjTfPX8ufZfcPfd3nC2Cy6AX/wChg5N41pEJNuSrVD6HnAg8O/I39OBBcBuZjbLOfeXDMSWsnzqkZHopKk4UmXSXTKitwmLXDaiHUgVAdl8rvlwUpytJuTZUAi9dfItudc1kd3QEsRnsKU5yPDK0u0S29l6DfJtO4mk2aMxv5cCx+P1URIR6ZNTbn+ZFz/emLbljd5Sx00fPcrUfz8MgQD87Gdw/vkwYkTa1iEiuZNsQikM7O6cWwtgZjsAtwGfA+YDOU8oNbUF86pHRqKTpl13GNTRSymajBg5qJiz7lvI1rYQFcV+vn/wBGbNmJJywiLZE7VMnWjlQ/IjWwbScy2kKdhz3Vunr++9fEzudU1kt4XC+Mz7GRWb2M7Ga5CP20kknZxzD8b+bWb3Ak/nKBwRKRBH3DCPj+q29nk5JUU+bppWw1GP/C/cebt35ZlnwoUXejO4iUjBSDahND6aTIqoA3Zzzm00s5yPFQmFHTVVpXn1DXR3J02xyYibn17MTc8uwWdQ5PMSQDc9u4SzD92Fe08/IG3rjMq3Ey1VEeS/fJmCPdV9JdH9Y6vLKkuKCPgcFz/8LmPnJ15mOvbTdLz38jG51zWRXez30RYKU+z3ddwnNrGdjQq/fNxOIhm2KzAu10GISP91yu0v9zmZVFHs59ov7MiX//knOPY2CAbhtNPg4oth7Ng0RSoi+STZhNLzZvYo8PfI3ycC882sAqjPRGCpmDSyKuXkS6bFO2k6cOJQZs9f6p28Rk6i7nhhWSSZ5J18+QyC4TB3vLCMsw7frc/r7HqilsyJVraSPPmW3JL48mGYWKr7SvT+bcEQDS1B1mxu4Y1PN/Hj6Ttz1uG7MX1yTdLLTNd+mo4kR74k92J1TWRXlRaxrrGNQWVFOOfiJrYzXeGXj9upL5R4l67MrAGvh5JFfq4Bzs9pUCLSb/VlmJsBpxwwjisPGQXXXgszboGWFjj1VLjkEpiYH6NHRCQzkk0o/Rg4ATgY73PjT8CDzjmHZhdJKPakKdFJaUNLkOIi6/Q4n8HWtlCf1xlPTydavTl57u3JzkCrIuivJ4W5HiYGqe8rs+cvpS0YYsPWNnwYRT4j5By3zvuYvcYMYfrkmqSXma79NB1JjnxI7nXVNZE9YXglJ+/vzfKWq35q6d5OuXzvKvEu8TjnqnIdg4gUht4Mc+tIIh23J9TXw+9+B6f+Dhob4VvfgksvhUmTMhKviOSXpBJKzjlnZi8CQbx+Sv+JJJMkSYlOSn0+I+y8JFJU2Hklo7HSdULT04nW7PlLaQ+F2NAY7Bi2MqisKOHJc19OdgqtiqA7/fmkMB8arqe6r6zY1OQ1h8bwRd5cfoP2ULhjX052menaT9OR5MiH5F488RLZZ+UoFkjvdsr1e3egJd6lZ2ZWBpwCfCZy1WvAA865ttxFJSL9USrJpIN2Hso9Pzhw2xUNDXDVVXDddV5S6Wtfg8sugz32yEisIpKffD3fBczs+8CreLOInAgsMDNNTZuEeYvqOGnOAl79ZCOr65tpaNnWcqos4Kei2E/YecPcwi4c+QnfP3hCp2XMfOQ96hpaOp3QzFtUl3I8Z0yb2DHLnHNuu2bmH9U1sL6hjWDY4fcZwbBjfUMbH9U1xF1e7MmOmfcz4Ddmz1/aYyxjq8tpbu9ciZXraotM6ct2ygfTJ9dw7+kH8Pz5h3Lv6Qdk/UQ21X1lbHU5rcEwFpOodQ5K/L6ORFCyy0zXftrTey8Z0yfXMGvGFGqqStnc3E5NVSmzZkxRYqGLdG6nXL93V2xqoizQ+QuGQk28S8/MbE/gA+AQ4BNgOXAk8KKZDTGzK3MYnoj0E3MX1jLxgn8mlUwq8hk3fnOfbcmkpiYviTRxotcb6ZBD4I034IEHlEwSGYCSHfJ2HrCvc24DgJkNA14C/pipwApB7DfbpUVeo9pV9S2MGgJVpQGa20NMGTWYAycO5Y4XlnWa5S22f1I6v6HuqdqkLRgGA1/kTNwMwua86+PoS/VGb6oI+tOwsdhY1zX8//buPD7Oulr8+OfMPtmabqF0gxYo1QICVgTFWpHN5VZErlr14npT/aFVuFbhAgUKXKiAKIvSiorsm1AW2ayllq1sLYUWWkoX2qZLmjZ7Zp/v749nZjJJZ5KZZLYk5/16pclMZp458zzPpPM9c77nG2BMlbvL73VQmLlsz5U5MyazalsjEWOwi5VMMgaGlTsTiaBMt5mrapdcVXoNpRUG+yNX+2l7Ywd2gc172xJVm6MqXAV77ZbiNEdVVDcB/22M+WfylSJyKrAWWFeUqJRSA8KS1XXMe+gtQqnf1h+gS1WS3w+LF8M118Du3XD66bBgAXzyk/kLWClV8jJNKO0AkktUWoHtuQ9ncElOBI2qcLOz2YfBUN/ix26TLqu+9dSAO9dTw3oaaDntgi8E0ahBYgNxAJddUt6+P4OdbAfYxZ56ko3usTa0Bqhr8gNCVexY6qAwc9meKzOn1nDezMO4dfkmQpEobruNYeVOnHZ7IhGU6TZzOeVPk0EDT6Xbwcb6Nuw2SVRt1jX5OaKmoiCPX6rTHFXRHNw9mQRgjFkaW3X3q0WISSlVopasruOiR97Gl2kGKUkimRQMwl//ClddBTt2wGc/Cw89BCefnIeIlVIDTaYJpTrgVRF5LHZ5FvCaiFwAYIz5bT6CG+iSE0HxJEJDWwB/OEpNpSfjZc/3tgZoaA0wZpiHSs+ByYhcVu1MOaiKLQ1ttPo7eyhVepxMGpV68JTJYKen+LIZYA+kXiLdYx0zzMOORh97Wv1Uehw6KOyDbJMxc0+dwjHjq3tMBKXbZqpzttRWklSFkWgXGO8aaLpdn2el0MNMlRSbiLiNMYHkK0XEA4SMMVr2qpTikiXvcPfKbX2+/xE15dzz/U9YiaQFC2DrVjjpJLjjDjjlFLr0FFBKDWmZJpQ2xb7i76Afi/2sq4z0oHv1TpXXicMu1FR6EoPTdMmW5AqXMVVu6pr87Gj0Ma7a4LDbEsmIXFftxBNEY4Y5Mvo0vLfBTi7jG0hNvLvHWulxMq7asLslQLMvpIPCAulLRVC+KuEG0nRN1aktGGFctYeGtmAiyT6mwt3nlTj7QivbVJI7gb+LyE+NMVsBRORQrKlwdxUxLqVUiehvMunIUR6ePagOPvpR2LgRPv5x+MMf4MwzNZGklDpApgmlp4D/BQ5Nuo8xxhyTj6AGi96qd3oauHavcAFhT6uf3S0Bjp84PDEYnb14ZU6rdvryaXhPg51cVhXlu5dILgf8qWJ12G0cP3G4VroUQH+OZT4q4QbSdE3VVfy1PHl0Z5VmRzBMTaWniFGpocoYc5WI/BRYISLx//zageuNMTcXMTSlVIm499W+JZPERPn+7lXMf+JBePddOOYYWLIEZs3SRJJSKq1ME0p3A7/EaviY/STcQeympe9z27830xGKIALjhnm46qyjE0mWnpIz6Qau1z79Hlv2dRCJRnE77IyudFPldVLpcdDsC3VJSOSjaieXn4bnMr589hLJV6XXUO97UoyqnP4ey76esz0911Sv9YY2P3PvX02V1zkoK5YGS0XWnBmTmffwGuoafYSjURw2G5UeB5d+6aMH3LaUn3Mpx6ayY4y5BbhFRCpjl1Mvw6qUGnK+/adXiGY7I9sYTv3gNa5c9SAHb90AU6fCAw/AOeeALaMFwZVSQ1imCaW9xpgn8hrJAHTT0vf53b82Jv5wGwM7mvzMvW8VN80+PpGYSfemPdXANRyJsnWfD6fdhk2sBrDxleHsNkm5pHlvVTu5HEhku61cVhXls5dIrqtStO9J8apy+nss+3LO9vZcu7/WW/0hGlqDGGDiiLJBV7E02CqyDICAiIB0zv1OVsrPuZRjU32niSSlVFyfprkZw2e3rGL+6/dz2Nb34PDD4a67YPZssNvzE6hSatDJNKF0mYjcDvwLSDSCNMY8kpeoBojbX9xC1IBA7B8rqdQWjGQ0eE01cN3TGsBps3FQpYedzT7EABh2N/upqfJkvaR5LgcSfdlWrit18tVLJBeVVIVs5FzK1Qbx2FZta0SwGpKLSMGaqPf3WPblnO0tidX9tb63NQACbrutoPsm34p17PP5eli0YjPDvE4OHuZNXJfquZTyogHdY4tErdVG59z9Zpcp1EoppQaWvvZLOunDt/nVy/dw3LZ1cMgh8Oc/w7nngiPToaFSSlky/avxfWAq4KRzypsBhnRCKV1T1qgho8FruoHr+GpPl1XhghGDARbMmpb1kuZ9HeSkGqD1NEWvp1XcBkKlTn8rqeLJtlAkQnNHiF3NPlZta+S8mYcx99QpOY21VKoNUp0jQCK2qDEIJCrsKj3OgjRR7++x7Ms521sSq/tr3R+OYBNhVIX7gNuXcrKwJ8nnZSGPfb5fD5kmKEt50YDk2Fr9IXY2+QHr/xWtVlJKqYFnyeo65j30FqEsGpF858SJXDW6BS69FJ5/HsaNs5pt//CH4HLlL1il1KCWaULpY8aYo/MayQBU7rLT4g8fcL1NSAxe44PDjfWtBMNRnHZhykFViUFi94Gry24jGLH+d6jyOqnyOhMNYNO92U9VtRN/3Ne27sfjsDGqwp1IUvU2yEk3QGsPhLp8Sg+dU/QOjZq0g7me4iuVQXN/K6kWrdhMKBJhX1sIEXDabUSihpuf/4Cn1+6mNRDO2fMshUqIdOdImdOWiM1ltxGOWCV8e1sDVHqcOW2ins6cGZP55cNrqGvyEYka7Dahwp2650062VbCpUpi7WsP0B6IcPLCZUwYXsY5x4/jlc372dHYQbnLQZnLnnhNgpX0qnA7SiJZ2BfJ52Uhj32+Xw+ZJijzvWhAfyTHtrc1YPVWNZLYb6VSSaUyF2vI/T/ARGPMf4vIEcCRxpgnixyaUirPlqyu44IH38qqV9IdR8HMRb+CZ56Bgw6C3/0O5swBjy4woZTqn0wTSitF5KPGmHfzGs0A86OTJ3X2UEr6o17hsjNnxuQDqlYQ8IVgS0Nbl0Fi8pv4+H36M0UsebDvtgvBSJSdzT7ASlL1NshJN0ALRQy+UCTlFL3k2+5t7bnZcKlU2CTrbyXV9sYOmjusZJJNOuc/hqKGLQ3tHF5TkbPnWQqVEOnOkS37OjiixloNa1SFOzFtMxCOJs6hQjQmFwADxhgwQrq1SbonNk+aPIJXNu/PKNGZfN9Kt9UwH6xjsa89QH1rkNEVrsQ5/vCqukSVYbrXudNmip4s7Kvk87KQxz7fr4dMk82l3Ig/ObZArDrOAKMqrIFEqVRSqaz8FXgTOCl2eQfwEKAJJaUGqSWr67j88XU0xd5vZOIj9Zu5atWDfHzhizByJCxcCOedB+XleYxUKTWUZJpQOhn4rohsweqhJIAxxhyTt8hKTKqKmvhUpnSrvM1evBKnXdjXFsZmE2wiRKOGpo4QEErZvyIXU8SSB/s1VR52NvkxGBraAjjs0usgJ90AzeWwEYqYlFP04lp8Ifa1B4kak7bZcClU2KTSn/5ME4aXsavZaqYeF45a034ixtAWCLO3NYA/HGHu/au56ZvH9euxil0Jke4cicdS5nIkqm/2tPoRI9RUegpSibZoxWaqvE7G9NLzpntic0tDG69t3U9NpYuR5e4eE4Dd7+sLRRDAaROafSHaAxFGV7gYHVtavvs5nu51fslja4ueLOyr5POykMc+36+HTP8ml/L03q6x+RCBgyo7p1aXSiWVysphxphviMhsAGOMT0TX9VZqMFqyuo6LHnkbXxbz2w5v2Mb5L97Dlza8BMOGwZVXws9/DpWVeYxUKTUUZZpQOjOvUZS4nipq5p46JW2PnPigOxiJYrdZ7/OixhCKGFx2IWJg9fZGfnjnG0ypqeDXZ07tdWW43uJc+Mx63tvdigAuu3BwtZex1R7qW/z4w1FqKj2cNHkEi1Zs5pLH1qaswkg3QDuipjLRSynVFD2wej4BeBz2tM14+1tRUGrT5cCqAFi1rdGaYiVWc3YD2AXsIuxs8iMCDpvQEYz0q1KpFCoh0p0jk0eV0x6MJGJz2K1kQqr+X/mS6fnVPbHZ6g9jE2jxhRlV4ekx0ZkqKQowvNzNM+efyMkLl/UaQ6rX+YQVhV21MZdOmjyCW5dvIhyN4rbbGFbmLMixL8TrIdO/yflaNCAX4rHF/z9z2AVjTElVUqmsBEXES3wRQpHDSFo0RSk1sPWlGgng0P11/Pyl+/jKu/8mUlYGl1wCF1wAw4fnKVKl1FCXUULJGPNhvgPpF78ftm+Higrry+ns/T5Z6GtFTXzQ7bLbrGoVIfE9aiAaNRgR7AJbGtr7lWRYvr6eeQ+vobHD+o/HAIGIYfv+DiaMKOPgam+iSqC36WY9DdB6m6IXCEcRYHTlgc2Gu++XvlQU9GW6XHwA/v6eFiuZ57AlkmO5GvzNnFrDF486iCVrdhEyBptYyaT4B8bxqXDRKLgdVu+SvlZklUIlRLpz5NIvTYUix5bp+dU98RSMRLEJXRKk6RKdvSWtMo0h1ZS7h1fVFWTVxlT6mqxavr6eh1fVMbzMSas/TCAcZX97iPNmTsz7sc/F66FUk3T5UAp/P1ROXAY8A0wQkXuATwPfK2pESql+60uzbYDxzXuY+9J9nL12Gbhd2H41D9u8eTBqVH4CVUqpmMGxNuSuXfCzn0FrK7S1WUteVlZayaXu31Nd1/2712tlAGL6WlETH3RXeR00tAaJirWqjh0SlSw2m9XLIhI1BGPTodL1HurJohWbafWHscem1oUiUQxW4mp3s5+aKk+PK7UlJzeyGXB0v22Zy065206lp2uz4eSBdH8qCrJN7sUH4MFwJNFA3ReMsHVfW4/TmbLtq7N8fT1vbmtmTJWb5o4QgYiVWCt322kLhHHYrGRSFMOoCk+/pzEVuxKit3Okr7HlYmCf6fnVPekTr7ZzJU1bTJfo7C1hlEkMqZJDD6+q69K8O1erNmaiP8mqeFzDvB5Gx6rpO4JhXtm8n7n9iioz/Xk9lGJPt3wr9t8P1X/GmH+KyCrgRKw2BD83xjQUOSylVB/0tRoJYExLAz995QG+8fZzYLfj+PlcuPBCq/G2UkoVQMkmlETkTOD3WPmX240x16a98aRJsGSJ9bMxVsVSW1tngin55/j33bvT3yYQ6JJ8unx7O/ttbsLecnyeMvxuL012N+7qYbCM1Ekrh6PLoDsUsVZ5MyaMw24jGI7iiA1cjQEb9Np7qLvkwffe1gChSBSXwxZrCm1LJJUMcM7x4xKrvrntQk2VJ5H0SZXcyGbAkXzbTJqKJ++X5NXvFq3YnPh9Opkm9+L7ZtW2RkTARA02BJvNWtK8xRdmzDBHzvrqJA+o441uO4JhnDZhZ7OfjmAEt0MYVeFJrNxXKj1L+prE6e0cyXa7yfveLrB6WyM/vPN1jhhdwYVf+EhW52O6ZFdyTBUuOy1JjbQrPQ72tgWp8jp6nQrUW8Iok6RsuuTQK5v3c1/tiSmfWz4bUPcnWVUKjeL7qlR7uuXSUKrAGuxE5PhuV+2KfZ8oIhONMav6se3/BC4HPgKcYIx5o6/bUkplpi8rtgGMbmvk/618kG+99QxiDKtO/xqfvP23MG5cfgJVSqk0SjKhJCJ24FbgNKyVS14XkcczWmVOxKow8nph9Oi+BRAOQ3t7IsE0/J0PefKfa6kI+xkWDmD3tVPdto8vjgjCU091JqNit29paGRnR5QmuxtPRQW/PfQgDh43Gioq2OwXHt/Uwh7jpM3hocNdRrvT+t7mdBPyluMOeRCniw4iLHxmfcqBQPfER0NbgKiBcMRaJcpuEwQbYoNDR5Tx8Ko6QpEI0aihI2rYuq8Dp10YV+3FbpOiNLAFmP/4OoZ5Ba/TnlESLZOpRMn7JhKNYhMhGFtBy4YdiU1rymVfnXQD6mZfiJu+eVwiHq/TXtDVznqTr+qMvmw3vu8jUcOuZmtpc7sIW/d3ZB1TqmRXqkbaBqsyqdkXYtKoCr51woi01UHdt9/bed5bwq0vSZh8NqDuT1Io09dlKSY1kp93qz/E3tYAgXCEHY0+lq+vL4kY+2MoVmANcjf08DsDnNKPba8FzgYW9WMbSqkMLVldx/kPvEU2uaQRHc3MefXvnLvqHzgjIZZ87DSqrrqc07+U+oMopZTKt5JMKAEnAB8YYzYDiMj9wFeA3hNKueBwWCsiDBsGwMenTqX16OMOGDxOSjfF6rG1iK+DYHMrDl8HFcEODg1G+cmkgzim2s6Zo3by/OubaN9fR2XIzyhCmNZWKoI+RpggFSEf9miENoeH/TYXUllJyFNGi9PL5oc8jP/4ZDbu6OAM4yBSXonf7WWsuNjihxanl5CnjA6Xh4jYqXY7ERFCkQh7W4Nd/tMKxXosjSh3cemXPpqz3ZdpdVNfKgMymUqUvF23wx5bbc0QjoLDblWEuey2nPbV6WlAXYieJX0drPe1OqO3x+vLduP7fktDe6LnVHw6aH96TvUUE0B1mYunfzEjcbtMp2j1d9pQX5JD+WxA3Z9kVW9xlXJSI/68I1GTaJ5vE0GEkomxP3p7LZZqok+lZoz5XB63/R509v5TSuWP1StpTcbJpCp/G//92qN8/83HKQv6eeLoUyi78nLO+crJeY1TKaV6Y+v9JkUxDtiedHlH7LqUPvzwQ5544gkAwuEwtbW1PPXUUwD4/X5qa2t57rnnAGhra6O2tpZly5YB0NTURG1tLStWrACgoaGB2tpaXn75ZQB2795NbW0t3uYt3Fd7Ivd9ewqVb/yFynYrvK1bt1JbW8uaNWsAuGnJi3Q8/0d27d3FLncVO+2Gndv+zXP2cs7eUsn8tgp+u3Udp103l+m3XcfTZ3yFhVUOFpz+Xa747uVccs7/40cf+Sj/88MF/OQrF3LtJ7/EX8rtPHvsDN4++iQ+KPNy77NP0dTUzJj2/Uxau4Kj/3ErZ7/6GL9+/SGuefI3LPrreTx4xwUsuf9CHnrw11yw8NvMu/9aLn7uNn791HWc//CFnPvG43ztnX/xpVfu5qTHrmLm/g/g7bd59o9/5Fff/z74fGAMDz30EHPndg6x77vvPs4///zE5bvuuot58+YlLt9xxx1cdNFFicu33347l156aeLybbfdxhVXXAFYCYTwO0/T9PIDid+H1jzJxn/ezezFKzl54TJO/d4vOf/iKxO/f/Wxv/KJtleoqfTQ7AthVj/Cib7XEgOgK664gs0vPJpYwr5y3d9xbHw+MfXPsep+7B/8myqvg1DE4Fl9L3fddVdi+/ZX76Rp7fLE5YpVd+H48LVEX519z/2B5vdeSgyya2treeKJJ5gzYzLBUJj6p2+iY9PrdATDBAMBIisW8dxzzzFzag1/+tZRfGTT/fz34R3MnFqTOPduvfcJZi9eyaeveIzP/Mc3ue2Bp7qce6+++ioAO3bsoLa2ljfffLPLuXfH48uZ//g6dm3fQmTFInZufZ/5j6/jnmdfoba2lg0bNgCwbt06amtr+eCDD6xj9fhy3nvoerZv+5DNe9to2raefc/cjNPfyI7GDl599VVqa2vZvXs3AC+//DK1tbU8vnI98x9fR936N4msWMTuhn3Mf3wdN9/1KLW1tbS1tbG9sQN2vM2+Z27GhIO0+kPUr3uFdx+6nm/e9hLL19fzxBNPUFtbm9jXVbtXs/fZPxCMRK0V8T58Fc8bd+Ky2/A67Wx97bl+nXubX3iU4GsPJi63vPkEwTceTiQHf/e737Fw4cLE72+44QZuuKGzGGDhwoX87ne/S1y++uqrueWWWxKXr7jiCm677bbE5UsvvZTbb789cfmiiy7ijjvuSFz2rL6XjnXP0xEMY4xh79LFdLy3IpGEmTt3Lg899FDi9v/v//0/Gt97iQWzplFT6aH+6Zvx7HyLBbOmcfLhI/r9dy+yYhH+He/REQwTbttP/dM34d+5gTkzJqc99+J/98Y7Whjz9p1U+fbQ7AsxLNDAmLfv5GBpBOD3Dz9PYPkfcbbvRURwNG0nsPyP3Pz4KwC8+eab1NbWsmPHDoC0515Dg9UiZsWKFdTW1tLU1ATAsmXLEucewHPPPUdtbS1+vx+Ap556itraWsJhq49a8rk3Z8ZkfO+vpGnpHwFreUbnttcYtvruRCIzl3/3AG655RauvvrqxOV8nnvbGzsIvHIPbe8sTfze/9KdbFn5dCLRt+Uff8C59eVEou/bP5hzwLn36KOPJi7H/+5B/v7PTfd3T1lExCMiF4jIIyLydxH5hYh4ih2XUqp3S1bXcf6DbxHKYJ5bRaCDuS/dx4u3/ZCfvfIALx3xCZY9vIyvvL2U0zSZpJQqAaVaoZTq47Euf3VFpBaoBRgWqyQqBbtbrE+6oyn+kwhH4d7XtjNqRzOvb9nP7NMOZ/hXpnHrjuWc+sWPcssbzQTC1jSc9qiwz12Oq6aGrfuH0TRhCvby4fjLvDT6G+iYdgodUoZr5AbKy71UffZ7OLwVlDWs5+B9q/jt9ddTYbez/Mkn+fOiO2mb+Hm8oRDVe96lut4PTjdVwXaqWxqoatrDsxf/lkhLK8NadvHt9v3w+c9DJMIMn48j29qgsREqKjh2xw6qGxrgt7+FigoOfestQrt3w/LlUFFB1a5dVLa2QksLlJf3uK8qXHZ2dgQhGGT/3jZGVbjxhyIEI1HqW/1Ue53sD0Z4ZfO+LlNPJowo44ZYj5mrr36FYcO6Ps6w2HSm5EqL7qq9Ln595lT+8eenulx/yMhyNkZN57L3NiFgYFisr04kaiDKARUhM6fWcPmXP8rlL9noCEY4tNLD90+dzMNbe15xsKkjxD2vbcM7oZIqj4P9kSh3rfyQqR+rZ2p1j3dNWPLWTpzlY3E6HQQBj9NB2C78/c060q3tsXx9PX96cUuiGiMcNTS0BamMGgLhKONHp69KuWvlNpx2FzaHnTBQ5rTjtwnPvbuHg2O3mTC8jB11VlVXqz/ErrYoDgMOITFo/Y/qli7bnTFlNI9sMNhFrBUQjcFgGFXhxheKMCypcmz5+nruWfkh+3fsZfbilRlV6AzzOmn1d102JRw1HFqkXlajKtyccfgYNlR62NHYgdtu49SjxvRaHRKvjKp9o5r/mHkYM6fWJBIlmVi+vp4/PPc2W7Y3sevZDURrpnLUKBvVZU5OOfEQ/t3sYVvdflx2G/910qHMnFqTSPT0pLrMyc+/ehTTpk1jw4YN3LD1ucTv9rT6Y73dOtlE2N3iyzjufJk5tYZZx47l/q2rMBDrheZEWqSzGrGy2FH23YThZWyNGpL/EkWihmqvs3OaqQiCJKqXtjcW/7ioXt0JtAI3xy7PBu4C/rOnO4nIUmBMil9dbIx5LNMHT34PNnHixEzvptSQl6hM6iWX5A36+e6qJ5nz6t8Z7m+Fs86CK67gjGOOKUicSimVKTG9/UUrAhE5CbjcGHNG7PJFAMaYa1Ldfvr06eaNN0qjd+TsxSt5fet+wj186uBx2qip9LBg1rQDGkInT4tqbA8QipouiZG9rX72tQeJRAzdVxS1CUypObCB8fL19cy5+00C4a73cEhsOXubjfHDvV2mqiyYNY2Zk6s7G5ana27e/Xvyz+3t4PGkXF1vsw8efr+ZvcaJz+2l3eWlzemh3eXFXV1F2cjh+NxeQg4XHaEINZWetI2Ku0ueXrOryZf4BGjsMG+iIXZP2+t+HOKrvOVjutrsxSsPmGbUW3zdnbxwGdVeZ5dpCsYYmn0hXvh16nYa8ccNRww7m33YEAwGm1gN27ufm9k+Xl+PwfL19Sx8Zj3v17fhtAsHVbpx2G2d52S3/mEHnLM9NLC/9un32Li3DafNxkFVB243+XZb9llVS5NHlfPrM6f26XiX4lSivuy7XMjFeZ4v8XNu/e5WAFx2YUy38zS+QmYpHctM9XTML3lsbdZ/O4pNRN40xkwvdhzFJiJrjDEf6+26Pm57OfDLTJtyl9J7MKVK3aevXUZdU/qkvTsU4DtvPc1PXn2YUe1N8IUvwIIFMH3I/9lTShVRT++/SrVC6XXgCBGZBNQB3wS+VdyQMjNnxmRWbWtMm1ASOnvCpGq4nTy4SrViWmNHCAGcDhvRqCEcNYnSraiBD/a2M+fuNzlv5mHMPXUKYH0Cf97Mw7j5+Q8IRQyClXxCBARGlDvT9Nc4EUaMsL76IhoFn4+XV23hwX+/R3P9fg5xGc6eUMXzb25GyoJM8Psw+/fhDvioDPrwBH2MkRDeoA+v34eYKH63lxaHB16Y1HUlve6r68W+z6ys5NoTR3L76r1sD4VxuZyMqnBT5U2/ql1vg/98LX2ei9Wx+tL7Jv644rIGkg1tAYIR61zqLbmQyeMl943auq8Dj8OW9hh03/e/PnMq0NlzKj6gj8eUbX+m5AH1+Gove1oD7GjyM6Wmgku/NLVLMumXD6+hqSNkvT6AjfVtzHt4Dded87GsEggl0zMoFLKSuz4f+P088cBrTG1uo1IiOMMhXKEgkUCA1b9bycwZh1grZAYCXb/i1wWDEIlYr+totPPnDK67pdXP5t3N2DA4gIgxGAOTR5fDAy56/ag2LtXtMr0uhaaOEFUNbVwRsW4fv5cBXA4bIsLoCjd7Fwb4NWC3WU3jzUJoGllOdbkrs7hz2ZMm023FbjcTeKw9yI4mH4FwFLfDxvhqL8Ofc/HHumaCEYPN1rnNaNTgcthg6bADtpXRY9rtYLOl/rLbu96m++VM7qPiVovIicaYlQAi8kngpSLHpJTqwZLVdWmTSa5wiG+8/SznvfIgY9piMwWuvBJOOqnAUSqlVHZKMqFkjAmLyE+BZwE78BdjzLoih5WR7smb7uw2wWW3EY5E2bqvg0NHlqUdcKZq5tzsC9HUEcRhExx2GxET6TJ2ctiEiDHcunwTx4yvTmxr7qlTOGZ8NQufWc/mhnYAJo0so6E9yMhyd5cY44P9+Cf3ybfPZvl2bDaWb29n/it7cXpH4z18DNtCEZY1GzomjmZMleeAT8Y31rcxfrg3kSxwhEOYtlbGO6PMmDUldWXU9u1dK6Ta2vhUayufamvjg617CBgbQY+XgMtDwOWhzeHGVl4OzUuhvJwVde38a2sbBzndjHJ7sFWU8+Bbr1Nx2jSmHzXBmrpXVmZ9d/Y8hS1buVi1qy+NmpMft8rr7FKN0dvxzfTx4lOzUlWnxJ9j2sTLrGlpK1dSJeHCkSirtjVy8sJlByQEuyegqrwuOoJhqstcBzQSbwuEsYskBthiDK3+7JeQ7/dS9MZYiZz4Od3e3rVSsPvldNdFIlay1esFt5szNzWBx0PI4STkcMW+O2nFDke4wO22vsrLrerC+OX4V/IgP/l7L9eNtNtZv2kff125jbrmAGOrvXz/U4cyfErSSpypkhYivPD+Xv760lZ2NHUwvrqM73/6UD4zZfQBt0t139784i+v8faOJgzWFLxI1BCOTTuu9Di47pyPcdNLW9jbGjiwuqrCzfc/fWjvsWUqkyRYHxNvw2Nf3TVvqOeaZ9bjtAsehx1/2HotX3TmVMj2eRjTmURMTjAa0zXB2NvveruPivskcK6IbItdngi8JyLvAMYYk/W8GBH5KtYUutHAP0TkrXiluFKqb5asruPyx9fR5Aul/L0jEuZra//Fz16+n/Ete2k49gS4cSHMnFnYQJVSqo9KcspbtopVbt1TVcvy9fVc+tjaLr0oHDZr5aCxw7zsafGDwBE1VnOOFl+IPa1+jIHjJw5PO6Vi9uKVrN7WmBgA+WNLn4NVdeR22DEYQuEoLoeNeKFUuqk76aaiOG3CvvYgjUnVGlFj9Um5Pk21Rqr9sWjF5pTb39saYHSl+4DrXXYb7cFIzqbkLH9vD1c++haVkQDV0SCmowOn38d5nziY40a5WPv+Lu5cug5PyE9ZOEBZ0I8nFGC4CTLaFmbmhAproB7/stk6k0vxr+TL8Z+9XmtA3tOX280L21q5/J+bwOXC63L0+fl2n6bX25Sc/k59ij/exvpWguEoTrsw5aCqlI/b02OlOz96mgrV/Zxt8YWoa/LhsAmH11Qc8FwynRJ48sJl7GnxYxdJ3NZgCEeiHDzMm/kUoGiU0656ioNsYet8CvjwBny4Ax1EW9u46rRJmSWHHA4rGVRe3lmVl+6r+23il93uLomVUp56lkq+p+idvHAZu5t9OOw2JNa6zxhDxBjGVHl44denpDx/WnxB6pp8Vs+lHqZQDgTZ/u0oNp3yZhGRQ3r6vTHmw0LFolPelDrQktV1XPTI2/hC3RtUWGzRCGe9u5yfv3QfhzTtZs3YKbRdfBmf/sns3Fa1KqVUDgzEKW8lL3mgYxdYva2RH975OkeM7uxh9MLUU7r0hHEkesIIoWiU8dVewBoQ72z2IUDUGLY0tPHfd70BBmw26VIZNGfGZOY9vIbGjhBGuiYD7bH/gMIRQ8SALxTFZbeuSzd1J121ictuo9Ufxm6TRDNdiRraAqmrLNJVmrQHQhw8zNvltl6nHZddCEXMAY976Ze6Tnfq7wBn5kcOAjmORSs2s6mxg/EHj+f7MyZzXGx7V29byetHHRRL9lnPM2oMdoGRFe6uSQRjrClE8eRSR4c1+O/o6Ppze7vVxNzvP/ArPoUo9vUZv59HGltpaGzHZ8DhcnHQyAqGLy2zEgoOh1UVFf/e/WeXC5xOZrpczHS5rMt+Fzy/Gl5ydd4m+St2+xsPDfDQO/XUtYc5bGQV3/z04Zw0ymZVe7ndnZUmKd7YxI/H/MfXMcxrDfbTTetKVWkXP6bxHi7dz4+epvx1P2f3tForeY0ZZlW8da8GyqgKLBrlsHIb4fpW3MEAZZEg3pAfVyiANxRgWrUT7q/vTP6kSgLFv/x+bmoK0Wx3E/aU4XN78bu9tDrc2CoroXmElewZPTp9MigP1XCp9l0m1WzF1O9Kr15MGF5GQ2sAYzpPc2OsStL4+dH9/LESmH6ixvqQwAC7mgOMrfYkVoUr5YRMd/FKQjWwGGM+FJHhwASS3ssZY1YVLyqlFMAlS97h7pXbUv5OTJQvrX+R81+8l8P272DtQYfxg6/NZ9b//jdnHT++wJEqpVT/aUKpjxKr40QNu5oDVosHEbbu7+gyqI5/JX8KXFPpwWmTRKPihrYANqx+RnagoS3Y2YMpali/p42f3beKm2cfz8ypNVx3zscSU9EcdghFDDYBu12Ixlciw+rXZI/1nEg3dSfdYP+Sx9YSjkZx2Dt7VohY/Z9SDfbTDfxCEXPAimu+UIQjYtUs6RJHuRzg9DRg2t7YgdthIxwxiQGlCAQi0QOnnYl0JmWGd51AckB11hmZJ8GGAcOiUQiHO79Coc7vyT8n/z4Y7Pwe/zkQ6LwuELCSQ6l+Fwrx8WCQj8fvuyMIr/pT98ux260vh6PzZ7udYTtbuTYq4HAQtdmI2mwEjWB71AkfObjL/Wba7cyMb6PJDtus3/189U5awga7w4lgsEWjREIhKlx2aF9uxdCtL8/MSIT7Gtp4t64Jnz9IIBCi3GnDIwYxUWzGINEIkXAEnhnJzc0dbNjVjMMYHBhMNIotEmbyiDK4225tNxjk98bO+qYQrTYXfqcbv9NNh8MNXi8zRhwC24yV8Bk+HCZMSJ8MKitjz/sNaStrKOLgvafkXinKRY+xnqRK0EcNVLudiSRbugSmiJVsFxGiGPa2Bpg0qjxnsSnVExG5EvgesImu7b9Ks5u6UoNYb9PaADCGMza+wi9evJeP7N3KhlETmXPW//LclBMZO7xck0lKqQFLE0p9FB/obGloTyy9buhsuH3t0+9l3HA7GIlaky2MNUAJRzrLYwXrHWJbIMK1T7/XJUkVd9PS97l1+SZCkShuuw2bQCT26XliO2L1mUk12EmVcJmwovdP7lPtj2Repx2Xw5ayEik+iC32QHbC8DLCkSj72oMQjSXNjMFhs2VctZGTBsw2W2eyKgt5X0ksuXdJJGIls2I/X/a75Qx32bAbgy0aSXy1+4LM+N70zuRX/L4ptvGR0Q088OqHOInidNjxGwgZYfYnD4FDRh7YlyeWpBpnszEudt1FS9bR4AvhcrkwIkRtdjrCUYZXevncd6Yzymbj/S2N/PXV7dS1+PF43EQFWkOGsSMq+MFnJjPjmAlU22z419dzQ4pV3iZluU+7J27KXXZcdhuXPLaWCSuKm8QphdddpudtLnqM9aR7gh7g8FFde8V1P5bGwLhqj5X4jyWiRSAYieY0NqV68XXgMGNMsNiBKDWU9VSNBIAxfG7zG1zwwt0cvWcTm0aMY+5/zOPJqScTtdlx2oV5ZxxZuICVUirHNKHUR/GBTjASxW6L994gqeG2j0OjJsOG29Z0tzHDPAeu/hDLKBlIDHK7izfcjg94mn0h/KFIoidIPDaHzZbxYCeTT+5T7Y8DKpFqKnusREqlkMutx6sPRpa7aPWHCYSt43nezMMyfsx8T8tJpyAricWbKzsO/FNRPnE8GxraaPVbSVGX3UZluYNJh1TAMZn1gz0KaDj1wB4uR2cR/xkVE1NWA/1g1jQ4xNrOpyZM4FMzjunak6fCzvZghEue28wCjzdlsrY/kqsTS2LFtxKRzf7IZopeX/9uZHLMk28T70M1qsLNzmYfRK1eW3aRHqcPFvLvmhoS1gLVQH2R41BqyOoxmWQMn/5wDf/zwl0cv3MD24YdxP988XyWTJtJxGYHwO2wsfBrx3DWceMKGLVSSuWWNuVOo7c3//FBUX2Ln6gxCNa0h7HDvNaUCANHHFSZuH280fXwcvcB20weYO1u9tMetFaykdg/xlg/uxw2Nlz1hV7jS7X8edTA8DJnyuXP020rm1XectU8N99NeNM9ZnIliYjQGghnPOjLtOlzrqVqsLy31U9HMEKV19lj/LkY3N609H1+v+wDbGI1hI8a6+vnpxzO3FOn9Pv5ZSPTxsL5bkqdTWP6XDbCHkjJimyPQSbHtpB/N5IfKxyJsqc1QChimFJTkXLhg0LHN9hpU26LiEwHHsNKLAXi1xtjZhU6Fm3KrYainpJJJ2xfy/+8cDef3L6WusrR3PKpb/DQ0acStlv/79kEvvXJiVx11tGFDFkppfpMm3JnKZNP0OMVRvGG2047jK30WA23I4bx1Z4u2+ytailerdTcEaQjaK3cZiDRGUGwpt8kxxeKRGjuCLGr2ceqbY2cN/Mw5p46hZlTa7j+nI9xbdLUnSNGp17lrbfnmulgJ1e9WYpR7dOfSpLl6+tp8VnHwOOwM7rSTaXHWZCpL92nGbb4QuxrDxI1hokjyrrEDyQSDpVuB3vbAgzzOvtVMfPK5v3UVLpo8XVWKFV5HbyyeT9zc/tUe5RNMqWnnjz9TcqkO386gmHGVHX9e5DLPkADrQIq275Imfwd6unvRvz3/U22JZ8fFbHEczAc5bgJ6VflzCS+UjxGakD4G7AQeAdIvYyUUirnelq97bi69Vzwwt185sO3qC8fzvxT53D/x84k6HBS7rJz/VeP1mokpdSgowmlFDJ985+u4bbLbiMY6fofzZ7WAE6bjTKXg1Z/iL2tAfzhCHPvX81N3zyuy6DppqXvc/PzHxCKGARw2KC6zMWvz+xcAS0UibCvLYQIOO02IlHDrcs3ccz46qym7nR/rpGoob7Fz5y73+T4ib0PlJLlYrpQvpvw9iTbQV98IF/msioOgpEodY0+RlVGcNrteV85q/s0w4Y260Nqj8PeZbWza59+j45QNJFw+KC+jXDUUO5yIK4DV0XL1PbGDkaWuxlV0ZksMSZ10/Z08pXESZdMSTc1s8Lt6HdSJt35EwxHUzam72vCsfs+a+oIFj1Zkc1xzEdfpHR/NzbWt+Yk2RY/z4LhCK3+MLubO6fGZlKNV8y/a2rQajDG3FTsIJQaSpasrmPeQ2sSi+rETdv9ARe8eA+f3/Q6+7xVXPW5H3D3cV/E7/QgwHdO1GokpdTgpQmlFPr7CXpyw+3k6Q3jqz20+kPsbPIjYjXNbg+EmXP3m1S47UyJrXzWvSdS92qf7Y0dNHeEEs3AAewC4ajpU1Ig/lzjsVkdQch5pUMmg85sB5u5nOqT7XGPJxCGeT24HXYa2gIEwlHaAxFu+uYxeR/Md+8vEwhbzd1HV7q7xL+xvo3xw72dSUNjrQrY0BagKvZ8+zK47W9iIDkZZBdYva2RH975OkeMrkg7tbK7bJOA6XryOG2m30mZtI3pY1WLmfQB6s2BiQ0/4aihpsLV5ThkczxvWvo+t7+4hfZghHKXnR+dPCmrKYvZJvWy6YuUqXTnYjAcZZi3/8m2RSs2EwxH2NcexIbgsAkR0zWJ35f4tIG36oc3ReQa4HG6TnlbVbyQlBqc0q3iduTerZz/4j2c+f4rNHkq+M2Mc7nj4/+Bz+XFAOOqvcw740itSlJKDWqaUEqhv2/+U03/ilct7W72JxJBoYiJ9Z0x+EPRjKebTRhexq5mH067LXGdMVZzv/4kBfa2BqwV3YwkBte5qnTIdNCZbRPeXE71yfa4JycQqrxOqrzORO+kXCaTUk21ifd4Ouf4cbyyeT87Gjsoc9kpd9up9HQmNXwhqx+X12lPXOey2whFol2q6PoyuO1vYiCeDIpEDbuarXPPLsLW/R1djmNPScO+JH9TTc285LG12AU2721LTN8bVeHK6vWUtjF9LFHc3+mg8X12QGIjaqhvC1LmdiSOfabHM7kPlsNm3e/GpRt56M0dmNhzyvV0rlxNj02WNlEY61mUrC/J0+2NHbT6w9gQbLbOJH4oEs1oWl0+kmhqyDsu9j258ZgB8te4T6khKFVV0uR9O/jFS/fy5fdeoM3l5cZPf4u/fOIrtLrLtRpJKTXkaEIphVy8+U9XteQPR3DYxFqJPWqw26xBdDASzTiBM2fGZFZta7TuH2vaHcVQ6XH2KykQCEewiWAgMY0pV9MysplGmOlgM9d9SbI97oWoOuhexfPBXqtB+rhqD/Wtfh5eVZdo7JuuMm7yqPIuU65GV7rZ0ejDYReMMX0e3GabGOieGHp/TwsHD/OypaE9kWQ1WK8Lp10SA/WekoZ9OQapkrUVT9v5YG87dhHsIoQjhromP4ePLs94f/R0/uRq9bhUiQ2HDUJR2N3sp8LtyOp43v7illgyyUpOR6NRDLC90Ue5y87uZn+X/mzpYsp2OlcuV9OLby/5XCx32XHZbexp8fPB3jYOqvQkqvH68hqdMLyM3c1+HLbkxvvgttsymlbX1yRafyowB1KjdpU9Y8znih2DUkPBdc9uSCSTJjbu4ucv38dZ65bjd7j444nnsPiEs2n2WovwaDJJKTUUaUIphf58gp7uTXx8m3PvX01HMILbIYSi4LDbMFGragQyS+DMnFrDeTMP49blmwhHDW6HjUqPE5cj+749XZ+rDxF6HHz1dZCSzaAz08FmrvuSZHvcC1F1kJw027y3DbsICDS0BZk8uqJLAi1d/ECXOO02YXiZk5HlLpp9oX5ViGR6rFJVk7UFIjS0BQhGrH40YA3SXXZb4jj2ljTM1TFIrNAnsS8AQ5eV++LPI935n4/Km+5SJTZsNhsurERQtsezPRjB0VnoSCRp1c9wxGQ0tatUpnOlaq4/pspNXZOfuiYfYHDYbX06PxJJfNOZxDcGhpU7aQ9EMppWl20SrT8VmAOtUbvqGxH5EjANSDSyM8YsSH8PpVS2djb5GNtSz89eup9z1v6LiM3On6d/hUWf/Br7yqsTt9NkklJqqNKEUhp9+QT9gJ4w2xv54Z1vdFlO+qZvHpe4za4mX+JTj3hFUKYDsd76LKWLL12yK3kglq5ypT+DlHwMOntqsDx78co+fTJfjJXtepKcNAtGoomEUny6WvcEWrr4u8d56Zc+WtCBZarE0IhyJ/vbQ9hFiEatBvRRDKMqPIlzo7ekYa6OQWsgzLhqDw1twcSUtzFVbtoC4cRtMl39sT/7tbeEbbrExshKN4eOrOC+2hN72PqBymMN5eP5qaR8UsqpXYXqidQf3c81EWF3s5/dLYGsFxqIS07ihyJR3HYbHped/e0hguEokahhVIW7Xz3Jense2VRg6qpyg5+I3AaUAZ8DbgfOAV4ralBKDTY7d3LN84v46ptPA3DPsV/g1pO+zt6KEYmbDC9zctl/TNM+SUqpIUsTSjkUfxMfjhh2NvuxYSWWtjS0dxl4xgfAzb4Qrf4ww8ucVHqsN/zZDMSyGbx2Hwxv3dfGf9/1BsYY7DYbk0aWceEXPsKCWdPSDs77M0jJx6Az1TZbfCEMVsKlEJ/M53rqTnfJSTOX3UY4Yo344xVtyUm53qpn+lNh11+pEkMjy92EIobRFW7er2/DaYexlR4csSbW8b5DvSUic3EM4vt58uiKxHUdwTA1lZ0r2OV7kJ5pwqp7YmNYubPPqwr+6ORJ/H7ZB4SjUZKKnrAn/Ryf2pVtX6pinW/dz7VKj5MKt4NmXyjrhFuy5CT+xvrWxN/uFl+IYCTKzmYfYPVTy0WFVn8qMHVVuSHhU8aYY0TkbWPMFSJyA/BIsYNSaqBbsrqO39/7Et9efi/feetpvhaN8NDRp3HLp77OzqrO/5+cduG6cz6miSSl1JCnCaUcir+J39Lcnuhx0r0nTHJFEHQOqPJV4RKXPBhu9YfY2xokHKsKsYnhg73t/PLhNVx/zsfSDrr6M0jJRzVPqm06bUIoag4Y9F/79HsDsp9IctJsVIWLuiY/GBhT5e6SgMzFFJd8TpNJ27C6ppL7ak/s8jqoqfR0OT75rn5Zvr6exvYAW/e147TZOKjKnXJqVCbnf38SJJkmrPpSnZhOvC9SfJU3j9NGMGKtAmgwXaZ2ZduXqjf5ON+Wr6+nxRdiV7MPj8PO6Eo3lZ7cJHig83nOXrwycT57nHZ2NvkxGBraAl0Sov3Rn6rOUpmGqPLKF/veISJjgX3ApCLGo9SA94/n17L74gX8443HcYdDPDLtFG769DfZXj2my+1E0GSSUkrFaEIph+Jv4hNTkziwJ0x3+a5wiUseDO9tDRBJWq3CbrMRjUTZ3x5kzt1vpp0WkovV73L9XLtv8+SFyw4Y9IcjUbbu83Fo1OQ8UZLvxrfdk2aHjy5HRGgLhLskXmYvXtnv6pl8VODE909yRceoCvcBiaF050a+pxUmJzXGV3vZ0xpgR5OfKTUVXPqlqV0ep7fzv78Jknz0GcvE3FOndGm4fdPS93NWAdWTVOdbQ5ufufevpsrr7FMT6vmPr6MsNo0vGIlS1+hjVGUk5/EnH6tKj5Ox1VDf4scfjh6QEO2r/lR1lto0RJUXT4pINXAdsAprhbc/FTUipQaqpia48UZmLrweb8DHEx+Zwe8/PZvNI8envr1Bk0lKKRWjCaUcir+Jt9s6e8IYY62qVexPh5MHw8GI1cAXrE9ZIlFDOJZgihqTdiA8EAYpqQb9e1oDOG22nE9VyleFRbo+Vz1Jl4zYWN/aYz+p5Mfb2xpgTJX7gG30dZpM1+bIHpz2APvbQ4QjUY44qCrjQXc+k67dkxpVXhcdwTDVZa4DHrO387+nhFz89z0lHkulqiSXFVA96X7OtvpDNLQGMcDEEWVZv57i+3+Y14PbYaehLUAgHKU9EOGmbx6T0yRkiy/E7mY/boct0TvJbhNqKj39mlaXrD/J1EL0d1PFZYy5Mvbj30XkScBjjGkuZkxKDThtbXDTTXDdddDUxIopn+LGk7/F+6MP7fFuY6u9hYlPKaUGAE0o5VD8Tfy1T7/Hxr1tOEUYM8yN3ZabKRD9kTwYdsbiAawl0qNWg2fBqqbqaZWiUh+kpBv0j6/2dLldsZvmppLrpuf72gO0+sPUt/pTbq/74zW0BqwpdUiflljvngxrbA902T+jKjyUuRxdBt3FXto826qgns7/tEm9PS0ZHddsEraFqIzL93Hofs7ubQ2AWP2aRCTr11Py/q/yOqnyOjHG0OwL5byirdxtxxeMJHonBcKRPq2y2Zv+HIdCVb+qwhKRTwDbjTG7Y5fPBb4GfCgilxtj9hc1QKUGgo4O+MMfYOFCaGiAL38ZFizgqmcbY6uCpud12pl3xpEFClQppUqfJpRyLHnFtHQ9YYoVV3Iz8FA0RCRiEIFYPgkRGFVhVajEB9WpBq65+gQ+H1IN+l12W2JVtLhiN81NJV2CauEz63tNHqRKRuxvDzG8zNlle3tbO6cUtfhClLvtDPNaybYxwzzsaPSxp9VPpceRUQVa/Px4f08LbYEII8qdjCx3U9/qZ+u+dsZ3+xQvef+UwtLm2VYF9TRIT7etYMQwLIPEY6YJ21LYb7nQ/Zz1hyPYRBJ/gyC711MhKry6V0HtbQ3gD0foCEa49uzcVUEp1YNFwKkAIjIDuBb4GXAssBhrtTelVCp+PyxeDNdcA7t3w+mnw4IF8MlPsmR1He2BvT3eXVd0U0qpA2lCKU9K8dPh7s3AFz6zns0N7YgYHAJjq8u6VKaUu+wDYuDaW9IrPgDP9VS9XA9gUyWorP5PHRw6sqzHY5AqGdHUEewyOG/xhdjXHiRqjLU6lT9Miz9MY3uIMcM8VHqcjKs27G4J0OwL9VqBlpzY8IeiRI1hX5uVqGwPRohEYXujjwlpKp5KYWnzXE7jTLctl8PqoZYsXrmUajpiKSwJX4jKse7nbLnLQZnLnjhXILvXUyGm5HbvnVTpyX0VlFK9sCdVIX0DWGyM+TvW1Le3iheWUiUsGIS//hWuugp27IDPfhYefBA+8xkALlnyDves3IZJc3dNJCmlVHqaUBqiuieX5j++DoddMMZ0DoTttqIP+HuT6VLr+Ziql+sBbMr+Ty2BjI9B92RE8kpUAA1tAQCcNhu7mgOIWD2+/GEraWUTqPY6OX7i8Iyq0JITG/FG9OFolL1tQevcsUEoSqx83BywclopLG2ey3Mj3bYWrdh8wHFtaAvQGoiknY7Yk3zvt0JWQKX6O9TX11MhpuSWSp8rNaTZRcRhjAkDnwdqk36n7+mUShYOw113WVVIW7fCSSfBHXfAKadYZfnAktV1aZNJ46q9vHThKYWMWCmlBhx985Enxe4Nk410A7FLHltb9AF/bzKt1sjXCnO5HMCmTFBFoz1OG8tme4FwFAGQ2Puobu+eogb2d4QYU+XKKN7kxIbLbiMcMUSNtVmbTcDY8Nis2+5uCRywemCpDM77c25kOiW0+3Ft7AgxotzZp2Rtvvdb99dUOGI16u9pBchcyMXrKd+VoQNhYYJCu2np+9z+4hbag1ZV649OntRl1UCVc/cB/xaRBsAHvAAgIocD2pRbKYBIBO6/H664AjZuhI9/3OqZdOaZiURS3HXPbkhbmbSzl35KSimlNKGUF/FP2oPhCK3+MLub/aza1sh5Mw8r2TfaqQZiE1aUxoC/J8WucsnlADbVgNppE5p8ITbvbSMYieKy26j0OJg0qqLLfdMlMJO3V+ayU+6209AWxG6TlG+gbAL/Wt9zD4G45MTGqAo3O5t9RI3V3D1qDMbAwdUeKtwOmn2hAxItA31wnmklT6rj2uwLMbK8byvq5Xu/Jb+mWnwhdjb7Esc039NeS3GqcLKBsDBBId209H1+v+wDbAIOm/X/w++XfQBQsv/XDXTGmKtF5F/AwcBzxpj4n3IbVi8lpYauaBQeeQQuuwzefReOPhqWLIFZsw5IJIFVndRTE25dzU0ppXqnCaU8WLRiM8FwhH3tQWwIDpsQMYZbl2/imPHV/R58FKr6KduBazGqskqlyiVXug+okwdsNoFgxJpS9q0TRiRu01tio/uUIrsI0WhnOin+FksEnHahPRjJKNbk86PS42Bk2MWe1gA2wGETRle6qfQ46QiGUx6P/gzOS6ECMJteRr1NR4TMz9t8JzWSX1MNbQFsSGL1tVKc9lpopZ70KqTbX9wSSyZZpYg2gXA0yu0vbtGEUh4ZY1amuO79YsSiVEkwBp54AubPhzVrYOpUeOABOOcciP196m7J6joueuSdtJsU0NXclFIqA5pQyoPtjR20+sPYEGvqD2AXCEWi/R6IFbq/SaYD12KtPDXQq1x688rm/dRUumjxhRMVSlVeB69s3s/c2G2ymfa3AFj4zHrer2874LEcNhtRYyh32Q/4XSrdz49Joyr41gkTeXhVHU674HXa6QiGezwefRmcl8oqZ/2pjuvveZvPpEZybMFIbJqksRKEUHrTXoeyYidW24MRHN3GajYh46S0Ukr1izHw3HNw6aXw+utw2GFWz6TZs8He83uZ657dgC+U+m+VAN8+caI24VZKqQxoQikPJgwvY3ezH4ets7zWGOsT/v4OxAq9MlamA9dirdg12KagdB8gbqxvZUyVh1EVnsRtjDFdzqOeEhupBpxP/2IGy9fXc8mjb7OjOYABnDYwWD2QfnTypIzjTXV+HDO+Oq/HoxRWh4P+VceV8nnbNTZrult8FUBI/RyLndgohFLrFVQKidVyl5UMTfqvjqgh46S0Ukr12fPPW4mkl16CQw6B22+Hc88Fp7PXu/Y21e3GbxyrySSllMqQJpTyYM6Myaza1kjEGOyxlbSMgWHlzn5PxSp2z6B0ihlXKUxBycWAOtUAsdUfxmkPdEkodR/Qp0tsVLgdzH98HaFIhOaOELuafV16eb140aldB8nO3AyS+3s8etuXpfIaKOUqo/6Kx5aYJmnrugJk8nPsft5u3dfGnLvfpMJtZ8pBVYMiudSXXkH5TrKVQmL1RydP4vfLPiAcjWITK5mUbVJaKaWy8tJLViLp+edh7Fir2fYPfwiuzBYUuWTJO9yzclva34+r9moySSmlspB6YrHql5lTazhv5mHYRAhFotgFRlY4cdrt/Z6KNWF42QEluqXQM6hU4yqE+IC6+xLwy9fXZ7Wd5AGiiPV9eJmT/e0hOoJhjDEpp5DNmTGZUMQccBtjDKFIhH1tISIGnHZrStutyzclYpt76hTevvwMNv3fF3n78jOK3vckk31ZKufazKk1LJg1jZpKD82+EDWVHhbMmjbgkyfJMnmOyedtWyDMvrYQUWPwh6J9fi2UmuReQTaxxb5b16eSq78JPdne2IHX2bUSqNCJ1bmnTuHnpxyO12knHLUe/+enHF70vyNKqUHo9dfhC1+Ak0+Gdevgxhvhgw/gJz/JKJm0ZHUdx17xHHev3JZ2VTev0659k5RSKktaoZQnc0+dkpepP6XaM6hU4yqEXFUKpKq8GVXhJhyJUlPpSXsepZs+dclja2nuCCECNuns5RWOmpxWMeSyEiOTfVlK51opVxnlSm/PMfm83dsasM43hGAkOmiaeGfbK6gQ1UOlsiDB3FOnaAJpkBCR64D/AILAJuD7xpimogal1Jo1VrPtxx+HkSNh4UI47zwoL8/o7ktW13H54+to8oV6ve01Zx+t1UlKKZUlTSjlUT4Gm6Xae6VU4yqEXE3BSjdAPOKgKu6rPbHH+6Y61yasKGNXsw+nvXMkbAy4Hf3v5RWXqz4u8aTUa1v343HYGFXhpiq2T7vvy8F2rg30/kPJ520wErWmx0XBFTvvSmFKbn9l2yuoENMySymxqgaNfwIXGWPCIrIQuAj4dZFjUkPVu+/C5ZfDQw/BsGFw5ZUwdy5UVWV092wSSaBT3ZRSqq80oTQAlWpVRKnGlW+5qhTI9QAx0csr2tnLK4qh0tP/Xl5xuajESE5Kue1WZcvOZqtZZpXXmXJfDpZzrRQaK/emt4RX8nnrtAmhqDWZIN73azBMfc22V1AhqocGW2JVFZ8x5rmkiyuBc4oVixrCNm6EK66Ae++1qpAuuQQuuACGD8/o7tkmksBa1U2nuimlVN9oD6U8Wb6+ntmLV3LywmXMXrxywPcQUeml62GUbSIo1z15knt5BcNRQtEokaihsSPESZNH9Gmb3eWij0tyUqqmyoNYC9XT0Bbo874cKFL1zXLahUUrNhc7NCCzXkDJ522Z24FNhJHlLio9jkFz/LLtFZSrvwm9mTm1hvtqT+SFX5/CfbUnajJJ5dIPgKeLHYQaQrZuhR/8AD7yEXjkEZg3D7ZssSqTskgmXfTIO1knk7594kStTlJKqT7SCqU8GAhVByp3clkpkOvKm/iA99blmwhHo7jtNoaVOXl4VR3HjK/u92PlohIjeXpQpcfJ2Gqob/HjD1u9o/JddVHMKWelsmJdOplWoCWft/H9OdiqZrLpFaTVQ6pUichSYEyKX11sjHksdpuLgTBwTw/bqQVqASZOnJiHSNWQsWMHXH01/PnPYLPBz34GF14IBx2U9aaue3bDAYt29GR4mZPL/mOaJpOUUqofNKGUB6WwnLMqrFKegvXK5v2MH+7tkvTJ1fmYi2l63ZNSlR4ndptQU+nptXdUf6VK/v7y4TWMrnDTGgj3OcGUaZKqVBorp9OXhFcpvxYKSfeDKkXGmFN7+r2IfBf4MvB5Y0y6xbAwxiwGFgNMnz497e2USmv3brjmGli0CKJR+NGP4OKLYVzfkzs7m3wZ3U4TSUoplTs65S0PSmE5Z6Xi8nk+5mKaXqGmB6XSfcpZOGJo6gixpaG9z8u9Z7NkfDGfeyYmDC874NPeUkp4DWU6rVrlmoicidWEe5YxRt+wqPxoaIBf/QomT4Zbb4XvfAfefx/+8Id+JZOWrK5LrGibzvAyJ7/7xrGsnn+6JpOUUipHtEIpD0q96kANLbk6H+NVN+/vaSEUMbgcNo6oqWTOjMn9qiQq5vSg7hU4DW0BbAIRYxI9jbKt5sqmQrHUp0bpSmKlSadVqzy5BXAD/xRrYL7SGPPj4oakBo3GRrjhBvj976G93UokzZ8Phx/e703HeydF0hTVaUWSUkrljyaU8kAHYaqU5OJ8jA9gg+EILf4wkajB+KGxfR+rtjVy3szDMu4vk0qxpgd1T7YFI1GEziXvIftqrmyniZXy1KhST3gNVTqtWuWDMab/I3ulumtpsZJIN9wAzc3w9a/D5Zdbzbf7YcnqOq57dgN1PUxzs4tww9c/pokkpZTKI00o5YEOwlSu9adxdC7Ox/gAdl9bGBM1xFaGjy2fbrh1+aacNPkutO7JNrvNmvY2utKduE221VyDrUKxrwmvfDQ7L2YD9VJS6s3clVKK9na45Rb4zW9g/3446yy44go45pg+bzI5iSRAb827osZoMkkppfJME0p5UspVB2pgycX0lv6ej/EBbDASJRq7TmLv5uw2IRSJDsjqiO7JtkNHlLGvPYjdJhhj+lTNpRWK+ZmSpdO8Og22pKVSahDx+eC22+Daa6G+Hr7wBViwAKZP79dm49Pa4n39MukEP7ba26/HVEop1buSa8otIpeLSJ2IvBX7+mKxY1KqmLo3ji5zOXDahUUrNhcshnhzZpfdlqhOwlhJJWPAbbcN2OqImVNruK/2RF749Sk8c/5nue6cj/WryXguGpUPdPk4Z0vhdVAqSr2Zu1JqCAoErMbahx8OF1wARx8NL78MTz3Vr2TSktV1fPraZfzigbcOWCSiJ16nnXlnHNnnx1VKKZWZUq1QutEYc32xg1CqFJTC9JZ41U2lx0FHMJL4ZNCq5IFh5c5BUx2Ri+rCoV6hmI9zthReB6VCp1UrpUpGKAR/+xtceSVs2wYnnwz33AMzZ/Z7092rkjJlF+Gas4/W6W5KKVUApZpQUkrFlML0luQBbHsgRFsgik3AaROGlTlx2u1pqyNy3femFPvoaL+grvJxzpbC66CUDPWkpVKqyCIRK3G0YAFs2gQnnAB/+hOcdlpsTnz/XffshqyTSV6nXZNJSilVQCU35S3mpyLytoj8RUSGp7qBiNSKyBsi8sbevXsLHZ9SBVMq01viU8PeueIL/PV7n+CESSMZWeHm0JEVaad0xfve1Lf6u/S9Wb6+vk8x5Hp7uZCPmPL1PJevr2f24pWcvHAZsxevzNt+y/aczSSuUnkdlIpCHUullOoiGoUHHoCjjoLvfheqquCJJ2DlSjj99JwlkwB29rCCG0D8keyxxxxX7dVkklJKFZgYk0lbuxw/qMhSYEyKX10MrAQasPrtXQkcbIz5QU/bmz59unnjjTdyHqdShZauKiV+/UCb3jJ78coDqkr2tvrpCEao8jqzrrxJtb2OYJiaSg/31Z6Y8/iLFVM+tpnc1Dq5WXi++jtles5mE9dAfR3kWqGPZSkRkTeNMf3r7qtySt+DDRHGwJIlcNll8M47MG2aVZ101llgy8/n05++dhl1aZJK46q9zDvjSE0eKaVUAfT0/qsoU96MMadmcjsR+RPwZJ7DUaok9LaK1UAcKHbve9PiC7GvPUjUGCaOKMt6pa5C9dHJZrrZQOkXlNzUGqDM5aAjGM7b6nyZnrPZxDVQXwe5VuhjqZQawoyBp5+GSy+FVatgyhS49174+tfBbs/rQ88748gDeijplDallCotJTflTUQOTrr4VWBtsWJRqpAG4ypW8dXh4hraAgB4HPY+Pcfu24Pc99HJdrpZPmLKxza3N3bgdXZ9818KTa1LNa5SpvtMKZV3xsDSpfCpT8GXvgSNjXDHHbBuHcyenfdkEsBZx43jmrOPZly1F0GntCmlVCkquYQS8BsReUdE3gY+B5xf7ICUKoTBOEjs3vcmEI6CgdGV7sRtkp9jb31hCtFHJ9vEXj5iynSb2fTRKUQyri9KNa5SpvtMKZVXK1ZYq7SddhrU1cGiRbBhg9UzyVHYyQ1nHTeOly48hS3XfomXLjxFk0lKKVViSi6hZIz5L2PM0caYY4wxs4wxu4odk1KFMBgHiTOn1rBg1jRqKj00+0KUueyMqnRR6emczhV/jplUBnXfXk2lJ+d9Y7JN7OUjpky2mW0lVak2tS7VuEqZ7jOlVF68+qrVWPuzn4X334ebb4aNG6G2FpzO3u+vlFJqyClKDyWlBopCLt0+Z8Zk5j++jo5guEuj3YE+SEzuexNPgqR6jpn2hcl3H52+LE+fj5h622a2fXRmTq1hQex+pdTUulTjKmW6z5RSObVqFcyfD//4B4waBddfDz/5CZQV5wOtJavruO7ZDexs8jFWm28rpVRJ04SSUmn01iQ714bCILGn53jJY2sL0nC7NwMlsdeXxt2l2tS6VOMqZbrPlFL99s471qptjz4Kw4fD//0f/OxnUFFRtJCWrK7r0oi7rsnHRY+8A6BJJaWUKkGaUFIqjWKspDQUBonpnmNfKoPyYaAk9kplf/VHISsAlVJKxWzYAJdfDg88AJWV1s+/+AUMG1bkwOC6ZzeknP5/3bMbNKGklFIlSBNKSqVRqCXqlaWUKoMGQmKvlPZXXxS6ArCvNOmllBo0Nm2CBQvg7rvB64ULL4Rf/hJGjCh2ZAk7m3xZXa+UUqq4Sq4pt1KlYjA2yS5lhWi4PZgM9P2V7Wp6xZBt43OVP/EVDZ2jDz262LEoNeBs22Y11p46FR58EM4/HzZvtqa4lVAyCWBstTer65VSShWXVigplcZArwAZiAZCZVApGcj7q7cKwFKoDCrGtFd1oORqNkw0XOx4lBowdu60kkZ/+pN1+cc/hv/9Xzj44OLG1YN5ZxzZpYcSWP83zDvjyCJGpZRSKh1NKCmVxkDppaPUQNRTD6hSmQ6n015LQ/fEnlKqF/X1sHAh/OEPEA7DD34AF18MEycWO7K0kld2G+Z14nHaaOoI6SpvSilV4vTdmVI9GMgVIKr0lELVTanoqQKwVCqDemt8rsezMFIl9pRSKezbB9dfDzffDD4fnHsuXHopTC7tyuruK7s1+UJ4nXZu/MaxmkhSSqkSpz2UlBqC4v1ITl64jNmLV2pPmALQfjxd9dQDantjB16nvcvti1EZNGfGZEIRQ0cwjDHW93jSS49n4aTqZ6eUStLcDJddBpMmWZVJs2bBu+/CX/9a0smkJavr+PS1y/jFA2+lXdlNKaVUadMKJaWGmFKZTjTUlErVTaYKUX2TrgKwt8qgQulp2uvsxSsH1PEcyJKr2ZRSSdra4KabrKqkxkb42tfg8svhqKOKHVlK3ae1tceS9Onoym5KKVX6NKGk1BAz0BIbg8VA6sdT7KRjKTXET5f0GkjHc6BLTuwhNn3folRHh9UfaeFCaGiAL38ZFiyA444rdmRppZrW1htd2U0ppUqfvjFTaojRgXBxlErVTSaKnXQcCA3xB9LxzLdCVrPJnK3v5HTDSg0kfj8sXgzXXAO7d8Ppp1uJpE9+stiRpZRckWQTIWLSVyN1pyu7KaXUwKAJJaWGGB0I509PA+tiV91kM+gvhaRjqTfEL/bxLBXFrmZTakgIBq1+SFddBTt2wGc/Cw8+CJ/5TLEjS0hOHo2t9vK5qaP5+5t1iYqkbJJJ43RlN6WUGjC0KbdSQ0xPjYZV3/XWpLmnJtTFjq27VE2QNenYVTGPZylJrmYTsb477WJNT1NK9U84bCWSjjwSfvxjmDABli6F558vuWTSRY+8Q12TDwPUNfm4Z+W2rJvpe512fveNY3npwlM0maSUUgOEVigpNcQMhOlEA1Em08SKVXWT7RQ2rb7JTKlXURVCKVSzKTXoRCLwwANWg+2NG+HjH7d6Jp15JogULazuVUjxKqLrnt1wQPIok3okp02o8Dho6gh12Z5SSqmBQxNKSg1BOhDOvVIeWGcbmyYdVaZ0Cq1SORSNwiOPwGWXwbvvwtFHw5IlMGtWURNJcGBT7bomHxc9YrU0y2Y1NrsIUWM0gaSUUoOEJpSUUioHijGwzrQvUl9iG8pJx0I0mc63Qj0HrWYbPETkSuArQBSoB75njNlZ3KiGCGPgySfh0kthzRqYOtWqUDrnHLCVRneKVFVIvlCE657dwNhqL3UpkkpC10olr9PONWcfrUkkpZQaRErjfymllBrgCt2bKpu+SNo3K3PZ9psqRYV8DtpLalC5zhhzjDHmWOBJYH6R4xn8jIFnn4UTT7SqkNra4K67YO1a+PrXSyaZBOmrkHY2+Zh3xpF4nfYu13uddr594kTGVXsRrEbbmkxSSqnBRyuUlFIqBwo9TSybvkh9iW0wVOn0Rbb9pkpRoZ/DUK5mG0yMMS1JF8vJrA2O6qvly+GSS+Cll+CQQ+D22+Hcc8Hp7PWuxZCuCmlstTeRJErVX0kppdTgpgklpZTKkUIOrPvSFynT2IbyUvCl3AsrU4PhOajiEJGrgXOBZuBzRQ5ncHr5ZWtq27JlMHas1Wz7hz8El6vYkfVo3hlHdumhBNbflXlnHAnAWceN0wSSUkoNQaVTS6uUUipjE4aXpexnkYueTUN5Kfh87tdCGQzPQeWHiCwVkbUpvr4CYIy52BgzAbgH+GkP26kVkTdE5I29e/cWKvyB7Y034AtfgE9/2prSduON8MEH8JOflHwyCayE0TVnH61T2JRSSnWhFUpKKTUA5bMZ8lCucBkMTaYHw3NQ+WGMOTXDm94L/AO4LM12FgOLAaZPn65T43qyZg3Mnw+PPw4jR8LChXDeeVBeXuzIsqZVSEoppbrTCiWllBqA8tkMeShXuAyGJtOD4TmowhORI5IuzgLWFyuWQeHdd63G2sceC//+N1x5JWzeDL/61YBMJimllFKpaIWSUkoNUPnq2TTUK1wGQ5PpwfAcVMFdKyJHAlHgQ+DHRY5nYNq4Ea64Au6910ocXXIJXHABDB9e7MiUUkqpnNOEklJKqS4KvWKdUqr4jDFfK3YMA9rWrVYV0t/+ZvVEmjfP+ho1qtiRKaWUUnmjCSWlVNEN1SXqS5lWuCilVAZ27ICrr4Y//xlsNvjZz+DCC+Ggg4odmVJKKZV32kNJKVVU8SXq61v9XZaoX76+vtihKaWUUqnt3g2/+AUcfriVTPrRj6xV2268UZNJSimlhgytUFJKFVXyEvUAZS4HHcEwi1Zs1gqZLGmll1JK5VlDA/zmN3DLLRAMwve+Z/VJOvTQYkemlFJKFZxWKCmlimp7Ywdep73LdUNlifpc0kovpZTKo8ZGK3E0aRJcfz187Wuwfj3cfrsmk5RSSg1ZWqGklCqqCcPLqG/1JyqUYOgsUZ9LWumllFJ50NICv/893HADNDfD178Ol18OH/lIsSPLiyWr67ju2Q3sbPIxttrLvDOO5KzjxhU7LKWUUiVKK5SUUkU1Z8ZkQhFDRzCMMdb3obREfa5opZdSSuVQezssXGhVJM2fDzNnwltvwQMPDOpk0kWPvENdkw8D1DX5uOiRd1iyuq7YoSmllCpRWqGklCoqXaI+N7TSK/e0J5VSQ5DPB7fdBtdeC/X18IUvwIIFMH16sSPLu+ue3YAvFOlynS8U4bpnN2iVklJKqZQ0oaSUKjpdor7/5syYzPzH19ERDON12vGFIlrp1Q/xnlROu3TpSbUA9FxVajAKBKzV2q6+GnbuhM9/3kokfepTxY6sYHY2+bK6XimllNIpb0opNQjMnFrDglnTqKn00OwLUVPpYcGsaZr86KPknlQi1nenXVi0YnOxQ1NK5VIoZDXWnjIFzjsPJk+G55+HpUuHVDIJYGy1N6vrlVJKKa1QUkqpQUIrvXJne2MH1V5nl+u0J5VSg0gkAvfeC1dcAZs2wQknwJ/+BKedBiLFjq4o5p1xJBc98k6XaW9ep515ZxxZxKiUUkqVMq1QUkoppbqZMLwsZS8R7Uml1AAXjVqNtY86Cs49Fyor4YknYOVKOP30IZtMAjjruHFcc/bRjKv2IsC4ai/XnH209k9SSimVllYoKaWUUt1oT6rUtFG5GrCMgcces1Zse+cdmDYNHn4YvvpVsOnnq3FnHTdOE0hKKaUyVpT/QUXkP0VknYhERWR6t99dJCIfiMgGETmjGPEppZQa2rQn1YHijcrrW/1dGpUvX19f7NCUSs8YeOop+MQnrORRIGBNdVuzBr72NU0mKaWUUv1QrAqltcDZwKLkK0Xko8A3gWnAWGCpiEwxxkQO3IRSSimVP9qTqqvkRuUAZS4HHcEwi1Zs1v2kSo8x8K9/waWXWtPZJk2Cv/4VvvMdcGiBvlJKKZULRflYxhjznjFmQ4pffQW43xgTMMZsAT4ATihsdEoppZTqbntjB16nvct12qhclaQXXoDPfc5qsL1jByxaBBs2wPe+p8kkpZRSKodKrc53HLA96fKO2HVKKaWUKiJtVK5K3quvWo21Z8ywEkg33QQbN0JtLTidvd9fKaWUUlnJ28c0IrIUGJPiVxcbYx5Ld7cU15k0268FagEmTpzYpxiVUmqo0abKqq+0UbkqWatWWc22//EPGDUKrr8efvITKNNkp1JKKZVPeUsoGWNO7cPddgATki6PB3am2f5iYDHA9OnTUyadlFJKdYo3VXbapUtT5QWgSSXVq5lTa1iA1UtpR2MH4zUhqYpt7Vq47DJ45BEYPhz+7//gZz+DiopiR6aUUkoNCaU2kfxx4F4R+S1WU+4jgNeKG5JSSg0O2lRZ9Zc2KlclYcMGuPxyeOABqKy0kkrnnw/DhhU7spK1ZHUd1z27gZ1NPsZWe5l3xpGcdZx2lVBKKdU/RUkoichXgZuB0cA/ROQtY8wZxph1IvIg8C4QBs7TFd6UUio3tjd2UO3t2kdEmyorpQaMzZthwQK46y7weuHCC+GXv4QRI4odWUlbsrqOix55J9EDra7Jx0WPvAOgSSWllFL9UpSEkjHmUeDRNL+7Gri6sBEppdTgN2F4GfWt/kSFEmhTZVU82s9LZWzbNrjqKvjrX61V2s4/H371K6gZGudLf6uLrnt2Q8qG+tc9u0ETSkoppfql1FZ5U0oplSdzZkwmFDF0BMMYY33XpsqqGOL9vOpb/V36eS1fX1/s0FQp2bkTfvpTOOII+Nvf4Mc/hk2brKbbQyiZdNEj71DX5MPQWV20ZHVdxtvY2eTL6nqllFIqU5pQUkqpIWLm1BoWzJpGTaWHZl+ImkoPC2ZN06oQVXDJ/bxErO9Ou7BoxeZih6ZKQX09/M//wGGHwaJF8L3vwcaNcPPNMHZssaMrqJ6qizI1ttqb1fVKKaVUpkqtKbdSSqk80qbKqhRoPy+V0v79cN11VuLI54P/+i+YPx8mD90qylxUF80748guPZTAer3NO+PIfsenlFJqaNOEklJKKaUKSvt5qS6am+HGG+G3v4W2NvjmN62V247UhMfYai91KZJH2VQXxfsk6SpvSimlck0TSkoppZQqqDkzJjP/8XV0BMN4nXZ8oYj28xqK2trgppusnkiNjXD22XDFFXDUUcWOrGTkqrrorOPGaQJJKaVUzmlCSSmllFIFNXNqDQuweintaOxgvK7yNrR0dMAf/gALF0JDA3z5y7BgARx3XLEjKzlaXaSUUqqUaUJJKaWUUgWn/byGoEAAFi+G//s/2L0bTj/dSiR98pPFjqykaXWRUkqpUqWrvCmllFJKKQBE5JciYkRkVM42Ggxaq7UdfjjMnWv1RlqxAp59VpNJSiml1ACmCSWllFJKKYWITABOA7blZIPhMNxxh5VA+vGPYcIEWLoUnn8ePvOZnDyEUkoppYpHE0pKKaWUUgrgRuBXgOnXViIRuPdemDYNvv99GDkSnnoKXnoJPv95EMlJsEoppZQqLk0oKaWUUkoNcSIyC6gzxqzJ4La1IvKGiLyxd+/ezl9Eo/D3v8Mxx8C3vw1uNzz6KLz+OnzhC5pIUkoppQYZbcqtlFJKKTUEiMhSYEyKX10M/C9weibbMcYsBhYDTJ8+3WAMPPkkzJ8Pb70FU6fCAw/AOeeATT+7VEoppQYrTSgppZRSSg0BxphTU10vIkcDk4A1YlURjQdWicgJxpjdPW60pQVOPBFeew0OOwzuvBO+9S2w23MdvlJKKaVKjCaUlFJKKaWGMGPMO0BN/LKIbAWmG2Maer3zxo0wcSLcfjucey44nfkLVCmllFIlRYzpX9/FUiAie4EPix3HADIK6P1NosonPQbFpfu/+PQYFNdA3f+HGGNGFzuIwS6bhFIv78EG6nmWb7pf0tN9k57um9R0v6Sn+yY93Tfppdo3ad9/DYqEksqOiLxhjJle7DiGMj0GxaX7v/j0GBSX7n9VCHqepab7JT3dN+npvklN90t6um/S032TXrb7RjslKqWUUkoppZRSSqmsaEJJKaWUUkoppZRSSmVFE0pD0+JiB6D0GBSZ7v/i02NQXLr/VSHoeZaa7pf0dN+kp/smNd0v6em+SU/3TXpZ7RvtoaSUUkoppZRSSimlsqIVSkoppZRSSimllFIqK5pQGuRE5C8iUi8ia5Ouu1xE6kTkrdjXF4sZ42AmIhNE5HkReU9E1onIz2PXjxCRf4rIxtj34cWOdbDq4Rjo66AARMQjIq+JyJrY/r8idr2+Bgqkh2OgrwFVECLySxExIjKq2LGUChG5UkTejr32nhORscWOqVSIyHUisj62fx4Vkepix1QqROQ/Y3/HoyIy5FeoEpEzRWSDiHwgIhcWO55SkWr8p9KPCVT694oZ3VenvA1uIjIDaAPuNMYcFbvucqDNGHN9MWMbCkTkYOBgY8wqEakE3gTOAr4H7DfGXBv7D3C4MebXxYt08OrhGHwdfR3knYgIUG6MaRMRJ/Ai8HPgbPQ1UBA9HIMz0deAyjMRmQDcDkwFPm6MaShySCVBRKqMMS2xn+cCHzXG/LjIYZUEETkdWGaMCYvIQgD9/8EiIh8BosAi4JfGmDeKHFLRiIgdeB84DdgBvA7MNsa8W9TASkCq8Z9KPybQcyb9e0VjzMre7qsVSoOcMWYFsL/YcQxVxphdxphVsZ9bgfeAccBXgL/FbvY3rASHyoMejoEqAGNpi110xr4M+hoomB6OgVKFcCPwK/Sc6yKeTIopR/dPgjHmOWNMOHZxJTC+mPGUEmPMe8aYDcWOo0ScAHxgjNlsjAkC92O9txjydPyXmo4J0uvPe0VNKA1dP42VEv9Fp5oUhogcChwHvAocZIzZBdYfN6CmiKENGd2OAejroCBExC4ibwH1wD+NMfoaKLA0xwD0NaDySERmAXXGmDXFjqUUicjVIrId+DYwv9jxlKgfAE8XOwhVksYB25Mu70CTAypDKcYEQ14P7xV7pAmloemPwGHAscAu4IaiRjMEiEgF8HfgF90+lVQFkuIY6OugQIwxEWPMsVifMp8gIlp+XWBpjoG+BlS/ichSEVmb4usrwMUM4URJL/sGY8zFxpgJwD3AT4sbbWH1tm9it7kYCGPtnyEjk32jAJAU12mln+qVjstS6+v7dUdeo1IlyRizJ/6ziPwJeLKI4Qx6sXmofwfuMcY8Ert6j4gcbIzZFZvPW1+8CAe/VMdAXweFZ4xpEpHlWL179DVQBMnHILl3kr4GVF8ZY05Ndb2IHA1MAtZYrRkYD6wSkROMMbsLGGLRpNs3KdwL/AO4LI/hlJTe9o2IfBf4MvB5M8QavmZx3gx1O4AJSZfHAzuLFIsaINKMy1SSbu/Xe23srhVKQ1Bs8Bb3VTI4UVTfxBqc/Rl4zxjz26RfPQ58N/bzd4HHCh3bUJHuGOjroDBEZLTEVugRES9wKrAefQ0UTLpjoK8BlU/GmHeMMTXGmEONMYdiDf6OHyrJpN6IyBFJF2dh/V1UWCt3Ab8GZhljOoodjypZrwNHiMgkEXEB38R6b6FUSj2My4a8Ht6v937fIZb0H3JE5D5gJjAK2IP16ddMrCkOBtgKzIn3MlG5JSInAy8A72CtygHwv1jzdR8EJgLbgP80xmjzvDzo4RjMRl8HeScix2A13bZjfYjxoDFmgYiMRF8DBdHDMbgLfQ2oAhGRrcB0XeXNIiJ/B47E+n/pQ+DHxpi64kZVGkTkA8AN7ItdtVJXwLOIyFeBm4HRQBPwljHmjKIGVUQi8kXgd1j/v/3FGHN1cSMqDanGf8aYPxc1qBKQbkxgjHmqeFGVhnTvFTO6ryaUlFJKKaWUUkoppVQ2dMqbUkoppZRSSimllMqKJpSUUkoppZRSSimlVFY0oaSUUkoppZRSSimlsqIJJaWUUkoppZRSSimVFU0oKaWUUkoppZRSSqmsaEJJKaWUUkoppXJMREaKyFuxr90iUhf7uUlE3i1wLGeJyEeTLi8QkVP7sJ1DRWRtmt9NE5FlIvK+iGwSkStEJOfjzZ6ei4gsF5HpuX5MpVRqmlBSSimllFJKqRwzxuwzxhxrjDkWuA24MfbzsUA0148nIo4efn0WkEjCGGPmG2OW5vCxvcDjwLXGmCnA0cAJwM9z9RhJziKPz0UplTlNKCmllFJKKaVUYdlF5E8isk5EnoslZBCRw0TkGRF5U0ReEJGpsesPEZF/icjbse8TY9ffISK/FZHngYWp7i8inwJmAdfFKqQOi93vnNg2PiEiL4vIGhF5TUQqY5VIL4jIqtjXp3p5Pt8CXjLGPAdgjOkAfgrMiz3G5SLyy/iNRWStiBwa+3lJLN51IlKbdJs2Ebk6FtdKETmot+eSTEROF5FXYvE/JCIVseuvFZF3Y/vy+uwPnVIqThNKSimllFJKKVVYRwC3GmOmAU3A12LXLwZ+Zoz5OPBL4A+x628B7jTGHAPcA9yUtK0pwKnGmP9JdX9jzMtY1UPzYhVTm+J3FBEX8ADwc2PMx4BTAR9QD5xmjDke+Ea3x0tlGvBm8hWxx/GKSHUv9/1BLN7pwFwRGRm7vhxYGYtrBfDfPT2XZCIyCrgktl+OB94ALhCREcBXgWmxfXlVL7EppXrQU1mkUkoppZRSSqnc22KMeSv285vAobEKmk8BD4lI/Hbu2PeTgLNjP98F/CZpWw8ZYyK93D+dI4FdxpjXAYwxLQAiUg7cIiLHAhGspFVPBDBpru/NXBH5auznCVjJtn1AEHgydv2bwGkZbCvuRKxpcS/F9oULeAVoAfzA7SLyj6TtK6X6QBNKSimllFJKKVVYgaSfI4AXa/ZIU6zPUm+Skzftse/Z3D8uXSLofGAP8LHYdv29bGcdMKPLhkUmAw3GmCYRCdN1downdpuZWFVRJxljOkRkefx3QMgYE48tQnZjVwH+aYyZfcAvRE4APg98E2ta3ilZbFcplUSnvCmllFJKKaVUkcWqg7aIyH8CiOVjsV+/jJUAAfg28GKW928FKlM87HpgrIh8Inafylhz72FYlUtR4L8Aey/h3wOcnLTamhdrmtxlsd9vBY6P/e54YFLs+mFAYyyZNBWrsqg36Z5LspXAp0Xk8NhjlonIlFgV1zBjzFPAL7AapCul+kgTSkoppZRSSilVGr4N/FBE1mBV/Xwldv1c4Psi8jZWgifd6mnp7n8/ME9EVovIYfEbG2OCWD2Sbo7d559YFUJ/AL4rIiuxpru10wNjjA+rWfbFIvI+0IDVpPue2E3+DowQkbeAnwDvx65/BnDEnteVWImg3qR8Lt3i2Qt8D7gvtu2VwFSsRNSTsev+jVWJpZTqI+msIlRKKaWUUkoppfpHRM4Cfgt8zhjzYZHDUUrliSaUlFJKKaWUUkoppVRWdMqbUkoppZRSSimllMqKJpSUUkoppZRSSimlVFY0oaSUUkoppZRSSimlsqIJJaWUUkoppZRSSimVFU0oKaWUUkoppZRSSqmsaEJJKaWUUkoppZRSSmVFE0pKKaWUUkoppZRSKiv/HyhBjNIaMYjDAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fitted = ols(\"mpg ~ horsepower\", data.dropna()).fit().fittedvalues.fillna(0)\n", "plt.figure(figsize=(20,22))\n", "sns.residplot(x=fitted, y='mpg', data=data.dropna(),lowess=True,line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8}, ax=plt.subplot(421))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower$\")\n", "sm.qqplot(fitted-data.dropna()['mpg'], line='45',fit=True, ax=plt.subplot(422))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower$\")\n", "\n", "fitted = ols(\"mpg ~ horsepower + I(horsepower**2)\", data.dropna()).fit().fittedvalues.fillna(0)\n", "sns.residplot(x=fitted, y='mpg', data=data.dropna(),lowess=True,line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8}, ax=plt.subplot(423))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 horsepower**2$\")\n", "sm.qqplot(fitted-data.dropna()['mpg'], line='45',fit=True, ax=plt.subplot(424))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 horsepower**2$\")\n", "\n", "\n", "fitted = ols(\"mpg ~ horsepower + weight\", data.dropna()).fit().fittedvalues.fillna(0)\n", "sns.residplot(x=fitted, y='mpg', data=data.dropna(),lowess=True,line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8}, ax=plt.subplot(425))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 weight$\")\n", "sm.qqplot(fitted-data.dropna()['mpg'], line='45',fit=True, ax=plt.subplot(426))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 weight$\")\n", "\n", "fitted = ols(\"mpg ~ horsepower + weight + horsepower*weight\", data.dropna()).fit().fittedvalues.fillna(0)\n", "sns.residplot(x=fitted, y='mpg', data=data.dropna(),lowess=True,line_kws={'color': 'red', 'lw': 1, 'alpha': 0.8}, ax=plt.subplot(427))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 weight + \\\\beta_3 horsepower \\\\times weight$\")\n", "sm.qqplot(fitted-data.dropna()['mpg'], line='45',fit=True, ax=plt.subplot(428))\n", "plt.title(\"$mpg = \\\\beta_0 + \\\\beta_1 horsepower + \\\\beta_2 weight + \\\\beta_3 horsepower \\\\times weight$\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "From the plot, we can see that some models have residuals less correlated with the predicted variable and quantiles closer to the normal distribution. This happens when the model explains better the variance of the predicted variable. In particular, we can note that the quadratic model (second row) and the one with the interaction term (last row) are a much better fit than the purely linear models (other two rows)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Collinearity and Regularization Techniques\n", "\n", "When fitting a multiple linear regressor, we should bear in mind that having two very correlated variables can lead to a poor model. For instance, in the case of perfectly correlated variables, two rows of the $\\mathbf{X}$ matrix will be linearly dependent (one can be computed as a linear function of the other), hence the determinant of $\\mathbf{X}^T\\mathbf{X}$ will be zero, the matrix cannot be inverted, and the coefficients cannot be estimated.\n", "\n", "Even if two variables are nearly collinear (strongly correlated), the $\\mathbf{X}^T\\mathbf{X}$ matrix will be ill conditioned and the parameters will be estimated with high numerical imprecision.\n", "\n", "In general, when there is collinearity between two variables (or even **multicollinearity**, involving more than two variables), **the results of the multiple linear regressor cannot be trusted**. In such cases, we can try to remove the correlated variables (we can identify correlated variables with the correlation matrix), apply regularization techniques (discussed later) or perform Principal Component Analysis (PCA), which aims to provide a set of decorrelated features from $\\mathbf{X}$. The PCA method will be presented later." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Ridge Regression\n", "One way to remove collinearity is to **remove those variables which are highly correlated with other variables**. This will effectively remove collinearity and solve the instability issues of linear regression. However, when there is a large number of predictors, this approach may not be very convenient. Also, it is not always clear which predictors to remove and which ones to keep, especially in the case of **multicollinearity** (sets of more than two variables which are highly correlated).\n", "\n", "A \"**soft approach**\" would be to feed all variables to the model and **encourage it to set some of the coefficients to zero**. If we could do this, the model would **effectively select which variables to exclude from the model**, hence releasing us from making a hard decision.\n", "\n", "This can be done by changing our cost function, the RSS. Recall that the RSS of linear regression (Ordinary Least Squares) can be written as:\n", "\n", "$$RSS = \\sum_{i=1}^m (y_i - \\beta_0 - \\sum_{j=1}^n \\beta_j x_{ij})^2$$\n", "\n", "where $x_{ij}$ is the value of the $x_j$ variable in the $i^{th}$ observation.\n", "\n", "We can write the cost function as follows:\n", "\n", "$$\\sum_{i=1}^m (y_i - \\beta_0 - \\sum_{j=1}^n \\beta_j x_{ij})^2 + \\lambda \\sum_{j=1}^n \\beta_j^2 = RSS + \\lambda \\sum_{j=1}^n \\beta_j^2$$\n", "\n", "In practice, we are adding the following term:\n", "\n", "$\\sum_{j=1}^n \\beta_j^2$\n", "\n", "weighted by a parameter $\\lambda$. The term above **penalizes solutions with large values for the coefficients $\\beta_j$, hence encouraging the model to put some of the variables to zero, or close to zero**. This term is called \"regularization term\" and a linear regressor fit by minimizing this new cost function is called a **ridge regressor**.\n", "\n", "The cost function has a parameter $\\lambda$ which must be set as a constant. These kinds of parameters which we need to specify manually and are not computed from the data, are called **hyperparameters**. In practice, $\\lambda$ controls **how much we want to regularize the linear regressor**. The higher the value of $\\lambda$, the stronger the regularization will be, hence encouraging the model to select small values of $\\beta_j$ or set some of them to zero.\n", "\n", "To avoid $\\lambda$ having different effects depending on the unit measures of the given variables, it is common to **z-score all variables before computing a ridge regressor**.\n", "\n", "This is shown in the following plot, which shows the values of the parameters $\\beta_j$ when a ridge regression model is fit with different values of $\\lambda$:" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAJPCAYAAACDwjlvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACTu0lEQVR4nOzdd3gc5bn38e/M7GzXqkvutoyNC+7GYGNsi04IIdQQIAHnhEAgJ4eQSkIq6eVNIScJIQmQkwahphCaAdHB2NiAce9Vsrq2t3neP2a1KpattS1pJfv+XNde02fv3QX5t88+84ymlEIIIYQQQgjROz3fBQghhBBCCDFUSHgWQgghhBAiRxKehRBCCCGEyJGEZyGEEEIIIXIk4VkIIYQQQogcSXgWQgghhBAiR458F3A4ysrK1Lhx4wb8ecPhMD6fb8CfVwws+ZyPD/I5Hx/kcz72yWd8fMjn57xy5coGpVR59/VDKjyPGzeOFStWDPjz1tTUUF1dPeDPKwaWfM7HB/mcjw/yOR/75DM+PuTzc9Y0bUdP66XbhhBCCCGEEDmS8CyEEEIIIUSOJDwLIYQQQgiRoyHV51kIIYQQYihKJpPs3r2bWCyW71KGlMLCQtatW9evz+F2uxk1ahSmaea0v4RnIYQQQoh+tnv3bgoKChg3bhyapuW7nCEjGAxSUFDQb+dXStHY2Mju3bupqqrK6RjptiGEEEII0c9isRilpaUSnAcZTdMoLS09rF8EJDwLIYQQQgwACc6D0+F+LhKehRBCCCGOQ9/85jf5yU9+wte//nWWLVt22MfX1NRw4YUX9kNlfe+xxx5j7dq1fXIuCc9CCCGEEMexO+64g7PPPjvfZfQrCc9CCCGEEOKwffe732XSpEmcffbZbNiwAYClS5fy0EMPAXDbbbcxdepUZsyYwec///ns9k9+8pMsWrSIE088kX//+98HnHf58uWcdtppzJ49m9NOOy177nQ6zec//3mmT5/OjBkz+OUvfwnAypUrWbJkCXPnzuW8885j3759AFRXV3PrrbeyePFipkyZwsqVK7n00kuZOHEiX/3qV7PP9+c//5lTTjmFWbNmceONN5JOpwHw+/3cfvvtzJw5k/nz51NXV8err77KP//5T77whS8wa9YstmzZclTvoYy2IYQQQghxHFi5ciX3338/q1atIpVKMWfOHObOnZvd3tTUxKOPPsr69evRNI2Wlpbstu3bt/PCCy+wZcsWzjjjDDZv3tzl3JMnT+bFF1/E4XCwbNkyvvKVr/Dwww9z9913s23bNlatWoXD4aCpqYlkMsmnP/1p/vGPf1BeXs4DDzzA7bffzj333AOA0+nkxRdf5Be/+AVXXXUVb731FiUlJZxwwgnceuut7N+/nwceeIBXXnkF0zS5+eab+ctf/sK1115LOBxm/vz5fPe73+WLX/wiv/vd7/jqV7/KRRddxIUXXsjll19+1O+jhGchhBBCiAH0rX+9x9q9bX16zqkjAnzjAycdcp+XXnqJSy65BK/XC8BFF13UZXsgEMDtdnP99dfz/ve/v0t/5g996EPous7EiRMZP34869ev73Jsa2sr1113HZs2bULTNJLJJADLli3jk5/8JA6HHTlLSkpYs2YNa9as4ZxzzgHs1unhw4dnz9Ve1/Tp05kyZUp22/jx49m1axcvv/wyK1euZN68eQBEo1EqKioAO3i31z137lyeeeaZXN/CnEl4FkIIIYQ4ThxqZAmHw8Hy5ct59tlnuf/++/nf//1fnnvuuR6P6778ta99jTPOOINHH32U7du3U11dDdjjKHffVynFSSedxGuvvdZjHS6XCwBd13E6ndn1uq6TSqVQSnHdddfx/e9//4BjTdPMPp9hGKRSqYO+3iMl4VkIIYQQYgD11kLcXxYvXszSpUu57bbbSKVS/Otf/+LGG2/Mbg+FQkQiES644ALmz5/PhAkTstsefPBBrrvuOrZt28bWrVuZNGkSr7/+enZ7a2srI0eOBOC+++7Lrj/33HO56667qK6uznbbmDRpEvX19bz22mssWLCAZDLJxo0bOemk3N6Xs846iw9+8IPceuutVFRU0NTURDAYZOzYsQc9pqCggGAwmOtbdUhywaAQQgghxHFgzpw5XHnllcyaNYvLLruMRYsWddkeDAa58MILmTFjBkuWLOFnP/tZdtukSZNYsmQJ73vf+7jrrrtwu91djv3iF7/Il7/8ZRYuXJi9eA/g+uuvZ8yYMcyYMYOZM2fy17/+FafTyUMPPcSXvvQlZs6cyaxZs3j11Vdzfh1Tp07lO9/5Dueeey4zZszgnHPOyV5weDAf/vCH+fGPf8zs2bOP+oJBTSl1VCcYSCeffLJasWLFgD9vTU1N9ucHceySz/n4IJ/z8UE+52PfUPuM161bx5QpU/JdxhFZunRpn11sd7j6+/bc7Xr6fDRNW6mUOrn7vtLyLIQQQgghRI6kz7MQQgghhDiozn2YhbQ8CyGEEEIIkTMJz0IIIYQQQuRIwrMQQgghhBA5kvAshBBCCCFEjiQ892LTG6/y7p/vJtLWmu9ShBBCCCEGxNKlS3nooYcAe6zmtWvXHtbxfr+/P8oaFGS0jV6YbjeJYBsNO3cwZtqMfJcjhBBCCDGgfv/73/fr+ZVSKKXQ9aHRpjs0qsyj8rFVADTs3JbnSoQQQgghjs7//d//Ze/2d8kll1BVVUUymQSgra2NcePGZZfbVVdX036TOr/fz+23387MmTOZP38+dXV1AGzbto0FCxYwb948vva1r3U5/sc//jHz5s1jxowZfOMb3wBg+/btTJkyhZtvvpk5c+awa9culi5dyrRp05g+fXqXuxsONhKee+EtLMLh9lC/c0e+SxFCCCGEOGLvvfce3/3ud3nuued4++23+cMf/kB1dTWPP/44APfffz+XXXYZpmke9BzhcJj58+fz9ttvs3jxYn73u98BcMstt3DTTTfx5ptvMmzYsOz+Tz/9NJs2bWL58uWsXr2alStX8uKLLwKwYcMGrr32WlatWkVDQwN79uxhzZo1vPvuu3zsYx/rx3fi6Ei3jV5omoantFxanoUQQgjRN564DWrf7dtzDpsO7/vBIXd57rnnuPzyyykrKwOgpKSE66+/nh/96EdcfPHF3HvvvdkwfDBOp5MLL7wQgLlz5/LMM88A8Morr/Dwww8D8NGPfpQvfelLgB2en376aWbPng1AKBRi06ZNjBkzhrFjxzJ//nwAxo8fz9atW/n0pz/N+9//fs4999wjfCP6n7Q858BTWk7Drp1YVjrfpQghhBBCHBGlFJqmdVm3cOFCtm/fzgsvvEA6nWbatGmHPIdpmtlzGIZBKpXKbut+7vbn/PKXv8zq1atZvXo1mzdv5uMf/zgAPp8vu19xcTFvv/021dXV/OpXv+L6668/4tfZ36TlOQee0nJSiTgttbWUjBiZ73KEEEIIMZT10kLcX8466ywuueQSbr31VkpLS2lqaqKkpIRrr72Wq6666oC+yodj4cKF3H///XzkIx/hL3/5S3b9eeedx9e+9jWuueYa/H4/e/bs6bFbSENDA06nk8suu4wTTjiBpUuXHnEt/U1annPgLS0HoH7H1jxXIoQQQghxZE466SRuv/12lixZwsyZM/nsZz8LwDXXXENzczNXXXXVEZ/7F7/4Bb/61a+YN28era0dw/uee+65XH311SxYsIDp06dz+eWXEwwGDzh+z549VFdXM2vWLJYuXcr3v//9I66lv0nLcw48JWU4XC72rF/LpAWL8l2OEEIIIcQRue6667juuuu6rHv55Ze5/PLLKSoqyq677777svM1NTXZ+VAolJ2//PLLufzyywGoqqritddey2677bbbsvO33HILt9xyywG1rFmzJjs/c+ZM3nrrrcN+Pfkg4TkHmmEw4sQp7F7bx537hRBCCCHy6NOf/jRPPPEE//nPf/JdypAh4TlHo6dM45UH/0I0FMTjL8h3OUIIIYQQR+2Xv/xlvksYcqTPc45GTZkGSrFn3Xv5LkUIIYQQQuSJhOccDZtwIg7Tya733sl3KUIIIYQQIk8kPOfI4XQy6qTpbF31JkqpfJcjhBBCCCHyQMLzYRg/Zx4ttfto3rcn36UIIYQQQog8kPB8GE6YcwoAW1Yuz3MlQgghhBCHZ/v27b3eQVD0TsLzYQiUV1A+ZhxbVryR71KEEEIIIQZM59twD2YDUaeE58M08dSF7NmwlmBTQ75LEUIIIYQ4LOl0mk984hOcdNJJnHvuuUSjUVavXs38+fOZMWMGl1xyCc3NzQBUV1fzla98hSVLlvCLX/yCBx98kGnTpjFz5kwWL16cPd8XvvAF5s2bx4wZM/jtb38L2DdWWbx4MZdccglTp07lk5/8JJZlAfC3v/2N6dOnM23aNL70pS8B8Pe//z17x8Nf/OIXjB8/HoCtW7dy+umnA7By5UqWLFnC3LlzOe+889i3b1+PdfY3Cc+HadJpi0ApNr72Sr5LEUIIIYQ4LJs2beJTn/oU7733HkVFRTz88MNce+21/PCHP+Sdd95h+vTpfOtb38ru39LSwgsvvMDnPvc57rjjDp566inefvtt/vnPfwLwhz/8gcLCQt58803efPNNfve737Ft2zYAli9fzv/7f/+Pd999ly1btvDII4+wd+9evvSlL/Hcc8+xevVq3nzzTR577DEWL17MSy+9BMBLL71EaWkpe/bs4bXXXmPRokUkk0k+/elP89BDD7Fy5Ur+67/+i9tvv73HOvub3CTlMJWMGEXFuBPY8OqLzH3/B/NdjhBCCCGGmB8u/yHrm9b36Tknl0zmS6d8qdf9qqqqmDVrFgBz585ly5YttLS0sGTJEsC+ffcVV1yR3f/KK6/Mzi9cuJClS5fyoQ99iEsvvRSAp59+mnfeeYeHHnoIgNbWVjZt2oTT6eSUU07JtiBfddVVvPzyy5imSXV1NeXl5QBcc801vPjii1x88cWEQiGCwSC7du3i6quv5sUXX+S1117jyiuvZMOGDaxZs4ZzzjkHsFu8hw8f3mOd/U3C8xGYvHAxL/7lXhp376J01Oh8lyOEEEIIkROXy5WdNwyDlpaWQ+7v8/my83fddRdvvPEGjz/+OLNmzWL16tUopfjlL3/Jeeed1+W4mpoaNE3rsk7TtEMO97tgwQLuvfdeJk2axKJFi7jnnntYvnw5d955Jzt37uSkk07itdde67XO/ibh+QictOQsXr7/T7z73JNUX/uJfJcjhBBCiCEklxbigVJYWEhxcTEvvfQSixYt4k9/+lO2Fbq7LVu2cOqpp3Lqqafyr3/9i127dnHeeefxm9/8hjPPPBPTNNm4cSMjR44E7G4b27ZtY+zYsTzwwAPccMMNnHrqqdxyyy00NDRQXFzM3/72Nz796U8DsHjxYr7+9a/z9a9/ndmzZ/P888/jcrkoLCxk0qRJ1NfX89prr7FgwQKSySQbN27kpJNOGrD3qp2E5yPgLSxiwrz5vPfCc5z+4etwOJ35LkkIIYQQ4oj88Y9/5JOf/CSRSITx48dz77339rjfF77wBTZt2oRSirPOOouZM2cyY8YMtm/fzpw5c1BKUV5ezmOPPQbYLcm33XYb7777bvbiQV3X+f73v88ZZ5yBUooLLriAD37Q7ga7aNEidu3axeLFizEMg9GjR2e7fTidTh566CH+53/+h9bWVlKpFJ/5zGckPA8lM84+n42vv8ymN15hyqIz8l2OEEIIIcQhjRs3jjVr1mSXP//5z2fnX3/99QP2r6mp6bL8yCOPHLCPpml873vf43vf+94B27xeLw888MAB66+++mquvvrqA9afcMIJXbp1PP300wSDwezyrFmzePHFF3uts7/JaBtHaMxJMyiqHM7by57MdylCCCGEEGKASHg+QpquM/2s89iz/j0ad+/MdzlCCCGEEINGdXU1//73v/NdRr+Q8HwUplWfjeFwsOrJf+W7FCGEEEIIMQAkPB8Fb2ERUxefyZqaZYRbmvNdjhBCCCGE6GcSno/SyR+4jHQqJa3PQgghhBDHAQnPR6lkxEgmnrKA1U8/TjwSyXc5QgghhBCiH0l47gOnXHQ58XCYd56VkTeEEEIIcWy5/vrrWbt27SH3Wbp0afYW3Z1t376dv/71r/1VWl5IeO4DwyacyJhpM1j5+GMkE/F8lyOEEEII0Wd+//vfM3Xq1CM6VsKzOKgFl11NuLmJ1U8em8OyCCGEEGJo+9GPfsSdd94JwK233sqZZ54JwLPPPstHPvIRnn76aRYsWMCcOXO44oorCIVCgD3s3IoVKwD4wx/+wIknnkh1dTWf+MQn+O///u/s+V988UVOO+00xo8fn22Fvu2223jppZeYNWsWP/vZzwby5fYbCc99ZNTUaYybNZfl/3iIeCSc73KEEEIIIbpYvHgxL730EgArVqwgFAqRTCZ5+eWXmT59Ot/5zndYtmwZb731FieffDI//elPuxy/d+9evv3tb/P666/zzDPPsH79+i7b9+3bx8svv8y///1vbrvtNgB+8IMfsGjRIlavXs2tt946MC+0n8ntufvQ6Vd+lD9/+TOs+PejLPzQR/JdjhBCCCEGodrvfY/4uvW973gYXFMmM+wrXznkPnPnzmXlypUEg0FcLhdz5sxhxYoVvPTSS1x00UWsXbuWhQsXApBIJFiwYEGX45cvX86SJUsoKSkB4IorrmDjxo3Z7RdffDG6rjN16lTq6ur69PUNJhKe+1Dl+AmcOP90Vv77MWafdyHewqJ8lySEEEIIAYBpmowbN457772X0047jRkzZvD888+zZcsWqqqqOOecc/jb3/520OOVUoc8v8vlynnfoUzCcx9beOVH2LT8VV598C+cff2n8l2OEEIIIQaZ3lqI+9PixYv5yU9+wj333MP06dP57Gc/y9y5c5k/fz6f+tSn2Lx5MxMmTCASibB7925OPPHE7LGnnHIKt956K83NzRQUFPDwww8zffr0Qz5fQUEBwWCwv1/WgJI+z32sZMQoZp33ft5Z9hT7t2/NdzlCCCGEEFmLFi1i3759LFiwgMrKStxuN4sWLaK8vJz77ruPq666ihkzZjB//vwD+jSPHDmSr3zlK5x66qmcffbZTJ06lcLCwkM+34wZM3A4HMycOfOYuWBQWp77wWmXX8O6l1/g+fvu5kPf+D6apuW7JCGEEEIIzjrrLJLJZHa5c5/lM888kzfffPOAY2pqarLzV199NTfccAOpVIpLLrmEc889F4D77ruvyzHtI3WYpsmzzz7bh68g/6TluR+4/X5Ov/Ij7F63ho2vv5zvcoQQQggh+sQ3v/lNZs2axbRp06iqquLiiy/Od0kDTlqe+8n0s87j7WeeoOb/fs+4mXNxeb35LkkIIYQQ4qj85Cc/yXcJeSctz734x+o9fOLpMDsbI4d1nK4bnH39pwg1N/Hy/f/XT9UJIYQQQoiBJOE5B0kLUpZ12MeNOHEys859P6uffpy9G/t2PEchhBBCCDHw8haeNU0brWna85qmrdM07T1N027JVy2HYuj2xX4p68jGK1x01bX4S0p55u5fkk4lez9ACCGEEEIMWvlseU4Bn1NKTQHmA5/SNG1qHuvpkaM9PKePLDw7PV7O/vjNNOzawesP39+XpQkhhBBCiAGWt/CslNqnlHorMx8E1gEj81XPwTh0+y1KH2HLM8AJc0/hpCVn88ajD0r3DSGEEEIcc6qrq1mxYkWfnOuxxx5j7dq12eWvf/3rLFu2rE/O3RcGRZ9nTdPGAbOBN/JcygEMw255Th5Bn+fOzlj6CfylpTz565+SjMX6ojQhhBBCiCEpnU4fdFv38HzHHXdw9tlnD0RZOdHyfe9xTdP8wAvAd5VSj/Sw/QbgBoDKysq5998/sF0f3mtI8+MVMb5yqpsTi42jOldwz042/vPvlE2dydgl5/RRhaKvhEIh/H5/vssQ/Uw+5+ODfM7HvqH2GRcWFjJhwoR8l8FVV13Fnj17iMVi3HTTTXzsYx/jmWee4Y477iCdTlNaWsq//vUvQqEQX/jCF1i1ahWapnHbbbfxwQ9+kGeffZbvfe97JBIJqqqq+PWvf43f7+eCCy7gO9/5DnPmzDnoPtOmTeMjH/kIzz33HDfccAOhUIh7772XZDLJ+PHjufvuu3n33Xe54oorKCwsJBAI8Mc//pGf/OQnnH/++Vx88cXU1NTw1a9+lVQqxZw5c/jZz36Gy+Vi2rRpXHXVVTz55JMkk0n+7//+r8utxXuzefNmWltbu6w744wzViqlTj5gZ6VU3h6ACTwFfDaX/efOnasG2qubG9TYL/1bvbK5vk/O98Kf71E/+dD71dqXa/rkfKLvPP/88/kuQQwA+ZyPD/I5H/uG2me8du3afJeglFKqsbFRKaVUJBJRJ510kqqtrVWjRo1SW7du7bL9i1/8orrllluyxzU1Nan6+nq1aNEiFQqFlFJK/eAHP1Df+ta3lFJKLVmyRL355puH3Gfs2LHqhz/8YfacDQ0N2fnbb79d3XnnnUoppa677jr14IMPKqWUamtryy5Ho1E1atQotWHDBqWUUh/96EfVz372s+y524//1a9+pT7+8Y8f1vvS0+cDrFA95NG83SRFs+9Z/QdgnVLqp/mqozeOTLeNo+nz3NnCKz/Kng3reOa3v6Ri3HhKR47uk/MKIYQQYmh46e8badgV6tNzlo32s+hDvbe03nnnnTz66KMA7Nq1i7vvvpvFixdTVVUFQElJCQDLli2j86/9xcXF/Pvf/2bt2rUsXLgQgEQiwYIFC7qc//XXXz/kPldeeWV2fs2aNXz1q1+lpaWFUCjEeeedd8jaN2zYQFVVVbZF+brrruNXv/oVn/nMZwC49NJLAZg7dy6PPHJAZ4Y+k887DC4EPgq8q2na6sy6ryil/pO/kg7kOMqh6rozHA4uvOWL/OlL/8O/f/YDrv7u/8N0ufvk3EIIIYQQB1NTU8OyZct47bXX8Hq9VFdXM3PmTDZs2HDAvkop7HbOruvOOecc/va3vx30OXrbx+fzZeeXLl3KY489xsyZM7nvvvuoqak5ZP2ql67GLpcLAMMwSKVSh9z3aOQtPCulXga0XnfMs/bRNo50qLqeFJSWccGnP8/D3/8Gz95zF+ff9Jk+O7cQQgghBrdcWoj7Q2trK8XFxXi9XtavX8/rr79OPB7nhRdeYNu2bVRVVdHU1ERJSQnnnnsu//u//8vPf/5zAJqbm5k/fz6f+tSn2Lx5MxMmTCASibB79+4ufYtz2addMBhk+PDhJJNJ/vKXvzBypD3oWkFBAcFg8ID9J0+ezPbt27Pn/tOf/sSSJUv65806hEEx2sZg1tFt4+hG2+hu3Mw5zL/0St6rWcbbzwyqxnYhhBBCHIPOP/98UqkUM2bM4Gtf+xrz58+nvLycu+++m0svvZSZM2dmu1V89atfpbm5mWnTpjFz5kyef/55ysvLue+++7jqqquYMWMG8+fPZ/36rkPw5rJPu29/+9uceuqpnHPOOUyePDm7/sMf/jA//vGPmT17Nlu3bs2ud7vd3HvvvVxxxRVMnz4dXdf55Cc/2Q/v1KHlfbSNw3HyyServhpDMFeb6oKc87MX+d+rZ3PhjBF9em7LSvPYD+9g+zuruOwrdzB2+qw+Pb84PDU1NVRXV+e7DNHP5HM+PsjnfOwbap/xunXrmDJlSr7LGHKCwSAFBQX9/jw9fT6apvU42oa0PPfCOMo7DB6Krhu8/5YvUTJiFP/62fdp2ru7z59DCCGEEEL0HQnPvTCNTJ/nPrpgsDuX18slX/oGuuHg0R9+i2iwrV+eRwghhBBCHD0Jz73oaHnu2z7PnRVWVPLBz91OsKGef/70e6QSiX57LiGEEEIIceQkPPei/YLB/mp5bjdy8lTOu+kz7F67hsfv/DHWIW5bKYQQQggh8kPCcy/ah6rrq5ukHMqU06s547pPsPnN13jmd//b63iGQgghhBBiYOXzJilDQnu3jWQ/dtvobM4FHyQaCvH6w3/D7S9g8TUfO2CQciGEEEIIkR8Snnth9vHtuXNx2hVXEwsFWfGvR3B5vMy/7MMD9txCCCGEEOLgpNtGL4w+vj13LjRN48ylNzB10Rm88vc/89pDB78NphBCCCHEQBs3bhwNDQ1Hvc9QJC3PvTD74fbcudB0nfNu/gxoGq8++Bcsy+K0K66WLhxCCCGEEAeRTqcxDKNfn0Nannuh6xoafX977tye2+C8m25h2hnn8PrDf+OVB/4sFxEKIYQQ4ohs376dyZMnc/311zNt2jSuueYali1bxsKFC5k4cSLLly+nqamJiy++OHtr7XfeeQeAxsZGzj33XGbPns2NN97YJY/8+c9/5pRTTmHWrFnceOONpHMYMexrX/sav/jFL7LLt99+O3feeScAP/7xj5k3bx4zZszgu9/9bnafiy++mLlz53LSSSdx9913Z9f7/X6+/vWvc+qpp/Laa68d9fvUG2l5zoGuQXIAu210eW7d4NwbPo2m67zx6AMkohHOuO4TaLp87xFCCCGGoufvu5v9O7b26Tkrxo7njKU39Lrf5s2befDBB7n77ruZN28ef/3rX3n55Zf55z//yfe+9z1Gjx7N7Nmzeeyxx3juuee49tprWb16Nd/61rc4/fTT+frXv87jjz+eDa/r1q3jgQce4JVXXsE0TW6++Wb+8pe/cO211x6yjo9//ONceuml3HLLLViWxf3338/y5ct5+umn2bRpE8uXL0cpxQUXXMCLL77I4sWLueeeeygpKSEajTJv3jwuu+wySktLCYfDTJs2jTvuuKNP3sveSHjOgaEP7AWD3Wm6zjnXfwqn28PKxx8j3NrC+z71WRymmbeahBBCCDH0VFVVMX36dABOOukkzjrrLDRNY/r06Wzfvp0dO3bw8MMPA3DmmWfS2NhIa2srL774Io888ggA73//+ykuLgbg2WefZeXKlcybNw+AaDRKRUVFr3WMGzeO0tJSVq1aRV1dHbNnz6a0tJSnn36ap59+mtmzZwPQ1tbGpk2bWLx4MXfeeSePPvooALt27WLTpk2UlpZiGAaXXXZZ375RhyDhOQeGNnBD1R2MputUX3s9vuISXvzzPcSCrVz0ua/i8nrzWpcQQgghDk8uLcT9xeVyZed1Xc8u67pOKpXC4TgwGrZfb9XTdVdKKa677jq+//3vH3Yt119/Pffddx+1tbX813/9V/Z8X/7yl7nxxhsBCAaDFBQUUFNTw7Jly3jttdfwer1UV1cTi8UAcLvd/d7PuTP57T8HupbflufO5n3gUs6/+VZ2rV3DA9+6jWDjsXcVqxBCCCHyY/HixfzlL38BoKamhrKyMgKBQJf1TzzxBM3NzQCcddZZPPTQQ+zfvx+ApqYmduzYkdNzXXLJJTz55JO8+eabnHfeeQCcd9553HPPPYRCIQD27t3L/v37aW1tpbi4GK/Xy/r163n99df79HUfDml5zoGhaQM6VF1vTlpyFt7CIv798x/wl6/cyge/8FWGT5iU77KEEEIIMcR985vf5GMf+xgzZszA6/Xyxz/+EYBvfOMbXHXVVcyZM4clS5YwZswYAKZOncp3vvMdzj33XCzLwjRNfvWrXzF27Nhen8vpdHLGGWdQVFSUbTk+99xzWbduHQsWLADA4/Hwt7/9jfPPP5+77rqLGTNmMGnSJObPn99P70DvtKE0esPJJ5+sVqxYMeDPO/sb/+Gc6SP50eUzB/y5D6Vh1w4e+9EdhJubOe+mW5i8cEm+SxrSampqqK6uzncZop/J53x8kM/52DfUPuN169YxZcqUfJcxqFiWxZw5c3jwwQeZOHFij/u0d9vobz19PpqmrVRKndx9X+m2kQNDH9ibpOSqbPRYrv7uT6k8YSKP3/ljXvrbH7Gs3oeHEUIIIYTIp7Vr1zJhwgTOOuusgwbnwUq6beTA0Ab+Jim58gYKueJr3+HZe+5i+WMPUrt5Axd8+gv4iorzXZoQQgghjnONjY2cddZZB6x/9tln2bq1b4frGygSnnMwmC4Y7InhMDn3hk8z4sQpPPuH3/Cn227hwv/5IqOmTst3aUIIIYQ4jpWWlrJ69ep8l9GnpNtGDgwNUnm4w+DhmlZ9Nld/9//hdHv4+7e/wvJ/PIQaAnULIYQQQgwVEp5zYOjaoO220V35mHFc872fMfHUhbz01/t45AffJNTUmO+yhBBCCCGOCRKec2C3PA+N8Azg8nq58JYvctbHb2b3uvf44xf+mw2vvZzvsoQQQgghhjwJzznQh0i3jc40TWPWuRfw0R/+gqLKYfz75z/gP//7/4iFQ/kuTQghhBCD2AUXXEBLS8sh9/n617/OsmXLBqagQUYuGMzBYB5tozclI0bx4Tt+zBuP/p3XH7mf3WvXcO4N/824WXPzXZoQQgghBhGlFEop/vOf//S67x133DEAFQ1O0vKcA0Mf3KNt9MZwODjtiqu5+ts/wXS5ePj73+DxO39MpLUl36UJIYQQYgD99Kc/Zdq0aUybNo2f//znbN++nSlTpnDzzTczZ84cdu3axbhx42hoaADg29/+NpMnT+acc87hqquu4ic/+QkAS5cu5aGHHgJg3LhxfOMb32DOnDlMnz6d9evX5+31DQQJzznQNY3kEA7P7YZNOJGP/uiXLLj8Kja+/gr3fvYm1tQsYyjdZVIIIYQQR2blypXce++9vPHGG7z++uv87ne/o7m5mQ0bNnDttdeyatWqLrfVXrFiBQ8//DCrVq3ikUce4VB3eS4rK+Ott97ipptuygbsY5V028iBoUF6iPV5PhiHaXLaFdcwacFinvndL3nqNz9n3UvPcebHbqJ01Oh8lyeEEEIc81r+tYXE3nCfntM5wkfRB0445D4vv/wyl1xyCT6fD4BLL72Ul156ibFjxzJ//vwe9//gBz+Ix+MB4AMf+MBBz33ppZcCMHfuXB555JEjfRlDgrQ852Ao93k+mNJRo7nyGz/gnE/8N3Vbt/B/X/xvnv/j7+SCQiGEEOIYdbBfmtvDdK7798TlcgFgGAapVOrwixtCpOU5B/oQG6ouV5quM+Ps85lwygJeuf9PvPXEP1n3cg2nf/happ1xNrpu5LtEIYQQ4pjTWwtxf1m8eDFLly7ltttuQynFo48+yp/+9CfuvvvuHvc//fTTufHGG/nyl79MKpXi8ccf5xOf+MQAVz34SHjOgUOHdPLYC8/tvIFCzrnhv5lxzvt4/r7f8szdv+TtZ/7D4ms+xtjps/JdnhBCCCH6wJw5c1i6dCmnnHIKANdffz3FxcUH3X/evHlcdNFFzJw5k7Fjx3LyySdTWFg4UOUOWhKec6BrGsn0sdHn+VAqq07gym/+kA2vvsiLf72Ph77zVcbOmM2iq66jcvyEfJcnhBBCiKP02c9+ls9+9rNd1q1Zs6bL8vbt27Pzn//85/nmN79JJBJh8eLFfO5znwPgvvvu63H/k08+mZqamr4ue1CR8JwD+4LBY7fluTNN05i8cAkT5i3g7Wf+w+uP/p0/f/kzTFqwiIUf/ijFw0bku0QhhBBCDJAbbriBtWvXEovFuO6665gzZ06+S8o7Cc85GGq35+4LDqeTue+/mGlnnMOb/3yElY8/xsY3XmHq4jM59ZIPSYgWQgghjgN//etf813CoCPhOQe6DqnjoNtGT1xeH6d/+KPMOu/9vPmPh3hn2ZOsfeE5ppy+hFMvvZKSEaPyXaIQQgghxICR8JyD47HluTt/cQlnLL2BUy6+gjf/9QhvP/0f1r38ApNOW8T8S6+kdNSYfJcohBBCDGpKKTRNy3cZopvDvVmchOccHIvjPB8pX1Ex1R/9OKdcdBkr/v0oq596nPWvvMD4uadw8oWXMGrKNPnDIIQQQnTjdrtpbGyktLRU/p0cRJRSNDY24na7cz5GwnMOdE07Zu4w2Fe8hUUsvuZjnPyBS1n15L95++nH+fu3vkzl+AnMvfASTjx1IYZD/vMSQgghAEaNGsXu3bupr6/PdylDSiwWO6xgeyTcbjejRuXeDVXSTQ4MHVISnnvkDRSy8EPXcMrFl7P2hedY+fhj/OfOH/NS2X3MOf8DTDvjXNx+f77LFEIIIfLKNE2qqqryXcaQU1NTw+zZs/NdRhcSnnNgaGApsCyFrstPLT0xnS5mnvM+Zpx1HltXvcmKfz/KC3++h1f+/hcmL1zCrHMvkLGihRBCCDHkSXjOgZHJyylL4ZTwfEiarnPC3FM5Ye6p1G3bwtvP/Id1L9ew5vmnGT5hEjPPvYATF5yO6XTlu1QhhBBCiMOm57uAoaAjPEvXjcNRWXUC597waW78zR85Y+kNxCNhnvz1z7j7pqU8d+9vqdu2Jd8lCiGEEEIcFml5zoGeuSr2eB+u7ki5fX7mvO8iZp//AXa99y5vL3uCd5Y9waon/0X52CqmVZ/N5NOr8QYK812qEEIIIcQhSXjuhbIUw+N2eE7LcHVHRdM0xkybwZhpM4iGgqx/5QXeq1nG83/8HS/8+V7Gz5nHtDPOZtzMuTJShxBCCCEGJUkovQi/sY/Ltrt4iCRJ6bbRZzz+AmafdyGzz7uQ+p3bea9mGWtfep7Nb76GpyDAifMXMvm0JYycPBVNl95FQgghhBgcJDz3wnNSKc3/2My5mKSl20a/KB8zjuprr2fR1UvZtmqF3SL9wnO8/cwT+EtKmbTgdCaftoTKEybKwPJCCCGEyCsJz70wAi72+SzOCZukUtLy3J8Mh4MJ8+YzYd58ErEoW1YuZ8OrL7LqycdZ+fg/KKwcxqQFi5g4b4EEaSGEEELkhYTnHGwrtlgYNkntDEKpL9/lHBecbg9TFi5hysIlxEIhNr/5GutffZE3//kwyx97EH9pGRNOPpUJ8xYwaso06SMthBBCiAEhiSMHu4ss6nZbVDyxnfSJpRg+M98lHVfcfj/TzjiHaWecQzTYxta33mTzm6+x5vllrH7qcdw+P+PnzGPCvAWMmzkHs59v4ymEEEKI45eE5xxYDridCL8LG9Tf9Tal10zBHCYt0PngKQhw0pKzOGnJWSTjMba/s4rNy19j68rlrH3peRymk9HTZlA1+2SqZp1MUeWwfJcshBBCiGOIhOccOHRYj0X4oioCz+yi7s5V+OZV4j99JGa5N9/lHbdMl5uJ8xYwcd4C0qkUe9a/x+Y3X2fbqhVsW7UCgOLhI6maNZeq2Sczaso0HE5nnqsWQgghxFAm4TkH7Xfkjg73MvEzc2hbtpPwm7WE36jFNaEI76wK3FNKpDtHHhkOB2OmzWTMtJnwsRtp3reHbatXsm31St5Z9iRvPfFPHC4XY06awbiZcxgzfRYlI0bJRYdCCCGEOCwSnnPQfnvutKUw/E6KL55A4OwxhN+sI7x8H80PbQQdXOMKcU8txT2xCEeFV4JZHhUPH0nx8JHMed9FJOMxdq9dw9ZVK9i+eiVb33oTAH9xCaOnzWTMSTMYM31mnisWQgghxFAg4TkHRg+35zb8TgJnjKagehTJPSGi7zUSfa+R1n9vpRXQC0xcJxThPqEI1wlFOErkIrZ8MV1uuw/07JMBaKmrZeeat9m55m12vLOKdS89D4ArUERy4xpGT5vBmJNm4C0symPVQgghhBiMJDznoL3bRqqH23NrmoZzVAHOUQUUnjeOVFOM+JYWYptbiG9uIbq6HgCjxI1rbADnuACusQG7ZVqXlul8KKocRlHlMGacdR5KKRp37WDnmrd564XnWP/qi7zz7JMAlI4aw6gpJzFy8kmMnDyVQFlFnisXQgghRL5JeM6Bkbk7dCqH23M7Stw4SobhmzcMpRSp/RE7SG9pJbaxmciq/QBobgeusQU4xwbsx+gCdKfRny9D9EDTNMrGjKNszDjavIUsXrSIuq2b2bnmbXavW8O6l2t4+5knACgoK2fkpKl2oJ40ldJRY+TW4UIIIcRxRsJzDoxDtDwfiqZpmJU+zEofBQtH2mG6MUZiRxuJHW3Et7cR27DD3lnXMIf7cI4uwDnKj3N0AY5yaZ0eaLphMHziJIZPnMSpl3wIy0pTv2M7e9avZc/699j13jusf+UFANw+PyMmTWHEiVMYPnESleMn4vLK6CtCCCHEsUzCcw6y3TaswwvP3WmahlnmwSzz4JtbCYAVSRLfGSSxvY3ErjYiq/YTfn2fvb/TwBzpxznan+0aYhS75ELEAaTrBpVVJ1BZdQJz3vcBlFK01tWyZ4MdpnevX5u9ABFNo3TkaIZNOJHhE+wAXjZ6LLohvygIIYQQxwoJzzlwZMJq+ijDc090r4lncgmeySUAKEuRaoiS2B0ksStIcneI0Kt7IWU/t+5z4BxVYIfqEX7MEX4J1ANI0zSKhg2naNhwTlpyFgDRUJC6zRvZt3kj+zZvYMvK5bxXswwAh8tFZdUEuzV7wolUjp9IoLxCPi8hhBBiiJLwnIOOlufe+zwfLU3XMCu8mBVefHPs1mmVskjWhknsDmVDdWxjM2SyvOZ24Bzhwxzuw8wEarPCg2ZIf9yB4PEXMG7WXMbNmguQbZ3et3kD+zZvoHbTRlY98U9WpFKA3d2jouqE7KOy6gSKh42Q/tNCCCHEECDhOQdm5lf3eLL/w3NPNIee7bYBwwFQyTTJ2giJvSGSe0Mk94UJL69FtdfoyPS3Hu7DOdJvB+tKH7pHPvL+1rl1esrp1QCkkknqd2xl/7Yt1G3bwv5tW1j1xD9JZwK16XJTPm48le2hetx4SkeNwXDI5yWEEEIMJvIvcw6cmabnWCqd50o6aKZhX1w4uiC7rr3LR3JviMTeMMl9IWLrGomsqMvuYxQ6cVT6MId5MxczenFUeGWkj37mME27H/SESdl16VSKxt072b9tC/u3b6Vu2xbWPP8MySf/BYBhmpSOGkP5mHGUjR6bHRXEV1Qs3T6EEEKIPJHwnIP2XBlNDJ7w3JPOXT68s+x1SimstgSJfWFSdWGStRGSdWFCr7Zk+1GjZYbY6xyqh3lxlEnXj/5kOBxUjBtPxbjx2XWWlaZ53147TG/dTMPO7Wx/+y3ee+HZ7D7uggDl2TA9lrLR9tTp9uTjZQghhBDHFQnPOWgPz7E8dds4GpqmYRS68BS6IHNRImRaqRujpOoiJGvDJOvsUB1b3wjtL1PXcJS6cZR7MSs8OMq9OMo9mOVe6f7RT3TdoHTkaEpHjmbKwiXZ9ZG2Vhp27qBh13Yadm6nYecOu5U6HsvuU1hRSenosZSOHE1J5hwlI0fL8HlCCCFEH5IElANd0zANbVB12zhamq5hlnsxy714ppVl16uURbI+2tFKXR8hVR8htqEJOo1zrfvNbJB2lHtxVNhD8BnFbhmbuh94A4WMmTaDMdNmZNcpy6K1fn8mTG+nftcOGnftYPvqt7DSqex+/uISSjJBumTkqGyolu4fQgghxOGT8Jwjt2kM+m4bfUFz6DiH+3AO93VZr9KKVHOM1P4IqfpoJlRHia5pwIp0BDUc9ljWjnKv3Wpd6sEoceMo82AUOCVY9yFN17O3Gp8wb352vZVO01JXS9OeXTTu2UXz3t007tnF2hefJRGNZvdzeX2UjBxFycjRFA8bQfHwERQNG0HxsBGYbnc+XpIQQggx6El4zpHbNIgfQy3Ph0szOm7w0l06nCRV3ylU74+S3BcmuraxS2s1Dj0bqLtPjSKXBOs+ohsGJSNGUjJiZJdQrZQi1NxI0+7dNO3dReOe3TTt2cX21St5r2VZl3P4i0soGm4H6aJMsC4eNoLCYcMxna6BfklCCCHEoCHhOUduUx+SfZ4HguEzMXyFuMYVdlmv0op0a9zuW90Y6zKNbWyGVKf309BwFLu7tlYXuzNTF7pb/lM9WpqmUVBSRkFJGWNnzOqyLRGN0Fy7j5bavTTv20tL7T6aa/eyZeVyIq0tXfYtKC2naNhwO1gPH0FhRSWF5ZUUVg7D7fMP3AsSQggh8kASSY48x0m3jb6kGZo9ikeJGyZ23aYshRVMdArU7eE6Snx7Gyre9b3WPA4cxS47UBfbgdoots9tFLvQXfKf8tFwerzZ25B3F4+E7TC9bw/NtXtp2beX5tq9bFz+KrFgW5d9XT4fheXDKKyspLBiWDZUF1ZUEiirwOF0DtRLEkIIIfqFJI4cuU3jmLpgMN803R4FxCh04RrfdZtSCiuSIt0cI9UcI90Ut6fNMZL1dqu16vYrgO51dITq9lbrIvv8jiIXmschF8cdIZfXR+X4CVSOn3DAtlg4ROv+Otr219G6v5aW/XW07a+lcddOtr71Julkssv+/pLSLi3VgfJKAmXlFJSVU1BSJuFaCCHEoCfhOUduh0EsKeF5IGialukKYmbuqtiVUgornCTdbIfqVFMsE7TjJOsiRNd36xICaKaeDdNGoQujyIUjMzUKnRhF0o/3SLh9ftxV/h5brJVlEW5ppjUTrO2pPb9r7RrWvlwDSnU5xltYlA3TgbKKLvMFZeV4CgLyJUgIIUReSXjOkdtp0BZN9r6j6HeapmH4nRh+Z5c7LLZTSmGFknZrdWucdEvCnrbGSbfEiW1qxgomoGtuo8qhU7tqJY7OIbvQhVHkxAi4MAJONJch4S1Hmq7jLynFX1LKyMlTD9ieSiYJNTbQ1lBPsLGetob9BBvqaWuop3HXTratXkkqHu9yjMN02q3UZeV2sC4tp6CsjILi0sxzleHy+eQzEkII0W8kPOfI7dDZLy3PQ4KmaRgFToyCg3cBUGmLdFsiG6jTrXF2vLcVn99DujVOYncIK3zglyXNqWMEXOgFTrvFOuDEKLCDdftDL3DK7c5z4DBNioYNp2jY8B63K6WIhYJ2uM6Eajtk1xNs2M/21SsJtTQf0HrtcLrwF5dkg7u/pBR/ccd8PNhKOpXEcJgD8TKFEEIcYyQ858htSreNY4lm6PboHsUd4xk3qC1Mq+5oIVVJyx4tpDWOFUzYYbstQbotTrotQWJnkHRb4oAuIgCa29ElULe3XLeHa8NvSsjuhaZpeAoCeAoCPXYLAUinkoSamgg1NRJqbiTU1EiwyZ6GmhrZt3kDoabGA/per/nz7/AWFuErLqGgW7j2FRfjKyzGV1yCN1CIbshnJIQQooOE5xx5TEOGqjvOaKaOo8yDo4exrdsppVDRFOku4doO2FZbgnQwQXxrqx2yLXXA8ZrTQC8wM91QzC7B2vA7s9t0vylBuweGw7QvQKyoPOg+7S3Y7YF65WuvMqK8rCNsNzawb9MGot1GDgFA0/AGCvEVFuEtKsbXw6N9vcsr3UWEEOJ4IOE5R25TJyotz6IbTdPQvCa618Ss9B10P2UprEiSdFvCbsUOJkmHMvOhJFYwQbI+irWttesdGzs/l8vAKLCD9MECtuEz0X2m9M3upHMLdvnYKna0hjituvqA/VLJJOHmRsItzZlHC+GWZiItzYRamoi0NNO0ZzfhluYutz9vZ5imHagL2wN1Eb6iEnxFRXgDRXgKC/EGCvEGiqRfthBCDGESnnMk3TbE0dD0josce6NSlj2aSKdg3TG1g3eyLkJ6Sysq2nPQxtCyQVr329Pscvt8p/Wa23Hc3+HRYZr22NQVww65n1KKWDhEJBuyD3y01u1j74a1PbdmY98F0hMoxFsQwFNYlAnVhfa6Qjtgd8wX4vR4JWwLIcQgIeE5R/btuS0sS6Ef5yFD9C/NoWdH+uiNSlkdwTqcxAol7eAdtqftj0RjDCucPODmM1k66N6eg3V74Na9DnSPie5zoHtNNFM/LgOdpml4/AV4/AWUjhpzyH3TqRSRthaibW1EWluItrUSaX+0tma2tbJvfy3RtlYS0WiP5zEcDjtMB4rwBAJ4C4vwBgJ4AkV4Cgrw+AO4CwqyLexuv18uiBRCiH4i4TlHbtPubxpPWXik76kYJDSHjqPIBTmOU62SFulIR8juHrTb55P7wva6g3QhAcCh2WHaa4dp3evA8LYvd6zrMvU40Bx6H736wc9wOLK3RM9FKpEg0tbaEbK7Be72+eZ9e4m2tZKMxw56LqfHg9sfsMN1QQC3v/O0AHdBwP4S0B64CwowXe7j8guREEIcDgnPOXKb9j/4sWRawrMYsjRTx1HoghxatQFU2u6rbUWSWOEUVtQO1FYkSTqSQkVSdhiPJEk1RElEgliRJKQPvDgyW4PTsMO0zw7TXQK2J7POY9hB22N2zDuP/X7cDqeTQGYM61wk4zGiwSCxUJBoWxvRUBuxYLDTNEgs2EY02EZz7V5iwSDxSPig5zMcjmyodncK3W6fH5fPb98Ux995PrPN60XTj58vRUKI45uE5xx5Mi3PcotucTzRjN7HzO5OKYVKWHbQDqcy4TvVw7I9n2yJ2+uiqQNuXNOFrtlB2u1A8zgyIbvrQ3MffP2x2KfbdLkxXe6cwzaAlU7bYbtzyM4E7Pb1sVAb0WCQxt27iIdDxEJB0qlD/Aqhabi83q4h2+fH5e8WsnsI4BK8hRBDjYTnHLV324gmJDwLcSiapqG5DHSXAUW5H6cshYqn7VDd6aHa52MHrk82x7PLPQ0F2KUul92CPTqtU7/xHTuAux3obsMO3e5MMG+fuozMdnvdsdLHWzcMu890YVHOxyilSCXixMIh4qEQsXCIWDicCdb2cnvItreFCDU1ZtfnHLy9flw+Hy6vF5fXhzMzdXm8OL0+e97rzezjy+7jMJ3HxGcjhBgaJDznqKPbhoz1LER/0HQt26J8uJRSqKTVNWz3FMJjKdp2xVCWIt0QRcVSWLH0wS+k7EzXOoK2q+fA3TmIt+9nb8+scxpDsgVc07RsK3eu/bfb9Ri8OwfuzHI8HCIeCROPhGmpqyUeCZOIRIhHIwfcRbI73XB0Cdxun4+2cJTY2tW4vO3B25sN306vD7fX12W9YZoSwIUQOZHwnCO3dNsQYtDSNM3uS+00eu3P/U7NPiZVz+yyTlkKlUhjxVKomD21YulsuO68XsVSWHF7Pt0SJxkLZwJ4Cnr7bq1lWsBdjmzrfOdp79sMNJejY90QCOJHE7wBlGWRiMWIR0LEI5GOUB0Jd1rumG9fH2ttZueaFnt7NNLr8+iGgdPjxenx4HR7us57vZl1ndb3tG9m6nC6JIgLcQyT8JyjbHiWsZ6FOOZoupZpHT7yP4ntrd89B+72QJ6Zj9th256mSQYTdpeVzHJvXVCydZt6t2DdLXw7O21zdwrfzm7B3KmjmYMzjGu6nmkd9h7WcTU1NVRnboZjB/CoHazDHQG7c+hOxKIkolES0Yg9jUWJhUO0NdTb2yIRErFor63gAJqmdwvamXn3wdZ5MD0enC4PptuN0+3GdNvzptst3VKEGGQkPOdIwrMQ4lDaW79xGhiBIz+PUgpSCiue6hKo26cd86kDtlnxNOlgAlXfsU0dRlczzdSzgVsz9Y4A7rQDtt55vqdtLsMO4S4D3al3bM9zKLcDuN1HmsNv/M5SSpGMxzIhu2vQzs5n13VbjkYINTV22VdZuX02mqZng7TT7cZ0dQRrp6tr0D5gObO/M7NsZoK50+2WscCFOEISnnOUHW1D+jwLIfqRpmlgahimE/xHf75sl5T2gB1LdQ3hyTQqbmEl0qjsw+q0LW2PC95t+2Fx6B1hOhO6O4drPRPAsy3l7SG+vUW8fdnU7VDv7FiHoQ1Yq6ymaXZLsdsDxUd3LqUUqWQi26KdiEZJxqIk43GSsSiJWKzH5UQsRjIeIxmLEQu20Va/P7ucjEUPfXFmN7phdIRpl7tT4PbYXW3cbhxOF6bLZU/dbkynC4fLlemK077elVlvrzNd9j66LsO6imOThOccdR7nWQghhoq+6JLSnbIUKmXZITyRxkpYnYJ1p+WetsfTWEn7WCsSP2D7IYcr7PEFYgdsp94lZI8M6zRsW5MJ3J2CeJdArqMfYptm2iEfR9+PtKJpGqbTDp2+o03inaRTqWyYTsSi2VCdjMcPupxdnzku1NyUXU7F4yQTcdLJ5GHXYphmp7CdCdeHDN/d1meWHS57e+cwb7rc9q80QuSBhOccZYeqk/AshDjOaXpHF5W+ZHdZybR6pyxUe6hOWvYjM28l7dZvlZ12nrfDOGFIh5Md+yWt7PxhB3ToEqizId2hZ1vDNVPvtGx0W+42bxqH2HZ0Yd1wODAc9hjafcmy0naQjsdJJeJ2uE7Es+t6XJ9ZTiXa98mE8XiMaGvLAcdb6dxbzdu9/ftf4HC6cDidmUcP8+ZB1neatwO7E4d56P0Mh8QmIeE5Z27ptiGEEP3K7rJiYJhHH8rfq6lhYvXsA9a39ylXyUwLePdw3iVsH2SfblMrnLTDfrLTI5XuffSVQzlYuD5YQO8e5E0dzWEc9Bw4Muscmr3O0A/ZBUbX20cjObwLNw9HOpUilUh0afHuMXxnQvemDesZNWIEqUSCVCKemXbMJyIRIi3NpJIJkt225XLhZ080XT9oEDfbl81DBHmnE6N9u2limKa9bJo4TCdGp/UOs31fE91wyEWjg4iE5xxJtw0hhBj62vuUa6ZOf9/XUKW7B+rO0/QhtnVqTe+2jpRlj9gSTB54npR1RK3qWRp2sDZ0NFPLhOuORzbQG1pHIO+8zdHpGPMg6zttp9t5dIc9SkmuI6uEa2pYnBlR5XAopTJB/cDA3fO6TvPJruuT3faLhcM9Hn8krepdaJodyrsF7vawbQftTkHc6ewUwLuv7xbQnZ2Ceg/r2+elD3sHCc85cho6mibhWQghRG40I9Oi6x6Y51NKQVr1GsBV2kKlFLTPt29PZdanOu3ffXs0hZXqvL+FStrPSfoow3u7zq3i2cCug9k1iA9r0mmqXd+xv6HZ84Zmv/cOHdr3N7SOLwaGlj2/aThwOpxozgI0T2b/9mPb9+uD0WKsdDoTvBOkk0lSyQTpRIJUdj5JOtXD+mQyu3+XY5NJUskk6U7r4+EwqWTzAevbjzlaumFgODKB3eHIhnLDNHE42kO9aXcdMk17X9O0A3mX7R1TR/djOh+XmcbbWo669r4m4TlHmqbhMQ0Jz0IIIQYlTdOyYXGgAntnXcJ7JoirlNURxju3rncO6d23pzPBPmUdcC7VfrFpKIkzBPGdQfs8mS8EKm1Bqo8vJNTJdGvpFN7bg3r7fPu2zNQO8R3rcHQN7Q5Dx3Q40Qx3R1B362j+TqG9PfDrWtcvBnrHPHpuo820t7ZnQ3UqSSqRCdmZ8J5KHrg+lQn1XQN9p/XJTtNkkkQsmp2316cy50xk9ztczoJCzrvo4iP44PqPhOfD4DENwgkJz0IIIUR3XcL7ALBvhDPvgPVKKbBUR3jvFKxVSmWWO8+3b7M6hf/2IG6H+fZQng3zadVlm0pZqJiFlU4eeGyn5+qTlvnuDK0jwGda3dvX2cE9E7g7h3ldQ3NoGIaOYWhohgvN8GSO63S8tz3Mdz2uY59uz9X9ebsdozRQKt3Rct4esLuF8FSnYL523fp+eNOOjoTnwxDwmARjR9lvSQwJylJYaUU6bWGl7Gk6lZlPWfa2lIWVtkh3W6eUQlmZO85Z9rxlZeZVZpgvpbAsBarTtm7bu1zP0u0P7gF/f7td/HLg9gNfo6Zlbuyh2wsa9igKtK/PTO3l9nWZ/ek4tn1fDjimfTmzLbOvnrkoSdftP+j2NDOCg97zel1vf+6O4zWdbvt2XScX1whxfNI0LRPiANfg6qfbEcQ7B+tOoT2tDlgm3T7NBPVO67LzqcwXhs5fEDpvbz82btn9r3va3n6cZT9Xv8m25B8YuDVDw3ToOHUNDBeaw8OJ0Qn9V8sRkvB8GAJuB8HY4f/kIPqHlbZIxNIkoil7Gktl5lMkommSsTSpZJpUIk0yYZFKpEm1T5Ndl5OJNNGwxYZHarBSmWCbDxrommb/cekW/g6Igt1XHM7+KpOn2wN7e1jvHtqHssx72f4zp67ZQTyVttj2n5cPCNvZqXGweb3nbZmp3h7sOy1n5zM1GIbey3P0fN6O8+hdztfbsfIFQojBxQ6JfT/MY1/LdsHpKagfELqtTHDv1BpvdW2ZP/BcHeuyXxZ6OiZpoacG398xCc+HIeAxaYtKeO5rVtoiGkoSa3+EOx7RUJJ4l3WpbEhO5XiXM92hYToNHKaOw2lkHva8r9BhL5s6dQ21jBk3Ekfmqm/DYYeVA6d2iDIcOnr7z16Zeb1TaLFbPzmgZbTzto59GVStpe1h2v75ExQdreJ0Cdvd9u28bB243sq0xCtLdWlx75gHS9l/UK32FngLLMs6yHHd1mVa+620/dxW5g+61elXgN27dzN8WNkBz939XFb7eSxFOpHGSqc6tqVV1/nuy1bHa8gnTaNbuNd7CfeH8QXiIOfp6bz6wc5paOi6fsjzdT6+y7l6qVUIceQ6uuAA5Dfor62pYXJeKziQhOfDEHCb7GuN5buMIUNZikgwQbAxRqg5TqQtTqQ1QbgtQaQ1Trg1QaQtQTSYOGg/MIdTx+0zcftN3D6T0iI3Lo+B0+OwH24HTo9hT92ZdZll02WHZN3Irf9dTc1+Tq+e2IfvwNCV7YqBlu+/m32upmYv1dUD86e4/YuElbayQbxzKG8P2t2Xu4fwdOan1C77dj+up2Oz26wugb77fPvxB35psDLL1sHry3ZxynxBGQRfGgDQYP1DNT2H8sMI+AeE9C7n0A8r8Of6q4O9r3545+hcl3x5EKJfSXg+DAGPQ1qeO1FKEWlL0Lo/SrAxSrApRltjjGD7ozmG1e2qZ03X8BaYeAtdFBS7qBwXwBtw4g04cftNPP6OoOz2mTgG+U9bQhxK+5cQXTfAzHc1Ayf760NPYT2tMr8kHLrF/oBjevrScMAXj47zbtu2nTGjRx36vId4vlTmi8OBdR76i4hKD4KuT5lftXoN9d27AeUa8g/2RaRzlyG9p+nBrm3oOFbT6KhB6/l87d2t4kFFW0M0t/PIFwrRhyQ892L7uw1sfcbi1LkJCtwmbcdhn+dUMk1LXZSWuggtdWGa6yK01EZoqYuQiHUdfcQTcFJQ4qZ8TAHjZ5VTUOqmoNSNv9iFN+DC4zflj5gQx7jsLxe6lrcfLiI1O1lQnZ8LjZSlunQ/OrxfHawDt/Vyjpy/iGSCf/cvCgee1yKVOPLnG0ibH38ttx27XwPRKYR3Debdwzpdvjh0v3BZ7x7UcznPAfuAruv2tPN59c7znfbJpeYu9XX90pE9r96py2D2S8bg6kI4WEl47oWVUkQbIdQcJ+B2EEtaxFNpXI5js0U03BqncXeIhsyjcU+I5tqI3dc1w1/soqjSy4mnDqN4mJfCCi+BUjcFJW5pKRZCHPc0XcM4Brs85aLzNQ+dw7VS7SG852sYuk6xv0R036fzeZRi7Zp1TJo0+RDnOfj1DNkuRsq+E6TV6ZcS1fm6i+zxnepJdf1yccBztNfZ+fmyz9WxblA7yAXXHUG727LecY1P9+Xu1/z09OXhUIF+f6MF1fl+Q7qS8NwLb5ETgHBLnIDH/t01GEvh8g/9v4rJeJr6nW3Ubm2jblsbtdtaibR23IXIX+yibJSfqplllI7wU1TppajSiznIhv4RQggxOAzkrw57w+uZctrwfn6W/tNz2OfALwLdwriy6PaFJMfztG9T3S++ptv5D37BdfZXle7P031o1k77ZL9YpFWXLyGd688+X+cvPe0XqQ/CLm8SnnvhL3IBdotswN8Rnsv8rnyWdURi4SR7NjazZ30z+7a20rgnnG1RLiz3MGpSMRVjA5SO8lM2yo/bNwj/ixVCCCGOAZquYUg3xl7V1NTku4QDSHjuhSdgtzyHWuIEyn0AQ+aiwUQsxb7Nreze0MyeDc3U7wqCAofLYFhVgLnnj6WyKkBlVQCP35nvcoUQQgghBj0Jz70wDB2HGyItcQLuIoBBfdFgsCnG9nca2P5OA7s3NmOlFLpDY1hVIadcWGW3LlcFMHIcvk0IIYQQQnSQ8JwDhwdCLQlGuO1uDG3RwXWL7pa6CJtW1LF1dT0Nu0KA3Q1jevUoxk4tZdiEQky5kE8IIYQQ4qhJeM6B6cn0efbYb9dgaHkONcfZvLKOjcvrqN8ZBA2Gjy9kwSUnUDWzjKJKrww1I4QQQgjRxyQ858DhgXBdnEC25Tk/4Tmdstj2dgPvvbSH3RuaQUHF2AIWXj6BCXMr8RcPvYsYhRBCCCGGEgnPOXB4NGKhJC7NvjJ2oFue2xqivPfyXta9spdoMIm/xMW8C8Zx4inDKKr0DmgtQgghhBDHs7yGZ03Tzgd+gT2U/O+VUj/IZz0HY3rsaaQtQcDtGLA+z3s3t7Dq6Z1sf7cBDRg7vYyTFo1gzEml6DK8jRBCCCHEgMtbeNY0zQB+BZwD7Abe1DTtn0qptfmq6WAcmcbd9hulBPux5VlZiu3vNvDWUzup3dqK22dy8vvGMfX0ERSUuPvteYUQQgghRO/y2fJ8CrBZKbUVQNO0+4EPAoMuPLe3PIea4xS4HbTF+r7lWVmKTSvqWPGf7TTXRigodbPoyhOZctpwuaOfEEIIIcQgkc/wPBLY1Wl5N3Bqnmo5JGcB6A6N+l1BAm6T1j68YFApxY53G3n9H1to3BOmdKSPc/5rKhPmVqDLWMxCCCGEEIOKppTKzxNr2hXAeUqp6zPLHwVOUUp9utt+NwA3AFRWVs69//77B7zWUCjE/le9aAY8UZpgZ5vFDxYf/YV64f2KuncU0QZw+qFiukZgDDLEXJ6EQiH8fn++yxD9TD7n44N8zsc++YyPD/n8nM8444yVSqmTu6/PZ8vzbmB0p+VRwN7uOyml7gbuBjj55JNVdXX1gBTXWU1NDYGZI1j36j6mzh3FulV7OJo6WusjvPLQZra/3YCv0MmSq6uYsnC43PUvz2pqao7qcxVDg3zOxwf5nI998hkfHwbj55zP8PwmMFHTtCpgD/Bh4Oo81nNIw6oCvPv8bsotnWA8RTSRxnOYd+1LxFKsfHIHq5ftRDd05l88nplnjsYhd/8TQgghhBgS8haelVIpTdP+G3gKe6i6e5RS7+Wrnt5UVgUA8EcsABpCcUaX5NZ1QynFxuV1vPbIZsKtCSadOowFl5yAr0huaiKEEEIIMZTkdZxnpdR/gP/ks4ZcBco8eANO2BsFYH8wt/BcvyvIS/dvZN+WVirGFnD+jdMZNr6wv8sVQgghhBD9QO4wmCNN05hy2nBWPrWDgF+jPhg75P6xcJI3/rGV917ag9tvcsZHJzNlwXA0ubmJEEIIIcSQJeH5MExbMpK3nt7BnIRBfTDe4z7ptMW6V/bxxj+2Eo+mmF49ilM+UIXLaw5wtUIIIYQQoq9JeD4M/mI3E06uJL28lobNrbCgY1s6ZbHhjVpWPrGdtoYYI08sYtGVJ1I6UobREUIIIYQ4Vkh4PkzVV0/i9VW1lLzayLNqHYXlHlr3R9j+TiOxcJKKsQUs+tCJjJ1eKuM1CyGEEEIcYyQ8Hyan28HKcSZz2jQ2v1lHKmnh9puMmlLMlAXDGT21REKzEEIIIcQxSsLzESgsdvOWK8Fj31xCKmnhMHUJzEIIIYQQxwG5pd0RKPe7qA/G0TQN02lIcBZCCCGEOE5IeD4C5QUu6kNxLEvluxQhhBBCCDGAJDwfgRFFbpJpRUOo5+HqhBBCCCHEsUnC8xFov7PgzqZInisRQgghhBADScLzERgj4VkIIYQQ4rgk4fkIjCzyoGkSnoUQQgghjjcSno+A2zQYFnBLeBZCCCGEOM5IeD5Co0u87JLwLIQQQghxXJHwfITGlnil5VkIIYQQ4jgj4fkIjSnxUtcWJ5ZM57sUIYQQQggxQCQ8H6ExpfaIG9J1QwghhBDi+CHh+QiNK/UBsKU+nOdKhBBCCCHEQJHwfIROrCxA02BDbTDfpQghhBBCiAHiyHcBQ5XHaTCu1Mf62rZ8lyKEEEII0feUgnQS0nFIxUklIiQSQRKJEPFkiEQyTDwRIZ4Mk0xFiaeiJJJREqkoyXSceCpGIh0nkU6QTCeIWwl73kqSsJIkVJq4lSKp0iSyD4sEFgmlSGBRbBlUV7+b73eiCwnPR2HysALWS8uzEEIIIfqSUmClIBXPPGJYqSiJRJh4IkQiESKRihBPhEkkI8RTkcw0RiIVI5GOEU/FiGeCazwdJ2ElSKSTxK0kCZUibtmPJGniyrKDrFLEsUigSKCIa5DQNOKaRkLTSGvaUb80TSlMBSYapgKH0jAUGErDUDqGZaArE03p6Eonavn64A3tWxKej8LkYQGefK+WSCKF1ylvpRBCCHHMSacgFYVUHJWIkEyEiSVaiceDxBIhEskQsWSYeCJMLBNk48kIsVSMeDpGLNMCG7eSmRCbImEliasUcZUiYWXCKxYJZRFHkdBUNrC2h9dkHwRXh1KYSsOZCa3tD0Np6MpEt3T7oQw8ysCrDFAOsBygHChloiwHlnJiKZO0cmJZTlLKScpykVJOkspNWjlB96IZXjTdg+nw4jScuB1OXA4HbocDp0PHZWi4dYVXpfGQxqNSeFQKl0rhtlK4rCSN9XV98CH2LUl8R2HSsAKUgk11IWaOLsp3OUIIIcSxzUpDMgLJGO5oHcnaNcTjrcQSQeLxNuKJEPFkmHgyE2STEWLpKPFkjFjabom1HwniVpKYlcxMU8RVmlimFTaOHWLjQEyDeCbAxjQNdYQhVlMKpwKnyrS4ouGwdHSlYSgTXeloloGmDBzKwLQywbVTaFXKxLLMTHB1kbZMUsrV8Ui7SOJG1z1ohg9Dd+N0uHAbLlyZ4Opy6LgcBi5Tx2UaOA3dntfBi4VbJfFYKdxW0g6w6SQuK4kzncCZSuFMJ3CkkjhSCRypBEbSfujpJEYygZZsgUQCFY+j4nGszPRg81jWId+3VFkZfOWTR/Se9xcJz0dhyvACANbta5PwLIQQ4vikFKQTkIxCMopKhEklw0RjrcTiLcTiQaIJ+xFLhIilIsSSYaKpKLFUzH6k40TTcWJWglgmzEZViphKE8MihiKW6UbQHmLjmkb6qSNvjbWDLJhKw7Q0HErHUCaGsltfNcsOsQWWgwJlgtUeYs1My6uTtOUiZblIKxdJy03ScpFQHhKWF0v34NB9OA03bocLl8PEYzpwmwZuU8ftMHC7MyHWkVlnGvZ6U8dtgMeyW2LdVhKnlcSVTuFMJXFmgquZSuJIdwqwyQRaPI6Kt6JidViRGCoWx4rHUNGYPY3FUfEYViyOisXsEBuLoRKJw//ogRSQdjrRXC40lws9M+08r/u86C53Zr2z67zbjebsYd7lQnO5WbVh/RF/xv1FwvNRGF3spdBjsnpXCx8+ZUy+yxFCCCG6ag+2iTAkI1jxkB1oY632I9FKNB4k1inYRjNdDmLpaCbUJjLBNklMpTLB1iJGOhtqo5lAG9Pt6ZH0jTUVuDIts05Lx1Q6hnJgWEY2yDrSDnyqa4hNW07SyknKctthVrlIKg/JtJuEcpNQXtBcuHQPTocTl+7Gbbq6BNlseHUYuMyOIOtytAfazNQ0cDs0u1tBKoHbSuJKJXGm4jhTCcxkAkcijiMZh3gcFYtgRRuxojFULIrVGsOKRu35aAwrFrVDbSzWJcha8Tgkk4f+aIFE5tGd5nbb4dPtRnO77LCaWacXF6O77WCqe9z2NLPcsa/LDrKdtulu+3y62z6X5mrfx4Wm99/gbalYtN/OfaQkPB8FXdeYM6aIFTua812KEEKIocqy7D61iQgkw6h4mES8jWisiWi8lUislWiijWgiRDQZJJKwW20jqQjRVIxIptU2aiWIZFpsoypNFItIJthGdS0zPfyQo2VCrUtpdistOg5MdMvAsAxQBq60A5flIKCcKMvuB2sHW7fdF9Zyk1ReEmkPCeUlbnlJKjem7sZtuPE43HidJm7TwGPqeJwGHqeRDawes2PZk9lnx7bNzJo2NbvN0x5ySeFKJXClEnYLbTKBHo91hNVYDCvS1hFgQ1FUtFuYjUa7BFsrGukIudEDw1wy8zgoXUf3eNA8HnSPxw6d7fNlpZiubiG3c1DtHm67BNdO+7pcaB4PmtOJ1gf9o8XBSXg+SiePK+H5DRtoDico9jnzXY4QQoj+ohSkYnYrbiKEioeIRpuIRJuIxJqJxFuIxNuIJtqIJEJEE2GiqQiRVJRoKpYJtwmiVtIOtypNBIsoiqiuEcmE2+hhttzqncKtEx0nJoZyYygD3XLgSZu4LAeFaSfKcpHOhlo3SctjdzNIe4krL3HLR9pyoWPicXhwGR68Tide04HbmQm2BwTZbsvtQTbTett1XWZfQ8OVSqDFoliRiP2IRrHCEaxoGCsSsQNtJILVkNkWiWBF7X1VJEpzbS0FDkenbVFUJJINsqGc38BOwdbt7jpfVorp8WbCrhvd7clsb593dw3Ebg+6t1M4zpwP05RAewyR8HyUTh5bDMDKHc2cPbUyz9UIIYQAMkE3bgfdeBASYax4kFismXC0kXCshXC8hUgiSCTeRjgRJpIKE05FiGRac8NWnLCVJGKliGARxiKsaUR0jYiuE9E0rMMIRE7ApWk4dR2n5cTAbrnVLQd60sSbNvFYph1wLVcm4HpIWh6Slt1aG7d8JCwvynIBTjyGB6fpwu008WZaa71OA4/Lgc+VmTcdeJ0GXpeB1zTwOh3Z/bzOzLbMsb7MNpdDR9M0lGVhRaJY4TAqE1yzITacCbWt4Y6gG450CbNWJIyKdATkaDRKOBJBxWKH9XFqHg+612uH1MxUOZ2YI0fay5l1mseN7sns58mEWU8mELeHXbfb3j8TcDUJtuIwSXg+SjNHF2EaGiskPAshxNFRyh5JIR6EeBAVayMRayYUaSAcbSQYayEcbyYcbyOcCBFJhomkIoTTUSKpTNBVKcLKDru/3pQJuppGONOim+tICU7Ao+m4NB1T9+BQDgzLgZ4y8VlOPCknRZaLtOUhlfaQsjyZcFtALBtwnWC5MHDhdXpwOU18LkfX0Opy4DWNTmG2Y5snM+/rNN855LpN/YDQp5TKdEuIYIXDBzzSXZYjB2xrCYdp6rxPJJL756dpdkj1ee0A2x52/X4cFeXoXm8mBPs6tvkyodfb6Rivp1sg9vTYp7ampoZZ1dW51ydEH5HwfJTcpsGMUUW8uqUh36UIIUR+pOIQD0G8LRt647EWQlE79IZiLYTjrQQTdugNZVp4Q6kYIStByEoSVilCmZbdoK4T1jVCuk4qx7Dr1jVcuo7LcmEqL1rawGE50VImnrQTM+UkYHlIW26SlpeE5SWR9hG3fMQsP1hulOVCWS48hhuXy4nhcuB0OvC77ODq99rh1Zdp1fW5HPicjsz0IOtd9lBgh2rZVJZlB9VgkHQohBVqsZebOofYjvlEOEz0IAHYikQgnc7pPdPcbnSfr9PDi1FWinPsGHvZ6ztge+fWX83jzYZf3eu1LyKTFlxxHJDwnCul4M3fw4g5MGpul01nTCrnJ09vZH8wRkWBO08FCiHEYVLKHl4s1moH31gb6Wgzoch+gpEGgrFGgtFmgvFWwskQwUTIDr3pGGErQchKESJFSIOwphM6zNBr6pnWXd2Jy/LaY91aTpwJJ460C2/SRTLtJWV5iVt+4mk/UStAsr3bQibsunQXLrcTh8uBx+3A73IQC7UydmRl12DbKdD6nA68LgO/y2EHY5e97HM6MPTcAmC2lTcUIh0MYYWCWA3t8/ZyWyiEFQxhhTutDwZJhzPrQyGscDin59NMs1uY9WEEApjDh3cNuO3b2td5vQccp3u9aA6JAEIcCfk/J1fPfB1evRPcRXBDDZRUZTedMbmCnzy9kZoN9Xzo5NF5K1EIcZxJxSHWlgm+rRBrJRltJhSpz4TfJtrirQQTrYQSIYLJMG3pKMF0jKCVJKjSBHUI6nr2Ee5tNAYdnJqGWxm4lAtTOTAsEz3txEg58aVcmCk3qbSXpOUjnvYTswqIWz5U2oOy3NlWXp/pwnQ7cLscON0mBS67ddefCcAFmWnXZbPLNp/LvlNZdzU1NVRXzz7oy1BK2S21bW2km4P2NBgiFMq0/maCbToUxArZrcL2cucAHIZUqtePSfN67SBbUIDu92P4/TgqK9EL7Hndn1lf4Ef3+9F9/gNbhH0+NKdclC7EYCDhOQfuaC28cSdMvRi21sBD/wXXPwuZf2SmDg8wLODm+fX7JTwLIXJnWZng2wLRFoi1kI40EQzX0RappzXaQFu0mWCilWAiRDAVIZiOEkwnaFMpgpoipOsEdS0bfg85FJkGugEeXcetfLiUaXdtsFw4ky4KUx7cSQ+JtJ94uoBoOkDcKkCl3V1Cr9vhxHCbuN0OvB6TArdJgc9hh9+ewm4PYfhwWnh70t7qm25sId7WSjoYJN3WZofatjZ8b79N3RvLSQfbsNoy29raSAeD2WlvdzbD4bDDbafQaw4f3jX0dgnAPozMvrq/AMPvQ/f7pYVXiGOM/B/di83Nm3mq9WlmaBrek/8LJl0Aj94A7/4dZn4YAE3TOHNKBY+t2kMkkcLrlLdViOOGlc60+rZkA7CKNBONNtAW3p8JwE20JVppTQRpS4ZpTUVpsxK0qhSthkabrtOqG7TpOkHjEOHXYYdfr3LhVn5MZWJYTrS0G0fCjS/pxpHykUz7iKUDxKwAVtqLsjzZAKwpJ8rlxOEx8bjtYFvgNgl4HATcJgG3g4DHpMBtL3feVpDZt6eW3iOh0mk77La2Zh5tWME20m1tpNuCmfkg6bZWOwC3B9/28HuIm0j4gWaPxw6zgQKMggBGeRnOE07osk4PFGAECu1W304hWS8osG/+IH14hRDdSMrrxcbmjTwUf5OPOAxO8FfCuEXwxm/g2TtgykXg9AJw0cwR/PWNnTyzto4PzhqZ56qFEIctnYRoM0Sa7Gm0CSvcSDC8j5ZMCG6NtdCWbKM1EaY1HaUtHadNJe3wa3QE4FZDJ3mw0GWC7gAvXjyWiVO50C0XWsqDN+VFS3iJJQNErQDxdADS3mx3B5X2oGOie5y4PCYej0nAYxLw2gG3IBN+uwbertt8Tgf6UbT49kSlUnagbWkl3dpCuqWFdGsrVnsobmntFJA7HlZbm93v+mBMEyMQwAi0h9wAzlEj0Qs6rSsIYAQK7HWFAfQCe7+X33qL6nPO6dPXKYQQIOG5V5U+e/i5OoeDE/wVdleN874H974PXv8VLP4CAKeMK2FkkYdH3toj4VmIfFLKbgmONkGkORuE0+EG2sJ1uLa9y6q6X9Mcb6Y1EaQ5GaYlHaOFFC26Touh06IbtBg6rbre8zi+ma6nbuXBowI4lQvDckHag57w4kl4IWV3e0imC1DtATjTCqwpF8pl4vCaeD0mRR4nhQV2EC7ymhR6Oh5FmYBc6DEp9Jr4+yH8Zt+6VMoOts3N2QDcNfh2CsWd1luhQ9yOQtPsoFtUiFFYhFFUhHPsWIzCQvtRZE/1wkK7BbhTAD6qll/TPLLjhBCiFxKee1HpbQ/PTvtiQYCxp8HkC+Gln8Hsa6GgEl3X+OCsEdz1whZqW2MMK5RRN4Q4apaVaQ1ugEgjhBsg0kAq3EBLuI7WaAPN0SZaE600J4K0pCK0WHFadI0Ww+gUhnXadN0e49cJtN+fwbQfDuXBhxOX5cKhPKiUFyPhw53wE0oUEk8HUGlfpvuDF9IeVNqD5XTi9DoxPSaFHgdFXmc25HYOwIXdQnGB2zyq/r65UJZld4lobibV3Ey6uSUTiptJNTV1LGceqZYWrNbWg5/QMDoCb2EhjvJyXBMn2KG3MBOMCwsxioqygdgoLLS7PxzBLaGFEGKwkvDciwpvBQC13kD2AkEAzrkDNp4Cz38XLroTgA/PG8NdL2zh/17bzhfPn5yPcoUY3FLxTAButANxuBEijaTD+2kJ1dIc2U9TrImmeAtNyRBNVpxmXaPJMGgydJp0e9pmGF3PawAeACemcuNVTpzKjWF5Sae9EPWjJ/xEUkVYaX+mJdiLSvlQaS86TvDYQdjnNSnxOSnyOin2mplpp3mfSYnXSaHXxOUweniR/cOKROyQ22QH4Gzo7RyMm5tJNWeCcUvLQcf71UwTo6QEo7gYR0kx5ogRGMXFmUdRJgBnHoV2GNZ9Pun/K4QQSHjuldNwUmxp1Dk9XTeUngCn3ABv3GVPh01jTKmXc6ZW8tflO/n0mRPxOAfuH1YhBpxSkAhBuD4Tgjtah61wPW3h/TRF9tMUa6Qp3kpzKkyTStpBWNdpMgyaDXva0t4qDKBjB2GPC0258OLEpTw4LB9Wyo8VL8CKB0ikAqhUJgSnfdlA7DTcOL1O/F7TDr1+MxuEi71Oandu4bS5M7qE4oDb7LeuEAd9+9Jp0i0tpBobSTc2kmpsIt1kT1ONDaQbm0g1NZJuaCTV1ISKRns+ka5nQ6+jqBhX1XiMOR1B2JEJyUaRvc5RXITm9UoQFkKIIyThOQcVaUVdTyNoLP4CvH0//Psz8F9PgW5w/aLxPPVeHX9dvpOPn1514DFCDGZK2d0kwvUQ2g/h/RCqh3A9VqiO5lAtDdH9NMaaaUy00aClaTAMGg2Dhk6twy2GTro9nGW6RoAPAI+yw7Bh+Uin/MRiBSQShaRTflTKbwfh9mnai+Zx4fU5KfY5KfE5KS23pyU+F6W+9nl7e7HXxGMahwyGNTU7qZ5c2S9vnxWNdgnDPYXgdGNm2tzc81BphmEH3tJSHCUlOMeMxVFailFSgqO0cxAuwlFcjB4ISLcIIYQYQBKeczAslWSvq4cN3hI4/wf20HVv3AULPsW8cSUsnFDKr57fzJXzRuN3yVss8iydynSRaA/EHVMV2k9bqJbG6H4a4y00JNpo0DUaDD0biBszj6b2QJwNwwEATGXgwYeR9pFOB4hECogkCg4Mwik/muXF6fXgbg/C/gODcKnPSUlmfbHXiXmoodsGgLIs0k1NpOrrSTU0kNpf3zFf32m+oQEVifR4Dt3ns8NwaSnm2DF4Zs/GKC3BUVpmB+KSUhxldkA2CgslDAshxCAmya43lsXwZJxV6iDjic74ELz3KCz7pj2M3fAZfPG8yXzwV6/w2xe28LlzJw1oueI40d5CHKqDYG3XaaiOVKiOpkg9+2NN7E+FqDcM6rNhWKfBYdBoOGhoH1LNDbgdQAkAutLx4MWwCkilAkSihcTjmZbhVAEqVYCV8qPSBRSYXgoL3JT5nZT5XZRVuCjzuyjxO7sG4kw/4v6+UC5XVjxOqr6BVP3+A8Jwur5TMG5q6rHvsO734ygvx1FejmfaNBzlZRjtYTgTlNtbkHW3XEAshBDHCgnPvYk2UZlK0aYSRJIRvKa363ZNgw/+L9x1Ojy4FD7xLDNHF3PxrBH89oWtfHDWCCZUFOSldDEEpVOZrhJ1EKyDUG3HNLQfK7iP5vB+6mON7Ncs6g2D/Q4jG473m07qHQ4aNbB8gM9D5ko6NKXhxotu+UmnAkSjARJxPyrdEYjbQ3HAFcDnt0NwWYGLcr+rIxxn1rUvu83B1bdfWRbpxkaSdftJ1dWSrKsjVbefVF0dqf11lG7dxobIl+wxhrvTdbtFuKwcR3kZrimTM/PtjzJ7WlaG7vEceLwQQohjnoTn3oTqqEylANgf2c+4wnEH7uMrg8vvhT9+wA7QVz/IVy+cyvMb6vniQ+/wwI0L8v7Ts8izRCQbgHtqKVbBWoLhOvbHW9jvMNjfHobbg7HpYr/DQb2pSBdrQFmX0zuVDy1dSDJZSDziw0oWolIBrFQBKhVApQIUOosp9HsOCL/lfhdlBR3BuNTvHNBRJA6HFY/bIbiursdwnKyrI1VfD5n/Z7MMww69lRWkhg+jfMpUHBXl2SDcHo6NkhK07iN5CCGEEJ1IeO5NaD/DMj/Z1kXqeg7PAGMXwAd+Af+4Gf5+LWUf+iPfvnga//O3Vfz0mY18SYauOzZZ6Uwg3gtt+yC4D9r2dp0GawkmgtQ5HNQ6DGodBnWGg1rTpM7pptZhUue1iHg7WonbOZQHLV1IKhkgEfFjZYKwSgWwkgG0dIASdynDAn4qClxUFLsoL3BTUeCiMmBPKwJ2KB7sX+BUIkGyro7k3n0k9+0ltW+fPV9Xmw3H6ZaWA47TvV4clZU4hlXiO+UUe76yAnPYMBwV9ryjtDQbimtqaphdXT2wL04IIcQxQ8Jzb0L7GZZpxdoT2nPofWdfA6koPP45eOCjXHTln3jtlNH8pmYLk4cVyJ0Hh5p4qOcwnJ3ug1AdISxqHQ7qHAa1hkGd6aTW7afO6WJfgUZdQSkRirqeW2nolh2Ak6FCVKow01pciEoGMFQhpa4yKgMBOwCXuqjoFIrLM6G41OcaNH2ID0UpRbqlheTeTqF4X/tjL6m9+0g1NBxwq2ajtBRz2DDMkSPxzJmNWVmJo6ISc1hlJiRXYvj9eXpVQgghjkcSnnszZj5tJ/w3nvQTbGre1Pv+864HzbCHr/vjB/jmJX9ga32YLzz4DkVeJ0tOLO/3kkUvrLQ94kS3MDx54yrY+bOOFuR4G2lgv2Gw1+Fgr8Ngn9vPXo+PfU4n+8oLqCtzE6FbFwGloVkFpOKFWMkAKlVkB+NkIbpVRJm7gmH+SoYFvFSUZYJwgYuKgJvKgB2SizwDP+7w0VDpNKnaWhK795Dcu7dry3EmJHcfp1hzuTCHD8ccMQLXksX2/PARmCOGYw4fjmPYMHRXT8PcCCGEEPkj4bk3xWOpH34mE8Nb2Ni8MbdjTv4YuAvhn5/G9fsl3PP+u/jQs34+8ccV/PzDs7hg+vD+rfl4lghnwu/eg0ztbhQouytOAtjncLDXdLLTXUC9q5jdARe7C8exVyVoVFEsuraGkvaQjhZlW4rtaREeSij3VjKioIJhAT/DC91UBtwMC7gZVmg/SrzOIRWK2ymlSDc1kdy9m8Tu3SR37yG5ezfJPbtJ7NpNct++A/oZG+VlmMNH4Jo4Ef/ixZgjhuPoFJCN4mK5UYcQQoghR8JzjiYWT+TZnc+ilMrtH/xpl8Kw6fDAR/E9eAWPTr2cT2of5Oa/vMWnzjiBz54zaUj83D5oWJbdWtxTGO7cjSLe2uWwiKaxx1vIPn8Ze7wF7KgYxe7K0exRCeqsCEHVdVxepaKohImVLEYli7LTAkcFFZ5hjPSPYERJwA7DnULxsIAb3xAf09sKhzPBeHcmJGcC8u5dJPbsPWAMY6OkBHPUKDzTpxF43/swR43EOWoU5siROIYPR3c68/RKhBBCiP4ztP+1H0AnFp/Iw5sepj5aT4W3IreDyibCJ56Dl3+K85U7+YPxJM+PvoQvPb+At3e18t1LpjG21Ne/hQ8FyWhHCD5oa/E+sLp1j9AM0v5K6gMVbC+sZGvpWLaiscNKsicdocFqJUoos3MCaEQljUw3imKs5Dj0dDEBRwVl7mG44k7mjJ/OiEI/wzKtxsML7W4Vg/1iu1ylQ2GSu3aS2LGDxI7MdOcOEjt2kK5v6LKv7vVijhqFOXoM3gUL7GA8arQdkkeORPfJf7tCCCGOPzmFZ03TFgKrlVJhTdM+AswBfqGU2tGv1Q0iJxafCMDG5o25h2cApxfO/CrMuhpt2Tc5Y+2fed37AP/YdRpf/fki5iy6kBuWTBjyrZY9siz7Rh5dwvDeri3Fwb32Pt05/VAwHBUYTtPIeWwyvGzEYHM6zfZUlH2pIM1WM3EaQWuCdBOkQSkt02JcgsMaRYFRQYl7OCO8IxhTOIqqokpGFHmzwbjIa2Z/SaipqaG6evoAv0l9Lx0Kk9y5g8TOnSS2Z6aZkNw9IBvlZTjHjsW/aDHOMWNwjhmdCcyjMYqKpFuFEEII0U2uie03wExN02YCXwT+APwfsKS/ChtsJhZPBOzwfPrI0w//BCXj4UP/h9a4BePVX3LxO3/n0mQN+175FU+8OhvnpHNYcOZFlFcOgRE5ktHM+MSdxiwO7e8Yx7j9Bh/h/Qe2FqOBv8IOxkVjiA6fR7NRymblZk3KYmMyxvZEiIZUI2FrP6n0frTo9i5nUGkveroErzaSUnMulZ4RjCoYxQnFozmxdAyjigsYFnDjcR674/UqyyK5dy+JrVuJb91KYus2e377dtINXQOyo7zcDsiLF+McO84OyWPH4BwzRlqPhRBCiMOUa3hOKaWUpmkfxG5x/oOmadf1Z2GDTaGrkFH+UayqWwXTjuJEpSfAB36Oft73YOMTuN/8O+/f+RKeDc/ChttoMCqIl8+g+IS5eIdPgqJxUDTGvhFLf7QCppMQD0KkCSKNEM1MI42d1jXb03CDHY679Su2aeArh4JKLF8F8eJJhMxSmvVi9qti9qSLWJ+EDbEwtfFaWhJ7iTbtRzPXojsb0fROtz9XBqZWSsBZSalrEsO8IxlbOJoTS8YyrbKKqpKyY6YbRW+saJTE9u12QN6ylfi2TFDevh0Vj2f3M4qLcY4fj796Cc6xY3GOGdsRkL3eQzyDEEIIIQ5HruE5qGnal4GPAIs1TTMAs//KGpxOH3k6/9jyD2KpGG6H++hO5vTCtMsonnYZpJPsWfMSG1c+R2r3KsbvfQ9v7bIuu1uGC81TjOYpAncReIrsrg2GCbrDfhiZjySdtB9Wp2kyBomQPXZxImgH5ngI0vHulXUwnOApAW8paU8xiZJJRIYtJOgooVkvoZ4i9qUD7IgXsD3qYV8wyf6melr370UzG9GcDejOrejOxq4B2QWay0GpUUmZewyj/As5oXgcU8vGM7V8PCP8wzH0Y7fVuCfpUIj4pk3EN28mvmlTtiU5uXdvx066jjlqFK6qKnynnYbrhPE4x4/HWVWFo7g4f8ULIYQQx5Fcw/OVwNXAx5VStZqmjQF+3H9lDU5LRi/h/g3382btmywatajvTmyYjJx5JiNnnollKd7Z08pd63awaeN7ROq2UWHVMTzVSEkyQmU0SqkjSrG2BS8xHKQwsDBUCl2l0VAowwm6A6WbYDhQmollOEk5fKTMSpKe8SQdXmK6jwgeQnhopYBmfDRaBexP+6lNeqmNGjSGkzTXJogk0h316hF0Vz26cyuGqwG3pwnD1Ui6sB6rKJG9R56hOajwjGB0wQROKD6L8YXjGBMYw9jAWIZ5hx13ARns20sntm61g/LGjcQ2bSK+aROpvfuy+2geD66qKjxz5lB0xeU4q8bjHF+Fc+xYGfdYCCGEyLNcw/OtSqkvtS8opXZqmnZSP9U0aM0bNg+Pw8MLu1/o2/Dcia5rzBpdxKzRRXDuTNKWYltDmPf2trJuX5AXmyPsaYmypzlKfSje/YZsR8VjGvjdDgpcDvxuHZ+/jaLSBpS5n7heS8jaS3NiN6FUS/YYh+ZgVMEoxgROYEzBGXY4LhjLmMAYhvmG4dCPwQshc6Asi8SOHcQ3bLSDcuaR2LHDvpASwDRxjR+Pd85cXFdOxDVxIq4TJ2KOGIGmHx/dUoQQQoihJtdkcw7wpW7r3tfDumOay3CxcMRCnt7+NJ87+XN4HJ7eDzpKhq4xocLPhAo/H5zVdZtlKUKJFG3RJG3RFG2xJNFEmrSlSCtF2lKkLIWhaZiGhunQcRo6ToeOaei4HDqmI0lTYg910V3sDG1hW+s2trVuY0fbDuLpOCSBpN3ne3zheOYVnklVoIqqQvsxwj/iuA3I7ax4nPjGTcTWrSW+fj2xteuIbdzYMS6yruMcMwbXxIkE3vc+XCfaQdk5Zgyaedz1fhJCCCGGtEOmHk3TbgJuBsZrmvZOp00FwKv9Wdhg9ZGpH2HZzmU8sukRrplyTV5r0XWNgNsk4DbhEF1elVLUR+uzwXhbY2bato3acG3H+TSdkf6RVBVWsWD4gmxAriqsotgtfWoB0i0txNavJ7ZuvR2W160nvnUrpO1uLbrPh2vKZIouuwz35Mm4Jk/CdcIJ6O6j7CMvhBBCiEGhtybDvwJPAN8Hbuu0PqiUauq3qgaxuZVzmV0xm/veu49LJlyC1xw8Ixkk0gl2BXd1hOTWjpAcToaz+3kdXqoKqzi58mTGBcZlA/KYwBhchvSpbZcOhYm99x6xNe8SfXcNsXffJblnT3a7o7IS9+TJ+M8+C/fkKbinTsEcOVK6XAghhBDHsEOGZ6VUK9AKXJUZYaMyc4xf0zS/UmrnANQ46Nwy5xY+9uTH+O4b3+W7p393wJ+/JdbCtrZtB4Tk3aHdWMrK7lfpraSqsIqLTriooxU5UEWFt0JuftGNFY/j2LaNpt17iL37LtE1a0hs3Up7p3Jz1CjcM6ZTfNWHcU2ZgnvKFBwlJXmuWgghhBADLdc7DP438E2gDmhPZwqY0T9lDW5zK+dy48wbuevtuyjzlHHLnFvQtb5tbUxaSXYFd7G9dTvb27azrXVbdr4l3pLdz9RNxgbGMqlkEudXnZ8NyeMC4/CZcgOMniilSO7ZQ3TVKvvx9jvENm6kNJmkDjDKyvBMn07g/RfgmT4d97RpMhScEEIIIYDcLxj8DDBJKdXYj7UMKZ+c8Ukao43cs+Ye3ql/h1vm3MLM8pmH1aKbSCfYF97HntAe9oT2sKvN7nKxvW07u4O7SamOu/OVuksZVziOs8ac1aUv8gjfiONyyLfDYSUSxNeuJfKWHZYjq1dlb1Ot+3y4p0+ndOlStugaJ3/4wziGDZOWeSGEEEL0KNfwvAu7+4bIMHSDr83/GlNKp3DnW3fy0Sc+ykj/SGZVzGKEbwRlnjJchguFIp6O0xpvpTnWTGu8ldpILXtCe6iP1KPoGGuuvRV5QtEEzhl7DuMKxzEuMI5xheMIOAN5fLVDS7qtjcjKlURWrCC6ajWxNWtQiQQA5ujR+BYswDt7Np7Zs3FNnIhm2F8+1tbUYA4fns/ShRBCCDHI5RqetwI1mqY9DmRvSaeU+mm/VDVEaJrGFSdewQVVF/DU9qd4YdcLrKxbyVORp7q0GrcLOAMUuYqo8FYwf/h8RvlHMcI/ghH+EYzyj6LCWyGtyEcgG5aXv0lk+XJi69bZYymbJp6TTqL4mmvwzJ6FZ9YszIqKfJcrhBBCiCEs1/C8M/NwZh6iE5/p49KJl3LpxEsBsJRFc6yZpJVEQ8M0TALOwHE/HnJfOVhY1kwTz6xZlN10E95TTsEzc4YMESeEEEKIPpVTmlNKfQtA0zSfUirc2/7HO13TKfWU5ruMY4ZKpYi+8y7hl18m/MorRN99V8KyEEIIIfIi19E2FgB/APzAGE3TZgI3KqVu7s/ixPErsXsP4VdesQPz669jBYOg67inT6P0xhvwzV8gYVkIIYQQAy7XfgQ/B84D/gmglHpb07TF/VWUOP6oZJLIihUEn3+e8Isvkdi+HQDHsGEUnHcu/tNPxzd/PkZRUV7rFEIIIcTxLedOuEqpXd2G70r3fTnieJJubSX04kuEnn+O0EsvYwWDaC4X3lNOofiqD+M7/XSc48fLsHFCCCGEGDRyHqpO07TTAKVpmhP4H2Bd/5UljlXJvXsJPvMMweeeJ7JiBaTTGKWlFJx3LgVnnIFvwQJ07+C55bkQQgghRGe5hudPAr8ARgK7gaeBT/VXUeLYkty7l7annib45JNE334bANfEiZRefz0FZ1TjnjEDTe/bOzQKIYQQQvSHXEfbaACu6edaxDEkuW8fbU89RfCJToF56hTKb72VwPnn4Rw7Ns8VCiGEEEIcvkOGZ03TvqiU+pGmab+ETrfCy1BK/U+/VSaGnHQwSPCpp2h97B92lwzANUUCsxBCCCGOHb21PLf3a17R34WIoUmlUoRfe43Wx/5BcNkyVDyOs6qK8s/cQuD883GOG5fvEoUQQggh+swhw7NS6l+Z6R8HphwxVCR276blgb/T+thjpOrr0QsLKbrsUgovvhj39OkyQoYQQgghjkm53iTlGeAKpVRLZrkYuF8pdV4/1iYGGZVKEXrhBZrvf4Dwyy+DpuFfsoTCSy7GX12N7pQ7twshhBDi2JbraBvl7cEZQCnVrGlaRf+UJAab5P79tDz4IC0PPkSqthZHZSVln/oURZdfhjlsWL7LE0IIIYQYMLmG57SmaWOUUjsBNE0bSw8XEIpjS2zDBpruuZfW//wHkkl8p5/OsK/ejr+6Gs2R8/11hBBCCCGOGbkmoNuBlzVNeyGzvBi4oX9KEvmklCL88is03Xsv4VdfRfN6Kb7ySko++hEZLUMIIYQQx71cx3l+UtO0OcB8QANuzYz9LI4RyrIIPvssDb/+DfF163CUl1P+2c9SfOWHMAoL812eEEIIIcSg0Ns4z5OVUuszwRlgb2Y6JtON463+LU/0N2VZBJ9ZRsOvf018wwacY8cy/Hvfo/DC96PJBYBCCCGEEF301vL8WezuGf+vh20KOLPPKxIDQilF6LnnqP/5L4hv2oRz3DhG/OiHBC64QPozCyGEEEIcRG8p6ZnM9ONKqa39XYwYGNF332X/D39EZMUKnFVVjPjxjwlc8D40w8h3aUIIIYQQg1pv4fnLwIPAQ8CcXvYVg1xi9x7qf/Yz2h5/HKOkhGHf/AZFl18uLc1CCCGEEDnqLTU1aZr2PDBe07R/dt+olLqof8oSfcmKxWj47W9p+v0fwDAo/eSNlF5/PYbfn+/ShBBCCCGGlN7C8wXYLc5/oud+z2KQC730ErV3fJvkrl0ELryQis9/Tm5sIoQQQghxhHoLz39QSn1U07TfKaVe6GVfMYikmpqo/fa3CT7xJM5x4xhz37345s/Pd1lCCCGEEENab+F5buZugtdomvY77DGes5RSTf1WmThibc88Q+03vokVDFL2P5+m9Prr0WXYOSGEEEKIo9ZbeL4LeBIYD6yka3hWmfVikEi3tlL73e/S9s9/4Zo6hRH33Yv7xBPzXZYQQgghxDHjkOFZKXUncKemab9RSt00QDWJIxB95x32fOZWknV1lH3qU5R98kY008x3WUIIIYQQx5Rcb899k6ZppwMTlVL3appWBhQopbb1b3miN0opmv/8F+p+9CPM8nLG/e2veGbMyHdZQgghhBDHpJzCs6Zp3wBOBiYB9wJO4M/Awv4rTfTGCofZe/tXCT75JP7qakb84PsYRUX5LksIIYQQ4piV690xLgFmA28BKKX2appW0G9ViV4la2vZ9cmbiG/aRMXnP0fJf/0Xmq7nuywhhBBCiGNaruE5oZRSmqYpAE3TfP1Yk+hFbO1adn3yJqxwmNF33YV/0en5LkkIIYQQ4riQa1Pl3zVN+y1QpGnaJ4BlwO/6ryxxMMGaGrZ/5KNgGIz9618lOAshhBBCDKBcLxj8iaZp5wBt2P2ev66UeqZfKxMHaP3Xv9h725dxT57MqN/8GrOiIt8lCSGEEEIcV3LttgHwDuDKzL/dD7WIQ2h56CH2fe3reOfNY/Rvfo3uk54zQgghhBADLaduG5qmfQhYDlwBfAh4Q9O0y/uzMNGh+YG/s++rX8N3+umMvvu3EpyFEEIIIfIk15bn24F5Sqn9AJqmlWP3e36ovwoTttZ/P07tN7+Jb8liRv3yl3KbbSGEEEKIPMr1gkG9PThnNB7GseIIBZ9/nr233YZ37lxG/eIXEpyFEEIIIfIs15bnJzVNewr4W2b5SuA//VOSAIi+u4Y9t34W96RJjLrrN+hud75LEkIIIYQ47h0yPGuaNgGoVEp9QdO0S4HTAQ14DfjLANR3XErW1rL75ptxlJQw+rd3Yfj9+S5JCCGEEELQe8vzz4GvACilHgEeAdA07eTMtg/0Y23HJSsSYddNN2NFIoz9219xlJXluyQhhBBCCJHRW3gep5R6p/tKpdQKTdPG9U9Jxy+lFLXf+hbx9esZfddvcJ94Yr5LEkIIIYQQnfR20d+hOtp6+rIQAa2PPErrP/5J2c0341+yJN/lCCGEEEKIbnoLz29mbsfdhaZpHwdW9k9Jx6f4pk3UfvvbeE89lbKbb8p3OUIIIYQQoge9ddv4DPCopmnX0BGWTwacwCX9WNdxRSUS7Pnc59H9fkb+5MdohpHvkoQQQgghRA8OGZ6VUnXAaZqmnQFMy6x+XCn1XL9XdhxpuPt3xDduZNSvf42jvDzf5QghhBBCiIPIaZxnpdTzwPP9XMtxKbZhAw133UXgAx+g4Mwz8l2OEEIIIYQ4BLlLYB6pVIp9X7kdo7CQyq98Od/l/P/27j3G8rO+7/jnmcvu7MX2EttZfKG+CBNwnBDsFUlJ1NoYIkdEECIlKlILatKi3knVKqFQqbd/orZKiJqqKQppLo1iueRmJSQOEFaVioqwucQ2EAOpvbG9eHcdz9ozy+zMnPP0j5kxyFp7fmfmnHmW83u9/tmds/bMV/vY67efeX7PAQBgG13fYZAJeOaee7Ly8MO55ud/LnMve1nrcQAA2EaTnedSyn8qpXyplPJnpZTfLaUcaTFHS4Nnn82Z//KLOfj61+eSu+5qPQ4AAB20Orbx0SS31Fq/O8kjSXp3ZuHML/33DBYXc/S9P5NSSutxAADooEk811r/pNa6vvnh/01ybYs5Wlk9cSJ/9Ru/kcve/vYs3Hxz63EAAOjoYnhg8CeS/FHrIfbS6Q/8Qsr8fK78qfe0HgUAgBGUWutkPnEpH0vy8gv80vtrrb+/+de8PxtvuvKj9UUGKaW8O8m7k+To0aO33X333ROZ96UsLS3l8OHDY/lcs089lcv/7b/LuR98c5be7n1mLibjXGcuXta5H6zz9LPG/dByne+4444Haq3HXvj6xOJ5O6WUdyX5B0nurLWe6/L3HDt2rN5///2THewCjh8/nttvv30sn+vJ970/z37kI3nlxz+WucsvH8vnZDzGuc5cvKxzP1jn6WeN+6HlOpdSLhjPTa6qK6XcleRnkvzNruE8DdaeeCJn7703L3vHO4QzAMC3oFZnnn8xySVJPlpK+Vwp5ZcazbGnnv7Qh5JScvlP/kTrUQAA2IEmO8+11le2+LotrT/zTBY//Ns58iNvy/zLL3QUHACAi93FcNtGL5z93d9LXV3Nt73zna1HAQBgh8TzHqi1ZvGee3Lg1luz/6abWo8DAMAOiec9cO7Tn87qo4/myI//WOtRAADYBfG8Bxbv+V+ZufTSXHrXXa1HAQBgF8TzhK0/80yeu+++XPbWt2ZmYaH1OAAA7IJ4nrBn7703dW3NkQ0AgCkgnifs7B/8YRZuvjkLr3pV61EAANgl8TxBqydOZOXBB3PpW97SehQAAMZAPE/Qs3/0x0mSS3/Ig4IAANNAPE/Qc/fdlwPf8z2Zv/rq1qMAADAG4nlC1r72tax84Qu55E13th4FAIAxEc8TsvSJTyRJDr/xjY0nAQBgXMTzhDz38T/Nvuuuy74bbmg9CgAAYyKeJ2D49a/n3Kc+lcN33JFSSutxAAAYE/E8Aefuvz91bS2HfuAHWo8CAMAYiecJWP4/n0zZty8Hj93WehQAAMZIPE/A8ic/mQO33ZqZhYXWowAAMEbieczWT5/O+UceyaE3vKH1KAAAjJl4HrNzDzyQJDn0vd/beBIAAMZNPI/ZufsfSDlwIAuveU3rUQAAGDPxPGbnPvNADrz2tSnz861HAQBgzMTzGA2WlnL+S3+eg7e5ZQMAYBqJ5zH6+mc/lwyHOXjbra1HAQBgAsTzGH39zz6flJKF735t61EAAJgA8TxGKw89nH033pjZw4dajwIAwASI5zFaeeihHLjlltZjAAAwIeJ5TNaeOpX106ezIJ4BAKaWeB6TlYcfSpIs3PKdjScBAGBSxPOYrDz0UDI7m4VXv7r1KAAATIh4HpOVL34p+2+8ITMHDrQeBQCACRHPY3L+kUey/6ZXtR4DAIAJEs9jMFhaztoTT2T/q25qPQoAABMknsdg9atfSZLsv0k8AwBMM/E8BiuPPJJEPAMATDvxPAbnv/zllAMHMn/tta1HAQBggsTzGJx/5MvZ/8pXpsz47QQAmGZqbwxWv/rV7L/xxtZjAAAwYeJ5l4bnzmX99Onsu+H61qMAADBh4nmXVk+cSJLsu+66xpMAADBp4nmXVh99LIl4BgDoA/G8S6uPbcTz/F8TzwAA004879LqY49l9sorMnv4UOtRAACYMPG8S6uPPebIBgBAT4jnXRLPAAD9IZ53YbC0nMGZM9nnvDMAQC+I511YP/lkkmT+2msaTwIAwF4Qz7uwdvJkkmT+qqsbTwIAwF4Qz7uw9uRmPF99VeNJAADYC+J5F9aefDKZm8vclVe2HgUAgD0gnndh7eTJzB89mjI723oUAAD2gHjehbWTT2b+Kkc2AAD6QjzvwvqTJzPnvDMAQG+I5x2qg0HWnnrKTRsAAD0inndo/dSpZDDI/NXiGQCgL8TzDn3jjueXN54EAIC9Ip53aP3UqSTJ3FHxDADQF+J5h9bPPJ0kmbvyisaTAACwV8TzDq2fOZ3Mzmb2yJHWowAAsEfE8w6tnzmTucsvT5nxWwgA0BfKb4cGp89k7gpHNgAA+kQ879D6mTOZdd4ZAKBXxPMOrZ+x8wwA0DfieQfqcJj1p5/O3BVXth4FAIA9JJ53YHD2bLK+bucZAKBnxPMOrJ8+ncQdzwAAfSOed2Bw5kySZO7yyxtPAgDAXhLPO7C+Gc+zjm0AAPSKeN6B9dObO8/iGQCgV8TzDgwWn0mZn8/M4cOtRwEAYA+J5x0YLJ7N7JEjKaW0HgUAgD0knndgcPZsZo9c1noMAAD2mHjegcHiYmYuE88AAH0jnndgcPZsZi870noMAAD2mHjeAcc2AAD6STzvwGBx0c4zAEAPiecRDVdWUldWMuvMMwBA74jnEQ3OPpskmT1ypO0gAADsOfE8osHiYpLYeQYA6CHxPKLB2cUk8cAgAEAPiecRDc6eTWLnGQCgj8TziJ4/tuHMMwBA74jnEQ3tPAMA9JZ4HtHg7NmU+fmUAwdajwIAwB4TzyMaLC5m9siRlFJajwIAwB4TzyMaLHprbgCAvhLPIxo891xmDl/SegwAABoQzyMaLi9n5vDh1mMAANCAeB7RcHk5M4cOtR4DAIAGxPOINuL5YOsxAABoQDyPaLi0lFnHNgAAekk8j6DWmuG5c45tAAD0lHgeQT13LqlVPAMA9JR4HsFgeTlJxDMAQE+J5xEMn49nZ54BAPpIPI9guGTnGQCgz8TzCIaObQAA9Jp4HsHwnHgGAOgz8TyCrZ3n2cPiGQCgj8TzCIZLS0nsPAMA9JV4HoEzzwAA/SaeRzBYXk5mZlIOHGg9CgAADYjnEQyXlzNz6FBKKa1HAQCgAfE8guHSsiMbAAA9Jp5HsLXzDABAP4nnEYhnAIB+E88jGC4vu+MZAKDHxPMIhktLdp4BAHpMPI9guLycmYPiGQCgr8TzCIbnzmXm0MHWYwAA0Ih4HsFwZSVlwRukAAD0lXjuqNaaurKSmYX9rUcBAKCRpvFcSvmXpZRaSrmi5Rxd1NXVJEnZv9B4EgAAWmkWz6WUVyR5c5ITrWYYRV1ZSRI7zwAAPdZy5/nnk/x0ktpwhs6G588nsfMMANBnTeK5lPLWJE/UWj/f4uvvRN2KZzvPAAC9VWqdzMZvKeVjSV5+gV96f5L3JfnBWuvZUsqjSY7VWs+8yOd5d5J3J8nRo0dvu/vuuycy70tZWlrKZc8+myv+/X/I4t//ezl/2217PgOTt7S0lMOHD7cegwmzzv1gnaefNe6Hlut8xx13PFBrPfbC1+cm9QVrrW+60OullO9KckOSz5dSkuTaJJ8ppby+1vq1C3yeDyb5YJIcO3as3n777ZMa+UUdP348x667Po8mueV1t+aSBjMwecePH0+Lf77YW9a5H6zz9LPG/XAxrvPE4vnF1FofTPLtWx9vt/N8sajnPTAIANB37nnuaLiydebZA4MAAH215zvPL1Rrvb71DF1s7TyX/XaeAQD6ys5zR8Pn73m28wwA0FfiuaO64p5nAIC+E88d1dWNePbAIABAf4nnjjwwCACAeO7o+avq9u1rPAkAAK2I546GKyvJzEwyP996FAAAGhHPHdWV8ykLC9l8V0QAAHpIPHc0PL+SGXc8AwD0mnjuaGvnGQCA/hLPHVU7zwAAvSeeOxraeQYA6D3x3FE9fz5lv2vqAAD6TDx3tPHAoJ1nAIA+E88dbTww6MwzAECfieeOqp1nAIDeE88deWAQAADx3FFdWcmMYxsAAL0mnjsanj+f4tgGAECvieeO6sqKq+oAAHpOPHcxHKaurnpgEACg58RzF+vrSeKBQQCAnhPPHZS1tSTxwCAAQM+J5w7K6kY8e2AQAKDfxHMHZW1140cPDAIA9Jp47mJ9kCSZ2SeeAQD6TDx3UIYb8Zy5ubaDAADQlHjuYrARz2VuvvEgAAC0JJ47KFtX1c3beQYA6DPx3MXWzvO8nWcAgD4Tzx2U549t2HkGAOgz8dyFeAYAIOK5k62d53hgEACg18RzF8+febbzDADQZ+K5A2eeAQBIxHM3btsAACDiuRs7zwAARDx38o0HBsUzAECfiecuHNsAACDiuRMPDAIAkIjnbtbtPAMAIJ47sfMMAEAinrvZemBwdrbtHAAANCWeOyiDQTI/n1JK61EAAGhIPHcxGDiyAQCAeO6iiGcAACKeuxmsu2kDAADx3IWdZwAAEvHcjXgGACDiuZvBIJkXzwAAfSeeOyiDYcqcM88AAH0nnrtwbAMAgIjnTsq62zYAABDP3dh5BgAg4rkTV9UBAJCI527ctgEAQMRzJxs7z848AwD0nXjuYujYBgAA4rmTsj5w2wYAAOK5Ew8MAgAQ8dxJGQxSPDAIANB74rmLwSCx8wwA0HviuQu3bQAAEPHciTdJAQAgEc/dDNy2AQCAeO7EA4MAACTiuRsPDAIAEPG8rToYpNTqzDMAAOJ5O3V9PUnctgEAgHjeTl1bSxI7zwAAiOftPB/PbtsAAOg98bydrWMbbtsAAOg98byNrTPPbtsAAEA8b8MDgwAAbBHP26hrW/Fs5xkAoO/E8zY8MAgAwBbxvI26vhXPdp4BAPpOPG9n3bENAAA2iOdtuG0DAIAt4nkb33hg0JlnAIC+E8/bqN4kBQCATeJ5G3VtNYnbNgAAEM/bqh4YBABgk3jejngGAGCTeN6G2zYAANginrcxc/Bg1o8ezczCQutRAABozHbqNi658848PTub+auuaj0KAACN2XkGAICOxDMAAHQkngEAoCPxDAAAHYlnAADoSDwDAEBH4hkAADoSzwAA0JF4BgCAjsQzAAB0JJ4BAKAj8QwAAB2JZwAA6Eg8AwBAR+IZAAA6Es8AANCReAYAgI7EMwAAdCSeAQCgI/EMAAAdiWcAAOhIPAMAQEfiGQAAOiq11tYzdFZKOZ3ksQZf+ookZxp8XfaWde4H69wP1nn6WeN+aLnO19Var3zhi99S8dxKKeX+Wuux1nMwWda5H6xzP1jn6WeN++FiXGfHNgAAoCPxDAAAHYnnbj7YegD2hHXuB+vcD9Z5+lnjfrjo1tmZZwAA6MjOMwAAdCSet1FKuauU8uellK+UUt7beh7Gr5TyilLKJ0opXyylPFxKeU/rmZiMUspsKeWzpZQ/aD0Lk1FKOVJK+XAp5Uub/07/9dYzMX6llH+++ef1Q6WU3yqlLLSeid0rpfxKKeVUKeWhb3rt20opHy2lfHnzx5e1nDERzy+plDKb5L8m+aEkNyd5Rynl5rZTMQHrSf5FrfU1Sb4vyT+2zlPrPUm+2HoIJuoXkvxxrfXVSV4b6z11SinXJPlnSY7VWm9JMpvkb7WdijH51SR3veC19yb5eK31piQf3/y4KfH80l6f5Cu11r+ota4muTvJ2xrPxJjVWk/WWj+z+fPnsvEf22vaTsW4lVKuTfKWJL/cehYmo5RyaZK/keRDSVJrXa21LjYdikmZS3KglDKX5GCSJxvPwxjUWv93kr96wctvS/Jrmz//tSQ/spczXYh4fmnXJPnLb/r48YiqqVZKuT7J65J8qvEojN8Hkvx0kmHjOZicG5OcTvI/No/n/HIp5VDroRivWusTSf5zkhNJTiY5W2v9k7ZTMUFHa60nk43NriTf3nge8byNcoHXXE8ypUoph5P8dpKfqrU+23oexqeU8sNJTtVaH2g9CxM1l+TWJP+t1vq6JMu5CL7Fy3htnnl9W5Ibklyd5FAp5W+3nYo+Ec8v7fEkr/imj6+Nbw1NpVLKfDbC+Tdrrb/Teh7G7vuTvLWU8mg2jl+9sZTyP9uOxAQ8nuTxWuvWd44+nI2YZrq8Kcn/q7WerrWuJfmdJG9oPBOT81Qp5aok2fzxVON5xPM2Pp3kplLKDaWUfdl4IOHexjMxZqWUko0zkl+stf5c63kYv1rrv6q1XltrvT4b/x7/aa3VTtWUqbV+LclfllK+Y/OlO5N8oeFITMaJJN9XSjm4+ef3nfFg6DS7N8m7Nn/+riS/33CWJBvf4uJF1FrXSyn/JMl92Xia91dqrQ83Hovx+/4kfyfJg6WUz22+9r5a60fajQTs0D9N8pubGx5/keTvNp6HMau1fqqU8uEkn8nGbUmfzUX4LnSMrpTyW0luT3JFKeXxJP8myc8muaeU8pPZ+B+nH2s34QbvMAgAAB05tgEAAB2JZwAA6Eg8AwBAR+IZAAA6Es8AANCReAYAgI7EMwAAdCSeAaZUKeW7SimPlVL+YetZAKaFeAaYUrXWB7PxduTvbD0LwLQQzwDT7VSS72w9BMC0EM8A0+1nk+wvpVzXehCAaSCeAaZUKeWuJIeS/GHsPgOMhXgGmEKllIUk/zHJP0ryYJJb2k4EMB3EM8B0+tdJfr3W+mjEM8DYiGeAKVNK+Y4kb07ygc2XxDPAmJRaa+sZAADgW4KdZwAA6Eg8AwBAR+IZAAA6Es8AANCReAYAgI7EMwAAdCSeAQCgI/EMAAAd/X8Pf+glhjcxFAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from scipy.stats import zscore\n", "from ucimlrepo import fetch_ucirepo \n", "from statsmodels.formula.api import ols\n", "import pandas as pd\n", " \n", "# fetch dataset \n", "auto_mpg = fetch_ucirepo(id=9) \n", " \n", "# data (as pandas dataframes) \n", "X = auto_mpg.data.features \n", "y = auto_mpg.data.targets \n", " \n", "data = X.join(y)\n", "\n", "data2=data.dropna().drop('mpg',axis=1).apply(zscore).join(data.dropna()['mpg'])\n", "dd=[]\n", "for alpha in np.linspace(0,10,500):\n", " d=ols(\"mpg ~ displacement + cylinders + horsepower + weight + acceleration + model_year + origin\", data2).fit_regularized(L1_wt=0, alpha=alpha).params\n", "\n", " \n", " d= pd.Series(\n", " {\n", " c:v for c,v in zip([\"Intercept\",\"displacement\", \"cylinders\", \"horsepower\" ,\"weight\" ,\"acceleration\", \"model_year\" ,\"origin\"],d)\n", " }\n", " )\n", " d['alpha']=alpha\n", " dd.append(d)\n", "dd=pd.concat(dd,axis=1).T\n", "dd.drop('Intercept',axis=1).plot(x='alpha', figsize=(12,10))\n", "plt.xlabel(\"$\\lambda$\")\n", "plt.ylabel(\"Coefficients\")\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As can be seen, the coefficient values are gradually shrunk towards zero as the value of $\\lambda$ increases. Interestingly, the model **\"decides\"** which coefficients to shrink. For instance, for low values of $\\lambda$, `weight` is shrunk, while `acceleration` is first shrunk, then allowed to be larger than zero. This is due to the fact that, the regularization term acts as a sort of \"soft constraint\" encouraging the model to find smaller weights, while still finding a good solution.\n", "\n", "It can be shown (but we will not see it formally), that ridge regression **reduces the variance of coefficient estimates**. At the same time, **the bias is increased**. So, finding a good value of $\\lambda$ allows to **control the bias-variance trade-off**." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Interpretation of the ridge regression coefficients\n", "Let us compare the parameters obtained through a ridge regressor with those obtained with a linear regressor (OLS):" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ridge_paramsols_params
variables
displacement-0.9984452.079303
cylinders-0.969852-0.840519
horsepower-1.027231-0.651636
weight-1.401530-5.492050
acceleration0.1996210.222014
model_year1.3756002.762119
origin0.8304111.147316
\n", "
" ], "text/plain": [ " ridge_params ols_params\n", "variables \n", "displacement -0.998445 2.079303\n", "cylinders -0.969852 -0.840519\n", "horsepower -1.027231 -0.651636\n", "weight -1.401530 -5.492050\n", "acceleration 0.199621 0.222014\n", "model_year 1.375600 2.762119\n", "origin 0.830411 1.147316" ] }, "execution_count": 54, "metadata": {}, "output_type": "execute_result" } ], "source": [ "params = pd.DataFrame({'variables':['displacement','cylinders' , 'horsepower' , 'weight' , 'acceleration' , 'model_year' , 'origin'], 'ridge_params':ols(\"mpg ~ displacement + cylinders + horsepower + weight + acceleration + model_year + origin\", data2).fit_regularized(L1_wt=0, alpha=1).params[1:],'ols_params':ols(\"mpg ~ displacement + cylinders + horsepower + weight + acceleration + model_year + origin\", data2).fit().params[1:]}).set_index('variables')\n", "params" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As we can see, the ridge parameters has a smaller scale. This is due to the regularization term. As a result, the parameters **cannot be interpreted statistically as the ones of a linear regressor**. Instead, we can interpret them as denoting the relative importance of the variable to the prediction." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Lasso Regression\n", "\n", "The ridge regressor will in general set coefficients exactly to zero only for very large values of $\\lambda$. An alternative model which has been shown to set coefficients more likely to zero is the **lasso regressor**. The main difference with ridge regression is in the regularization term. The new cost function of a lasso regressor is as follows:\n", "\n", "$$\\sum_{i=1}^m (y_i - \\beta_0 - \\sum_{j=1}^n \\beta_j x_{ij})^2 + \\lambda \\sum_{j=1}^n |\\beta_j| = RSS + \\lambda \\sum_{j=1}^n |\\beta_j|$$\n", "\n", "We basically replaced the norm of the coefficients with the absolute values (this is called an L1 norm), which has the effect to encourage the model to set values to zero.\n", "\n", "The figure below shows how the coefficient estimates change for different values of $\\lambda$:\n" ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs8AAAJPCAYAAACDwjlvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABvWklEQVR4nO3ddXjV5RvH8c+z7sHY6BhIx4jRjQgoKgImBqBiB2Gh/sQuUFQUAxUwAQkTEwUBpUuREFRi1BgxFozV8/tjMEFiZyy+52zv13VxbTvne86596Dw4dl9nttYawUAAAAgb15OFwAAAAB4CsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiH6cLyI/IyEgbHR1d7K+bkpKi4ODgYn9dT8V65R9rlj+sV/6wXvnDeuUP65U/rFf+OLleK1asSLDWRv33do8Kz9HR0Vq+fHmxv+68efPUtWvXYn9dT8V65R9rlj+sV/6wXvnDeuUP65U/rFf+OLlexpitp7qdtg0AAADARYRnAAAAwEWEZwAAAMBFHtXzDAAA4IkyMjIUFxen8PBwrV+/3ulyPEZxrFdAQICqVq0qX19fl64nPAMAABSxuLg4hYaGqly5cgoLC3O6HI+RlJSk0NDQInt+a6327dunuLg41axZ06XH0LYBAABQxNLS0lSuXDkZY5wuBccxxqhcuXJKS0tz+TGEZwAAgGJAcHZP+f19ITwDAACUQo899pheeOEFjRo1SnPmzMn34+fNm6eLLrqoCCorfJ999pnWrVtXKM9FeAYAACjFnnjiCZ133nlOl1GkCM8AAADIt6efflr16tXTeeedp40bN0qSBg8erBkzZkiSRo4cqYYNGyomJkb33ntv7v233nqrOnXqpLp16+qrr7466XmXLl2q9u3bq3nz5mrfvn3uc2dlZenee+9VkyZNFBMTo1dffVWStGLFCnXp0kWxsbHq1auXdu3aJUnq2rWrhg8frs6dO6tBgwZasWKF+vfvrzp16uh///tf7ut9+OGHat26tZo1a6ZbbrlFWVlZkqSQkBA9/PDDatq0qdq2bas9e/bo119/1RdffKH77rtPzZo1019//VWgNeS0DQAAgFJgxYoVmjp1qlatWqXMzEy1aNFCsbGxuffv379fn376qTZs2CBjjA4ePJh735YtW/Tzzz/rr7/+Urdu3bR58+YTnrt+/fqaP3++fHx8NGfOHD300EOaOXOmJkyYoH/++UerVq2Sj4+P9u/fr4yMDN111136/PPPFRUVpWnTpunhhx/WxIkTJUl+fn6aP3++XnnlFQ0YMEArV65URESEzjnnHA0fPlzx8fGaNm2afvnlF/n6+ur222/XRx99pIEDByolJUVt27bV008/rfvvv19vv/22/ve//6lPnz666KKLdNlllxV4HQnPAAAAxejxL//Qup2HCvU5G1YO06MXNzrjNQsWLFC/fv0UFBQkSerTp88J94eFhSkgIEBDhgzRhRdeeEI/8xVXXCEvLy/VqVNHtWrV0oYNG054bGJiogYNGqRNmzbJGKOMjAxJ0pw5c3TrrbfKxycnckZERGjt2rVau3atevToISlnd7pSpUq5z3WsriZNmqhBgwa599WqVUvbt2/XwoULtWLFCrVq1UqSdPjwYZUvX15STvA+VndsbKx++OEHV5fQZYRnAACAUuJMJ0v4+Pho6dKl+vHHHzV16lS99tpr+umnn075uP9+/cgjj6hbt2769NNPtWXLFnXt2lVSzjnK/73WWqtGjRpp0aJFp6zD399fkuTl5SU/P7/c2728vJSZmSlrrQYNGqRnn332pMf6+vrmvp63t7cyMzNP+/2eLcIzAABAMcprh7iodO7cWYMHD9bIkSOVmZmpL7/8Urfcckvu/cnJyUpNTVXv3r3Vtm1b1a5dO/e+6dOna9CgQfrnn3/0999/q169elq8eHHu/YmJiapSpYokafLkybm39+zZU2+++aa6du2a27ZRr1497d27V4sWLVK7du2UkZGhP//8U40aubYu3bt31yWXXKLhw4erfPny2r9/v5KSklSjRo3TPiY0NFRJSUmuLtUZ8YZBAACAUqBFixa68sor1axZM1166aXq1KnTCfcnJSXpoosuUkxMjLp06aKXXnop97569eqpS5cuuuCCC/Tmm28qICDghMfef//9evDBB9WhQ4fcN+9J0pAhQ1S9enXFxMSoadOm+vjjj+Xn56cZM2bogQceUNOmTdWsWTP9+uuvLn8fDRs21FNPPaWePXsqJiZGPXr0yH3D4elcddVVGjNmjJo3b17gNwwaa22BnqA4tWzZ0i5fvrzYX3fevHm5P35A3liv/GPN8of1yh/WK39Yr/xhvVyzfv16NWjQoMjHTReFwYMHF9qb7fKruNbr2O/P8YwxK6y1Lf97LTvPAAAAgIvoeQYAAMBpHd/DDHaeAQAAAJcRngEAAAAXEZ4BAAAAFxGeXZB93JErAAAAKL0Iz3nY+vtq/TFlonZt3uh0KQAAAMVi8ODBmjFjhqScs5rXrVuXr8eHhIQURVlugfCcB/+gYElWU0c9oFXffSVPOhcbAACgoN555x01bNiwyJ7fWqvs7Owie/7CRnjOQ8Vz6qjBZdcpumlz/TTxTc0eN0bph1OdLgsAACDf3n///dxpf/369VPNmjWVkZEhSTp06JCio6Nzvz6ma9euOjakLiQkRA8//LCaNm2qtm3bas+ePZKkf/75R+3atVOrVq30yCOPnPD4MWPGqFWrVoqJidGjjz4qSdqyZYsaNGig22+/XS1atND27ds1ePBgNW7cWE2aNDlhuqG7ITy7wCcgUH3ve0QdBwzSn4sW6qOHRihh+1anywIAAHDZH3/8oaefflo//fST1qxZo3fffVddu3bV7NmzJUlTp07VpZdeKl9f39M+R0pKitq2bas1a9aoc+fOevvttyVJQ4cO1W233aZly5apYsWKudd///332rRpk5YuXarVq1drxYoVmj9/viRp48aNGjhwoFatWqWEhATt2LFDa9eu1e+//67rr7++CFeiYBiS4iLj5aU2fS9X5Tr19NUro/XRwyPU46Y71bBTN6dLAwAAnuSbkdLu3wv3OSs2kS547oyX/PTTT7rssssUGRkpSYqIiNCQIUM0evRo9e3bV5MmTcoNw6fj5+eniy66SJIUGxurH374QZL0yy+/aObMmZKk6667Tg888ICknPD8/fffq3nz5pKk5ORkbdq0SdWrV1eNGjXUtm1bSVKtWrX0999/66677tKFF16onj17nuVCFD12nvOpWqMYXff8OFWsVUffvPaifnj7NWWmpztdFgAAwBlZa2WMOeG2Dh06aMuWLfr555+VlZWlxo0bn/E5fH19c5/D29tbmZmZuff997mPveaDDz6o1atXa/Xq1dq8ebNuvPFGSVJwcHDudWXLltWaNWvUtWtXjR8/XkOGDDnr77OosfN8FkLKRujyR57WwmkfaNnnM7T7r03qM+JBhZevmPeDAQBA6ZbHDnFR6d69u/r166fhw4erXLly2r9/vyIiIjRw4EANGDDgpF7l/OjQoYOmTp2qa6+9Vh999FHu7b169dIjjzyia665RiEhIdqxY8cp20ISEhLk5+enSy+9VOecc44GDx581rUUNXaez5KXt7c6Xz1Yfe9/RInxu/XByKHavHyJ02UBAACcUqNGjfTwww+rS5cuatq0qUaMGCFJuuaaa3TgwAENGDDgrJ/7lVde0fjx49WqVSslJibm3t6zZ09dffXVateunZo0aaLLLrtMSUlJJz1+x44d6tq1q5o1a6bBgwfr2WefPetaiho7zwV0TmwbXffcK/pi7LP6fMyTatXnUnW8aqC8vL2dLg0AAOAEgwYN0qBBg064beHChbrssstUpkyZ3NsmT56c+/m8efNyP09OTs79/LLLLtNll10mSapZs6YWLVqUe9/IkSNzPx86dKiGDh16Ui1r167N/bxp06ZauXJlvr8fJxCeC0F4+Yoa8MQYzXv/bS37YqZ2bdqo3nfdq9BykU6XBgAAcFp33XWXvvnmG3399ddOl+IxCM+FxMfPT+cNuUNV6jXU92+/ponDb1HrSy5Ty4v6ydc/wOnyAAAATvLqq686XYLHoee5kDXo1E2DXxivWs1b6ddPPtLE4bdq/YK5sh40OQcAAACnRnguAuHlK+ri4SN15WPPKSgsXF+/9qKmPHKfdv65wenSAAAAUACE5yJUtUFjXfvMSzr/9uE6tG+vpjxyr2aPG6NDCfFOlwYAAICzQM9zETNeXmrUpbvqtGmvZZ/P0PIvP9XmpYvUsk9/tepzqfwCAp0uEQAAAC5i57mY+AUEqsOV1+n6l99U7dbttHjmVE0cdov++PlH+qEBAECR27JlS54TBJE3wnMxC4ssrwvvvk8DnhyjsHJR+vb1l/TRwyMUt35t3g8GAABwwPFjuN1ZcdRJeHZI5boNNODJMep95z1KSTyoaY+N1Jdjn1Vi/G6nSwMAACVUVlaWbrrpJjVq1Eg9e/bU4cOHtXr1arVt21YxMTHq16+fDhw4IEnq2rWrHnroIXXp0kWvvPKKpk+frsaNG6tp06bq3Llz7vPdd999atWqlWJiYvTWW29Jyhms0rlzZ/Xr108NGzbUrbfequyjP2mfMmWKmjRposaNG+uBBx6QJH3yySe5Ew9feeUV1apVS5L0999/q2PHjpKkFStWqEuXLoqNjVWvXr20a9euU9ZZ1Oh5dpDx8lKDTt1Uu3U7Lf/qUy39fIb+WrFELS7sqzZ9r5B/UJDTJQIAgBJk06ZNmjJlit5++21dccUVmjlzpkaPHq1XX31VXbp00ahRo/T444/r5ZdfliQdPHhQP//8sySpSZMm+u6771SlShUdPHhQkvTuu+8qPDxcy5Yt05EjR9ShQwf17NlTkrR06VKtW7dONWrU0Pnnn69Zs2apffv2euCBB7RixQqVLVtWPXv21GeffabOnTtrzJgxkqQFCxaoXLly2rFjhxYtWqROnTopIyNDd911lz7//HNFRUVp2rRpevjhhzVx4sST6ixqhGc34OsfoHaXDlDjbj20cMr7Wvb5DP0xb446XHmdGnc7T15ejPoGAKCkeH7p89qwv3CPr60fUV8PtH4gz+tq1qypZs2aSZJiY2P1119/6eDBg+rSpYuknPHdl19+ee71V155Ze7nHTp00ODBg3XFFVeof//+kqTvv/9ev/32m2bMmCFJSkxM1KZNm+Tn56fWrVvn7iAPGDBACxculK+vr7p27aqoqChJ0jXXXKP58+erb9++Sk5OVlJSkrZv366rr75a8+fP16JFi3TllVdq48aNWrt2rXr06CEpZ8e7UqVKp6yzqBGe3UhoRKQuuGOEmve6SHPff0c/THhVq7/7Sl0H3qTqjWOcLg8AAHg4f3//3M+9vb1zd5BPJzg4OPfzN998U0uWLNHs2bPVrFkzrV69WtZavfrqq+rVq9cJj5s3b56MMSfcZoyRtfa0r9WuXTtNmjRJ9erVU6dOnTRx4kQtXbpU48aN07Zt29SoUSMtWrQozzqLGuHZDVWsXVdXPf68/ly8UPM/mqTpTz6k2q3aqvO1N6hsxcpOlwcAAArAlR3i4hIeHq6yZctqwYIF6tSpkz744IPcXej/+uuvv9SmTRu1adNGX375pbZv365evXrpjTfe0LnnnitfX1/9+eefqlKliqScto1//vlHNWrU0LRp03TzzTerTZs2Gjp0qBISElS2bFlNmTJFd911lySpc+fOGjVqlEaNGqXmzZtr7ty58vf3V3h4uOrVq6e9e/dq0aJFateunTIyMvTnn3+qUaNGxbZWxxCe3ZQxRvXaddI5sW20YvZnWvLZdE0ecbuaX3Cx2va/UgHBIU6XCAAASoD33ntPt956q1JTU1WrVi1NmjTplNfdd9992rRpk6y16t69u5o2baqYmBht2bJFLVq0kLVWUVFR+uyzzyTl7CSPHDlSv//+e+6bB728vPTss8+qW7dustaqd+/euuSSSyRJnTp10vbt29W5c2d5e3urWrVquW0ffn5+mjFjhu6++24lJiYqMzNTw4YNIzzjZD5+fmrT74qcfuipH2jF7M+07ucf1f6KaxXTvZe8vOmHBgAAeYuOjtbatf8ejXvvvffmfr548eKTrp83b94JX8+aNeuka4wxeuaZZ/TMM8+cdF9QUJCmTZt20u1XX321rr766pNuP+ecc05o6/j++++VlJSU+3WzZs00f/78POssahxV5yGCy5RVr1vv1rXPvqxy1arrx3df1/v336Uta1Y6XRoAAECpQXj2MBVqnqMrRj2rPiMeUmZGumY+M0qfPv+49u3Y7nRpAAAAknLOXv7qq6+cLqNIEJ49kDFGddq01+AX31Dna29Q3Po/9P59d+qnyW/pcHJS3k8AAACAs0LPswfz8fVVq4v7q1Hnc/XLJx9q9beztX7+XLW7/Go17dFb3j789gIAABQmdp5LgKDwMupx0526bvQ4la9VW3MnT9B7992pv1cuO+N5igAAAMgfwnMJElU9Wpc9/KT63j9KslafPv+4Zj4zSgnbtzpdGgAAQIlAeC5hjDE6J7a1Br3wmroOvEm7//pT7993l+a887pSDyU6XR4AAPAwQ4YM0bp16854zeDBg3NHdB9vy5Yt+vjjj4uqNEcQnksobx9fxV54iW54eYKa9rxAv/34rd65a4gWfDyZEA0AAFz2zjvvqGHDhmf1WMIzPE5QWLi633CbBo0Zr1otWmnpFzP19p03aN4H7yrl4AGnywMAAMVk9OjRGjdunCRp+PDhOvfccyVJP/74o6699lp9//33ateunVq0aKHLL79cycnJknKOnVu+fLkk6d1331XdunXVtWtX3XTTTbrzzjtzn3/+/Plq3769atWqlbsLPXLkSC1YsEDNmjXTSy+9VJzfbpEhPOdhw+5D+nxzupKPZDpdSoGUq1pNFw29X4NffF11WrfXytmf6507b9TcyROUvH+f0+UBAIAi1rlzZy1YsECStHz5ciUnJysjI0MLFy5UkyZN9NRTT2nOnDlauXKlWrZsqbFjx57w+J07d+rJJ5/U4sWL9cMPP2jDhg0n3L9r1y4tXLhQX331lUaOHClJeu6559SpUyetXr1aw4cPL55vtIhxllkeNu5O0qebM3RH4mHVLh/qdDkFVq5KNfW+8x61u/QqLfl0ulZ995XWzPlGTc7tqVZ9LlNYZJTTJQIAUKLtfuYZHVm/Ie8L88G/QX1VfOihM14TGxurFStWKCkpSf7+/mrRooWWL1+uBQsWqE+fPlq3bp06dOggSUpPT1e7du1OePzSpUvVpUsXRURESJIuv/xy/fnnn7n39+3bV15eXmrYsKH27NlTqN+fOyE85yEq1F+SFJ90pESE52PKVqqi828fpraXXqWln0/Xb3O+1W9zvlPjbuep9SWXK7x8BadLBAAAhcjX11fR0dGaNGmS2rdvr5iYGM2dO1d//fWXatasqR49emjKlCmnfXxex9/6+/u7fK0nIzznofzR8Lw36YjDlRSNMhUqqufNd6ltvyu19PMZWjv3e62d+4Madu6uNn0vV5mKlZwuEQCAEiWvHeKi1LlzZ73wwguaOHGimjRpohEjRig2NlZt27bVHXfcoc2bN6t27dpKTU1VXFyc6tatm/vY1q1ba/jw4Tpw4IBCQ0M1c+ZMNWnS5IyvFxoaqqSkkjX9mJ7nPESFBkgqueH5mLCo8jpvyO26cdw7atqjt9YvnKuJw2/RT5PfUlpKstPlAQCAQtCpUyft2rVL7dq1U4UKFRQQEKBOnTopKipKkydP1oABAxQTE6O2bdue1NNcpUoVPfTQQ2rTpo3OO+88NWzYUOHh4Wd8vZiYGPn4+Khp06Yl5g2D7DznISzARz5e0t7kkh2ejwktF6lzr79FrftersUzp2j1t7O1YeHP6jhgkJp06yHjxb+3AADwVN27d1dGRkbu18f3LJ977rlatmzZSY+ZN29e7udXX321br75ZmVmZqpfv37q2bOnJGny5MknPObYSR2+vr768ccfC/E7cB5JKA/GGIX7Ge09VDrC8zEhZSN03pA7dM2zLymiSlX9MOFVffTwPdr5Z+G+wQEAAHiOxx57TM2aNVPjxo1Vs2ZN9e3b1+mSih07zy4I9zelZuf5vyrUPEdXPva8Nvzys+Z/OFFTHrlXjbp0V6erByu4TFmnywMAAMXohRdecLoExxGeXRDub0p8z/OZGGPUoGNXndOyjZbMmqblX32mTUt/VbtLB6j5BRfL28fX6RIBAACKhWNtG8aYasaYucaY9caYP4wxQ52qJS+lPTwf4xcQqE5XD9bgF8eraoPG+vnDiXrvvru0ZfUKp0sDAAAoFk72PGdKusda20BSW0l3GGPObnB6ESvjb7Q/NV0ZWdlOl+IWylaqon4PPKp+Dzwqm52lmc8+qs/GPKWDe3Y7XRoAAECRcqxtw1q7S9Kuo58nGWPWS6oiaZ1TNZ1OuJ+RtdL+lHRVCAtwuhy3UatFK1Vv0kwrv/5ci2dO1eR7blOri/srK4IBKwAAoGRyi9M2jDHRkppLWuJwKacU7m8kSfGl7MQNV/j4+qr1JZfp+pffVJ3W7bV41jT9MXWSNi5aUKKnCwEAgH917dpVy5cvL5Tn+uyzz7Ru3b97qaNGjdKcOXMK5bkLg3E64BhjQiT9LOlpa+2sU9x/s6SbJalChQqxU6dOLeYKpbW7kvXCGqNhLfzVrDzvsTyT5F1x2vLzDzpyYJ9CKldT9Y7nKrBclNNlub3k5GSFhIQ4XYbHYL3yh/XKH9Yrf1gv14SHh6t27drKysqSt7e30+UUut69e+upp55SixYtXLr+TOtw66236vzzz1ffvn2Lbb02b96sxMTEE27r1q3bCmtty5MuttY69kuSr6TvJI1w5frY2FjrhOlf/2hrPPCVnbp0qyOv72l++vFHu/r72fa1G66yL151sf1x4pv2cFKS02W5tblz5zpdgkdhvfKH9cof1it/WC/XrFu3zlpr7aFDhxyt45JLLrEtWrSwDRs2tG+99Za11tpvvvnGNm/e3MbExNhzzz3XWmttUlKSHTx4sG3cuLFt0qSJnTFjhrXW2u+++862bdvWNm/e3F522WU26ejf7126dLHLli074zU1atSwjz/+uO3QoYOdMmWKnTBhgm3ZsqWNiYmx/fv3tykpKfaXX36xZcuWtdHR0bZp06Z29erVdtCgQXb69OnWWmvnzJljmzVrZhs3bmyvv/56m5aWlvvco0aNss2bN7eNGze269evz9e6HPv9OZ6k5fYUedTJ0zaMpHclrbfWjnWqDleE+eW0bXDihmuMl5ea9uitG16ZoJjzLtDq72Zr4rCb9duP3yo7O8vp8gAAKLUmTpyoFStWaPny5Ro3bpz27Nmjm266STNnztSaNWs0ffp0SdKTTz6p8PBw/f777/rtt9907rnnKiEhQU899ZTmzJmjlStXqmXLlho79sQIl9c1AQEBWrhwoa666ir1799fy5Yt05o1a9SgQQO9++67at++vfr06aMxY8Zo9erVqlWrVu5j09LSNHjwYE2bNk2///67MjMz9cYbb+TeHxkZqZUrV+q2224r0vOonexB6CDpOkm/G2NWH73tIWvt186VdGp+3kbhgb6E53wKDAnVeTfeppjuvfTTpLf0w4TX9Nucb3Xu9beoct0GTpcHAIAjFnzypxK2Jxfqc0ZWC1GnK+rmed24ceP06aefSpK2b9+uCRMmqHPnzqpZs6YkKSIiQpI0Z84cHd8qW7ZsWX311Vdat26dOnToIElKT09Xu3btTnj+xYsXn/GaK6+8MvfztWvX6n//+58OHjyo5ORk9erV64y1b9y4UTVr1lTdujnf56BBgzR+/HgNGzZMktS/f39JUmxsrGbNOqkTuNA4edrGQknGqdfPr6hQ/1I7ZbCgykfX0pWPPacNv84/OqXwPjXs1E2drrleIWUjnC4PAIBSYd68eZozZ44WLVqkoKAgde3aVU2bNtXGjRtPutZaq5wmgRNv69Gjh6ZMmXLa18jrmuDg4NzPBw8erM8++0xNmzbV5MmTNW/evDPWb/N4n56/v78kydvbW5mZmWe8tiB495uLokL8OW2jAIwxatChi86Jba0ln36iFV99qk3LFqvdpVepRe8+TCkEAJQaruwQF4XExESVLVtWQUFB2rBhgxYvXqwjR47o559/1j///KOaNWtq//79ioiIUM+ePfXaa6/p5ZdfliQdOHBAbdu21R133KHNmzerdu3aSk1NVVxcXO5OsCSXrjkmKSlJlSpVUkZGhj766CNVqVJFkhQaGqqkpKSTrq9fv762bNmS+9wffPCBunTpUjSLdQZucVSdJ2DnuXD4BQSq04BBGvTi66rWsLHmfzRJ7917p/5hSiEAAEXq/PPPV2ZmpmJiYvTII4+obdu2ioqK0oQJE9S/f381bdo0t63if//7nw4cOKDGjRuradOmmjt3rqKiojR58mQNGDBAMTExatu2rTZs2HDCa7hyzTFPPvmk2rRpox49eqh+/fq5t1911VUaM2aMmjdvrr///jv39oCAAE2aNEmXX365mjRpIi8vL916661FsFJn5vhRdfnRsmVLW1hnCObHvHnztCC5vKYs3aZ1T5xf7K/vaebNm6euXbu6dO3fq5Zp3ntv68CunTqnZRt1vW6IylSsVLQFuqH8rBlYr/xivfKH9cof1ss169evV4MGDZSUlKTQ0FCny/EYxbVex35/jmeMOeVRdew8uygq1F+p6VlKOVJ0PTSlUa3mrTTohfHqdPVgbVv7mybfe7sWTv1AGWlpTpcGAABwEsKzi8qH5jShc+JG4fP2yZlSeMNLb6pu245a8uk0TRxxqzb88jNTCgEAgFshPLso6lh4pu+5yIRElFPvO+/RVY+PVlBouGaPG6NPHn9Q8Vv+zvvBAAAAxYDw7KJj4ZkTN4pelfoNdc2zY9XjpjuVELdNH44cpjnvvqHDySe/8xYAAKA4cVSdi6JCjrVt0ItbHLy8vBVz3vmq07aDfv3kI635/mttXLRAHa+8Vk2695KXV9HPuQcAAPgvdp5dVDbIT95ehraNYhYYEqruN9yq655/RZHVqmvOO6/rwweHK27DH06XBgAASiHCs4u8vIwiQ/x4w6BDomrU1BWjntWFQ+/X4aRDmvboA/r61ReUtD/B6dIAAEApQnjOh/KhAYRnBxljVL99Z90w9k216Xel/ly8UJOG3aqln89QZkaG0+UBAFBqREdHKyHhzBtYrlzjiQjP+cCUQffgGxCgjlddp8EvvqHqTZpqwceT9f59d+jvVcucLg0AADgoKyuryF+D8JwPUSH+nLbhRspUrKS+9z2i/g8+Lsno0+ce16fPP64Du3c6XRoAAG5ny5Ytql+/voYMGaLGjRvrmmuu0Zw5c9ShQwfVqVNHS5cu1f79+9W3b9/c0dq//fabJGnfvn3q2bOnmjdvrltuueWEOQwffvihWrdurWbNmumWW25xKcA+8sgjeuWVV3K/fvjhhzVu3DhJ0pgxY9SqVSvFxMTo6aefzr2mb9++io2NVaNGjTRhwoTc20NCQjRq1Ci1adNGixYtKvA65YXTNvIhKtRf+1LSlZVt5e1lnC4HR9VsFqvqL7ymld98qUUzpui9e25X7EX91KbfFfILCHS6PAAATjB38gTFby3cGQbla9RSt8E353nd5s2bNX36dE2YMEGtWrXSxx9/rIULF+qLL77QM888o2rVqql58+b67LPP9NNPP2ngwIFavXq1Hn/8cXXs2FGjRo3S7Nmzc8Pr+vXrNW3aNP3yyy/y9fXV7bffro8++kgDBw48Yx033nij+vfvr6FDhyo7O1tTp07V0qVL9f3332vTpk1aunSprLXq3bu35s+fr86dO2vixImKiIjQ4cOH1apVK1166aUqV66cUlJS1LhxYz3xxBOFspZ5ITznQ1Sov7KyrQ6kpivy6NF1cA/ePr5qdXF/NejYVQs+mqSln03Xuvk/qfO1N6h++84yhn/sAABQs2ZNNWnSRJLUqFEjde/eXcYYNWnSRFu2bNHWrVs1c+ZMSdK5556rffv2KTExUfPnz9esWbMkSRdeeKHKli0rSfrxxx+1YsUKtWrVSpJ0+PBhlS9fPs86oqOjVa5cOa1atUp79uxR8+bNVa5cOX3//ff6/vvv1bx5c0nSoUOHtGnTJnXu3Fnjxo3Tp59+Kknavn27Nm3apHLlysnb21uXXnpp4S7UGRCe8yHquBHdhGf3FFI2QhfceY9ievTWT5Pe1NfjxmjN91/r3OtvUfnoWk6XBwCASzvERcXf/9/84uXllfu1l5eXMjMz5eNzcjQ8tgF1qo0oa60GDRqkZ599Nt+1DBkyRJMnT9bu3bt1ww035D7fgw8+qFtuuUWSlJSUpNDQUM2bN09z5szRokWLFBQUpK5duyotLWf2RkBAgLy9i2/+Az3P+VD+uPAM91alXgNd88xY9bj5Tu3fsT1nSuE7r+tw0iGnSwMAwG117txZH330kSRp3rx5ioyMVFhY2Am3f/PNNzpw4IAkqXv37poxY4bi4+MlSfv379fWrVtdeq1+/frp22+/1bJly9SrVy9JUq9evTRx4kQlJydLknbu3Kn4+HglJiaqbNmyCgoK0oYNG7R48eJC/b7zg53nfIgiPHsULy9vxXQ/X3XbdNSv0z/S6u9na+OiBepw5XWKOY8phQAA/Ndjjz2m66+/XjExMQoKCtJ7770nSXr00Uc1YMAAtWjRQl26dFH16tUlSQ0bNtRTTz2lnj17Kjs7W76+vho/frxq1KiR52v5+fmpW7duKlOmTO7Occ+ePbV+/Xq1a9dOkhQYGKgpU6bo/PPP15tvvqmYmBjVq1dPbdu2LaIVyBvhOR+OtWrEE549SkBIiM69/hY16d5Lcye9pR/ffV2/zflG515/i6o2aOx0eQAAFIvo6GitXbs29+vJkyef8r7PP//8pMce60c+5qWXXsr9/Morr9SVV1550mO2bNlyxnqys7O1ePFiTZ8+/YTbhw4dqqFDh0r6t21DytnxPpVju9TFhbaNfAj291Gwnzc7zx4qqnq0Lh/1jC4aNlJpycma9thIzR43himFAAAUs3Xr1ql27drq3r276tSp43Q5+cLOcz4xKMWzGWNUr11H1WreUku/mKFlX8zUX8uXqE3/KxV7YV/5+Po6XSIAACXGvn371L1795Nu//HHH/X334V7XF9xITznU1Sov/YmpTldBgrINyBAHa64Vo27nqd577+jhVPe09qfvlfXQTfpnNjWTpcHAECJUK5cOa1evdrpMgoVbRv5VD40gLaNEiS8fEVdcu//dOlDT8jL21ufjX5Cs557TPt37nC6NAAA4IYIz/kUFerPGwZLoOimLTRwzGvqct2N2rHhD7137x2a//FkpR9Odbo0AADgRgjP+RQV6q+ktEylZeQ9tx2exdvHRy0v6qcbXp6gBh27atnnMzRp+K1av2CurLVOlwcAANwA4TmfokI467mkCy5TVuffPkxXP/WiQiLK6evXXtTURx/Qnn/+cro0AACKXO/evXXw4MEzXjNq1CjNmTOneApyM4TnfModlMKJGyVepTr1dPVTL6rnLXfrwK4d+vDBYZrzznimFAIASiRrrbKzs/X111+rTJkyZ7z2iSee0HnnnVc8hbkZwnM+MWWwdDFeXmpybk/d8PJbanH+xfrtx+80cejNWv3dbGVn0boDAPAsY8eOVePGjdW4cWO9/PLL2rJlixo0aKDbb79dLVq00Pbt2xUdHa2EhJwZCE8++aTq16+vHj16aMCAAXrhhRckSYMHD9aMGTMk5QxYefTRR9WiRQs1adJEGzZscOz7Kw6E53wqT3gulQKCQ9Rt8M0aOPpVla9ZSz9OfEMfPjhMcevW5v1gAADcwIoVKzRp0iQtWbJEixcv1ttvv60DBw5o48aNGjhwoFatWnXCWO3ly5dr5syZWrVqlWbNmqXly5ef9rkjIyO1cuVK3XbbbbkBu6TinOd8igj2kzGM6C6tIqvV0GX/e1qblv6qee+/o2mPj1S99p3V5dobFFou0unyAAAe4OCXfyl9Z0qhPqdf5WCVuficM16zcOFC9evXT8HBwZKk/v37a8GCBapRo4batm17yusvueQSBQYGSpIuvvji0z53//79JUmxsbGaNWvW2X4bHoHwnE8+3l4qF+zHznMpZoxR3TYdVLNZrJZ9MVPLPp+pv1YsUdt+R6cU+vk5XSIAACc53clRx8K0q9efir9/zk/mvb29lZmZmf/iPAjh+SxEhvgTniFf/wC1v/waNepynn7+4F0tnPq+1s79QV0HDVGtFq1ljHG6RACAG8prh7iodO7cWYMHD9bIkSNlrdWnn36qDz74QBMmTDjl9R07dtQtt9yiBx98UJmZmZo9e7ZuuummYq7a/RCez0JUqD+nbSBXePkK6nPPQ9ry2yrNnTxBn41+UtHNYtVt0M2KqFzF6fIAAJAktWjRQoMHD1br1q0lSUOGDFHZsmVPe32rVq3Up08fNW3aVDVq1FDLli0VHh5eXOW6LcLzWYgK9dffewu3VwmeLzqmuQaOflWrv/tKv07/WO/de4diL7xEbftfKb/AIKfLAwBAI0aM0IgRI064be3aE9/8vmXLltzP7733Xj322GNKTU1V586ddc8990iSJk+efMrrW7ZsqXnz5hV22W6F8HwWyocGaG/SEVlr+dE8TuDt46PYC/uqfocuWjDlPS37YqbWzf9Jna+5Xg06dpXx4oAbAIDnuPnmm7Vu3TqlpaVp0KBBatGihdMlOY7wfBaiQv2VnpWtxMMZKhPEm8NwsuAyZXX+bcPUtMcF+mnim/pm/Fit/uFrdb/+VlWoVdvp8gAAcMnHH3/sdAluh22ws8CgFLiqUu2cKYW9bh2qxD279eFDw/XDhNeUeijR6dIAAMBZIDyfhagQwjNcZ7y81LhbD93w8luK7d1Ha+f9oInDbtaqb79kSiEAlCL5OfoNxSe/vy+E57OQu/PMiRvIB/+gYHUdeJMGjn5VFWrW1k+T3sqZUrjhD6dLAwAUsYCAAO3bt48A7Wastdq3b58CAgJcfgw9z2eBtg0URLmq1XXZ/57SpiW/aN7772raow8oom5DtWwao5CyEU6XBwAoAlWrVlVcXJwOHjyYr6BW2qWlpRX5egUEBKhq1aouX094PgthAT7y9/EiPOOsGWNUt21H1WzWUks+m66ln8/QpOG3qN1lV6v5+RfL24f/NQGgJPH19VXNmjU1b948NW/e3OlyPIY7rhd/Q58FY4yiQv0VT3hGAfkGBKjjVdcpOTBEqevX6OcP3tXvP32v7jfcquqNmzpdHgAA+A96ns9SVCgjulF4AsLLqt8Dj6rv/Y8oKyNd0598WF++/LwOJex1ujQAAHAcdp7PUlSIv7buS3W6DJQgxhidE9tGNZo017IvZ2rpp9P198qlatvvSsVe1E8+vr5OlwgAQKnHznMestMyFb7VnPTu2KhQf07bQJHw8fNTu0sHaPDYNxQd00ILp76v9++7Q/+sXuF0aQAAlHqE5zykrt6rqPVeSl0Vf8LtUaH+2p+SroysbIcqQ0kXXr6CLrn3YV364OOSjGY9+6g+f+EpJcbvcbo0AABKLcJzHoJbV9ThMlYHv/hbWYf+3WkuH5pzbMq+5HSnSkMpEd0sVgPHvKaOAwZpy2+rNPme27V41jRlZmQ4XRoAAKUO4TkPxssovkm2lJWtA7M257ZvHDvrOT4pzcnyUEr4+PqqTd/Ldf3YN1WreUv9Mu0DvXfv7bRyAABQzAjPLsgIlsJ6RSttw36lrsxp32BQCpwQFhmli0c8qEsfflLGeNHKAQBAMSM8uyikfWX5RYfp4Jc57RuEZzgpOqY5rRwAADiA8Owi42VU9rK6ue0b5YJzjg0jPMMp/7ZyvEErBwAAxYTwnA++kYG57RtZv+1TeKAvx9XBcWGR5WnlAACgmBCe8+n49o26QUwZhPuglQMAgKJHeM6n49s3bj7srfhDnLYB90ErBwAARYvwfBaOtW80SLWqv49dPbifU7dyPK1De+PzfjAAADgtwvNZCmlfWXvCfHRdipcyD7L7DPd0YivHSk0acRutHAAAFADh+SwZL6N1zSLkIylh1qbc4SmAu6GVAwCAwkN4LoCQSsF6S0eU+efB3OEpgLuilQMAgIIjPBdAVEiAZihdRyoG6eCXfykrkZM34P5o5QAA4OwRngsgKtRfVtJfrSKlLKsDtG/AQ9DKAQDA2SE8F8CxEd07lJ0zPGXjAaWu4Efg8By0cgAAkD+E5wIoE+grHy+jvUlH/h2e8hXtG/A8tHIAAOAawnMBeHkZRYbkTBk0XkYRl9WlfQMe61StHO/fdwetHAAAHIfwXEDlw/y1Nzlnp9nn6PCUtI0HlPjNFmWnZTpcHZB/ua0cDz0hydDKAQDAcQjPBRQV4q/4Q/+2aYS0r6yg5uWVPD9Ou0cv06G525V9JMvBCoGzE920xUmtHEs+/YRWDgBAqUZ4LqCo0H93nqWc4SkRV9ZT+Tubya96mA59t0W7Ry9V0vw4ZacTouFZ/tvKsXDq+7RyAABKNcJzAUWF+mtf8hFlZZ/Y4+xXNVSRgxsp6vam8q0cosSv/9Hu0cuUtHCHbEa2Q9UCZ4dWDgAAchCeCygq1F/ZVtqfkn7K+/2rhynqxiaKujVGvhWClPjV39o1ZpmSF+2UzSREw7PQygEAKO0IzwUUFZJz1vPepDMfT+cfHa6om2IUeVMT+UQE6ODnf2n3mOVKXrKLEA2PcnwrR83msbRyAABKFcJzAZUPOxqek1072zngnDKKuiVGkTc2lneYnw5+ulm7X1yulOW7ZbM43g6eIyyyvPqMeIhWDgBAqUJ4LqCokABJUvyhNJcfY4xRQJ2yirq9qcpd30heQb46MGOT9oxdrpRV8bLZhGh4jtxWjqsG0soBACjxCM8FFBnqJ8n1nefjGWMUWC9C5e9spnLXNZTx89aBaRu156UVSl2zlxANj+Hj66s2/a6glQMAUOIRngsoyM9HIf4+efY8n4kxRoGNyqn8Xc0VcU0Dycto/5QN2vPKSqX+nkCIhseglQMAUNIRngtBVKh/gcLzMcbLKKhJpCoMbaGIAfWkbKv9H61X/KurdHjdPkZ+w2Oc0MqxhlYOAEDJQXguBFEhhROejzFeRkFNy6vCsFiVvaKustOztO/9dYofv1qHN+4nRMMj5LZyvEQrBwCg5CA8F4KoMP+z6nnOi/E2Cm5RQRVHxKrspXWUnZyhfZP+0N431iht0wFCNDzCia0copUDAODRCM+FICrEX3sPFX54PsZ4eym4VUVVvLelyvSrrazEI0p4d632TvhNR/4+WGSvCxSmnFaO8Se0ciyeNY1WDgCARyE8F4KoUH8lHcnU4fSsIn0d4+OlkDaVVPG+VirT5xxlJqRp74Tftfft33Rk66EifW2gMPy3leOXaR/QygEA8CiE50IQFZozKCWhCFo3TsX4eCmkfWVVur+lwi+spYw9qdr7xhrtnbhW6duTiqUGoCA4lQMA4KkIz4XgWHiOL8Q3DbrC+HortFMVVby/lcIviFZGXJLix69WwuQ/lL4juVhrAc7GqQas0MoBAHBnhOdCEBVydER3MYfnY7z8vBXapZoqPtBKYb1q6MjWQ4p/dZUSPlinjN0pjtQEuOq/A1Zo5QAAuDPCcyEoH3Y0PBdT28bpePn7KKxbdVV6oJXCzquuI5sPas/LK7Xv4/XKiE91tDYgL7RyAAA8AeG5EJQL9peXkfYeSnO6FEmSV4CPws6roUoPtFJot2pK23BAe15aocTvtjhdGpAnWjkAAO6M8FwIvL2MIoKL5qzngvAK8lV4r2hVfKCVAhtHKunn7coqwiP1gMJCKwcAwF0RngtJYY3oLgrewb4K6xUtZUspK/gRODzH6Vo5jiQlOl0aAKCUIjwXEncOz5LkGxkov5rhSlm+WzabyYTwLCe0cqxZqT+mTqKVAwDgCMJzIYkKce/wLEnBrSsqa1+ajvzDrh08z/EDVsKr16SVAwDgCMJzISkfltPzbK377uoGNS4nE+Ct1GW7nS4FOGthkeV1Tq9LOJUDAOAIwnMhiQrxV0aW1cFU9/0xsvH1VlCz8kpdm6BsN64TcMV/WzkmjbhNSz79hFYOAECRIjwXkmNTBt3txI3/Cm5VUcq0Sl291+lSgAI7vpWjZvNYLZz6vt6/7w5toZUDAFBECM+FJDc8u3nfs1+VEPlWCVHKst1u3WIC5EfuqRwPPi5Jmvnso/rixWd0KIFWDgBA4SI8FxJPCc+SFNyqgjJ2pShjR7LTpQCFKrpZrAaOGa+OVw3UP6tXaNJwWjkAAIWL8FxIPCk8BzUtL+PrpRTeOIgS6IRWjma0cgAAChfhuZCE+vsowNfL7XueJckr0EeBjSOVunqvstOznC4HKBJhkeXV5x5aOQAAhYvwXEiMMYoK9Vf8oTSnS3FJcKuKskeydPj3BKdLAYoUrRwAgMJEeC5EUSH+HrHzLEl+NcPkExlI6wZKhdxWjrG0cgAACobwXIjcfUT38YwxCm5VQelbDiljb6rT5QDFIizq1K0cyfv3OVwZAMBTEJ4LkSeFZ0kKalFB8pJSlu1xuhSgWP23lWPW84/TxgEAcAnhuRBFhQToQGqG0jOznS7FJd6hfgqoX06pK/fIekjNQGE51spx4dD7tXfL3/pl2gdOlwQA8ACE50JUPiznuLp9KZ6z+xzcuqKykzOUtmG/06UAjqjdso2a9uit5V/O0tbfVjtdDgDAzRGeC1FUSE54jj/kOeE5oE5ZeYf58cZBlGpdrrtBEZWr6tvXx+pw0iGnywEAuDHCcx7SD2cqYYN1aZS1Jw1KOcZ4GwXFVlDanweUedBz6gYKk69/gHrffZ9SDx3S92+9yuh6AMBpEZ7z8OeyPdqz2mr+lD/z/As1Nzx7yHF1xwS3rCBZKXUFbxxE6VWh5jnqNGCgNi9bpN9/+t7pcgAAborwnIdGnSqrXH1p7fwdWjD1zAG6XIifJM/aeZYkn3KB8q9dRinLdstms+OG0iv2wr6q3rip5r43Qft37nC6HACAGyI858EYowpNjZqdV02//7xDCz7ZdNoA7e/jrTJBvh4XniUpuFUFZR08oiN/HXS6FMAxxstL598xXD6+fvr61THKyuT4OgDAiQjPLjDGqP2ltdW0ezX9PjdOC88QoMt72FnPxwQ2jJQJ9OGNgyj1QiMi1fOWu7Tn78369ZOPnC4HAOBmCM8uMsaow2W11fTcavptbpwWTj91gI4K9Vd8UpoDFRaM8fVScPPyOvzHPmWlsNuG0q1O6/Zq0r2Xln4xU9v/+M3pcgAAboTwnA/GGHW4vLZizq2q336K0y8zNp8UoKNC/D3uDYPHBLWqKGVZpa6Kd7oUwHHdBt6kshUr6+vxY5WWnOx0OQAAN0F4zidjjDpeXkdNulXVmh+365eZJwboYyO6PfGoK79KwfKtFprzxkEPrB8oTL4BAep9171KPXhAP7z9Gv9PAAAkEZ7PijFGna6ooyZdq2rNnO36ddZfuX+xRoX6Ky0jW8lHMh2u8uwEt6ygzD2pSt+e5HQpgOMqnlNH7a+4Vn8uXqg/fv7R6XIAAG6A8HyWjDHqdGUdNe5SRat/2KZFn+YEaE8clHK8oKZRMr5eSl3Gmc+AJLXq01/VGjbRT5Pe0oHdO50uBwDgMEfDszHmfGPMRmPMZmPMSCdrORvGGHW+qq4ad66iVd9v0+LP/vp3RLeHhmevAB8FxkQpdU28sj109xwoTF5e3jr/jhHy8vbSN6++qKxM/r8AgNLMsfBsjPGWNF7SBZIaShpgjGnoVD1n61iAbtS5ilZ+t02JSxMk67k7z5IU3LqibHq2Dv+W4HQpgFsIi4xSj5vu0q7NG7V41lSnywEAOMjJnefWkjZba/+21qZLmirpEgfrOWvGy6jLVXXVsFNlbVmwSx3TfBR/yPOOqzvGr3qofKICOfMZOE69dh3VqOt5WjLrE8WtX+t0OQAAhxin3kFujLlM0vnW2iFHv75OUhtr7Z2ne0zLli3t8uXLi6vEXPPmzVPXrl3zvM5mW837eIPWLdylAK+DMsou+uKKSA2/INULCFVadpbTpZQIef1fxjkOHiT7sHJ+x4zTlQBAiZeamaxmL1/uyGsbY1ZYa1v+93YfJ4o56lR/85yUIYwxN0u6WZIqVKigefPmFXFZJ0tOTnb5df3Lxat96Ff6J6uxDnsFFm1hRWivvBScXUneZ/XDiZIZLLJlZSVlm+M/P/pRVtmSrDnuc1nZMy2DPbZKRkbK/XXC10f/jyh5q+m5jDLllZ4q/skDuC+vLMkny0pWyvYy/CHqwdKz0xzJfmfiZHiOk1TtuK+rSjrprezW2gmSJkg5O8+u7AAXNld3niVJa6ZJwZ+r+S33SJWaFmld7ipf6+WAI1lHdDDtoA4eOajEI4k6eOT0nx/7eCj9kLLtqX+S4GW8FO4XrnD/cJXxL6My/mX+/TygzClvD/MLk7+3v4zJ+RPd3dfM3bBe+cN65Q/rlT/utF6pK1Zoz9PPKG3dOgW2aKEKDz2kwMaNnC7rBO60Xp7AHdfLyfC8TFIdY0xNSTskXSXpagfrKRzbfpX8w6QKjZ2upMSz1iopI0mJaf+G3uN/nS4MH848fNrnDPQJzA244f7hqhhc8cQwfIrPQ/1C5WU49REAnJKxc6fiX3hBh77+Rj4VK6ryiy8orHfv3A0KoDA5Fp6ttZnGmDslfSfJW9JEa+0fTtVTaLYukqq1lry8na7Eo2RkZeQZfP8bghOPJCrLnron28icEIIrBFVQ3bJ1TxuAj+0S+3v7F/N3DgA4W9mHD2vfO+9q3zvvSMYo8o47VG7IjfIK9Ny2Sbg/J3eeZa39WtLXTtZQqFL2SQkbpZgrnK7EMdZaHc4+rLikuBNCb+6vtFOH4dTM1NM+p7+3/wlht3aZ2mcMwWUDyrIbDAAlmLVWh77+WvFjXlDm7t0K691b5e+9R76VKztdGkoBR8NzibN9cc7HGu2draOQZGRn5O7wnnYX+D+9w4npicrMzpS2n/o5w/zCcsNuZGCkapepfWIADvj382OBONCHHQQAQI7Da//Qnmee0eGVK+XfsIGqvDBGQS1POhABKDKE58K09VfJ20+q3MLpSgokPStdb/32liatnaSM7IxTXuPr5XvCbm/N8Jq5n++L26cWDVuc9Ia5ML8w+XjxnxwAIP+y09K057nndHDaJ/KOiFClp55UeL9+Mt60SaJ4kWQK07ZFUpVYyTfA6UrO2qr4VXr010f1T+I/Oj/6fDUv3zw3BB+/IxzoE3jaN2LMS5qnrnW6FmvdAICSKz1uh3bcfbfS1q1TxKBBirzrTnmHhDhdFkopwnNhSU+Rdq2R2t/tdCVnJSUjRS+veFnTNk5TxeCKeuO8N9SxSkenywIAlHLJC3/Rznvukc3OVtU3Xldot25Ol4RSjvBcWOKWSdmZHtnvPD9uvp5c/KT2pOzR1Q2u1t3N71aQb5DTZQEASjGbna19EyZo7yvj5F+njqq+Ok5+NWo4XRZAeC40WxdJMjnH1HmI/Wn79fzS5/X1P1/rnPBz9P4F76tZ+WZOlwUAKOWykpK0c+SDSv7xR4VddJEqPfG4vILY1IF7IDwXlm2/ShUbSwHhTleSJ2utZv8zW6OXjlZSRpJua3qbhjQZIj9vP6dLAwCUcml//qkdd92t9B07VOGhh1T2umsZdgK3QnguDFkZUtxyqfl1TleSp13Ju/Tk4ie1YMcCxUTG6LH2j6lO2TpOlwUAgA598412Pvw/eQUHqcZ7kxUUG+t0ScBJCM+FYdcaKSNVqtHO6UpOK9tma9rGaXp5xcuysnqg1QMaUH+AvJmECABwmM3MVPwLL2r/5MkKbN5cVV5+Wb4VyjtdFnBKhOfCsPXXnI/V3ePNglnZWdqatFUb92/Uhv0btHH/Rq3fv1770/arfeX2GtVulKqEVHG6TAAAlJmQoB3DRyh12TKVveYaVXjgfhk/2gjhvgjPhWHbIimilhRaodhfOjUjVZsObjohKP954E+lZaVJkny8fFS7TG11qtJJHat2VK8avegdAwC4hcOrVytu6DBlJSaq8ujnFd6nj9MlAXkiPBdUdnZOeK53YZG/VMLhBG3YvyE3JG/Yv0FbD22VlZUkhfqFqn5EfV1W9zLVj6iv+hH1VSu8lny9fYu8NgAAXGWt1cGpU7X7mWflW7GioqdOUUD9+k6XBbiE8FxQCRulwwcKtd/5VG0XG/Zv0L60fbnXVA6urPoR9dW7Zm/Vi6in+hH1VSm4ErvKAAC3lp2Wpt2PPa7Ezz5TcJfOqjJ6tLzD3f+kKuAYwnNB5fY7n114drXtomOVjqofUV/1IuqpXkQ9hfmFFdZ3AABAsUiPi1Pc3XfryLr1irzjDkXecbuMl5fTZQH5QnguqG2LpJAKOT3PeaDtAgBQWiUvWKid994ra62qvvmGQrt2dbok4KwQngtq66KcXefj2iWysrO0LWnbSUH5+LaLKiFVVK9svdy2i3oR9VQ5uDJtFwCAEuWEMdt16+aM2a5e3emygLNGeC6Ig9ukQ3FSjbtzbzqceVhXz75amw9ulnTqtou6Zesq3J/+LgBAyZaVlKSdD4xU8k8/5YzZfvIJeQUGOl0WUCCE54LYtjjn43H9zpP/mKzNBzfrvpb3qU2lNrRdAABKJcZso6QiPBfE1l8l/zCpQiNJ0u6U3Zq0dpJ61OihgY0GOlwcAADOOPT11zljtkOCGbONEofwXBDbFknV2khHR1yPWzlOWdlZGhE7wuHCAAAofjYjI2fM9nvvKbBFC1V5+SX5lmfMNkoWwvPZSt0v7d0gNblckvT73t/15d9fakiTIaoaWtXh4gAAKF4njNm+9lpVuP8+xmyjRCI8n61ti3I+1mgva62eX/a8ygWU05AmQ5ytCwCAYnZ49WrF3T1UWYcOMWYbJR7h+Wxt/VXy9pMqt9C3W77Vmr1r9ET7JxTsG+x0ZQAAFAtrrQJ//llbZsxkzDZKDcb6nK1ti6QqsUoz0tgVY9UgooH6nMO/tAEApUN2Wpp2PfiQwqZMVXD7dqo5YzrBGaUC4flspKdIu9ZI1dtp8h+TtTtlt+5rdZ+8j75xEACAkiw9Lk5brr5aiZ99puQLL1S1N96QdzjzC1A60LZxNuKWSdmZ2lOxoSauGaMeNXqoVcVWTlcFAECRS16wUDvuvVc6OmZ7hSTjxV4cSg/+az8bWxdJMhq3b6kyszM5mg4AUOLZ7GwlvPGGtt98s3wrVlTNGdMV2rWr02UBxY6d57Ox7VetrVRfX2z5Vjc2vpGj6QAAJVrWoUM5Y7bnzlXYxRer0hOPM2YbpRbhOb+yMmTjluv56Noq58PRdACAki3tzz8Vd9ddytixUxUeflhlr72GMdso1WjbyK9da/Sdn7Q686DubnG3QvxCnK4IAIAikTh7trZceZWyU1NV473JirjuWoIzSj12nvMp7Z/5GhtRRvXDz9El51zidDkAABQ6xmwDp0d4zqf3t87WLh8fPd32YY6mAwCUOJkJCdoxbLhSly9nzDZwCoTnfIhP3q13Mvaoh18UR9MBAEqc1FWrtGPoMMZsA2dAeM6HVxY/pUwjDT/nUqdLAQCg0FhrdWDKFO159jnGbAN5IDy76I+EP/TFjp91Q+IhVatzgdPlAABQKLLT0rT70ceU+PnnCu7SWVVGj2ZaIHAGhGcXWGv1/LLnFWF8dVNmgBRRy+mSAAAosPS4OMXddbeObNigyDvvVOTttzEtEMgD4dkFq1JXaVXCKj2WYhVSrZ3EMT0AAA+XvGCBdtx7X86Y7TdeZ1og4CL+eZmHtMw0fX7gc9UPr6W+8dulGu2dLgkAgLNms7O19/XXtf3mWxizDZwFwnMeZm2apf1Z+3V/VAd5S1L1dk6XBADAWck6dEhxd9yphHGvKuyiixQ9dYr8qld3uizAo9C2kYfL612uff/sU6v9f0n+YVKFRk6XBABAvjFmGygc7DznwdfLV02CmkjbFknV2kgMRgEAeBjGbAOFh51nF/hkHJL2bpBirnC6FAAAXJYzZvsF7X/vfQXGxqrKS2MZsw0UEOHZBeGJ63M+qc6bBQEAniFz717tGD4iZ8z2ddfljNn29XW6LMDjEZ5dUObgOsnbX6rSwulSAADIU+rKVdoxjDHbQFEgPLsgPPEPqUqs5OPvdCkAAJwWY7aBokd4zkt6ikKS/5aa8a92AID7Ysw2UDwIz3mJWyYvm0W/MwDAbTFmGyg+hOe8ZKQpObiGQqq1droSAABOcvyY7WpvvqGQLl2cLgko0QjPeal3vpa3ClDXgDCnKwEAIJfNzlbCm28q4dXX5F+3rqq+Oo5pgUAxIDwDAOBhsg4d0s4HRip57lyF9blYlR5/XF6BgU6XBZQKLoVnY0wHSauttSnGmGsltZD0irV2a5FWBwAATnDCmO3//U9lr7maaYFAMXL13QRvSEo1xjSVdL+krZLeL7KqAADASU4as33tNQRnoJi5Gp4zrbVW0iXK2XF+RVJo0ZUFAACOsRkZ2vPss9p5z70KaNhQNWfOVFBsrNNlAaWSqz3PScaYByVdK6mzMcZbEjM+AQAoYieM2R54nSrcx5htwEmuhucrJV0t6UZr7W5jTHVJY4quLAAAcMKY7TFjFH7xRU6XBJR6robn4dbaB459Ya3dZoxpVEQ1AQBQqllrdeDjj7XnueflW6mSot+eoIB69ZwuC4Bc73nucYrbLijMQgAAgJR9+LB2jRypPU8+pZD27VVz+icEZ8CNnHHn2Rhzm6TbJdUyxvx23F2hkn4tysIAACht0rdvzxmzvXGjIu+6U5G3MWYbcDd5tW18LOkbSc9KGnnc7UnW2v1FVhUAAKVM8vz52nHf/YzZBtzcGcOztTZRUqKkAUdP2Khw9DEhxpgQa+22YqgRAIAS64Qx2/Xqqeq4VxizDbgxVycM3inpMUl7JGUfvdlKiimasgAAKPkYsw14HldP2xgmqZ61dl8R1gIAQKmRtvFPxd3NmG3A07ganrcrp30DAAAUUOJXs7XrkUfkHRKiGu+/p6AWLZwuCYCLXA3Pf0uaZ4yZLenIsRuttWOLpCoAAEogm5GhPWPG6MD7HygwNlZVXhor3/LlnS4LQD64Gp63Hf3ld/QXAADIh8y9exU3fLgOL1/BmG3Ag7kUnq21j0uSMSbYWptStCUBAFCyMGYbKDlcOnndGNPOGLNO0vqjXzc1xrxepJUBAODhrLXa/9FH2jpokExAgKKnTSU4Ax7O1baNlyX1kvSFJFlr1xhjOhdVUQAAeLrsw4e1+7HHlPj5Fwrp0kWVx4yWd1iY02UBKCBXw7Ostdv/c4ROVuGXAwCA52PMNlByuXxUnTGmvSRrjPGTdLeOtnAAAIB/JS9YoB333seYbaCEcvWfwbdKukNSFUlxkpod/RoAAChnzPbe11/X9ptvkW/Fiqo5YzrBGSiBXD1tI0HSNUVcCwAAHokx20DpccbwbIy531o72hjzqiT73/uttXcXWWUAAHgAxmwDpUteO8/H+pqXF3UhAAB4GsZsA6XPGcOztfbLox/fK55yAABwfyeM2W4Zq6ovvSSfqCinywJQDFwdkvKDMabMcV+XNcZ8V2RVAQDgpjL37tXW66/Xgfc/UNmB16nGpEkEZ6AUcfWouihr7cFjX1hrDxhjyhdNSQAAuKfUlau0Y+hQZSUnq/ILLyj8ogudLglAMXP1qLosY0z1Y18YY2roFG8gBACgJLLWav+HH2nrwIEygYGKnjqV4AyUUq7uPD8saaEx5uejX3eWdHPRlAQAgPvIPnxYux59VIe++FIhXbuq8ujnGbMNlGKunvP8rTGmhaS2koyk4UfPfgYAoMQ6Ycz23Xcp8tZbGbMNlHJ5nfNc31q74WhwlqSdRz9WN8ZUt9auLNryAABwRvLPP2vHffdLxqjaW28qpHNnp0sC4Aby2nkeoZz2jBdPcZ+VdG6hVwQAgJOys7X3tfFKGD9e/vXrq+q4V+RXrZrTVQFwE3mF5x+OfrzRWvt3URcDAICTshITVeaNN5Tw+1qFX9JHFR97jDHbAE6QV+PWg0c/zijqQgAAcFLaxo365/Ir5PfHOlV45H+q9NxzBGcAJ8lr53m/MWaupFrGmC/+e6e1tk/RlAUAQPFJ/PJL7XpklLxDQ3XgnhFqeM01TpcEwE3lFZ57S2oh6QOduu8ZAACPZTMytGf0GB344N8x2zv++MPpsgC4sbzC87vW2uuMMW9ba3/O41oAADxGRny8dgwfocMrVihi0ECVv/deGV9fp8sC4ObyCs+xR6cJXmOMeVs5ZzznstbuL7LKAAAoIqkrV2rH0GGM2QaQb3mF5zclfSuplqQVOjE826O3AwDgEay1OvDhR9rz/PPyrVJZ0e+8o4B6dZ0uC4AHOWN4ttaOkzTOGPOGtfa2YqoJAIBCd8KY7W7dVPn55xizDSDfXB3PfZsxpqOkOtbaScaYSEmh1tp/irY8AAAKLn3btpwx23/+yZhtAAXiUng2xjwqqaWkepImSfKT9KGkDkVXGgAABceYbQCFydV/dveT1EdSiiRZa3dKCi2qogAAKCh7dMz29ltvk2+VKqo5YzrBGUCBubTzLCndWmuNMVaSjDHBRVgTAAAFkpWYqJ33P6Dkn39W+CWXqOJjjzItEEChcDU8f2KMeUtSGWPMTZJukPR20ZUFAMDZSdu4UXF33a2MnTtVYdQjKjtggIwxeT8QAFzg6hsGXzDG9JB0SDl9z6OstT8UaWUAAORT4pdfadcjj8g7NFQ13n9fQS2aO10SgBLG1Z1nSfpNkv/Rz9cUQS0AAJyVU43Z9omKcrosACWQS28YNMZcIWmppMslXSFpiTHmsqIsDAAAV2TEx2vr4Ot14IMPFDFooGpMmkRwBlBkXN15flhSK2ttvCQZY6IkzZE0o6gKAwAgL4zZBlDcXD2qzutYcD5qXz4eCwBAobLWav+HH2nrwEEygYGKnjqV4AygWLi68/ytMeY7SVOOfn2lpK+LpiQAAE7vhDHbXbuq8ujnGbMNoNicMTwbY2pLqmCtvc8Y019SR0lG0iJJHxVDfQAA5GLMNgCn5bXz/LKkhyTJWjtL0ixJMsa0PHrfxUVYGwAAuRizDcAd5BWeo621v/33RmvtcmNMdNGUBADAv2x2thJef0MJ48fLv359VR33ivyqVXO6LAClVF7hOeAM9zHnFABQpBizDcDd5BWelxljbrLWnjCK2xhzo6QVRVcWAKC0S9u4UXF33qWM3bsZsw3AbeQVnodJ+tQYc43+DcstJflJ6leEdQEASrHEL7/UrkdG5YzZfu89xmwDcBtnDM/W2j2S2htjuklqfPTm2dban4q8MgBAqWPT03PGbH/4IWO2Abgll855ttbOlTS3iGsBAJRiGfHx2jFsuA6vXKmIQQNV/t57ZXx9nS4LAE7g6pAUAACKTOqKFYobNkzZySmM2Qbg1hw5Wd4YM8YYs8EY85sx5lNjTBkn6gAAOMtaq/0ffKitgwbLKyiIMdsA3J5TY5l+kNTYWhsj6U9JDzpUBwDAIdmHD2vn/Q9oz9NPK6RTJ9WcPl0B9eo6XRYAnJEjbRvW2u+P+3KxpMucqAMA4Izjx2xHDb1b5W65hTHbADyCO/Q83yBpmtNFAACKxwljtie8pZBOnZwuCQBcZqy1RfPExsyRVPEUdz1srf386DUPK+fc6P72NIUYY26WdLMkVahQIXbq1KlFUu+ZJCcnKyQkpNhf11OxXvnHmuUP65U/brNe2dkK/vprBc/+WplVq+jgLbcoOzLS6apO4jbr5SFYr/xhvfLHyfXq1q3bCmtty//eXmThOS/GmEGSbpXU3Vqb6spjWrZsaZcvX160hZ3CvHnz1LVr12J/XU/FeuUfa5Y/rFf+uMN6edKYbXdYL0/CeuUP65U/Tq6XMeaU4dmRtg1jzPmSHpDUxdXgDADwTIzZBlCSONXz/Jokf0k/HP0DdLG19laHagEAFJHcMdthYarx/nsKas6YbQCezanTNmo78boAgOJhMzJyxmx/8IGCWrZUlZfGMmYbQIngDqdtAABKkIz4eO0YPkKHV6xgzDaAEofwDAAoNKkrVypu6NCcMdsvvqDwC5kWCKBk4UR6AECB5Y7ZHjhI3kHBip42leAMoERi5xkAUCDZhw9r16hHdejLLxVy7rmq/Pxz8g4NdbosACgShGcAwFljzDaA0obwDAA4K0nz5mnn/Q8wZhtAqUJ4BgDki83OVsL415Uwfrz8GzRQ1VfHya9qVafLAoBiQXgGALgsKzFRO+6/Xyk/z1d43745Y7YDApwuCwCKDeEZAOCS48dsV3x0lMpcdRVjtgGUOoRnAECeGLMNADkIzwCA07Lp6Tljtj/8MGfM9ssvyScy0umyAMAxhGcAwCllxMdrx7DhOrxypSIGD1b5e0YwZhtAqUd4BgCcJHXFCsUNG6bslFRVGfuiwnr3drokAHALnGQPAMiVO2Z70OCcMdtTpxCcAeA47DwDACQxZhsAXEF4BgCcOGZ72FCVu/lmxmwDwCkQngGglDs2ZtsYo2oTJiikU0enSwIAt8W2AgCUUjY7W3tfG6+4W2+Tb9Uqip45g+AMAHlg5xkASqGsxETtvP8BJf/8s8L79VPFR0cxZhsAXEB4BoBS5oQx2489qjJXXsmYbQBwEeEZAEoRxmwDQMEQngGgFDhhzHarVqry0ljGbAPAWSA8A0AJ55WYqK2Dr2fMNgAUAsIzAJRgqStWKOLpZ5SWmcmYbQAoBIRnACiBrLU68MGH2jN6tGxEhGq++47869RxuiwA8HiEZwAoYbJTU3PGbH/1lUK6d9ffF11IcAaAQsKQFAAoQdK3btWWqwbo0OzZiho2TFVfHScbGOh0WQBQYrDzDAAlRNLcuTljtr28GLMNAEWE8AwAHs5mZyvhtfFKeP11+TdsoKrjXpVf1SpOlwUAJRLhGQA8WNbBg9px//1Kmb+AMdsAUAwIzwDgodLWr1fcXXcrY88exmwDQDHhDYMA4IESP/9cW64aIJuRoegP3lfZq64iOANAMWDnGQA8iE1P157nnteBjz9mzDYAOIDwDAAeImNPvHYMG6bDq1bljNm+9x4ZH/4YB4DixJ+6AOABUpcvV9zw4cpOSWXMNgA4iJ5nAHBj1lrtf/99bR18vbyDglVz2lSCMwA4iJ1nAHBT/x2zXfm5Z+UdGup0WQBQqhGeAcANpW/dqri77taRTZsUNWyYyt18k4wXPywEAKcRngHAzZwwZvvttxXSsYPTJQEAjiI8A4CbsFlZShg/Xgmvv8GYbQBwU4RnAHADjNkGAM9AeAYAhzFmGwA8B+8+AQAHMWYbADwLO88A4ADGbAOAZyI8A0AxY8w2AHgu/rQGgGLEmG0A8Gz0PANAMWDMNgCUDOw8A0ARY8w2AJQchGcAKEKM2QaAkoXwDABF5IQx2xMmKKRTR6dLAgAUEOEZAAqZzc5WwmvjlfD664zZBoAShvAMAIWIMdsAULIRngGgkDBmGwBKPt61AgCFgDHbAFA6sPMMAAXAmG0AKF0IzwBwlhizDQClD3/KA8BZSF22THHDRyg7lTHbAFCa0PMMAPlgrdX+997LGbMdzJhtACht2HkGABekx+3Qodmzdeirr3Rk0ybGbANAKUV4BoDTyNy3T4e+/VaHvpqtw6tWSZICW7RQpaeeVHj//ozZBoBSiPAMAMfJSk5R8o9zlPjVbKX8+quUlSX/unUVNWKEwnr3ZlIgAJRyhGcApV52erpS5s9X4uzZSv5pruyRI/KtXFnlbrxRYRdeqIB6dZ0uEQDgJgjPAEqtzAMHlPDaeCV++aWyDx2Sd0SEylx6qcIuukiBzZsx5AQAcBLCM4BSx2Zl6eD0Gdr70kvKSk5W2IW9FX7xxQpu21bG19fp8gAAbozwDKBUOfzbb9r9xJNKW7tWQa1aqcIj/1NAXdoyAACuITwDKBUyDxzQ3rEv6eCMGfKJjFTlF15Q2IW9ac0AAOQL4RlAifbfFo2IQYMUeecd8g4Jcbo0AIAHIjwDKLFo0QAAFDbCM4AS56QWjTFjFHbRhbRoAAAKjPAMoMSgRQMAUNQIzwBKBFo0AADFgfAMwKMd36LhHVlOlceMVthFF9GiAQAoEoRnAB6JFg0AgBMIzwA8js+WLdry2nhaNAAAxY7wDMBjHGvRiJgxQxmR5ThFAwBQ7AjPANzef1s0Urufq+bPPUeLBgCg2BGeAbi1w7//rt2PP3FCi8binTsJzgAARxCeAbilk0/ROK5FY+dOp8sDAJRShGcAbsVmZengjJnaO3ZszikaAwcq8q472WkGALgFwjMAt3GqFg1O0QAAuBPCMwDHnbFFAwAAN0J4BuCYk1o0GHQCAHBzhGcAjqBFAwDgiQjPAIoVLRoAAE9GeAZQLGjRAACUBIRnAEWOFg0AQElBeAZQZDIPHNDel17WwenTj7ZojFbYRRfRogEA8FiEZwCFjhYNAEBJRXgGUKgO//67dj/xpNJ+/11BLVuqwqhHaNEAAJQYhGcAheLkFg1O0QAAlDyEZwAFYrOzdXD6DFo0AAClAuEZwFmjRQMAUNoQngHkW+aBA9r78is6+MkntGgAAEoVwjMAl9nsbB2cMUN7XzzaojFwoCLvupMWDQBAqUF4BuASWjQAACA8A8gDLRoAAPyL8AzglE5q0eAUDQAACM8ATkaLBgAAp0Z4BpCLFg0AAM6M8AyAUzQAAHAR4Rko5WjRAADAdYRnoJQ6uUVjtMIuuogWDQAAzoDwDJQytGgAAHD2CM9AKUKLBgAABUN4BkoBWjQAACgchGegBKNFAwCAwkV4Bkqow7+v1e4nn1Tab7/ltGg88ogC6tGiAQBAQRCegRKGFg0AAIoO4RkoIXJbNMa+pKykJEUMvE6Rd94p79BQp0sDAKDEIDwDJcDxLRqBLWNV8ZFRtGgAAFAECM+AB6NFAwCA4uVoeDbG3CtpjKQoa22Ck7UAnoQWDQAAnOFYeDbGVJPUQ9I2p2oAPBEtGgAAOMfJneeXJN0v6XMHawA8xgktGuXKqfLo5xV28cW0aAAAUIwcCc/GmD6Sdlhr1/AXP3BmNitLB2fOpEUDAAA3YKy1RfPExsyRVPEUdz0s6SFJPa21icaYLZJanq7n2Rhzs6SbJalChQqxU6dOLZJ6zyQ5OVkhTGRzGeuVf6dbM9+Nfyp0+nT5xsUpvXZtJQ24SplVqjhQoXvhv7H8Yb3yh/XKH9Yrf1iv/HFyvbp167bCWtvyv7cXWXg+HWNME0k/Sko9elNVSTsltbbW7j7TY1u2bGmXL19exBWebN68eeratWuxv66nYr3y779rlr59u+JHj1HSDz/Ip3IlVbj3XoVecAEtGkfx31j+sF75w3rlD+uVP6xX/ji5XsaYU4bnYm/bsNb+Lqn8sa/z2nkGSpOs5GTte+st7Z/8nuTjo6ihdyvi+uvlFRDgdGkAAECc8wy4h6NHz8W//IqyEhIUfsklihoxXL4VKjhdGQAAOI7j4dlaG+10DYCTUpctU8Szz2nX9u0KbN5cFd54XYFNmjhdFgAAOAXHwzNQWqXHxSl+zAtK+u47eZUtq8ovvKCwC3vT1wwAgBsjPAPFLCs5WfsmvK39kydL3t6KvOtO/VGnjhr37Ol0aQAAIA+EZ6CYZKen6+DUaUp44w1lHTigsD4Xq/yIEfKtWFGaN8/p8gAAgAsIz0ARs9nZOjT7a+195RVlxMUpqE0blb/3HvqaAQDwQIRnoAgl//KL4l98UUfWrZd//fqq9vbbCu7Ygb5mAAA8FOEZKAKH1/6hvWNfVMqvi+RbpYoqjxmtsAsvlPHycro0AABQAIRnoBClb9umvS+/okNffy3vMmVU4aEHVeaqq+Tl5+d0aQAAoBAQnoFCkLlvnxJef0MHpk2T8fVVudtuVbkbbpB3aKjTpQEAgEJEeAYKIDslRfsmT9b+dycq+8gRlbn8MkXefrt8y5fP+8EAAMDjEJ6Bs2AzMnRg+nQljH9dWfv2KbRHD0UNHy7/WjWdLg0AABQhwjOQD9ZaJX33neJfekkZW7cpqGVLlR//mgKbNXO6NAAAUAwIz4CLUhYvUfyLLyrt99/lX6eOqr31poI7d+bYOQAAShHCM5CHtA0bFP/iWKUsWCCfSpVU6dlnFd7nYhlvb6dLAwAAxYzwDJxGetwO7R33ig59+ZW8wsJU/v77Vfaaq+Xl7+90aQAAwCGEZ+A/Mg8c0L4339KBjz+WvLxUbsiNKnfTTfIOC3O6NAAA4DDCM3BU9uHD2v/+B9r39tvKTk1VeP9+irrzTvlWrOh0aQAAwE0QnlHq2cxMHZw1SwmvvqbMvXsV0q2byo8YLv86dZwuDQAAuBnCM0ota62S5szR3rEvKf2ffxTYvLmqvPySgmJjnS4NAAC4KcIzSqXU5csVP+YFHV6zRn61aqnq+NcUcu65HDsHAADOiPCMUiXtzz+1d+xLSp43Tz7ly6vSU08qvG9fGR/+VwAAAHkjMaBUyNi5U3tffU2Jn30mr5AQRY0YoYjrrpVXYKDTpQEAAA9CeEaJlnXwoBLeflsHPvhQslYRgwer3M03yadsWadLAwAAHojwjBIpOy1NBz78UAkT3lZ2UpLCL7lEUXfdKd8qVZwuDQAAeDDCM0oUm5mpxM8/195xrypzzx4Fd+ms8iNGKKBePadLAwAAJQDhGSWCtVbJc+cqfuxYpW/+SwExMao8erSC27R2ujQAAFCCEJ7h8VJXrlL8iy/q8IoV8ouOVpVXXlFozx4cOwcAAAod4Rke68hffyn+pZeUPOdHeUdFquJjj6nMpf1lfH2dLg0AAJRQhGd4nIw9e5Tw2ms6OHOWvAIDFTVsqCIGDpRXUJDTpQEAgBKO8AyPkXXokPa9/Y72v/++bHa2Iq67VuVuvZVj5wAAQLEhPMPtZR85ogMffayEt95SdmKiwi66SFHDhsqvalWnSwMAAKUM4bmUyDxwQMbXT94hwU6X4jKblaXEL7/U3nHjlLlzl4I7dlT5e0YooEEDp0sDAAClFOG5BMk+fFjp27Yp/Z9/lL5li9L/2ZLzccsWZSUmyrdqVdX8dJa8Q0OdLvWMrLVKmT9f8S+O1ZE//1RAo0aq/PTTCm7XzunSAABAKUd49jA2K0sZO3bkhuL0LVt05J9/lL5lqzJ37TrhWp+KFeUXHa3QC86XT7lIJbzxhvY89bQqP/+cQ9Xn7fCaNYp/4UWlLlsm3+rVVeWlsQrt1UvGy8vp0gAAAAjP7shaq6x9+/4TkHM+ZmzbJpuRkXutV2io/GrWVFCrlvKvWVN+0dE5v2rUOPn0CWuV8PrrCunWVWHnn1+831Qejvzzj/a+/IqSvvtO3uXKqcIj/1PZyy+X8fNzujQAAIBchGcHZaem/huO/9NmkZ2UlHud8fWVb43q8qsZrdBzu+WGY7+aNeUdEeHyMJDI225V8sKF2vXoYwps3ly+FSoU1bfmsoz4eCW8/roOTp8hL39/Rd55pyIGD/ao3mwAAFB6EJ6LmM3IUMaOHSeF4/QtW5S5Z88J1/pUriT/6GiFX3yR/KJryq9mzi6yb+XKMt7eBa7F+Pqqyujn9Xe//tr14IOq9s47jrVDZCUna9+772r/5PdkMzJU9qqrFHnbrfKJjHSkHgAAAFcQnovA/o8+UsrCX3LeuBcXJ2Vm5t7nFR4u/+hoBbdr92+LRc1o+VWvLq/AwCKvzS86WhVGjtTuRx/VgQ8/VMTAgUX+msfLTk/XwalTlfDGm8o6cEBhvS9Q1NCh8qtRo1jrAAAAOBuE50KWlZioPU89Ld9KlRTQuLFCe/aUX82a8ouuIb/oaLcY6FHmisuVPG+e4l94UUFt2yqgbt0if02bna1Ds2dr7yvjlBEXp6C2bVX+nnsU2KRxkb82AABAYSE8F7KUpUsla1V59PMKatnS6XJOyRijSk89qb/7XKKd992v6OmfyKuI3phnrVXKL78q/sUXdWT9evk3aKBq77yj4A7tXe7VBgAAcBec/1XIUhcvkQkMVGBMjNOlnJFPuXKq9NSTOrJxo/a+8kqRvMbh39dq2w03aPuQIco+dEiVx4xRzZkzFNKxA8EZAAB4JHaeC1nKksUKio31iCPWQrt1U5mrrtT+iZMU0qmzgtu2KZTn9Y6P144RI3To62/kXbasKjz0kMpcdWWR7W4DAAAUF8JzIcqIj1f65r9Upm9fp0txWYX771fqosXaOXKkan3+mbzDw8/6uTITEpTw+hsqN3Wqkvz9Ve62W1XuxhvlHRJSiBUDAAA4h7aNQpS6ZKkkKait54yR9goKUuUXxihz717tfuLJs3qOrOQU7X31NW3u2UsHpk3T4Y4ddM5336r80KEEZwAAUKIQngtRypLF8goLU0CD+k6Xki+BTZoo6s47dGj2bCV++ZXLj7Pp6dr/0Uf6q1cvJYwfr5BOnVTryy+VdPXV8i1fvggrBgAAcAZtG4UoddFiBbVuVSgDTYpbuZtuUvLP87X7iScUFNtCvpUrn/Zam52tpG+/VfzLryhj2zYFtWql8q+PV2DTpjkXbNtaTFUDAAAUL3aeC0l6XJwyduxQsAe1bBzP+Pio8ujnpaws7Rz5oGx29imvS1m0SFsuv0I7Rtwjr4AAVXvrTVV//71/gzMAAEAJRnguJKmLF0tSoZ1Y4QS/6tVV4eGHlbp0qfZPmnzCfWnr1mnbjUO07foblHlgvyo996xqfjpLIV26cOwcAAAoNWjbKCQpixbLOypSfuec43QpBRLev5+S581V/MsvK7hDe3mFhGjvK+N06Msv5R0ervIPPKCyVw+Ql7+/06UCAAAUO8JzIbDWKmXJEgW3bevxu7DGGFV84gml9umjbTfdpKyDiTJeXip3000qd9MQeYeFOV0iAACAY2jbKATpf/2lrIQEj27ZOJ5P2bKq/Oxzyk5JVZm+l+ic779T+XtGEJwBAECpx85zIUhZlNPv7EnnO+clpGMH1Vux3ON30gEAAAoTO8+FIGXJYvlWrSq/qlWcLqVQEZwBAABORHguIJuVpdSlyxRUQlo2AAAAcHqE5wJKW7de2YcOeez5zgAAAHAd4bmAUpccPd+5TWuHKwEAAEBRIzwXUMqixfKrfY58oqKcLgUAAABFjPBcADY9XakrVtCyAQAAUEoQngvg8G+/yaallZjznQEAAHBmhOcCSFm0WPLyUlCrVk6XAgAAgGJAeC6AlCWLFdCwobzDw50uBQAAAMWA8HyWslNTdXjNb7RsAAAAlCKE57OUumKllJGhoDZtnS4FAAAAxYTwfJZSlyyWfH0VFNvC6VIAAABQTAjPZyll8RIFNo2RV1CQ06UAAACgmBCez0JWYqLS/viD850BAABKGcLzWUhdtkyyljcLAgAAlDKE57OQsniJTGCgAmNinC4FAAAAxYjwfBZSFi9SUGysjJ+f06UAAACgGBGe8ylz716lb/6Llg0AAIBSiPCcTylLlkoS5zsDAACUQoTnfEpZvEheYWEKaNjA6VIAAABQzAjP+ZS6eImCWreS8fZ2uhQAAAAUM8JzPqTHxSkjLk7BtGwAAACUSoTnfEhdvFiSFNyO8AwAAFAaEZ7zIWXxEnlHRsrvnHOcLgUAAAAOIDy7yFqrlCWLFdymjYwxTpcDAAAABxCeXZT+11/K2ptAywYAAEApRnh2UcriJZKkoLaEZwAAgNKK8OyilMWL5FulivyqVnW6FAAAADiE8OyK7GylLl2mIFo2AAAASjXCswt8tm9X9qFDnO8MAABQyhGeXeC3YaMkKahNa4crAQAAgJMIzy7w27hRfrXPkW/58k6XAgAAAAcRnvNg09Plt3kzLRsAAAAgPOfl8G+/yaSnc74zAAAACM95yTxwQFllyyqoVSunSwEAAIDDfJwuwN2F9eihBB8feYeHO10KAAAAHMbOsyuMcboCAAAAuAHCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiY611ugaXGWP2StrqwEtHSkpw4HU9FeuVf6xZ/rBe+cN65Q/rlT+sV/6wXvnj5HrVsNZG/fdGjwrPTjHGLLfWtnS6Dk/BeuUfa5Y/rFf+sF75w3rlD+uVP6xX/rjjetG2AQAAALiI8AwAAAC4iPDsmglOF+BhWK/8Y83yh/XKH9Yrf1iv/GG98of1yh+3Wy96ngEAAAAXsfMMAAAAuIjwnAdjzPnGmI3GmM3GmJFO1+POjDETjTHxxpi1TtfiCYwx1Ywxc40x640xfxhjhjpdkzszxgQYY5YaY9YcXa/Hna7JExhjvI0xq4wxXzldi7szxmwxxvxujFltjFnudD3uzhhTxhgzwxiz4eifY+2crsmdGWPqHf1v69ivQ8aYYU7X5c6MMcOP/nm/1hgzxRgT4HRNEm0bZ2SM8Zb0p6QekuIkLZM0wFq7ztHC3JQxprOkZEnvW2sbO12PuzPGVJJUyVq70hgTKmmFpL7893VqxhgjKdham2yM8ZW0UNJQa+1ih0tza8aYEZJaSgqz1l7kdD3uzBizRVJLay1n8LrAGPOepAXW2neMMX6Sgqy1Bx0uyyMczRc7JLWx1joxv8LtGWOqKOfP+YbW2sPGmE8kfW2tnexsZew856W1pM3W2r+ttemSpkq6xOGa3Ja1dr6k/U7X4SmstbustSuPfp4kab2kKs5W5b5sjuSjX/oe/cW//s/AGFNV0oWS3nG6FpQsxpgwSZ0lvStJ1tp0gnO+dJf0F8E5Tz6SAo0xPpKCJO10uB5JhOe8VJG0/biv40S4QREwxkRLai5picOluLWjLQirJcVL+sFay3qd2cuS7peU7XAdnsJK+t4Ys8IYc7PTxbi5WpL2Spp0tC3oHWNMsNNFeZCrJE1xugh3Zq3dIekFSdsk7ZKUaK393tmqchCez8yc4jZ2ulCojDEhkmZKGmatPeR0Pe7MWptlrW0mqaqk1sYY2oNOwxhzkaR4a+0Kp2vxIB2stS0kXSDpjqOtaDg1H0ktJL1hrW0uKUUS7wtywdEWlz6SpjtdizszxpRVzk/7a0qqLCnYGHOts1XlIDyfWZykasd9XVVu8iMDlAxHe3dnSvrIWjvL6Xo8xdEfD8+TdL6zlbi1DpL6HO3jnSrpXGPMh86W5N6stTuPfoyX9KlyWvdwanGS4o776c8M5YRp5O0CSSuttXucLsTNnSfpH2vtXmtthqRZkto7XJMkwnNelkmqY4ypefRfildJ+sLhmlBCHH0D3LuS1ltrxzpdj7szxkQZY8oc/TxQOX+wbnC0KDdmrX3QWlvVWhutnD+7frLWusWujTsyxgQffeOujrYf9JTEyUGnYa3dLWm7Mabe0Zu6S+LNzq4ZIFo2XLFNUltjTNDRvy+7K+e9QY7zcboAd2atzTTG3CnpO0nekiZaa/9wuCy3ZYyZIqmrpEhjTJykR6217zpblVvrIOk6Sb8f7eOVpIestV87V5JbqyTpvaPvUveS9Im1luPXUFgqSPo05+9o+Uj62Fr7rbMlub27JH10dHPpb0nXO1yP2zPGBCnnBK9bnK7F3VlrlxhjZkhaKSlT0iq5ybRBjqoDAAAAXETbBgAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAAADgIsIzAAAA4CLCMwAAAOAiwjMAlFDGmCbGmK3GmNucrgUASgrCMwCUUNba35Uzmnug07UAQElBeAaAki1eUiOniwCAkoLwDAAl23OS/I0xNZwuBABKAsIzAJRQxpjzJQVLmi12nwGgUBCeAaAEMsYESBot6XZJv0tq7GxFAFAyEJ4BoGT6n6T3rbVbRHgGgEJDeAaAEsYYU09SD0kvH72J8AwAhcRYa52uAQAAAPAI7DwDAAAALiI8AwAAAC4iPAMAAAAuIjwDAAAALiI8AwAAAC4iPAMAAAAuIjwDAAAALiI8AwAAAC76P352bAcZQXK7AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from scipy.stats import zscore\n", "from ucimlrepo import fetch_ucirepo \n", "from statsmodels.formula.api import ols\n", "import pandas as pd\n", " \n", "# fetch dataset \n", "auto_mpg = fetch_ucirepo(id=9) \n", " \n", "# data (as pandas dataframes) \n", "X = auto_mpg.data.features \n", "y = auto_mpg.data.targets \n", " \n", "data = X.join(y)\n", "\n", "data2=data.dropna().drop('mpg',axis=1).apply(zscore).join(data.dropna()['mpg'])\n", "dd=[]\n", "for alpha in np.linspace(0,8,50):\n", " d=ols(\"mpg ~ displacement + cylinders + horsepower + weight + acceleration + model_year + origin\", data2).fit_regularized(L1_wt=1, alpha=alpha).params\n", "\n", " \n", " d= pd.Series(\n", " {\n", " c:v for c,v in zip([\"Intercept\",\"displacement\", \"cylinders\", \"horsepower\" ,\"weight\" ,\"acceleration\", \"model_year\" ,\"origin\"],d)\n", " }\n", " )\n", " d['alpha']=alpha\n", " dd.append(d)\n", "dd=pd.concat(dd,axis=1).T\n", "dd.drop('Intercept',axis=1).plot(x='alpha', figsize=(12,10))\n", "plt.xlabel(\"$\\lambda$\")\n", "plt.ylabel(\"Coefficients\")\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As can be seen, the model now makes \"hard choices\" on whether a value should be set to zero or not, thus performing variable selection." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "\n", "* Chapter 3 of \\[1\\]\n", "* Parts of chapter 11 of \\[2\\]\n", "\n", "\\[1\\] Heumann, Christian, and Michael Schomaker Shalabh. Introduction to statistics and data analysis. Springer International Publishing Switzerland, 2016.\n", "\n", "\\[2\\] James, Gareth Gareth Michael. An introduction to statistical learning: with applications in Python, 2023.https://www.statlearning.com" ] } ], "metadata": { "kernelspec": { "display_name": "base", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 2 }